
�

8VLQJ�&DVH�%DVHG�5HDVRQLQJ�7HFKQRORJ\�WR�%XLOG
/HDUQLQJ�6RIWZDUH�2UJDQL]DWLRQV

K.-D. Althoff, F. Bomarius, C. Tautz
Fraunhofer Institute for Experimental Software Engineering (IESE)

Sauerwiesen 6, D-67661 Kaiserslautern, Germany
{althoff,bomarius,tautz}@iese.fhg.de

$EVWUDFW

Due to the ever increasing demands of the market, strategic management of knowledge as-
sets, or /HDUQLQJ�2UJDQL]DWLRQV (LOs), are becoming a must in industrial software develop-
ment. This paper presents work done at Fraunhofer IESE, where LOs for software develop-
ment organizations are being developed and transferred into industrial practice. It describes
how LOs for the software domain can be built upon both mature approaches from Software
Engineering, like the 4XDOLW\�,PSURYHPHQW�3DUDGLJP (QIP) and ([SHULHQFH�)DFWRU\ Model
(EF), and on industrial strength technology from AI, like &DVH�%DVHG�5HDVRQLQJ (CBR). A
system to support the /HDUQLQJ�6RIWZDUH�2UJDQL]DWLRQ (LSO) is sketched and experiences
regarding the implementation of this system and LSOs in general are presented.

�� ,QWURGXFWLRQ

The demands in today’s software industry, such as short lead-time, frequent introduction of
new technologies, increasing application complexity, and increasing quality requirements,
are among the toughest to be found in industry. Traditional SURGXFWLRQ�RULHQWHG approaches
to meet these demands, like quality assurance or statistical process control, fall short or are
just not applicable in the GHYHORSPHQW�RULHQWHG software domain. In such an environment,
continuous fast learning is one of the top priority requisites to acquire and maintain leading-
edge competencies. Traditional individual or group learning, as a means of adapting to new
demands or of adopting new methods and techniques, is often far too slow and ineffective.
This is especially true if it is not pursued in a goal-oriented way, managed as a project cru-
cial to a company’s success, and supported by organizational, methodical, and technical
means. So, learning on an organizational level and capitalizing on an organization’s knowl-
edge assets becomes imperative for modern software-dependent industries.
This situation is aggravated by the fact that the software engineering (SE) discipline has not
yet evolved into a true HQJLQHHULQJ discipline in its short history. There is still much to be in-
vestigated and learned in applied SE, and such experience has to be thoroughly validated
in industrial settings so as to come up with widely accepted procedures, techniques, and
methods which eventually will comprise the core of a mature software engineering disci-
pline. Only tight interaction of SE research with practice will significantly accelerate the
maturation of the SE discipline, will bridge the gap between SE research and practice, and
eventually will live up to meet the ever increasing demands the software industry is exposed
to. In that endeavor, SE researchers as well as practitioners feel a strong need for powerful
support in collecting experiences from industrial development projects, in packaging the
experiences (e.g., build models from empirical data, formalize or semi-formalize informal
knowledge), and in validating and spreading such H[SHULHQFH�SDFNDJHV into industrial proj-
ects.
The learning needs of both industry and research can be addressed by systematic applica-
tion of Organizational Learning (OL) principles, supported by Organizational Memories
(OM). The authors believe that Learning Organization principles will soon establish them-
selves as best practices. Therefore, we see a strong need to spell out OL procedures and

�

methods that work in practice and also a need for comprehensive tool support. This paper is
about the approach taken by the authors to do so for the software domain.
The authors are affiliated with the Fraunhofer IESE, an institute with a mandate in applied
research and technology transfer in SE. In its Experimental Software Engineering approach,
the IESE employs learning cycles in all its operations (internally as well as in collaboration
with customers).
From the IESE mandate the authors take on the viewpoints of applied research (collecting
and packaging experiences from industrial development projects) and technology transfer
(validating and spreading SE practices in industrial settings). We therefore see the subject
matter as being composed of several dimensions:
• the processes, methods, techniques of how to implement OL in the application domain,
• the tools that support OL for that domain, and
• the organizational and cultural aspects of introduction and performance of OL.
From our experience we know that the latter one is of paramount importance for the suc-
cess of a technology transfer project like, for instance, the introduction of OL [Kot96,
Sen90]. However, we will not elaborate on this issue in the course of this paper.
In the following sections we first describe the approaches proposed and taken in the SE
world towards continuous learning and improvement. This helps us give a definition of what
we mean by learning and by OM in the software domain throughout this paper. We are then
ready to derive requirements for a system to support OL in the SE domain. Next, we briefly
explain why we consider CBR a good candidate technology and synthesize our vision of a
system to support learning in the software domain. A brief look at example projects we are
currently conducting, the agenda of our intended future work, and a conclusion end this
paper. In the appendix we provide a comprehensive example for a learning cycle, to which
we will refer when appropriate.

