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Abstract. This paper presents a machine learning technique for bird species 

identification at large scale. It automatically identifies about a thousand differ-

ent species in a large number of audio recordings and provides the basis for the 

winning solution to the LifeCLEF 2015 Bird Identification Task. To process the 

very large amounts of audio data and to achieve similar good results compared 

to previous identification challenges new methods e.g. downsampling of spec-

trogram images for faster feature extraction, advanced feature selection via de-

cision tree based feature ranking and bootstrap aggregating using averaging and 

blending were tested and evaluated. 
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1 Introduction 

Automatic identification of species from their sound can be a very useful computa-

tional tool for assessing biodiversity with many potential applications in ecology, 

bioacoustic monitoring and behavioral science [1]. Some examples of previous stud-

ies on species identification, especially of birds, are given in [2,3,4,5]. The approach 

towards automatic species identification presented here is a further development of 

ideas and methods already successfully applied in previous challenges. The NIPS4B 

2013 Multi-label Bird Species Classification Challenge [6] hosted by Kaggle for ex-

ample asked participants to identify 87 sound classes (songs, calls and instrumental 

sounds) of more than 60 different species in a large number of wildlife recordings. 

Last year the LifeClef2014 Bird Identification Task [7] challenged participants to 

identify 501 different species in almost 5000 audio recordings. This year the number 

of training and test files as well as the number of species to identify was increased 

once again. With almost a thousand species and over 33,000 audio files it is the larg-

est computer-based bird identification challenge so far. A detailed description of the 

task, dataset and experimentation protocol can be found in [8], [20]. The task is 

among others part of the LifeCLEF 2015 evaluation campaign [9,10,11]. 
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The features used for classification and methods to speed up feature extraction are 

introduced in section 2. In section 3 a two-pass training approach is proposed includ-

ing feature ranking and selection. Bagging is used to improve classification results 

and different methods for aggregating model predictions are compared. Finally, sub-

mission results are evaluated in section 4 and briefly discussed in section 5.   

2 Feature Engineering 

There are two main categories of features used for classification: parametric acoustic 

features (see openSMILE Audio Statistics) and probabilities of species-specific spec-

trogram segments (see Segment-Probabilities). The feature sets are briefly described 

in the following sections. Similar features have been already successfully used in 

previous identification challenges and additional details can be found in [12,13,14]. 

2.1 openSMILE Audio Statistics 

For each audio file a large number of acoustic features were extracted using the 

openSMILE Feature Extractor Tool [15]. The configuration file emo_large.conf, orig-

inally designed by Florian Eyben for emotion detection in human speech, was modi-

fied in several ways to better capture the characteristics of bird sounds. The changes 

relate primarily to the frame-wise calculated low-level descriptors (LLDs). For exam-

ple the maximum frequency for pitch and Mel-spectrum was set to 11 kHz (instead of 

500 Hz and 8 kHz). Also, the number of Mel Frequency Cepstral Coefficients 

(MFCC) was increased as well as the number of frequency bands for energy calcula-

tions. Furthermore, pitch- and spectral-related LLDs were added e.g. harmonics-to-

noise ratio, raw F0, spectral skewness, kurtosis, entropy, variance and slope.  

 

The all in all 73 LLDs consist of: 

 1 time domain signal feature 

o zero crossing rate (ZCR) 

 39 spectral features 

o Mel-spectrum bins 0-25 

o 25%, 50%, 75% and 90% spectral roll-off points 

o centroid, flux, entropy, variance, skewness, kurtosis and slope 

o relative position of spectral minimum and maximum 

 17 cepstral features 

o MFCC 0-16 

 6 pitch-related features 

o F0 (fundamental frequency, pitch) 

o voicing probability (degree of harmonicity) 

o F0raw (raw F0 candidate without thresholding in unvoiced/noisy segments) 



o HNR (log harmonics-to-noise ratio computed from the ACF) 

o F0env (F0 envelope with exponential decay smoothing) 

o voice quality (fundamental frequency ‘quality’ (= ZCR of ACF)) 

