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Abstract. This articles describes the ImageCLEF 2015 Medical Clas-
sification task. The task contains several subtasks that all use a data
set of figures from the biomedical open access literature (PubMed Cen-
tral). Particularly compound figures are targeted that are frequent in
the literature. For more detailed information analysis and retrieval it is
important to extract targeted information from the compound figures.
The proposed tasks include compound figure detection (separating com-
pound from other figures), multi–label classification (define all sub types
present), figure separation (find boundaries of the subfigures) and modal-
ity classification (detecting the figure type of each subfigure). The tasks
are described with the participation of international research groups in
the tasks. The results of the participants are then described and analysed
to identify promising techniques.
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1 Introduction

The amount and availability of biomedical literature has increased considerably
due to the advent of the Internet [1]. The task of medical doctors has on the
other hand not become simpler as the amount of information to review for taking
decisions has become overwhelming. Despite this growing complexity, physicians
would use services that improve their understanding of an illness even if these
involve more cognitive effort than in standard practice [2]. Images in biomedical
articles can contain highly relevant information for a specific information need
and can accelerate the search by filtering out irrelevant documents [3]. As a
consequence image–based retrieval has been proposed as a way of improving
access to the medical literature and complement text search [4, 5].

Image classification can play an important role in improving the image–
based retrieval of the biomedical literature, as this helps to filter out irrelevant
information from the retrieval process. Many images in the biomedical literature
(around 40% [6]) are compound figures (see Figure 1), so determining the figure
type is not clear as several different types of figures can be present in a single
compound figure.
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Fig. 1. Examples of compound figures in the biomedical literature.

Information retrieval systems for images should be capable of distinguishing
the parts of compound figures that are relevant to a given query, as usually
queries are limited to a single modality [7]. Compound figure detection and
multi–label classification are therefore a required first step to focus retrieval
of images. Some file formats, such as DICOM (Digital Imaging and Commu-
nications in Medicine), contain metadata that can be used to filter images by
modality, but this information is lost when using images from the biomedical lit-
erature where images are stored as JPG, GIF or PNG files. In this case caption
text and visual appearance are key to understanding the content of the image
and whether or not it is a compound figure. Both types of information, text and
visual, are complementary to each other and can help managing the multi–label
classification [8]. From the standpoint of information retrieval and classification
of compound images and associated text, the current systems could greatly ben-
efit from the use of multi–label classification approaches [9] by a) defining models
that can use the dependencies between the extracted images; b) defining models
that can express the importance of a label in a compound figure. In addition,
compound figures are naturally redundant sources of information with natural
dependencies occurring between the different regions of the image.

Retrieval systems can fail if they are not specifically designed to work with
compound figures and partial relevance. Identification of each subpart of the
figures can improve retrieval accuracy by enabling comparison of figures with
lower noise levels [10].

To promote research on this field a medical classification task is proposed in
the context of the ImageCLEF 2015 lab [11]. This paper describes this bench-
mark in detail.

This article is structured as follows: Section 2 presents an overview of the
participants and of the datasets used in the competition. Section 3 discusses the
results with respect to the selected datasets. Finally, Section 4 concludes the
paper and presents relevant future work for the next edition of ImageCLEF.



2 Tasks, Data Sets, Ground Truth, Participation

This section describes the main scenario of the benchmark including the data
used, the tasks, ground truthing and participation.

2.1 The Tasks in 2015

There were four subtasks in 2015:

– compound figure detection;
– compound figure separation;
– multi–label classification;
– subfigure classification.

This section gives an overview of each of the four subtasks.

Compound Figure Detection Compound figure identification is a required
first step to make compound figures from the literature accessible for further
analysis. Therefore, the goal of this subtask is to identify whether a figure is
a compound figure or not. The task makes training data available containing
compound and non–compound figures from the biomedical literature. Figure 2
shows an example of a compound and a non–compound figure.

(a) Compound figure. (b) non–compound figure.

Fig. 2. Examples of compound and non–compound figures.