�� "QQSPBDIFT�JO�UIF�4PGUXBSF�&OHJOFFSJOH�%PNBJO

One of the fundamental premises of�([SHULPHQWDO�6RIWZDUH�(QJLQHHULQJ is that we wish to
understand and improve software quality and productivity. Like in any engineering disci-
pline, understanding and improvement must be based upon empirical evidence and all
kinds of explicit (i.e., documented) project experiences. Even for small software organiza-
tions, large amounts of information could easily be accumulated over the years (e.g., project
data, lessons learned, quality models, software artifacts, code databases). But, for such
information to be usable, it needs to be modeled, structured, generalized, and stored in a
reusable form in order to allow for effective retrieval of relevant (applicable) artifacts.
However, it is well known in the SE community that reuse does not happen easily across
software development projects. This is not a surprise, since, by definition, the mission of a
(traditional “pre-LO” style) development project is to deliver a product matching a given
specification within given time and budget constraints. In other words, such a project is a
strictly “local optimization” endeavor with a matching reward structure. Consequently, reuse,
which by nature draws on results from JOREDO optimizations across projects, conflicts with
the projects’ ORFDO goals. An individual’s extra efforts to enable future reuse of work results
are not rewarded or are even penalized. Management slogans to “design for reuse” don’t
work for that same reason.
In order to introduce LO mechanisms into such a culture for the first time, the continuous
build-up and effective reuse of knowledge must be made into goals of OL projects which
are separate from the development projects. Such learning- and reuse-related goals must
be clearly defined, sufficient resources must be allocated, and the OL projects must be
managed like any development project. In the short to mid-term, conducting such projects
requires an organizational support structure that is separate from the software development
organization. Once learning and reuse have become standard practices of software devel-

�

opment projects, most of the tasks and responsibilities of that support organization shall be
assimilated by the regular development organization.
An organizational structure comprised of separate support and project development organi-
zations has been proposed by Rombach and Basili and is called ([SHULHQFH�)DFWRU\ 2U�
JDQL]DWLRQ [BCR94] (see Figure 1). The ([SHULHQFH�)DFWRU\�(EF) is an organization that
supports software development projects conducted in what we call the 3URMHFW�2UJDQL]DWLRQ
(e.g., a development department for a certain type of software) by analyzing and synthe-
sizing all kinds of experiences drawn from these projects, acting as a repository for such
experiences, and supplying those experiences back to projects on demand.

3URMHFW�1

3URMHFW��

3URMHFW�WHDP

Software knowledge
derived from past projects

Feedback,
Lessons learned,
Deliverables

3ODQQLQJ

1. Characterize
2. Set goals
3. Choose models

([SHULHQFH�(QJLQHHU

(YDOXDWLQJ

5. Analyze
6. Package

([SHULHQFH�)DFWRU\

Experience Base

4. Perform project
3HUIRUPLQJ

3URMHFW�2UJDQL]DWLRQ

Figure 1: Mapping of QIP Steps into the Experience Factory Organization

The OL-related tasks of the experience factory and the project organization can be ex-
plained by mapping the steps of the 4XDOLW\�,PSURYHPHQW�3DUDGLJP (QIP) (see Figure 2) to
the Experience Factory Organization (see Figure 1). The QIP is a generic six-step proce-
dure for structuring software development and improvement activities. It involves three
overall phases: planning, performing, and evaluating the software development project. The
planning phase at the start of a new project is based on the explicit characterization (QIP1)
of the initial situation, the identification of the project as well as learning and improvement
goals to be achieved (QIP2), and the development of a suitable plan (QIP3) that shall
achieve these goals. Steps QIP1, QIP2, and QIP 3 can benefit from the reuse of artifacts
from the experience base (see appendix: “Getting the Project off the Ground”). The plan
then guides the performance of the development project (QIP4), which is a feedback loop of
its own controlling goal achievement. The subsequent evaluation phase involves the analy-
sis of the performed actions (QIP5) and the packaging of the lessons learned into reusable
artifacts (QIP6) (see appendix: “Learning from Project Experience”). The evaluation and
packaging allows for effective reuse in similar projects in the future and may even set future
learning goals (see appendix: “Strategic Aftermath”). They are the key means for making
continuous improvement happen.

In summary, the six steps of the QIP are shown in Figure 2. In fact, the QIP implements two
nested feedback/learning cycles: the project feedback/learning cycle (control cycle) and the
corporate feedback/learning cycle (capitalization cycle). Project feedback is continuously
provided to the project during the performance phase (QIP4). This requires empirical tech-

�

niques through which the actual course of the project can be monitored in order to identify
and initiate corrective actions when needed. Corporate feedback is provided to the organi-
zation (i.e., other ongoing and future projects of the organization). It provides analytical in-
formation about project performance (e.g., cost and quality profiles) and accumulates other
reusable experiences, such as software artifacts, lessons learned regarding tools, tech-
niques and methods, etc., that are applicable to and useful for other projects. Throughout
this paper we will focus on the capitalization cycle only.

