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Abstract. In this paper, we describe our participation in the Image-
CLEF 2015 Scalable Concept Image Annotation task. In this participa-
tion, we display our approach for an automatic image annotation by the
use of an ontology-based semantic hierarchy handled at both learning
and annotation steps. While recent works focused on the use of semantic
hierarchies to improve concept detector accuracy, we are investigating
the use of such hierarchies to reduce detector complexity and then, to
handle efficiently large-scale image datasets. Our framework is based on
two steps: (1) constructing a fuzzy ontology through analyzing learning
dataset, and (2) guiding the annotation process through a reasoning en-
gine. The obtained results confirm that this approach is promising for
scalable image annotation.
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1 Introduction

For the ImageCLEF2015 Scalable Concept Image Annotation task, our aim is to
construct an automated image annotation framework that focuses on the scala-
bility aspect through reducing semantic concept detection cost and complexity.

Automatic photo annotation is considered as a classification problem that
consists in assigning a set of semantic concepts to a semantic content of a given
image [33, 39].

Image collections are increasing staggeringly. Thus, retrieving from large-
scale image datasets is a challenging task [36, 35, 16, 34]. The access to such
enormous contents has forced the image retrieval community to look for advanced
approaches and techniques in order to make the availability of automated and
efficient semantic annotation for such contents [4, 30, 29].

In the previous ImageCLEF Scalable Concept Image Annotation task, [29]
focused on the use of a knowledge based approach. Thus, an ontology was gen-
erated and used both: (1) in training phase to select images that should be used



for optimizing classifiers, and (2) in testing phase for deducing new annotations
through concept inter-relationships. This approach was considered as the winner
within ImageCLEF2014 Scalable Concept Image Annotation task.

Aspiring to reconcile and exploit the semantic assets provided by the use of
knowledge based approaches, number of initiatives have investigated the knowl-
edge engineering for image retrieval ([26, 2, 10] to cite a few). Yet, ontologies (as
a knowledge database) are powerful tools to design concepts and their interrela-
tionships. In general, ontology-based approaches consists in defining a knowledge
conceptualization and a reasoning process in order to handle and enhance a se-
mantic interpretation. An immediate effect of such efforts is the alleviation of
the semantic barriers and many promising works raised [18].

Aiming to contribute towards this direction, in [38], we presented a fuzzy
ontology based framework for enhancing a multimedia content indexing accu-
racy. Key dimensions of this inquiry constitute the three main issues addressed
by the existing ontologies, namely a generic ontology structure aspect, an auto-
mated knowledge extraction process for populating an ontology content, and a
machine-driven context detection for a multimedia content. What was accom-
plished in this study is a novel ontology management method which is intended
to a machine-driven knowledge database construction. The experiment that we
conducted on the ImageCLEF2012 dataset displayed semantic improvements
over a classical image annotation framework used in large-scale multimedia con-
tents.

Our submitted runs within ImageCLEF2015 Scalable Concept Image An-
notation rely on a visual analysis of the provided testing dataset. As visual
features, we used a k-means [32] algorithm to classify training local feature ex-
tract by Surf algorithm [3]. For scalability, our runs aim to show that we can
go further in such aspect by reducing computing cost. In fact, we propose an
ontology based approach that alleviates the computing cost for labeling a given
testing image by candidate semantic concepts. By reading papers that have been
published within ImageCLEF Labs [25, 36, 35, 7, 34], it can be clearly seen that
there are a serious focus made on scalability through reducing the candidate
concept list to be analyzed within an image content. Mainly, these works rely
on dividing candidate concepts into: (1) initial concepts that can be detected
directly through analyzing an image content, and (2) extended concepts that
can be detected through reasoning with the initial ones. In [38], we presented
a fuzzy framework for enhancing a semantic interpretation through reasoning
with a given initial concept set. In our submitted runs, we focused on detecting
initial concepts. Thus, our contribution consists in developing a fuzzy ontology
to guide the annotation process through reducing the number of concepts to be
detected.

The present working note is organized as follows: Section 2 describes the
proposed framework. Section 3 describes our submitted runs to ImageCLEF2015
Scalable Concept Image Annotation task as well as comparison results with other
participants runs. Finally, a conclusion and some future directions of our work
are described in Section 4.



