
Evaluating distance measures for trajectories in the mobile setting

Nikolaos Larios NLARIOS@DI.UOA.GR

University of Athens

Christos Mitatakis CMITATAKIS@DI.UOA.GR

University of Athens

Vana Kalogeraki VANA@AUEB.GR

Athens University of Economics and Business

Dimitrios Gunopulos DG@DI.UOA.GR

University of Athens

Abstract

Mobile devices, such as smartphones allow us

to use computationally expensive algorithms and

techniques. In this paper, we study algorithms in

order to solve the problem of finding the most

similar trajectory within a number of trajecto-

ries. We built a framework that enables the user

to compare a trajectory Q with trajectories that

have been generated and stored on mobile de-

vices. The system returns to the user the most

similar trajectory based on the algorithm that has

been selected. The algorithms for the measure-

ment of the trajectory similarity have been imple-

mented for mobile devices running Android OS.

We evaluate our algorithms with real geospatial

data.

1. Introduction

The study of the similarity between trajectories is important

in a plethora of application domains (e.g. Traffic manage-

ment, Video analysis, Molecular Design, Similarity of Me-

teorological Phenomena etc.). More specifically, the tra-

jectory similarity between moving objects is useful for ap-

plications in intelligent traffic systems, such as traffic navi-

gation and traffic prediction, both of which require mining

of past trajectories patterns, etc. The identification of simi-

larities between moving objects is a challenging task, since

not only their locations change but also because their speed

and semantic features vary. Mobile devices and smart-

phones, in particular are rapidly emerging as a dominant

Proceedings of the 2
nd International Workshop on Mining Urban

Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

computing and sensing platform. They are equipped with

a variety of sensors such as GPS, cameras and accelerom-

eters. This gives birth to several unique opportunities for

data collection and analysis such as finding trajectory sim-

ilarities between trajectories generated and stored on dis-

tributed smartphones. We developed a framework that al-

lows users to find similar trajectories in a distributed en-

vironment. Our framework requires the participation of a

number of users in order to find a solution of a query. In

order to specify the way in which our framework works,

every query is assigned by a user of our system and it is ad-

dressed to all the available users of our platform. The goal

of our platform is to generate and store trajectory data on

mobile devices (smartphones) and compare a query trace

Q against the crowd of trajectories that is distributed on a

large number of mobile devices.

1.1. Related Work

There are many methods and techniques related to search-

ing for similar moving object trajectories. Some previous

methods were based on Euclidean distance space, but this

is not suitable for road network space because is difficult

to apply the distance of Euclidean space to road network

space. Other methods considered only spatial similarity

without considering temporal similarity to search for sim-

ilar moving object trajectories. The methods that interest

us the most are those that are used for measurement of the

spatio-temporal similarity between trajectories. Although

in this work we do not consider the privacy issues that come

up when data from users become available in the system,

there is work in the area that can be leveraged in a real

system. In ”Select-Organize-Anonymize”(Giorgos Poulis,

2013), the authors find similar trajectories, by using Z-

ordering and data projections on subtrajectories. Then they

Evaluating distance measures for trajectories in the mobile setting

organize the selected trajectories into clusters which they

anonymize after that. Another work that the researchers

propose a method to compare trajectories of moving ob-

ject is in ”Shapes based trajectory queries for moving ob-

jects”.(Lin & Su, 2005) In this work, the writers intro-

duce a new distance function and the evaluate the simi-

larity measurement by using a grid representation to de-

scribe trajectories. The most similar work is the paper

Crowdsourced Trace Similarity with Smartphones paper

(Zeinalipour-Yazti et al., 2013) where the writers try to

solve efficiently the problem of comparing a query trace

against a number of traces generated by smartphones. They

developed the SmartTrace+ framework which consists a

distributed data storage model that trajectories are stored

and top-K query processing algorithms that exploit trajec-

tory similarity measures, elastic to spatial and temporal

noise.