$POUSPM

$ZDMF

���4&5�(0"-4

���"/"-:;&�

���1"$,"(&

���$)"3"$5&3*;&

���%&7&-01�130+&$5�1-"/

���1&3'03.

$BQJUBMJ[BUJPO

$ZDMF

0SHBOJ[BUJPOBM�MFWFM

MFBSOJOH

1SPKFDU�MFWFM�MFBSOJOH

Figure 2: Quality Improvement Paradigm (QIP)

�� 3FRVJSFNFOUT�GPS�B�4ZTUFN�UP�4VQQPSU�-FBSOJOH�JO�UIF�4PGU�

XBSF�&OHJOFFSJOH�%PNBJO

In the context of this paper, OHDUQLQJ refers to organizational learning rather than individual
or team learning. Of course, our definition of OL will also support individual and team
learning, but this is not the primary goal. Organizational learning under the needs specified
in the introduction is targeted at accelerated elicitation and accumulation of explicit (docu-
mented) knowledge. Sources from which knowledge can be derived are experts (e.g.,
through interviews) as well as processes and artifacts (e.g., through measurement pro-
grams or experience reports). We place strong focus on explicit knowledge because the
experts either take too long to build up the (tacit) knowledge a company would be interested
in, or they simply become a scarce resource.
In the first case, a significant amount of diverse experiences would be needed on the part of
the expert to build up knowledge about a given topic (for instance, to come up with a cost
estimation model for a class of software projects). This usually means for the expert to take
part in several projects in order to gather enough experience, which may take too long in a
rapidly changing business environment.
In the latter case, they are often “eaten up” by coaching less experienced staff in more or
less standard situations and therefore just cannot do “real” expert work. Making their knowl-
edge explicitly available to the junior staff would help a lot. It is evident that we do not want
to render experts obsolete. We rather strive to make them more valuable for the organiza-
tion by relieving them of tutoring tasks and focusing them on the expert tasks.
In Figure 3 we give an abstract example of how the gathering of experiences and building
of explicit knowledge takes place in Experimental Software Engineering. (Of course, a great
deal of tacit expert knowledge will still be built up and remain in the minds of experts.)
Explicitly documented knowledge evolves along a timeline. On the “early” end of the line, a
question or hypothesis raised by a business need (e.g., a quality problem) gives rise to look
at measurement data (i.e., set up a measurement program) or interview experts. The first
documented samples of information regarding the subject matter at hand are usually not
directly transferable to other contexts, are often more a hypothesis than a fact, and often
lack detailed information.

�

first samples best practice
(wide-spread use)

partially tested knowledge
(experimental use)

package roll-out

?

re-package

investigate

reuse

Figure 3: Experience Life Cycle

Over time, more samples regarding the question at hand are gathered and integrated
(packaged). The information is described in a more structured form, new attributes are
found to be relevant and information is possibly formalized (e.g., a mathematical model de-
scribing the quality problem is derived from data and expert opinion). Also, links to other
documented experiences may be established or pointers to experts in that field are set.
A well-structured and easy to use representation of knowledge regarding the question we
had in the beginning emerges and is made accessible to a wider circle of people. Its appli-
cability is tested, it becomes more and more stable, and gradually evolves into a “best prac-
tice”.
In the long run, such proven practices become part of the standard operations and might be
laid down in handbooks and manuals.
At any stage of the life cycle, information can be identified as being useless or no longer
applicable. Such information will be forgotten. In technical terms this means to avoid creat-
ing data cemeteries.
From the abstract example above it is evident that we define an OM as the sum of explicit
and implicit knowledge available in an organization. OL is in charge of creating, maintaining,
and making available more and better explicit knowledge.
Figure 4 gives a brief example drawn from the more comprehensive scenario in the appen-
dix for evolving artifacts, namely the retrieval, adaptation, and storage of the adapted proc-
ess model.

How to integrate design
inspections with the
“Standard 4711“
development process
in application domain
“fuel injection”?

Search for:
efficiency models,
process models,
measurement plans
for application domain
“fuel injection“

EB

Found candidate
experience from
projects “Vesuv“
and “Purace“, but
from the application
domain “ABS”

process model and
measurement plan
adapted to application
domain “fuel injection“
“Standard 4711
process with design
insp.+review“

EB

Introduce new experience
package: “Standard 4711
process with design
insp.+review“

Use and
validate

Figure 4: Example of Experience Life Cycle

In the following we list the requirements which have been found important for effective re-
use of software engineering knowledge. The list of requirements is derived from [BCR94;
BR91; Hen97] and from the practical experiences we gained in our projects with customers.
��� 6XSSRUW�IRU�WKH�PHFKDQLVPV�RI�LQFUHPHQWDO��FRQWLQXRXV�OHDUQLQJ��DFFRUGLQJ�WR�4,3