Figure Separation This task was first introduced in 2013 and the same eval-
uation methodology is used in 2015 [6]. The goal of this task is to separate the
compound figures into subfigures using separation lines. Figure 3 shows a com-
pound figure which is separated into subfigures by blue lines. In 2015, a larger
number of compound figures was distributed compared to the previous years.



(a) Compound figure. (b) Compound figure with separation lines.

Fig. 3. Example a compound figure and its separation into subfigures by blue lines.

Multi–label Classification The fundamental difference with respect to com-
pound figure separation resides in the fact that the compound figure is not
separated into subfigures, but it is rather used entirely to perform a scene classi-
fication task. The intuition behind this approach resides in the fact that subfig-
ures in medical papers are usually assembled because they add complementary
information concerning the aeticle topic (see Figure 4). In this sense, much work
was performed in the multi–label classification community [12] and many algo-
rithms already exist to classify multi–label problems. A multi–label dataset in
medical imaging was never considered before to the best of our knowledge. More
formally, this problem can be expressed as follows:

LetX be the domain of observations and let L be the finite set of labels. Given
a training set T = {(x1, Y1), (x2, Y2), ..., (xn, Yn)} (xi ∈ X,Yi ⊆ L) i.i.d. drawn
from an unknown distribution D, the goal is to learn a multi–label classifier
h : X → 2L. However, it is often more convenient to learn a real–valued scoring
function of the form f : X × L → R. Given an instance xi and its associated
label set Yi, a working system will attempt to produce larger values for labels
in Yi than those that are not in Yi, i.e. f(xi, y1) > f(xi, y2) for any y1 ∈ Yi
and y2 /∈ Yi. By the use of the function f(·, ·), a multi–label classifier can be
obtained: h(xi) = {y|f(xi, y) > δ, y ∈ L}, where δ is a threshold to infer from
the training set. The function f(·, ·) can also be adapted to a ranking function
rankf (·, ·), which maps the outputs of f(xi, y) for any y ∈ L to {1, 2, ..., |L|}
such that if f(xi, y1) > f(xi, y2) then rankf (xi, y1) < rankf (xi, y2).



Fig. 4. Example a compound figure containing images of multiple classes which are all
related to each other with respect to the localization of transplanted cells and in situ
proliferation at the infarct border in an experimental model.

Multi–label performance measures differ from single label ones. Following the
same approach presented in [12], the Hamming Loss is proposed as the evaluation
measure for multi–label learning in ImageCLEF.

More formally let a testing set S = {(x1, Y1), (x2, Y2), ..., (xm, Ym)}.
Hamming loss: evaluates how many times an observation–label pair is mis-

classified. The score is normalized between 0 and 1, where 0 is the best:

hlossS(h) =
1

m

m∑
i=1

|h(xi)4Yi|
|L|

. (1)

where 4 represents the symmetric difference.

Subfigure Classification The subfigure classification task is a variation of the
multi–label classification task in which the subfigures contained in the multi–
label figures are provided separately for classification. The main reason to pro-
ceed in this way is to provide two matched dataset that researchers can use to
compare multi–label classification of the full compound image versus taking each
single image in the compound image and classify it.

2.2 Datasets

In 2015, the dataset was a subset of the of the full ImageCLEF 2013 dataset [6],
which is a part of PubMed Central1 containing in total over 1,700,000 images

1 http://www.ncbi.nlm.nih.gov/pmc/



in 2014. The distributed subset contains a total of 20,867 figures. The training
set contains 10,433 figures and the test set 10,434 figures. Each of these two sets
contains 6,144 compound figures and 4289–4290 non–compound figures. The
entire dataset is used for the compound figure detection task.

6,784 of the compound figures are used for the figure separation task. 3,403
figures are distributed in the training set and 3,381 in the test set.

A subset of these images containing 1,568 images are labelled for the multi–
label learning task. These images are also distributed as a training set (containing
1,071 figures) and a test set (containing 497 figures). The labels were assigned
using the same class hierarchy as the one used for the ImageCLEF 2012 [13]
and 2013 [6] modality classification task. A slight difference is that in 2015 the
class “compound” is not included because only the non–compound parts can be
labels with all compound images being split.