2 The RegimVid Image Annotation System

2.1 Framework overview

The RegimVid [11, 12, 19] is a semantic video indexing, retrieval and visual-
ization system developed within our team. In this paper, we propose a scalable
image annotation framework based on hierarchical annotators. We investigate
research works on semantic hierarchies for hierarchical image annotation. Our
framework relies on constructing and managing a fuzzy ontology that handle a
semantic hierarchy. Such a hierarchy is used then to train more accurate image
annotators (see figure 1).

Fig. 1. Ontology based semantic annotator hierarchy for image annotation

Image annotation is considered as a multi-class classification problem. Many
approaches were proposed to handle the annotation scalability aspect (large
number of concept to annotate with) through combining semantic hierarchical
structures with classification techniques (like Svm : Support Vector Machine)
[8, 22, 1, 24].

Mainly, two different approaches were proposed for constructing the semantic
hierarchy. The first one is qualified as top-down method: the semantic hierarchy
is build through recursive class set clustering [8]. The second one is qualified as
bottom-up method: the hierarchy is defined by agglomerative partitioning of the
classes [22]. Furthermore, two different approaches were proposed also for hier-
archical image classification: the first is the Binary Hierarchical Decision Trees



(Bhdts)[8], and the second is the Decision Directed Acyclic Graphs (Ddags)
[15].

Let C = {c1, c2, . . . , cN} be a set of N semantic concept. The Ddags ap-
proach trains N ∗ (N − 1)/2 binary classifiers and uses a DAG to decide if an
image image belongs or not to a semantic concept class ci ∈ C. At each given
node at a distance d from the tree root, d semantic concept classes are elimi-
nated, and N − d decision nodes remain to be evaluated. The Bhdts approach
handle the semantic hierarchy as a binary tree: concept classes are clustered
hierarchically into two subsets. This clustering step is iterated until a single con-
cept class set is reached. For every clustering step, an Svm classifier is trained in
order to decide if an image image could be annotated by the first or the opposite
semantic concept class. A total of log2(N) Svm classifiers are trained and used
for analyzing a test image. Despite the fact that these two approaches enable
accurate classifiers, they handle semantic hierarchy as binary structures which
requests a considerable structure to handle with large amount of concept classes.

In our proposed framework, we aim to define a new method for constructing
a hierarchical classifiers for scalable image annotation. At first, an annotated
image dataset is analyzed to construct the hierarchy tree for concept classes.
Then, and for every level of the defined tree structure, an Svm is trained for
predicting if a test image image belongs to the first concept class set or the
second one. By starting by the first level (root node), the hierarchy is walked
until reaching leafs nodes through computing classifier votes (see figure 2).

Fig. 2. Ontology based Hierarchical image classification

Our method is inspired from fuzzy decision tree based method [37, 6] to ex-
tract uncertain knowledge in a classification problem. Fuzzy set theory is used
to model the tree structure. Thus, our proposed approach is based on a fuzzy
ontology that handles such a decision tree. In what follows, we discuss the struc-



ture of our fuzzy ontology, we show how we populate its content, and how to
infer available knowledge in order to use the hierarchical classifiers to annotate
a test image accurately.

Ontology Structure The ontology structure is based on three conceptual
classes : the semantic concept Concept, the hierarchical node Node, and the
test image Image.

We define also a set of relationships between these conceptual classes (see
table 1).

Table 1. Semantic Relationships between conceptual classes

Relationships Definition Meaning

isIndexedBy (〈Image,Concept〉 : isIndexedBy) ≥ p1 The image Image is annotated by
the concept Concept by a fuzzy
weight p1

votesFor (〈Node, Image〉 : votesFor) ≥ p2 The Svm for the node Node votes
for the image image by a fuzzy
weight p2

existsIn (〈Concept,Node〉 : existsIn) ≥ p3 The image image exists in the node
Node by a fuzzy weight p3

isChildOf (〈Node,Node〉 : isChildOf) The first node Node has a semantic
concept subset of the second node
Node

The relationship isChildOf depicts that a node node1 ∈ Node is a child of
another node node2 ∈ Node. This relationship is used then for modeling the
semantic hierarchy for concept classes.