 10 energy features 

o log energy 

o energy in frequency bands: 150-500 Hz, 400-1000 Hz, 800-1500 Hz, 1000-

2000 Hz, 1500-4000 Hz, 3000-6000 Hz, 5000-8000 Hz, 7000-10000 Hz and 

9000-11000 Hz 

LLDs are calculated per audio frame (FrameSize 25 ms, StepSize 10 ms). To describe 

an entire audio recording, delta (velocity) and delta-delta (acceleration) coefficients 

were added to each LLD and finally 39 statistical functionals e.g. means, extremes, 

moments, percentiles and linear as well as quadratic regression were applied after 

smoothing all 219 feature trajectories via moving average (window length = 3). All in 

all, this sums up to 8541 (73×3×39) features per audio file. Further details regarding 

openSMILE and the acoustic features extracted can be found in the openSMILE book 

(http://www.audeering.com/research/opensmile) and the OpenSmileForBirds_v2.conf 

configuration file (http://www.animalsoundarchive.org/RefSys/LifeCLEF2015). 

2.2 Segment-Probabilities 

The second source used for features are Segment-Probabilities (SegProbs). For each 

species a set of representative segments also referred to as region of interests (ROIs) 

or templates was extracted from spectrogram images representing the acoustic content 

of audio files. These segments were then used to calculate Segment-Probabilities for 

each target file by finding the maxima of the normalized cross-correlation [16] be-

tween all segments and the target spectrogram image via template matching. A more 

detailed description regarding preprocessing, segmentation of spectrogram images 

and extraction of Segment-Probabilities can be found in [12] and [14]. 

 

Due to the very large amount of audio data, not all files belonging to a certain species 

were used as a source for segmentation. In a first session only short, good quality files 

(metadata: Quality = 1) without background species were selected for segment extrac-

tion. If the number of segments was smaller than a given threshold another file be-

longing to the same species was selected and so on. To ensure diversity and to capture 

the entire sound repertoire of a given species each file was chosen to belong to a dif-

ferent bird individual. To keep track of individuals an Individual-ID was assigned to 

each audio file. Two audio files of the same species were assigned the same Individu-

al-ID if, according to the metadata, they were recorded by the same author on the 

same day. Individual-IDs were also used to accomplish a somewhat individual-

independent species classification by creating "individual-independent" folds for 

cross-validation during training. 

 



In the first session 262,232 segments were extracted from 2027 audio files of the 

training set with an average of 262 segments and 2 files (individuals) per species. 

 

Fast Template Matching through prior Downsampling. When starting the tem-

plate matching to collect Segment-Probabilities as described in [12] it quickly became 

apparent that sliding 262,232 templates over the spectrogram representation of all 

audio recordings was too time consuming (33,203 files in total). Even with modifica-

tions described in [14] it would have taken too long. Both methods apply a Gaussian 

blur on segments and target image before the actual template matching. This smooth-

ing is a form of low-pass filtering to reduce detail. Interestingly, Gaussian smoothing 

is also used when reducing the size of an image. Before downsampling an image, it is 

common to apply a low-pass filter to ensure that spurious high-frequency information 

does not appear in the resampled image (aliasing). So if high-frequency information is 

discarded anyway why not apply a Gaussian blur and then downsample both template 

and target image by a factor 2 prior to the template matching? Together with other 

speed-related optimizations introduced in [14] (e.g. short-time Fourier transform 

(STFT) with only 50% overlap, restricting the template matching to a few pixels 

above and below the original vertical segment position along the frequency axes) this 

preprocessing reduces calculation time significantly while maintaining comparable 

results in finding maxima of segments within spectrograms. Proportions of spectro-

gram images and effects of low-pass filtering are visualized in Fig. 1 for an audio file 

of about 8 seconds taken from the training set (MediaId: 83). 