Figure 5 shows the ImageCLEF 2015 class hierarchy where the class codes
with descriptions are the following ([Class code] Description):

– [Dxxx] Diagnostic images:
• [DRxx] Radiology (7 categories):
• [DRUS] Ultrasound
• [DRMR] Magnetic Resonance
• [DRCT ] Computerized Tomography
• [DRXR] X–Ray, 2D Radiography
• [DRAN ] Angiography
• [DRPE] PET
• [DRCO] Combined modalities in one image

– [DV xx] Visible light photography (3 categories):
• [DVDM ] Dermatology, skin
• [DV EN ] Endoscopy
• [DV OR] Other organs

– [DSxx] Printed signals, waves (3 categories):
• [DSEE] Electroencephalography
• [DSEC] Electrocardiography
• [DSEM ] Electromyography

– [DMxx] Microscopy (4 categories):
• [DMLI] Light microscopy
• [DMEL] Electron microscopy
• [DMTR] Transmission microscopy
• [DMFL] Fluorescence microscopy

– [D3DR] 3D reconstructions (1 category)
– [Gxxx] Generic biomedical illustrations (12 categories):
• [GTAB] Tables and forms
• [GPLI] Program listing
• [GFIG] Statistical figures, graphs, charts
• [GSCR] Screenshots
• [GFLO] Flowcharts
• [GSY S] System overviews



• [GGEN ] Gene sequence
• [GGEL] Chromatography, Gel
• [GCHE] Chemical structure
• [GMAT ] Mathematics, formula
• [GNCP ] Non–clinical photos
• [GHDR] Hand–drawn sketches

Fig. 5. The image class hierarchy that was developed for document images occurring
in the biomedical open access literature.

Finally, each figure from the multi–label classification task is separated into
subfigures and each of the subfigures is labelled. As a result, 4,532 subfigures
were released in the training set and 2,244 in the test set. To link the multi–label
classification and the subfigure separation tasks, the figure IDs were related.
If the figure ID is “1297-9686-42-10-3”, then the corresponding subfigure IDs
are “1297-9686-42-10-3-1”, “1297-9686-42-10-3-2”, “1297-9686-42-10-3-3” and
“1297-9686-42-10-3-4”.

In addition to the figures, the articles of the figures are provided to allow for
the use of textual information.

2.3 Participation

Over seventy groups registered for the medical classification tasks and obtained
access to the data sets. Eight of the registered groups submitted results to the
medical classification tasks.



7 runs were submitted to the compound figure detection task, 12 runs to the
multi–label classification task, 5 runs to the figure separation task and 16 runs
to the subfigure separation task.

The following groups submitted at least one run:

– AAUITEC (Institute of Information Technology, Alpen–Adria University of
Klagenfurt, Austria);

– FHDO BCSG (FHDO Biomedical Computer Science Group, University of
Applied Science and Arts, Germany);

– BMET (Institute of Biomedical Engineering and Technology, University of
Sydney, Australia)

– CIS UDEL (Computer & Information Sciences, University of Delaware Newark,
USA)

– CMTECH (Cognitive Media Technologies Research Group, Pompeu Fabra
University, Spain)

– IIS (Institute of Computer Science, University of Innsbruck, Austria)
– MindLab (Machine Learning, Perception and Discovery Lab, National Uni-

versity of Colombia, Colombia);
– NLM (National Library of Medicine, USA).

3 Results

This section describes the results obtained by the participants for each of the
subtasks.

3.1 Compound Figure Detection

Very good results were obtained for the compound figure detection task, reaching
up to 85% for HDO BCSG as seen in Table 1. Table 1 contains the results
obtained by the two participants of the compound figure detection task.

Table 1. Results of the runs of the compound figure detection task.