1.2. Our Contributions

In this paper, we build a distributed mobile platform that

uses algorithms to search for trajectory similarity among a

number of trajectories that are stored in distributed mobile

devices. The trajectories which are stored have been col-

lected by monitoring the movement of the mobile devices.

The users choose whether their movement will be recorded

by the application. So our platform consists of two parts,

the one is where the users gather the trajectory data, so that

can be created a distributed database where the trajectories

are stored.

The second contribution of our platform is the mechanism

that given a query trajectory Q, we want to find any trajec-

tories of the mobile devices using our platform that follow a

motion similar to Q. We initiate an experimental evaluation

of three different trajectory similarity measures, namely

Dynamic Time Warping (DTW), Longest Common Subse-

quence (LCSS), and Fréchet distance. Intuitively, Dynamic

Time Warping (DTW) is the equivalent of the L2 distance

when stretching of the trajectories is allowed since DTW

takes into account the individual differences of all matched

points in the stretched sequences. Similarly, Longest Com-

mon SubSequence (LCSS) can be thought of as the equiva-

lent of L0 since it counts how many elements are the same.

Completing the analogy, the Fréchet distance is equivalent

to Linf since it considers the maximum of the individual

differences of the matches in the stretched sequences. Here

we perform an evaluation on their relative accuracy and

performance.

2. Problem Definition

Trajectory: Trajectory or trace of a moving object is a set

of consecutive positions in space as a function of time. Due

to limitations on the acquisition and storing of data, is very

difficult and expensive to accurately record an entire tra-

jectory. In spatio-temporal databases a trajectory is repre-

sented as a set of discrete samples of the positions of the

moving object of the form (x, y, t), i.e. a sequence of or-

dered pairs (x, y), each characterized by a timestamp. As

described above our goal is to develop a distributed plat-

form for spatio-temporal similarity search between trajec-

tories generated and stored on distributed mobile devices.

Specifically, given a query trajectory Q, we want to find

any trajectories of the mobile devices using our platform

that follow a motion similar to Q.

The mobile application should be able to store locally the

trajectories that follow the mobile device, to receive a query

Q from another mobile device, through the server of the

platform, to evaluate if the mobile device has followed a

similar trajectory to Q and return its result back to the spe-

cific user through the server again. The platform should

be able to compare a query trajectory Q that is submitted

by a user, simultaneously against a number of trajectories

that is stored on a large crowd of mobile devices. The most

similar trajectory of every user with the query Q should

be received and managed from the server application en-

suring the privacy of the users of the platform. Then the

server finds the most similar trajectory within the results

that have been collected and sends it back to the user who

submitted the query Q. Our approach exploits the fact that

nowadays, mobile devices have exceptional computational

power and storing capabilities. Running the algorithms in

a distributed mobile environment grants our platform the

necessary performance and scalability in order to support a

great number of users and spatio-temporal data. Moreover,

having the trajectories stored in the mobile devices the pri-

vacy of the users is protected. The definition of the term

similarity between trajectories may vary between different

problem cases. For example in most cases the most sim-

ilar trajectory should be determined by using not only the

spatial shape of the trajectories but also their evolution in

time. In other cases the timing of the recording of the tra-

jectory or the time intervals between points of interest that

are defined by the query may be of greater importance.

3. System Overview

The system has two basic functionalities. The first one

consists from the monitoring procedure, where the user

can monitor his movement. With this procedure, the users

trajectories are stored in the mobiles database creating

the necessary data. The second functionality contains the

query submission from one user and the search for results,

using a selected algorithm, in the devices registered in the

system. The architecture of our system is described by fig-

ure 1.

Evaluating distance measures for trajectories in the mobile setting

Figure 1. System’s architecture

3.1. System Components

The goal of the system is to record and store efficient (in

time and resources) large amounts of data from N mobile

devices and support the communication between them and

a main server in order to send queries on the data recorded

and send their results. The way that data are stored must

be defined, i.e. the structures that will be used in mobile

devices and in the server for data storage. Our system con-

sists by the following: A main application server, which is

responsible for receiving and forwarding queries between

mobile devices using the application. Furthermore, it is re-

sponsible for the registration of mobile devices in the sys-

tem. This application is hosted on an Ubuntu server. As

mentioned above in the system will be registered N mo-

bile devices using the application’s mobile platform which

is responsible for data recording, sending queries, receiv-

ing and handling queries other devices and send data if the

query result was successful.