 

 

 

Fig. 1. (a) Original spectrogram image: STFT with 75% overlap, (b) STFT with 50% overlap, 

(c) Image for template matching: Downsampling of (b) by factor 2, (d) Loss of information: 

Expansion of (c) to the size of the original spectrogram image 



3 Training, Feature Selection and Classification 

Like in previous challenges classification was split up into several independent classi-

fication tasks by training one classifier per species (999 classes) following the binary 

relevance approach. For each species the classification problem was formulated as a 

multi-label regression task with the target function set to 1.0 for dominant species and 

0.5 for all background species. For classification the scikit-learn library [17] was used 

(ExtraTreesRegressor) by training ensembles of randomized decision trees [18] with 

probabilistic outputs. Hyperparameter grid search was performed to improve classifi-

cation results. For each classifier the following parameters and variations of tree-

specific hyperparameters were used during training: 

 number of "individual-independent" folds for cross-validation: 10 

 number of estimators (trees in the forest): 500 

 number of features to consider when looking for the best split: 10, 30 

 minimum number of samples required to split an internal node: 5, 10 

Best hyperparameters were chosen separately for each species by evaluating the Area 

Under the Curve (AUC) on predictions of held-out training files. To have a more 

realistic estimation and to improve generalization, Individual-IDs were used to create 

"individual-independent" folds for cross-validation. This way, recordings of the same 

bird were either part of the training or the validation set but not both. For the best runs 

the probability of occurrence for that species was predicted in all test files and aver-

aged during cross-validation. 

Decision Tree based Feature Ranking and Selection. For both feature sets 

(SegProbs1 & openSMILE) training was performed in two passes. During the first 

pass feature importances returned by the classifier were cumulated for each species 

during hyperparameter variation and saved for later feature ranking. The importance 

of a feature was computed as the total reduction of the mean squared error brought by 

that feature. During the second pass classifiers were trained again, but this time with 

only a limited number of features, starting with the most important ones. To deter-

mine the optimal number of SegProbs1 and openSMILE features for each species 

features were added in decreasing order of importance. For SegProbs1 the number of 

selected features considered for training was 10, 50, 100, 150 and 500 and for 

openSMILE 50, 100, 150, 500, 3000 and 8541 (no feature selection). In Fig. 2 the 

frequency distribution regarding the optimal number of selected features (= best AUC 

per species) is given as bar chart for both feature sets. 

 



  

Fig. 2. Absolute frequency distribution regarding the optimal number of selected features for 

left: Segment-Probabilities and right: openSMILE feature set 

 

For Segment-Probabilities this means using the 50 most important features only is 

most likely better than using the most important 100, 150 or 500 features to identify a 

species. For openSMILE using 500 important features on average is better than using 

3000 or all of them. Figure 3 gives an impression to what extent the above described 

feature selection method improves classification results over the entire training set. 

Each column in the boxplot summarizes the best possible cross-validated AUC score 

achieved for each species during hyperparameter grid search and the dotted line 

shows the improvement regarding the mean AUC. 

 

 

   

Fig. 3. AUC statistics: without (w/o FS) vs. with (w/ FS) feature selection for SegProbs1 and 

openSMILE features, left: without background species, right: with background species 

 

Bootstrap Aggregating. To further improve classification results additional feature 

sets were created by calculating further Segment-Probabilities for smaller parts of the 

training set (SegProbs2 & SegProbs3). For this pupose additional segments were 

extracted from files belonging to species that did not exeeded an AUC score of 98% 

during cross-validation without background species in the previous training steps. 



Again, only files belonging to individuals not processed before were chosen for 

further segmention. Segment-Probabilities calculated for last year’s challenge were 

also reused as features (SegProbsOld). Properties of the different sets are summarized 

in Table 1. 