The relationship existsIn enumerates for each node node ∈ Node the contained
set of concept classes. A concept concept ∈ Concept can exists in many nodes,
but for separate levels.

The relationship votesFor is used when an image image is being annotated
and the hierarchy is walked from the root node to the leafs. A node node ∈ Node
votes for an image image ∈ Image by a fuzzy weight p2 when a Svm classification
on that image predicts that the image image could annotated by the set of
semantic concepts that exists in the node node.

Finally, the relationship isIndexedBy depicts that an image image ∈ Image is
annotated by the concept concept ∈ Concept by a fuzzy weight equal to p1.

The proposed ontology structure is used to enable handling the hierarchical
classifiers, to trace the hierarchy walk for classifying a given test image, and then
to model the set of semantic concepts that annotate that image (see figure 3). In
what follows, we expose the population process for our ontology, then, we discuss
the reasoning process used to guide and assist the hierarchical annotation.



Fig. 3. Ontology based hierarchical image classification

Ontology population Given a defined set of semantic concepts, we start by
clustering it through analyzing annotated image dataset provided by the Image-
CLEF 2015 Scalable Concept Image Annotation task.

At first, we apply a binary clustering for the whole concept set, and we define
two new nodes in the ontology node1 and node2. We use a k-means clustering
algorithm with k = 2. Then, each concept is instantiated within the ontology,
and for every concept concept that belongs to the node node, a new relationship
existsIn is instantiated between concept and node. This process is recursively
called on node1 and node2 until a sub-node contains only one semantic concept
class, or the clustering process seems unable to cluster a given semantic con-
cept classes. At each iteration, the new defined nodes are populated within the
ontology through instantiating the isChildOf relationships.

Hierarchical classificators construction Once the hierarchical structure is
defined through the above mentioned recursive binary clustering, an Svm based
classifier is trained for all the nodes that belong to the same level. As training
images, we select some development images for every concept that belongs to
a node. In section 2.2, we detail the development image dataset used for the
training task.

At a given level, two possible nodes are figuring (see figure 4). By exploring
existsIn relationships, we construct a training image dataset. For the first node
(see node Root in figure 4), and for each concept that belongs to that node, a
subset of images that are annotated by this concept are selected to be training
images for corresponding node.

For a leaf node (see node Node1 in figure 4), we proceed as follow: let
Cm = {c1, c2, . . . , ck} be a set of k concepts that belongs to the node nodem.
We construct then k classifiers. Each classifier is related to a given concept and
trained against the other concepts. Then, and for a classifier f of a concept



Fig. 4. Hierarchical SVM classificator construction

cf ∈ Cm, we train an Svm classifier based on two image sets: the first set is
based on images that are annotated by the concept cf , and the other set is
based on images that are annotated by the other concepts (Cm \ cf ).

For a leaf node that contain only one concept class (see node Node2 in figure
4), no Svm classifier will be constructed. And an image annotation for this
concept will be computed through the leaf node classification vote.

Reasoning We start reasoning from the root node (top node) of the constructed
fuzzy tree (see figure 3). For a given node, we compute the values of the mem-
bership functions (µ) for the child nodes through firing the corresponding Svm
classifiers. The classification results (the vote) are populated into the fuzzy on-
tology through instantiating the votesFor relationship.

In order to improve reasoning accuracy and to minimize the decision tree
walk (which will also minimize the number of Svm classifiers to be fired), we
define a Fuzziness control threshold θr = 0.1: given two sub-nodes node1 and
node2, firing the Svm classifier at this level provides two membership function
values µ1 for node1 and µ2 for node2. Then, we compute θr = |µ1 − µ2|.

if θr ≤ 0.1, then we could not be sure if the Svm classifier is discriminative
to judge if the content of a test image belongs to the first or to the second node.
We proceed so to walk both sub-nodes (node1 and node2). For the opposite case
(θr > 0.1), the reasoner walks only the node that has the greater membership
function value (µ).

Given the example in figure 3, the Svm classifier of the node root computed
µ1 = 0.2 for the node Node1, and µ2 = 0.8 for the node Node2. Then, the
reasoning algorithm stops walking the node Node1 and proceeds to walk the
Node2 since θr = 0.8− 0.2 = 0.6 and 0.1 ≤ 0.6.