DQG�()�. The elicitation of experiences from projects and the feedback of experience to
the project organization requires functionality to support recording (collecting, qualifying,
storing), packaging (specifying characterizations, tailoring, formalizing, generalizing, in-

�

tegrating), and effective reuse (identification, evaluation, selection, modification) of ex-
periences as shown in Figure 5.

feedback

learn reuse

record package identify evaluate modifyselect

collect qualify store tailorspecify
characterization

formalize generalize integrate

Figure 5: Mechanisms for incremental, continuous learning

�� 6WRUDJH�RI�DOO�NLQGV�RI�VRIWZDUH�NQRZOHGJH�DUWLIDFWV. In the context of development
and improvement programs, many kinds of artifacts need to be stored, such as process
models, product models, resource models, quality models, all kinds of software artifacts
(e.g., code modules, system documentation), lessons learned about these artifacts, and
observations (results and success reports). All of these require characterization sche-
mata of their own. Consequently, the OM will be integrated from a heterogeneous set of
information sources. Integration of the diverse artifacts into a coherent model requires a
flexible, modular overall schema for the OM that allows interfacing with various tools and
information sources.

�� 5HWULHYDO�EDVHG�RQ�LQFRPSOHWH�LQIRUPDWLRQ. Not all information needed for comprehen-
sive characterization of an artifact is necessarily contained within the artifact or the OM at
large. Nevertheless, an effective search of the OM must be possible. For instance, to re-
use a code module, one would need to have:

• information about the artifact itself (e.g., what language it is written in)
• information about its interface (e.g., what is the functionality, what parameters and

global variables need to be set)
• information about its context (e.g., which application domain it was developed for,

what life-cycle model was applied).
If a software developer describes a code module he wants to search for, he may not
have available or does not want to specify all of the above information. Therefore, it must
be possible to search with incomplete information. See also the example in the appendix.

��� 5HWULHYDO�RI�VLPLODU�DUWLIDFWV. Since each software development project is different, it is
very unlikely that one finds an artifact exactly fulfilling one’s needs. The retrieval
mechanism must therefore be able to find similar artifacts, which may then be tailored to
the specific needs of the project at hand.

��� 6XSSRUW�IRU�PDLQWHQDQFH�RI�H[SHULHQFH. As an organization learns more about its
software development operations, that knowledge needs to be reorganized. That
means, an OM must be continuously maintained. For that purpose, the experience base
must support the restructuring of software engineering knowledge. The decay of soft-
ware engineering knowledge requires that experience already stored is easily maintain-
able in the sense that obsolete parts can be easily deleted or changed and remaining
parts can be reorganized without changing the semantics of the experiences or creating
inconsistencies.

��� /HDUQLQJ�IURP�H[DPSOHV. When software engineers encounter a problem, they think of
past projects where similar problems occurred and adapt their solution to the current
problem. Therefore, it must be possible to capture concrete examples as prob-
lem/solution pairs, i.e., a problem is specified using a characterization schema and the
solution is the artifact itself. This is clearly an extension of “retrieval of similar artifacts”.

�

��� 6XSSRUW�IRU�FRQWLQXRXVO\�HYDOXDWLQJ�WKH�TXDOLW\�DQG�DSSOLFDELOLW\�RI�UHXVH�DUWLIDFWV

DQG�EHQHILWV�RI�WKHLU�DSSOLFDWLRQ� For identifying information eligible for storing in the
OM, qualification and evaluation procedures and models are required on the “input
side”. On the “output side”, the frequency of searching, applicability of artifacts found,
ease of reuse/tailoring, and “user satisfaction” in general must be captured and used to
control operations (i.e., goal setting for the learning organization, driving maintenance of
the OM, etc.).

All these requirements are in line with what we have learned to be required in the learning
and improvement programs conducted by the Fraunhofer IESE. Based on these require-
ments, we have evaluated candidate approaches to implement a system that supports OL
in the software domain. Case-based reasoning technology is a promising approach [ABS96,
Alt97a+b, TA97a] to us. In the following chapters we give a brief and informal rational why
we consider CBR a good approach to help fulfil these requirements and then, how a tool
suite can be built around a CBR system for comprehensive tool support.

REVISE

RETRIEVE

R
E

U
SE

R
E

TA
IN

General
Knowledge

3UREOHP

6XJJHVWHG�

6ROXWLRQ

&RQILUPHG�

6ROXWLRQ

New
Case

 New
Case

Retrieved
Case

Case

Learned
Case

Solved
Case

Tested/
Repaired

Previous
Cases

Figure 6: Organizational Level CBR: Human-based Case-Based Reasoning

�� .PUJWBUJPO�GPS�UIF�6TF�PG�$#3�5FDIOPMPHZ

There are two main arguments, a technical and an organizational one, why we selected
CBR as the most promising AI technology to implement the above requirements:
• While the representation and reuse of software knowledge recommends an approach

from the knowledge-based systems field, learning from examples suggests a machine
learning approach. A technology that is rooted in both fields is CBR. It also offers a
natural (i.e., direct) solution to the retrieval requirements.