3.2. Users

The system consists of N users and those users participate

in it through their devices (mobile, tablets, etc.). For the

efficient operation and acceptable results of the system, it

requires a sufficient number of users. The more users reg-

ister to our platform the precision of the system will be in-

creased due to the available set of data for each geographic

area and time. User data are generated by the sensors of the

devices and are stored locally on each device. Since users

are not constantly connected to the system due to intermit-

tent connectivity for their mobile devices respectively no

data will be offered to our system without their agreement.

3.3. Data Storage

Each device (mobile, tablet, etc.) can produce tuples of

data through its sensors (eg GPS sensors, accelerometer,

camera, microphone, etc.).The data that are stored in the

mobile devices corresponds to the trajectories that have

been performed by the device while the user have selected

to record his movement.

The form and amount of data depend on the application

of the general form to is <Id, Latitude, Longitude, Times-

tamp>where:

• The Id refers to the unique code that corresponds to

the current trajectory that is recorded. Every time the

user selects to monitor his movement, a new id is ini-

tialized which define the recording.

• The Latitude and Longitude determine the geographi-

cal location of the tuple.

• The Timestamp refers to the time of recording the cur-

rent tuple.

Examples of data form is: <1, 23.32134, 37.566643, 2014-

10-24 16:52:01>

Every trajectory consists of a number of tuples like the ex-

ample above. Each tuple is recorded periodically every 2

seconds. This period can be changed accordingly to our

preferences or the storage capabilities of the device. The

trajectories that are recorded are stored in the devices inter-

nal memory. For the storage of data in the mobile devices

is used SQLite which is the default SQL database engine

for android powered devices.

3.4. Querying component

The Android application we have developed is responsible

for the collection and storing of trajectory data by record-

ing the movement of the mobile devices. Moreover, the

algorithms that we use for the measurement of trajectory

similarity have been implemented in the Android applica-

tion.

A query Q when is formed by a user of our platform is

forwarded by the server to other registered mobile devices.

When a mobile device receives a query it runs the selected

algorithm and searches the data that has been collected for

the most similar trajectory, according to the selected algo-

rithm. Let m1,m2,,mi denotes a set of i mobile de-

vices. The server sends the query Q to this set of mobile

devices where Q is a sequence of points {p1, p2, ..., pj} that

describes a trajectory. The application compare the trajec-

tory Q with each trajectory that is stored in the database of

the device (e.g. {T1, T2, T3, ..., Tk}), in order to find the

Evaluating distance measures for trajectories in the mobile setting

most similar one. All devices that have a result sends their

answers to the server.

3.5. Server

The server of our platform is the middle-ware responsi-

ble for the communication between the mobile devices and

stores vital data in its database. The server application for-

wards the queries of the users to the mobile devices which

are registered to our platform. Then it receives the results of

each device and the best one, according to the algorithm’s

results, is sent back to the user who submitted the Query.

4. Trajectory Similarity Measures

In this section we review the trajectory similarity algo-

rithms we use in the system to find the most similar tra-

jectories to the query. Dynamic Time Warping: The Dy-

namic Time Warping (DTW) (Donald J. Berndt, 1994) is

an algorithm for measuring similarity between two tempo-

ral sequences which may vary in time or speed. The DTW

is widely used in the comparison of time series, appropri-

ately aligns the sequence of points of the two rails, so that

the total distance as a sum of individual distances is mini-

mized.

DTW (P1..n, Q1..n) =

|Pn −Qn|+min

DTW (P1..n−1, Q1..m−1)
DTW (P1..n−1, Q1..m)
DTW (P1..n, Q1..m−1)

where P1 .. n-1 the subsequence P1 .. n that include ele-

ments (points) for time periods of 1 up to n-1.