A leaf node can contain a set of concept classes, or only one concept class.
In the first case, and for every contained concept class, an Svm classifier is fired
for that concept against the other contained concept classes. The classification



result is populated in the ontology through the instantiation of the relationship
isIndexedBy between the concept class and the test image. The fuzzy weight for
the new relationship is computed as an average of µ values computed from the
root node to the leaf one. In case of a single concept class, a new isIndexedBy
relationship is instantiated within the ontology between that concept and the
test image. The fuzzy weight as in the first case.

Our proposed fuzzy decision tree reasoner assists the annotation of a given
test image through firing recursive trained Svm classifiers in order to optimize
the number of concept to be detected. Such an optimization should reduce also
the computing cost of a given test image annotation process.

In the next section, we expose how we construct an Svm classifier for each
node in the constructed fuzzy hierarchical semantic structure of concept classes.

2.2 Svm Classifier Construction

In our participation within ImageCLEF 2015 Scalable Concept Image Annota-
tion task, we aimed basically to evaluate the scalability aspect of our preliminary
automatic annotation framework. For semantic concept detector/annotator, we
have not really defined an original approach, but we implemented state-of-the-art
bags of quantized local features and linear classifiers learned by support vector
machines. In fact, and as pointed in [28], bag-of-features and codebook approach
has gained a great attention by image classification and annotation community
as it showed notable semantic accuracy [26, 17, 9]. In what follow, we expose how
we construct Svm classifiers for semantic concept detection and annotation.

Construct a learning dataset Image annotation has always been heavily
dependent to good development datasets. First, datasets were mainly hand-
collected. However, and recently, several researches attempt to automate such a
laborious task. Re-ranking images gathered from popular Image search engines
(Google, Yahoo!, Bing, . . . ) can construct automatically an image learning
dataset [14, 13, 31].

As a development dataset, we have not used one provided by the ImageCLEF
2015 Scalable Concept Image Annotation task. In fact, not all the concepts were
annotated. We relied then on Flickr image search engine to obtain image set
and construct a learning dataset. We used so the information provided with
concept list to query the search engine and we gathered first 100 result images
for each given concept.

At the outset, it seems to be curious to use an external data source as a
development dataset. Our aim is to explore available on-line data-sources (like
search engines) to train non annotated semantic concepts.

Local Feature Extraction Our framework extracts features from an input
image through a robust local feature extractor. We followed a basic and state-
of-the-art framework for such purpose (as described in [28]). Leading extrac-
tors for such a purpose includes Scale Invariant Feature Transform (Sift) and



Speeded Up Robust Features (Surf). Local feature descriptors handle a pixel
within an image by analyzing its neighborhood pixels. Many different descrip-
tors and interest-point detectors were proposed and discussed in the literature.
While the Sift descriptor [23] is considered as the most widely used descriptor,
Surf [3] is known as robust local feature extraction to various image perturba-
tions.

Our framework extracts local features and descriptors using Surf. Such a
choice is argued by Surf concise descriptor length (64 floating point values).
The Surf implementation that we used is provided by OpenCv [5].

For query image analysis, local features are extracted and mapped into near-
est computed cluster centroids. The query image is then handled by a vector
that represents defined visual bag-of-words.

Classification of local Features and Contructing the bag-of-words model
After extracting local features, a bag-of-words model is used to represent these
descriptors. The latter are extracted from training images and are grouped into
N clusters of visual words using k-means. Each defined descriptor is classified
into its cluster centroid by computing the Euclidean distance metric. For our
runs, we choose a value of N = 100. This value is argued by a balance between
high bias (under-fitting) and high variance (over-fitting).

In order to alleviate the computing cost of k-means clustering, we used Mini
Batch k-means [32] as an alternative to the k-means algorithm for clustering
massive datasets. Mini Batch k-means reduces the computational cost by han-
dling fixed size subsample instead of all the data in the database. This strategy
reduces the amount of distance to be computed at each clustering iteration.

Learning Algorithm The learning algorithm consists in training one-vs.-
one linear Svm to operate in the bag of Surf feature space. Training images
are classified through a histogram vector conctructed in the k-means based
clustering. We used a linear kernel for our Svm based learning algorithm in
view of its simplicity and computational efficiency in training and classification:
K(x, y) = xT y + c.