• From an organizational perspective, the QIP has to be supported, which includes the
mechanisms for incremental, sustained learning. [AW97] motivated that CBR can be
applied on an organizational level. Here the basic CBR cycle consisting of the steps “re-
trieve – reuse – revise – retain”, as described by Aamodt and Plaza [AP94], is com-
pletely carried out by humans (see Figure 6). In the following we want to call the appli-
cation of CBR, which is independent from the technology employed, “Organizational
Level CBR (OL-CBR)”. [TA97a+b], [TA98], and [ABGT98] showed that QIP and OL-CBR
are fully “compatible” (i.e., the respective cycle can be mapped to the other one in a se-

�

mantically reasonable way). In addition, [BA98] described how an experience factory or-
ganization is used to operationalize a methodology for developing CBR systems.

The application of CBR on the organizational level (i.e., OL-CBR) can be supported by vari-
ous kinds of technologies (e.g., CBR-technology, knowledge-based system technology,
WWW technology, database technology, etc.). For instance, a relational database can sup-
port the retrieval and retain steps (see Figure 6). However, for the first step, only restricted
kinds of similarity assessment could be implemented using the relational database, and for
the last step, learning issues would have to be ignored.
Regardless of the technologies employed, an analysis of the knowledge that is to be ac-
quired, stored, and maintained, has to be performed. However, the degree of formality of
the knowledge stored varies among the technologies.
Another aspect for the choice of the underlying technology is the stability of the knowledge.
For the more stable parts of knowledge (i.e., knowledge that does not change very often,
like a generic process model or a generic procedure for using a specific tool), more effort
can be spent on its description and on reuse-enabling storage.
More dynamic knowledge (i.e., knowledge that changes often, and usually on a regular ba-
sis) is best described in a case-oriented way that is, dynamic knowledge is described using
concrete cases that occurred in the past.

*OUFSQSFUFE

,OPXMFEHF

$PNQJMFE

,OPXMFEHF

4PMVUJPO

5SBOTGPSNBUJPO

4JNJMBSJUZ

.FBTVSF
7PDBCVMBSZ $BTF�#BTF

Figure 7: The knowledge container view on CBR systems (adapted from [Ric95])

All these considerations already make sense if cases are described informally (e.g., as les-
sons learned about a specific technology, or as results and success reports from an im-
provement program). It depends on the usage scenarios (i.e., on the customer’s require-
ments) that shall be supported whether a semi-formal or formal representation is more ap-
propriate. Usually, in the beginning the description is more informal and, over time, the de-
gree of formality increases. In Figure 3 we illustrated this by means of the experience life
cycle.
Richter [Ric95] has introduced a helpful explanation model or view on CBR systems, which
supports our above arguments (see Figure 7). He identified four different knowledge con-
tainers for a CBR system. Besides the underlying vocabulary, these are the similarity meas-
ure, the solution transformation, and the cases. While the first three represent compiled
knowledge (i.e., more stable knowledge is assigned to these containers), the cases are in-
terpreted knowledge. As a consequence, newly added cases can be used directly. There-
fore, the cases enable a CBR system to deal with dynamic knowledge more efficiently and
effectively. In addition, knowledge can be shifted from one container to another when this
knowledge has become more stable. For instance, in the beginning a simple vocabulary, a
rough similarity measure, and no knowledge on solution transformation are used. However,
a large number of cases are collected. Over time, the vocabulary can be refined and the
similarity measure defined in higher accordance with the underlying domain. In addition, it
may be possible to reduce the number of cases because the improved knowledge within

�

the other containers now enables the CBR system to better differentiate between the avail-
able cases. If knowledge about solution transformation also becomes available, it may be
possible to further reduce the number of available cases, because then a number of solu-
tions can be derived from one case.
To summarize this motivational section:
• We apply Organizational Level CBR (OL-CBR), which is compatible with the QIP and

offers solutions for parts of the requirements in chapter 3 (e.g., Figure 3).
• We implement a set of support tools that are based on CBR (and other) technologies.

They support OL-CBR in the SE domain and meet the requirements stated in chapter 3.
In the next section we describe the tools’ architecture in some detail.