Longest Common SubSequence: The Longest Common

SubSequence (LCSS) (Michail Vlachos, 2002)problem is

to find the longest subsequence common to all sequences

in a set of sequences (often just two). The LCSS algorithm,

using dynamic programming fits best points of the two tra-

jectories based on a tolerance parameter time and a toler-

ance parameter space ε. It considers that the points do not

exceed the tolerance parameters fit and attaches similarity

value equal to 1. If they do not match they are assigned the

value 0. Specifically, the LCSS distance between two real-

valued sequences S1 and S2 of length m and n respectively

is computed as follows:

Lcss(Pδ,s(S1, S2)) =

0, if n = 0 or m = 0
1 + Lcssδ,s(HEAD(S1), HEAD(S2))
max(Lcssδ,s(HEAD(S1), S2),
Lcssδ,s(S1, HEAD(S2)))
otherwise

where HEAD(S1) is the subsequence

[S1,1, S1,2, ..., S1,m−1] and δ is an integer that con-

trols the maximum distance in the time axis between

two matched elements and is a real number 0<ε<1 that

controls the maximum distance that two elements are

allowed to have to be considered matched. One drawback

of this measurement is that it ignores distance gaps

between subsequences, that allows to obtain some points

of the track when alignment. Consequently, it can lead to

inaccuracies in the similarity analysis.

5. Fréchet Distance

Given two curves, A, B in a metric space, the Fréchet dis-

tance, dF (A,B) is defined as

dF (A,B) = inf
α,β

max
t∈[0,1]

{d(A((t)), B((t)))}

where , range over all monotone reparameterizations and

d(,) represents the Euclidean distance, and inf is the infi-

mum. The discrete Fréchet distance dF between two polyg-

onal curves a : [0,m]→ Rk and b : [0, n]→ Rk is defined

as:

dF (a, b) =

min
σ:[1:m+n]→[0:m],
β:[1:m+n]→[0:n]

max
s∈[1:m+n]

{d(a(σ(s)), b(β(s)))}

where σ and β range over all discrete non-decreasing onto

mappings of the form σ : [1 : m + n] → [0 : m], β : [1 :
m+ n]→ [0 : n].

We first consider the corresponding decision problem. That

is, given δ > 0, we wish to decide whether δ+F (A,B) ≤ δ.

Consider the matrix M as defined in the subsection 5.1.

In the two-sided version of Discrete Fréchet Distance with

Shortcuts (DFDS), given a reachable position (ai, bj) of

two pointers, the A-pointer can make a skipping upward

move, as in the one-sided variant, to any point ak, k > i,

for which Mk,j = 1. Alternatively, the B-pointer can go to

any point bl, l > j, for which Mi,l = 1; this is a skipping

right move in M from Mi,j = 1 to Mi,l = 1, defined anal-

ogously. Determining whether δ+F (A,B) ≤ δ corresponds

to deciding whether there exists a sparse staircase of ones

in M that starts at M1,1, ends at Mm,n, and consists of

an interweaving sequence of skipping upward moves and

skipping right moves (see Figure 2)..

5.1. Basic Algorithm

The implementation of the algorithm of Fréchet Distance

relied on the publication ”The Discrete Fréchet Distance

with Shortcuts via Approximate Distance Counting and

Selection” (Anne Driemel),(Rinat Ben Avraham, 2014).

Evaluating distance measures for trajectories in the mobile setting

Specifically, the algorithm which was implemented is the

two side - DFDS who faces the problem of outliers which is

sensitive the Fréchet Distance. The result of the algorithm

is the lowest Fréchet distance which satisfies the two tra-

jectories. The pseudocode of the algorithm is represented

in Algorithm 1. The steps of the basic algorithm are the

following:

1. Implementation of binary search and sequential exe-

cutions of the algorithm of Fréchet Distance until the

optimal distance e is found. The initial value which

is given to the middle in the binary search is 0.025.

The binary search is terminated when the distance be-

tween low and high values of the middle is smaller

than 0.001.