Basically, Svm are binary classifier. For a given detector, an image is anno-
tated by one of two distinct groups. A one-vs.-one scheme is used in which each
Svm trained for each combination of individual classes. The Svm implementation
used in our runs is given by Scikit-Learn library [27].

Decision As an Svm decision function, a class membership probability estima-
tion fits the decision values.

Scikit-Learn library uses a Platt Scaling in order to calibrate the Svm
classifier to produce, in addition to class predictions, probabilities. When the
Svm is trained, an optimization process is called to optimize parameter vectors
A and B such that : P (y|X) = 1/(1 + exp(A ∗ f(X) + B)) where f(X) is the
signed distance of a sample from the hyperplane.



2.3 Object Localization

Our developed framework does not handle yet concept localization. As future
work, we are motivated to use state-of-the-art based techniques (such as [21, 20]).
In our submitted runs, we considered the whole image content as a localization
for all annotated concepts.

3 Experiments and Results

3.1 Submitted Runs

We submitted two runs, where the only difference is the value of the threshold
weight for all computed annotation:

– Run 1 (regimvid at imageclef2015 task1 ): In this run, we considered all the
annotation weights performed by our annotation framework.

– Run 2 (regimvid at imageclef2015 task1 0.7 ): In this run, we considered only
annotation weights that are greater or equal to 0.7.

3.2 Results

We would like to notice that we annotated only 300 000 images of the 500 000
images provided in the test dataset. And, since many test images were not acces-
sible on-line, we extracted features from the provided image thumbnails1 (with
low resolutions). Due to these facts, our runs haven’t reached an advanced posi-
tion compared to the other runs (see tables 2 and 3). Furthermore, our system
used a state-of-the-art based Svm classifier. We think that a complete image
annotation on real (full size) images with more tweaked Svm classifiers should
give better results. Furthermore, fuzzy ontology based semantic enhancement
(described in [38]) should also enhance our framework annotation accuracy.

Table 2. MAP 0 Overlap Runs evaluation

MAP

Best run 0, 795403 (/SMIVA/21.run)
Worst run 0, 0305398 (/REGIM/regimvid at imageclef2015 task1 0.7.txt)
Average 0, 31046
Our best run 0, 0366072 (position 85/89)

3.3 Runtime

Training process: Training the Svm classifiers task elapsed about 4 days (we
used 100 learning images per a concept). This task was executed on a moderm
machine (Intel i5 processor with 16 GB RAM memory).

1 compressed in the webupv15 data visual images.zip file.



Table 3. MAP 0.5Overlap Runs evaluation

MAP

Best run 0, 659507 (/SMIVA/21.run)
Worst run 0, 000231898 (/MLVISP6/run blur1.txt)
Average 0, 18673
Our best run 0, 0161687 (position 75/89)

Annotation process: The annotation task was done on 10 Vps machines (each
one has one core CPU and 1 GB of RAM). The annotation of 300 000 images
elapsed about 1 633 hours (without taking into consideration the Vps parallel
computing).

Our framework annotates a test image with an average of 19.615 seconds (the
maximum record was 597.250 seconds and the minimum one was 0.066 second).

And for a given test image, an average of 52 Svm classifiers were fired (the
maximum was 175 and the minimum was 6). Our framework has reduced the
number of Svm classifiers to be fired in order to annotate a given test image.

4 Conclusion

In this working note, we described our annotation framework for the ImageCLEF
2015 Scalable Concept Image Annotation task. We discussed our ontology based
framework for reducing the number of concepts to be detected for a given image.
We developed a state-of-the art bag-of-words based concept detector (that uses
Surf feature extractor and k-means classification). Then, concept detectors are
selected through reasoning with a fuzzy ontology content. Thus, not all the
concept detectors are used for a given image.

In our experiment, we showed how the use of such a method could reduce the
number of concept detectors to be used in order to efficiently annotate a large-
scale image dataset. While the obtained results were not really impressive, we
still believe that our framework can reveal better results through tweaking local
feature extraction and training, and exploiting semantic enhancement through
fuzzy reasoning. Thus, we are considering potential future directions to further
improve our proposed framework.
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