�� 4ZOUIFTJT�PG�B�4ZTUFN�UP�4VQQPSU�-FBSOJOH�JO�UIF�4PGUXBSF

&OHJOFFSJOH�%PNBJO

In this section, we present a system architecture for a “software engineering experience
environment” (Figure 8). We distinguish between general purpose experience factory tools
and application-specific tools. General purpose tools operate on the characterizations of the
artifacts (attribute values which can be searched for) in the experience base, whereas the
application tools operate on the artifacts themselves. Both kinds of tools act as clients using
the experience base server as a means for retrieving and versioning software engineering
artifacts. To illustrate the interplay of the different tools, we use the scenario described in
the appendix.
During the QIP step 1 “characterize”1, the general purpose search tool is started and the
new project is (partially) specified guided by the characterization schemata (case models in
terms of case-based reasoning tools) for project characterizations, techniques, and product
models. The search tool then returns a list of similar project characterizations (cases in
terms of case-based reasoning tools) by using the CBR tool of the experience base server.
Starting from the project characterizations, the user can navigate to characterizations of
relevant artifacts such as techniques employed, quantitative experiences collected, etc. The
navigational search is supported through case references (links between cases), i.e., for
each case the user navigates to, the CBR tool is used to retrieve it.
Next, goals are set (QIP step 2: “set goals”) based on the results of the step “characterize”.
This is done in a similar manner: the search tool is invoked in order to find similar measure-
ment goals from the past. However, these measurement goals and the respective meas-
urement plans have to be adapted to project-specific needs. For this purpose, a cross-
reference, which is stored as part of the artifact’s characterization in the case base, is
passed to the measurement planning tool. The measurement tool thus invoked loads the
old measurement plan (using the data retrieval services of the experience base server) and
allows the project manager to tailor it to the project’s needs. The new measurement plan is
saved using the data storage services, but its characterization is not specified yet. That is,
no case is stored for it, and therefore it is not considered as part of the experience base.
Thus it is not available to other projects (yet). This avoids the usage of unvalidated artifacts.

1 The QIP step “characterize” should not be confused with the activity to specify the characterization

of an artifact, because the purpose of this QIP step is to characterize the development environ-
ment as a whole and not a single artifact. In this report, we use the verb “characterize” to refer to
the QIP step, while we use “specify the characterization” to enter into the experience base char-
acteristic information about a single artifact.

��

&YQFSJFODF�

'BDUPSZ�5PPMT

4FBSDI

5PPM

*OQVU�.BJO�

UFOBODF�5PPM

"QQMJDBUJPO�

5PPMT

1SPDFTT�

.PEFMMJOH

5PPM

.FBTVSFNFOU

1MBOOJOH�

5PPJM

$PNNPO�BQQMJDBUJPO�MPHJD�	F�H��SFUSJFWBM�OBWJHBUJPO�WFSTJPOJOH�BDDFTT�

QSPUFDUJPO
��8FC�BDDFTT

c c

&#�4FSWFS��%BUB�4UPSBHF�BOE�3FUSJFWBM�4FSWJDFT

$#3�5PPM 'JMF�4ZTUFN
00%#.4 3%#.4

$SPTT�SFGFSFODFT

OBUJWF

EBUB

XSJUF

BQQMJDBUJPO

UPPM
3&'&/40

4FSWFST

$MJFOUT

%BUB�USBOTGFS%FGJOFT�UIF�CFIBWJPVS�PG
6TFT�UP�TQFDJGZ

%BUB�

BEFRVBUF

GPS�

TFBSDIJOH

Figure 8: Architecture of the Software Engineering Experience Environment

In the same way, process models and other artifacts needed by the project are retrieved
and tailored to specific needs of the project at hand (QIP step 3: “plan project”). The project
is then executed (QIP step 4: “perform project”).
Once the project is finished, the project’s artifacts (which are deemed worthwhile to keep)
are stored in the experience base for future projects (QIP step 5: “analyze”). For this pur-
pose, the quality of the artifacts is determined through careful analysis with the help of the
application tools. For those artifacts to be stored, the export-interface of the application
tools compute the attributes’ values of the attribute’s characterization automatically as far as
possible. This is necessary because the general purpose tools are not able to read the na-
tive data format of the application tools. Attribute values, which cannot be computed auto-
matically, must be entered manually. This is realized through invoking the (general purpose)
input and maintenance tool, which asks the user to supply the missing values. The tool de-
termines the missing attribute values through retrieving the characterization scheme associ-
ated with the type of artifact (which is passed by the application tool as a parameter). This
procedure is followed for all artifacts to be stored.
The newly inserted cases have to be validated and disseminated (QIP step 6: “package”).
Therefore, they are initially marked as “to be validated” at the time of their insertion. Experi-
ence engineers from the experience factory assess the reuse potential of the newly ac-
quired artifacts by invoking the respective application tool. At this point, the artifact may be
modified to increase its reuse potential. Usually this requires modification of the artifact’s
characterization (using the maintenance tool). Finally, the corresponding cases are marked
“validated”.2 After this, it is possible for other projects to access the new artifact.
In order to operationalize the retrieval, data input, and maintenance activities based on the
characterization schemata, we need a formal representation of the “structure model” of an

2 Statistical data can also be kept with the cases, so as to assess their usefulness (e.g., data on how

often they had been applied successfully, or to what extent they had to be modified in order to be
applicable).