Group Run Run Type Accuracy
FHDO BCSG task1 run2 mixed sparse1 mixed 85.39
FHDO BCSG task1 run1 mixed stemDict mixed 83.88
FHDO BCSG task1 run3 mixed sparse2 mixed 80.07
FHDO BCSG task1 run4 mixed bestComb mixed 78.32
FHDO BCSG task1 run6 textual sparseDict textual 78.34
CIS UDEL exp1 visual 82.82
FHDO BCSG task1 run5 visual sparseSift visual 72.51

FHDO BCSG [14] achieved best results with an accuracy of 85.39% using a
multi–modal approach. FHDO BCSG applied a combination of visual features
and text. With respect to visual features they focused on features detecting the
border of the figures and a bag–of–keypoints. The bag–of–words approach is used



for text classification using the provided figure caption. They also proposed two
runs applying only either visual or text information obtaining in general lower
results that applying multi–modal approaches.

CIS UDEL [15] obtained best results when using only visual information
achieving an accuracy of 82.82%. A combination of connected component anal-
ysis of subfigures and peak region detection is used.

3.2 Figure Separation

In 2015, two groups participated in the figure separation task. Table 2 shows the
results achieved. Best results were obtained by NLM [16]. NLM distinguished two

Table 2. Results of the runs of the figure separation task.

Group Run Accuracy
NLM run2 whole visual 84.64
NLM run1 whole visual 79.85
AAUITEC aauitec figsep combined visual 49.40
AAUITEC aauitec figsep edge visual 35.48
AAUITEC aauitec figsep band visual 30.22

types of compound images: stitched multipanel figure and multipanel figures with
a gap. A manual selection of stitched multipanel figures from the whole dataset
is first carried out. Then, two approaches are used. Best results are obtained
by “run2 whole” where stitched multipanel figure separation is combined with
both image panel separation and label extraction. “run2 whole” achieved an
accuracy of 79.85% by combining stitched multipanel figure separation with
panel separation.

AAUITEC [17] submitted three runs. Each run used a specific separator
line detection based on “bands” (run “aauitec figsep band”) or “edges” (run
“aauitec figsep edge”). Best results achieved an accuracy of 49.40% when using
a combination of both detection types. A recursive algorithm is used starting
by classifying the images as illustrations or not. Depending on the type of im-
age a specific separator line detection is used, based on “bands” or “edges”,
respectively.

3.3 Multi–label Classification

With respect to the multi–label classification task, there were two participat-
ing groups, IIS [18] and Mindlab2. Quite interestingly, none of the two partici-
pants decided to apply standard multi–label classification algorithms [12] such
ask Multi–Label K–nearest neighbours (MLKNN) or Binary Relevance Support

2 https://sites.google.com/a/unal.edu.co/mindlab/



Vector Machines (BR–SVM), but rather decided to come up with two new solu-
tions to the problem. Table 3 presents the results of the runs submitted by the
two groups.

ISS applied Khronker decomposition to find a set of filters of the figure as
features for a maximum margin layer classifier in which the multi–label task is
mapped on a dual problem of the standard margin optimization with SVMs.
To achieve this the authors consider the possibility of modelling the problem by
introducing an additional kernel matrix calculated starting from the vector of
labels associated to the compound figures.

The Mindlab approach is based on building a visual representation by means
of deep convolutional neural networks, by relying on the theory of transfer learn-
ing which is based in the ability of a system to recognize and apply knowledge
learned in previous domains to novel domains, which share some commonal-
ity. For this task, Mindlab used the Yangqing Jia et al. (Caffe) [19] pretrained
network to represent figures. Caffe is an open source implementation of the win-
ning convolutional network architecture of the ImageNet challenge. For the label
assignment the authors proceeded as follows: Once the prediction is made a dis-
tribution of the classes is obtained and used to annotate only those with a score
above 0.5. Furthermore, in the second run when a sample concept that scores
above 0.5 does not exist, the two top labels are assumed as relevant.

The scores of the two presented approaches are quite close in the result, but
the best result was achieved by Mindlab with a Hamming Loss of 0.5 as seen in
Table 3.

Table 3. Results of the runs of the multi–label classification task.