2. Then the table is created, whose columns correspond

the points (latitude, longitude) of trajectory A and the

lines the points of the trajectory B. The values taken

by the M matrix is either 0 or 1 depending on the dis-

tance apart of these two points together, and are given

by the following formula:

E+
δ =

((ai, bj), (ak, bj))|k > i, ||ai − bj ||, ||ak − bj || ≤ δ

∪((ai, bj), (ai, bl))|l > j, ||ai − bj ||, ||ai − bl|| ≤ δ

3. Forthwith after, the directed graph G is created, based

on the table M which was formed above. The nodes

of the graph are the positions of the table M. Corre-

spondingly it is created an edge between two nodes if

the nodes are in the same row or column of the table

and their values are 1 (from the previous to the next).

Figure 2. M table

4. In the figure 2, the algorithm Shortest Path is per-

formed to see if there is a path from the first position

of the table (0,0) to the last (N, M) wherein N and M

are the dimensions of the two trajectories which were

compared. If the algorithm of Shortest Path has a so-

lution we check if the value of is between the limits

we have set. In case it is the binary search terminates.

Otherwise, it will perform again with latest prices. If

not the execution of the algorithm terminates.

6. Evaluation

6.1. Fréchet Distance Performance

To measure the performance of the algorithm of the Fréchet

Distance we performed experiments comparing time series

with length ranged from 20000 to 100000 points. From

the paper of Rinat Ben Avraham et all know that the com-

plexity of the algorithm of Fréchet Distance with Shorcuts

(DFDS) is O((m2/3n2/3 + m + n)log3(m + n)). The

main difference with the previous version of the algorithm

is that we calculate table T and simultaneously create also

the graph G. In addition we set a parameter δ which rep-

resents the percentage of table points that we wish to com-

pare. In this way, we improved the time execution of the

algorithm of Fréchet Distance. Also due to the sampling of

δ points in all time series, the complexity of the algorithm

is reduced to linear.

The figure below shows the performance of the implemen-

tation of the Fréchet Distance algorithm compared with the

length of the trajectories. In our experiment that is summa-

rized by figure 3 we compared 50 trajectories with lengths

from 20,000 points to 100,000 points. This experiment was

performed 10 times and for each length of trajectories it

was chosen the average execution time. Also, the chart

shows the dispersion of runtime for any length of time se-

ries on error bars. From figure 3, we can conclude that the

complexity of the algorithm is linear.

Figure 3. Frechet performance

Evaluating distance measures for trajectories in the mobile setting

Algorithm 1 Fréchet Distance

Input: trajectory ti, trajectory query,int delta

Binary Search

repeat

rightTable[0..trajectory.length][0..1] = null

downTable[0..trajectory.length][0..1] = null

for i = 1 to ti.length do

start← i− delta

if start < 0 then start← 0

stop← i+ delta

if start > query.length then stop← query.length

for j = start to stop do

if xi > xi+1 then

M [i][j]← 1

if firstExecution then

if M[0][0] == 0 then

return

else

graph.addV ertex(0, 0)
end if

firstExecution← false

end if

if rightTable[i][0] != ll and rightTable[i][1] !=

null then

graph.addV ertex((i, j))
graph.addV ertex((rightTable[i][0],
rightTable[i][1]))
graph.addEdge((i, j),
(rightTable[i][0], rightTable[i][1])))
rightTable[i][0]← i

rightTable[i][1]← j

else

rightTable[i][0]← i

rightTable[i][1]← j

end if

if downTable[i][0] != null and downTable[i][1]

!= null then

graph.addEdge((i, j), (downTable[i][0],
downTable[i][1])))
downTable[i][0]← i

downTable[i][1]← j

else

downTable[i][0]← i

downTable[i][1]← j

end if

else

M [i][j]← 0

end if

end for

end for

// Find the shortest path if exists on graph from the

// first to the last position of table M

graph.findShortestPath()
until shortestPath is false and frechetDistance ∈
BinarySearchRange