Table 1. Properties of Segment-Probabilities feature sets (total number of features, average 

number of features per species, number of species covered)  

Feature set 
# Features 

(Segments) 

# Features per 

Species (avg) 
# Species 

SegProbs1 262,232 262 999 

SegProbs2 224,852 557 404 

SegProbs3 245,003 620 395 

SegProbsOld 492,753 985 500 

 

  

For all sets feature selection based on prior feature ranking was performed as 

described above. Finally, four data sets (C1_All, C2_2014, C3_2015 and C4_Old) 

were created for each species by combining different feature sets. Those subsets can 

be interpreted as bootstrap data sets where rows represent a subsampling of the 

training files and columns a subsampling of the feature space. The number of training 

files, test files and species associated with each data set are listed in the table below. 

Table 2. Number of audio files and number species used in different bootstrap data sets 

 BirdCLEF2014 BirdCLEF2015 

Data set #Train Files #Test Files # Species #Train Files #Test Files # Species 

C1_All 9596 4299 500 15011 4297 499 

C2_2014 7919 4299 404 3956 4297 - 

C3_2015 - - - 8604 4297 395 

C4_Old 9596 4299 500 - - - 

 

 

The bootstrap data sets were used to train somewhat independent predictive models. 

The predictions of those models were than combined which is also known as boot-

strap aggregating or bagging. In bootstrap aggregating the subsets are usually ran-

domly drawn but here the data sets were chosen from a pragmatic point of view with 

regards to BirdCLEF 2014 vs. 2015 data and extraction of additional features for 

species with classification results below a certain threshold. Besides faster training, 

this ensemble method helps to reduce variance and improves stability. For all boot-

strap data sets different models were trained using different feature sets and feature 

set combinations: 

 Data subset 1: C1_All 

o openSMILE without and with prior feature selection (w/o & w/ FS) 

o SegProbs1 (w/o & w/ FS) 



 Data subset 2: C2_2014 

o SegProbs2 (w/o & w/ FS) 

o SegProbs2+SegProbs1 (w/ FS) 

o SegProbs2+SegProbs1+openSMILE (w/ FS) 

 Data subset 3: C3_2015 

o SegProbs3 (w/o & w/ FS) 

o SegProbs3+SegProbs1 (w/ FS) 

o SegProbs3+SegProbs1+openSMILE (w/ FS) 

 Data subset 4: C4_Old 

o SegProbsOld (w/o & w/ FS) 

Combining the Outputs of Multiple Classifiers via Averaging and Blending. To 

combine predictions of the different models two methods were tested: simple averag-

ing and blending (also known as stacking or stacked generalization [19]). In case of 

blending the outputs of different classifiers were used as training data for another 

classifier to approximate the same target function. For this second level classifier an 

ordinary least squares linear regression model was trained to figure out the combining 

mechanism or weighting of the individual predictions. 

 

Post-processing of Predictions for Submission. The predictions returned by the 

classifiers assign a score to each species within each audio file (probability of occur-

rence as real value). After blending some prediction values were not within the re-

quested interval [0,1]. To deal with this, all negative values were clipped to zero. 

Additionally, all values greater 0.6 were replaced using a hyperbolic tangent function 

(tanh). By passing predictions to this non-linear transfer function, values were all kept 

below 1.0. This way ranking was preserved especially among the top ranks that are 

most important when evaluating the Mean Average Precision (MAP). In a final step 

predictions of species not part of last year’s challenge were set to zero for all files 

marked with Year = ‘BirdCLEF2014’. Figures 4 and 5 show the progress of classifi-

cation results using simple averaging compared to blending for stepwise aggregating 

predictions from and within bootstrap data sets followed by post-processing. Results 

are presented via AUC statistics (summarized for all species as boxplots) and MAP 

statistics (evaluated over the entire training set) within the same figure.      

 



  

Fig. 4. Progress of classification results: Aggregating predictions via Averaging,                     

left: w/o BS, right: w/ BS 

 

  

Fig. 5. Progress of classification results: Aggregating predictions via Blending,                       

left: w/o BS, right: w/ BS 

 

It is worth mentioning that AUC and MAP statistics are not perfectly correlated. Al-

though averaging leads to better AUC statistics, blending yields much better MAP 

scores. Also, setting predictions of the 499 species new in 2015 to zero during post-

processing for BirdCLEF2014 files increases MAP for both averaging and blending if 

background species are included for evaluation, whereas AUC statistics are getting 

worse in both cases (far more outliers below 1.5×IQR). This can be explained by the 

fact that those species are not among the dominant species in BirdCLEF2014 files but 

they do may appear as background species. 