Run Group Hamming Loss
IIS output 6 0.0817
IIS output 8 0.0785
IIS output 9 0.0710
IIS output 7 0.0700
IIS output 10 0.0696
IIS output 5 0.0680
IIS output 1 0.0678
IIS output 3 0.0675
MindLAB predictions Mindlab ImageclefMed multi–label test comb2lbl 0.0674
IIS output 4 0.0674
IIS output 2 0.0671
MindLAB predictions Mindlab ImageclefMed multi–label test comb1lbl 0.0500

3.4 Subfigure Classification

Three groups participated in the subfigure classification task and the results can
be seen in Table 4. The FHDO BCSG group achieved the best classification ac-
curacy (67.60%) by using textual and visual features as described in [14]. FHDO
BCSG also achieved the best result when only using visual features (60.91%).
The method reuses existing techniques and fuses visual and textual features.



Given the high dimensionality of the data, principal component analysis (PCA)
is used to reduce the dimensionality to a subset of components explaining the
variance of the dataset. SVMs and Random Forests are used together for the
classification.

The CMTECH group used a descriptor based on covariance of the visual
features associated with the subfigures [20]. The advantage of the proposed de-
scriptor, being based on covariance, is to be robust with respect to noise. In this
sense, the feature vector provided has 11 features. As claimed by the authors,
this is particularly interesting because the matrix defined with this approach lies
within the Riemann manifold, where images providing similar features are close
in the Riemann Geometry. From this standpoint the authors also specified the
conditions under which two images can be considered close.

The paper proposes a new approach to classifying images and the approach
performs well without using a complicated classifier, which demonstrates the
need to define good features.

Table 4. Results of the runs of the subfigure classification task.

Run Group Run Type Accuracy
FHDO BCSG task4 run5 train 20152013.txt mixed 67.60
FHDO BCSG task4 run4 clean rf.txt mixed 67.24
FHDO BCSG task4 run1 combination.txt mixed 66.48
FHDO BCSG task4 run8 clean short rf.txt mixed 66.44
FHDO BCSG task4 run7 clean comb librf.txt mixed 65.99
FHDO BCSG task4 run6 clean libnorm.txt mixed 64.34
FHDO BCSG task4 run3 textual.txt textual 60.91
FHDO BCSG task4 run2 visual.txt visual 60.91
CMTECH resultsSubfigureRunWholeCov.txt visual 52.98
CMTECH resultsSubfigure.txt visual 48.61
BMET sf run 3.txt visual 45.63
BMET sf run 6.txt visual 45.00
BMET sf run 4.txt visual 44.34
BMET sf run 2.txt visual 43.62
BMET sf run 1.txt visual 37.56
BMET sf run 5.txt visual 37.56

The last approach was proposed by the BMET group [21]. The article present
a convolutional neural networks (CNN) used for the subfigure classification. As
specified by the authors, the CNN selected is a simplified version of the CNN
used in LeNet–5. The major claim of the paper concerns the ability of the net-
work to extract features in an unsupervised way and without the aid of domain
knowledge. The main drawback of the paper is that the method used for the
evaluation takes a long time to converge and the results were calculated on only
partly optimized models. The classification results reflect this fact. Despite the
relatively low results, the BMET contribution presents an interesting experimen-
tation concerning the task proposed in ImageCLEF and it would certainly be
interesting to see how these methods can be extended to improve the preliminary
results obtained.



4 Conclusions

In this paper the results of the medical classification task ImageCLEF 2015
competition are presented. As in 2013, the challenge involved a subtask on the
separation of compound figures from the biomedical literature. This year, three
new subtasks were introduced: a subtask on detection of compound figures to
identify whether a figure is compound or not; a multi–label subtask in which the
subfigure labels of a compound figure need to be determined without separating
the subfigures; and a subfigure classification challenge in which the separated
subfigures are classified, following a traditional modality classification approach.

In the first year of this task, eight groups participated submitting forty runs.
The participants present a variety of techniques for the problems on compound
figure analysis. This is a wide problem than can make a large number of sub-
figures available for image search applications. The large number of different
techniques leading to good results shows that many techniques can be used for
the problem and the detailed optimization is most often responsible for obtaining
a very good performance.
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