6.2. Algorithm Comparison

In this section we show preliminary experimental results

that compare the three different trajectory similarity meth-

ods we have described. The focus of our evaluation is to

show that all methods can be used in the limited resources

environment of a smartphone. For this reason we also com-

pare the run time results with the simpler (easier to imple-

ment and efficient to run) Euclidean distance that serves as

a basic comparison point. It is difficult to compare the three

methods because they have been implemented with differ-

ent optimizations, and also our Fréchet distance implemen-

tation computes only a bound, and necessitates the use of

several runs to compute the exact Fréchet distance. We use

two different datasets for the comparisons. We also show a

sample result of a query and the most similar answers that

we get using the three methods.

The datasets which were used in the experiments are from

the chorochronos.org and Dublin Bus GPS sample data

from Dublin City Council (Insight Project). The param-

eters with which we will compare the algorithms perfor-

mance are their time execution and their results. The name

of the dataset from chorochronos.org is Trucks and con-

tains 50 trajectories. The name of the dataset from In-

sight project is Siri and contains 30 bus trajectories. For

the experiments, the first trajectory of the dataset was used

as a query and compared with the remaining 49 trajecto-

ries. The experiments were performed for trajectories with

length 2048 points each.

At the end of each experiment the program returns the

graphs of execution time of each algorithm and the most

similar trajectory chosen by each algorithm. The algo-

rithms we compare are:

• Dynamic Time Warping (DTW)

• Longest Common Subsequence (LCSS)

• Fréchet Distance: DFDS to find the smaller Fréchet

distance. In order for DFDS to find the smaller

Fréchet distance, the algorithm should be executed

multiple times for each trajectory that is compared as

the algorithm described above suggests. (DFDS)

• Fréchet Distance - one execution of the algorithm

(DFDS one time)

Bellow we present the results from the data provided by

Insight Project. This dataset containts trajectories recorded

from Dublin buses across Dublin City. In comparison with

2048 points per trajectory, the execution time of the algo-

rithms is presented in figure 4.

Evaluating distance measures for trajectories in the mobile setting

Figure 4. Algorithms execution time for 2048 points (Dublind

Bus GPS sample)

The results of each algorithm that correspond to the most

similar trajectory are listed below.

In figure 5 is the most similar trajectory according to Dis-

crete Fréchet Distance algorithm.

Figure 5. DFDS most similar trajectory for 2048 points (Dublind

Bus GPS sample)

In figure 6 is the most similar trajectory according to LCSS

algorithm.

In figure 7 is the most similar trajectory according to DTW

algorithm.

Figure 6. LCSS most similar trajectory for 2048 points (Dublind

Bus GPS sample)

Figure 7. DTW most similar trajectory for 2048 points (Dublind

Bus GPS sample)

We conducted the same experiments with the dataset pro-

vided by chorocronos.org. Specifically with trajectories

that contain 2048 points. In comparison with 2048 points

per trajectory the execution time of the algorithms are pre-

sented in figure 8.

Evaluating distance measures for trajectories in the mobile setting

Figure 8. Algorithms execution time for 2048 points

(chorochronos.org)

The results of each algorithm that correspond to the most

similar trajectory are listed below.

In figure 9 is the most similar trajectory according to Dis-

crete Fréchet Distance algorithm

Figure 9. DFDS most similar trajectory for 2048 points

(chorochronos.org)

In figure 10 is the most similar trajectory according to

LCSS algorithm

In figure 11 is the most similar trajectory according to

DTW algorithm

Figure 10. LCSS most similar trajectory for 2048 points

(chorochronos.org)

Figure 11. DTW most similar trajectory for 2048 points

(chorochronos.org)

We observe that the distance measurement that have been

implemented (Fréchet Distance) have similar execution

time with the implementation of the LCSS algorithm.