4 Submission Results 

In Table 3 results of submitted runs are summarized using two evaluation statistics: 

mean of the Area Under the Curve (AUC) calculated per species and mean Average 



Precision (MAP) on the public training and the private test set. All four runs outper-

formed the results of the other participating teams [20]. 

 

Table 3. Performance of submitted runs (without / with background species) 

 Public Training Set Private Test Set 

Run Mean AUC  [%] MAP  [%] MAP  [%] 

1 95.2 / 90.0 43.3 / 40.8 42.4 / 38.8 

2 96.6 / 91.3 67.1 / 62.1 44.2 / 40.5 

3 98.1 / 93.5 61.2 / 57.7 44.2 / 41.1 

4 96.7 / 91.6 69.3 / 64.0 45.4 / 41.4 

 

 

For the first run only SegProbs1 and openSMILE features were used for classification. 

Different models were trained on the entire training set with and without prior feature 

selection. The predictions of the models were than combined via blending followed 

by post-processing as described above. For the second run additional classifiers were 

trained on smaller subsets of the training files (C2_2014, C3_2015 and C4_Old). For 

each subset a distinct set of additional features (SegProbs2, SegProbs3 and SegProbs-

Old) was used for training. For this run features from one subset were not part of any 

other subset. Again, feature selection was performed individually for each species and 

each bootstrap data set. Predictions of all subset models including the ones from the 

first run were aggregated via blending and post-processed. For the third and fourth 

run additional models were trained for each bootstrap data set including also selected 

features from other subsets. The difference however between these two runs is that 

averaging was used for run three whereas blending was used for the final and best 

performing fourth run to aggregate model predictions. In Fig. 6 results for all submit-

ted runs are visualized as combination of AUC boxplots and MAP scores. 

 

 

  

Fig. 6. AUC and MAP statistics of submitted runs, left: w/o BS, right: w/ BS 



5 Discussion 

Downsampling spectrogram images prior to template matching significantly reduces 

calculation time. Luckily, the here occurring loss of information can actually be con-

sidered as a feature, not a bug. Too much detail is rather disturbing and distracting 

when comparing call or song elements between different individuals of the same spe-

cies. For some birds maybe even a downsampling factor greater than 2 produces equal 

or even better results? Faster template matching means – especially when dealing 

with so many species and such large amounts of audio data – being able to extract 

more segments and calculate more Segment-Probabilities. But using more features 

does not necessarily lead to better identification results. Reducing the number of fea-

tures to the most important ones has several advantages. Less but meaningful features 

improve prediction accuracy, reduce over-fitting and therefore increase generalization 

power. Besides faster training and prediction, a smaller set of features also reduces, 

once the model is trained, prediction time of new and unseen audio material due to 

faster feature extraction. Especially in case of Segment-Probabilities from now on 

only relevant segments need to be considered for template matching.  

Due to the large amount of data and limited training time the searching for the optimal 

number of features per species was not very extensive. Only a few manual selected 

candidates were evaluated. A finer grid search or a more sophisticated way to ap-

proach the true optimum, for example using a binary search algorithm, might have led 

to better results. 

When looking at the different MAP scores for training and test files in Fig. 6 it be-

comes clear that most of the progress achieved by bagging on the training set is due to 

over-fitting. This could be partly explained by the fact that only for the first dataset 

C1_All an "individual-independent" training approach with accordingly selected folds 

was used whereas for all other subsets common stratified folds were used for cross-

validation. Another reason might be that all bootstrap data sets used similar features 

and equal classification methods and therefore model predictions were not independ-

ent or uncorrelated enough to significantly boost classification results when combin-

ing them. Nevertheless bagging increased average prediction scores also for test files 

and could clearly improve submission results. 
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