��

experience base. The structure model can be seen in analogy to data models known from
database management systems. In the AI literature, such structure models are known as
ontologies [UG96]. For specifying software engineering ontologies, which aim at providing
guidance for learning and retrieving software engineering knowledge, we use a special rep-
resentation formalism named REFSENO (UHpresentation Iormalism for Voftware HQgineering
Rntologies) [TG98].
Currently, Fraunhofer IESE is implementing the architecture presented. We use commer-
cially available software, namely CBR-Works from tecInno, Kaiserslautern [TEC98], as the
CBR tool within the experience base server. The application and experience factory tools
are built using the Java platform to ensure high portability across our customers’ platforms.

�� 'VUVSF�8PSL

Fraunhofer IESE currently conducts a variety of projects within which OL/OM methods,
techniques, and tools are further developed. Some are more research oriented, some have
a clear mandate to improve an organization’s performance. Here is a brief list of some of
the projects and their main goals:
Health Care Sector Develop the procedures, techniques, and tools for a KM system to

comprehensively support the reorganization and optimization of
hospitals according to the EFQM3 framework.

Software Experience
Center

In a consortium of multinational companies and know-how providers
we develop the infrastructure for a 3-layer hierarchy of Experience
Factories. The top level EF shall act as a cross-company EF and
shall help member companies to effectively and efficiently exchange
experiences on building EFs and conducting improvement pro-
grams.

Support for Tailoring
SE Technologies

Over time we want to document explicitly our competencies regard-
ing the SE technologies we transfer into practice. This documenta-
tion is based on feedback from organizations, which apply the tech-
nologies (e.g., lessons learned). The aim of this project is to build up
knowledge on when to apply which variant of a given SE technol-
ogy.

Decision Support for
Tool Selection

This project has been an exercise for learning how to use CBR
technology for tool selection, and also for developing appropriate
evaluation criteria. We used the CBR-Works system from tecinno
GmbH. A more detailed description is given in [ANT98]. This system
is accessible at URL:
http://www.iese.fhg.de/Competences/QPE/QE/CBR-PEB.html.

Several EF-related
Projects

In these projects we build EFs for customer companies. Often the
topic area from which experiences are drawn is narrow and the pri-
mary focus is on improving software development. An EF is built up
as a means to capture experiences made and to slowly introduce
and get accustomed to OL-style working.

In the context of ongoing and future projects we will refine our understanding of the re-
quirements and mechanisms underlying the processes that enact OL. We will investigate
alternative approaches and techniques to capture and model knowledge from the SE do-
main in formal, semi-formal as well as informal ways. We need to better understand the
tradeoffs associated with the alternatives so as to give guidance not only on technical and
organizational issues, but also in terms of economics. And we have to exercise our ideas in
different organizational “cultures”, so as to make them widely applicable and also under-
stand the “soft” factors that are prerequisites to successfully implementing OL.

3 The European Foundation for Quality Management. Awards the European Quality Award (EQA).

��

We are closely collaborating with the provider of the CBR system CBR-Works so as to ex-
tend the CBR tool towards supporting requirements from our system. In 1998 we plan to
implement major parts of the proposed architecture. As of today, CBR-Works is a commer-
cially available tool and most of the other tools that extend CBR-Works or that will be linked
into the system already exist and are about to be deployed.
As a first full-fledged implementation, we are building the IESE Experience Factory, a sys-
tem to store and make available IESE-internally the experiences from all our projects. This
will allow us to gain valuable insights into how to actually install and make use of such a
system. It will also allow us to continuously improve the system. In fact, in projects with in-
dustry we experience a tremendous request to implement OL in their environments, includ-
ing the use of our system, even if it is only in a prototypical state.

�� $PODMVTJPO

Our work towards developing the Learning Software Organization has clearly shown that
the core operations around the OM must be organized in a separate organizational unit.
This corresponds to the separation into the “project organization” and the “experience fac-
tory” as put forward in chapter 2. Such an experience factory has its own responsibilities,
conducts its own projects, is governed by goals that are linked to the business goals of the
overall organization, has its own resources, and requires personnel with particular skills that
are different from the skills needed in project organization.4

This organizational separation mentioned above is a prerequisite for OL to happen because
• the EF tasks must be protected from being “eaten up” as soon as development projects

come under pressure, and because
• the EF pursues goals that are in part conflicting with the goals of the development proj-

ects – we discussed global vs. local optimization in chapter 2.
On the other hand, and this reveals an inherent conflict, only very close collaboration be-
tween the experience factory and the development projects will result in a lively learning
organization where both parts, and thus the whole organization, benefit.
We have learned that successful integration is a cultural problem, rather than a technical
problem. In most of today’s software development organizations we find a culture where
learning from past experience is strongly discouraged or even penalized because it requires
to admit to mistakes. And mistakes are not considered a chance for learning and improving,
but rather a reason to blame people. This clearly dominates the technical problems we are
facing in our daily work.
From the technical point of view we have learned that a system to support LO must be an
open system. We cannot expect a closed system to solve problems in industrial strength
environments with a diversity of tools, methods, application domains as those found in soft-
ware engineering at large. Integration of various tools wrt data and functionality is consid-
ered mandatory. This is reflected in our architecture. The expert system tool we use is one
tool among others; however, it plays a central role. It ties together the diverse experiences
and makes them effectively and efficiently accessible and eventually enables learning. This
approach also avoids the plateau effect, widely known from “classical” expert systems.
The experiences stored in the OM have to be continuously worked on. As new cases are
added, network complexity increases, new attributes and new case types are added. In or-
der to tame complexity and sustain easy usability of the whole system, the OM has to be
cleaned up on a regular basis. We consider this a crucial task of the experience factory. It
has to be driven by empirical evidence that is continuously gained from the evaluation of