However, the final results of the algorithm differ. The ex-

ecution time of a single run of Fréchet Distance algorithm

is similar to the LCSS’s algorithm execution time. The re-

sults of Fréchet Distance algorithm are based on the sim-

ilarity of the shape of each trajectory in contrast with the

other algorithm which are restricted to specific points com-

parison. Furthermore, we avoid the problem of outliers that

Fréchet distance is sensitive to, thereby improving signif-

Evaluating distance measures for trajectories in the mobile setting

icantly the final results. Thus, we see that in comparison

that we are interested more at having a similar shape rather

than smaller distance of each point from the points of the

query trajectory, Fréchet Distance produces better results

than the other algorithms. Hence, Fréchet Distance is ideal

for similarity measurement of the shape of trajectories This

conclusion can be valuable for later implementations and

research.

7. Conclusion

In conclusion, the trajectory similarity search problem have

a plethora of applications, fact that gives the platform de-

scribed in this work great potentials. Our system allows

the user to send a query that contains a trajectory in or-

der to receive a number of the most similar trajectories that

have been recorded by other mobile devices that are regis-

tered to our system. We described the algorithms that the

mobile application uses in order to measure the similarity

between trajectory and finally search for the most similar

ones. Moreover, the distributed architecture of our sys-

tem grants it great capabilities such as scalability. We have

evaluated our platform and the implemented algorithms us-

ing real spatio-temporal data. Our experiments prove the

satisfying performance of our implementation. We com-

pared each algorithm that we implemented and we evalu-

ate both their performance and their final results accord-

ing to the similarity between the selected trajectory and the

query. We extracted useful conclusions about each algo-

rithm’s functionality and results, such as the different cases

where the Fréchet distance algorithm is more suitable than

the other distance measures. To sum up the final system

that was implemented gives a number of final responses to

queries submitted by its users, according to the selected al-

gorithm in a satisfying time. A future goal is to extend the

number of distance measurements that are implemented in

order for the system to have more reliable and accurate final

results.

8. Acknowledgements

We would like to thank Demetris Zeinalipour-Yazti, ”Uni-

versity of Cyprus” for his assistance by providing us the

source code of the implementation of LCSS algorithm.

This research was supported by the ARISTEIA MMD, FP7

INSIGHT, ERC IDEAS NGHCS and THALIS GeomComp

projects.

References

Anne Driemel, Sariel Har-Peled, Carola Wenk. Approxi-

mating the Frchet Distance for Realistic Curves in Near

Linear Time.

Donald J. Berndt, James Clifford. Using dynamic time

warping to find patterns in time series. In KDD Work-

shop, pp. 359–370. AAAI Press, 1994.

Giorgos Poulis, Spiros Skiadopoulos, Grigorios Loukides

Aris Gkoulalas-Divanis. Select-organize-anonymize: A

framework for trajectory data anonymization. In Data

Mining Workshops (ICDMW), 2013 IEEE 13th Interna-

tional Conference on, pp. 867 – 874, Dallas, TX, 2013.

IEEE.

Lin, Bin and Su, Jianwen. Shapes based trajectory queries

for moving objects. In Proceedings of ACM GIS, pp.

21–30. IEEE, 2005.

Michail Vlachos, Dimitrios Gunopulos, George Kollios.

Discovering similar multidimensional trajectories. In

Data Engineering, 2002. Proceedings. 18th Interna-

tional Conference on, pp. 673 – 684, San Jose, CA, 2002.

IEEE.

Rinat Ben Avraham, Omrit Filtser, Haim Kaplan Matthew

J. Katz Micha Sharir. The discrete frchet distance with

shortcuts via approximate distance counting and selec-

tion. In SOCG’14 Proceedings of the thirtieth annual

symposium on Computational geometry, pp. 377, New

York, NY, USA, 2014. ACM.

Zeinalipour-Yazti, Demetrios, Laoudias, Christos, Costa,

Constandinos, Vlachos, Michail, Andreou, Maria I., and

Gunopulos, Dimitrios. Crowdsourced trace similarity

with smartphones. In EEE Transactions on Knowledge

and Data Engineering (TKDE ’13), IEEE Computer So-

ciety, pp. 1240–1253, Los Alamitos, CA, USA, 2013.

IEEE.