4 Therefore we consider the LSO to actually be a knowledge management (KM) system. From our

point of view there is no question whether a KM system adds value – KM is mandatory to make
OL a professional endeavor.

��

effectiveness and efficiency of storage, retrieval, and reuse. Requirement 7 is therefore a
very crucial one that must not be underestimated.

�� "DLOPXMFEHNFOUT

The authors would like to thank the workshop paper reviewers and Sonnhild Namingha for
reviewing the paper, Susanne Hartkopf and Andreas Birk who contributed to an early ver-
sion of this paper, Stefan Wess from tecinno GmbH, and many IESE employees for fruitful
discussions.

�� 3FGFSFODFT

[AABM95] K.-D. Althoff, E. Auriol, R. Barletta, and M. Manago. $�5HYLHZ�RI�,QGXVWULDO
&DVH�%DVHG�5HDVRQLQJ�7RROV. AI Intelligence. Oxford (UK), 1995.

[ABGT98] K.-D. Althoff, A. Birk, C. Gresse von Wangenheim, and C. Tautz��&DVH�%DVHG
5HDVRQLQJ�IRU�([SHULPHQWDO�6RIWZDUH�(QJLQHHULQJ. To appear in: M. Lenz, B.
Bartsch-Spörl, H. D. Burkhard & S. Wess, editors, Case-Based Reasoning
Technology – From Foundations to Applications. Springer Verlag,1998.

[ABS96] Klaus-Dieter Althoff and Brigitte Bartsch-Spörl. 'HFLVLRQ�VXSSRUW�IRU�FDVH�EDVHG
DSSOLFDWLRQV. Wirtschaftsinformatik, 38(1):8–16, February 1996.

[Alt97a] K.-D. Althoff. (YDOXDWLQJ�&DVH�%DVHG�5HDVRQLQJ�6\VWHPV��7KH�,QUHFD�&DVH

6WXG\. Postdoctoral Thesis (Habilitationschrift), Department of Computer Sci-
ence, University of Kaiserslautern, July 1997.

[Alt97b] K.-D. Althoff. 9DOLGDWLQJ�&DVH�%DVHG�5HDVRQLQJ�6\VWHPV. In: W. S. Wittig and
G. Grieser (eds.), Proc. 5. Leipziger Informatik-Tage, Forschungsinstitut für In-
formationstechnologien e.V., Leipzig,1997, 157-168.

[ANT98] K.-D. Althoff, M. Nick and C. Tautz. Concepts for Reuse in the Experience Fac-
tory and Their Implementation for Case-Based Reasoning System Development.
Technical Report IESE-Report, Fraunhofer Institute for Experimental Software
Engineering, Kaiserslautern (Germany), 1998.

[AP94] Agnar Aamodt and Enric Plaza. &DVH�EDVHG�UHDVRQLQJ��)RXQGDWLRQDO�LVVXHV�
PHWKRGRORJLFDO�YDULDWLRQV��DQG�V\VWHP�DSSURDFKHV. AICOM, 7(1):39–59, March
1994.

[AW97] Klaus-Dieter Althoff and Wolfgang Wilke. 3RWHQWLDO�XVHV�RI�FDVH�EDVHG�UHDVRQ�
LQJ�LQ�H[SHULHQFH�EDVHG�FRQVWUXFWLRQ�RI�VRIWZDUH�V\VWHPV�DQG�EXVLQHVV�SURFHVV

VXSSRUW. In R. Bergmann and W. Wilke, editors, Proceedings of the 5th German
Workshop on Case-Based Reasoning, LSA-97-01E, pages 31–38. Centre for
Learning Systems and Applications, University of Kaiserslautern, March 1997.

[BA98] R. Bergmann and K.-D. Althoff (1998). Methodology for Building Case-Based
Reasoning Applications. In: M. Lenz, B. Bartsch-Spörl, H. D. Burkhard & S.
Wess (eds.), &DVH�%DVHG�5HDVRQLQJ��7HFKQRORJ\�±�)URP�)RXQGDWLRQV�WR�$SSOL�

FDWLRQV. Springer Verlag, LNAI 1400, 299-328.
[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. ([SHULHQFH�)DFWRU\.

In John J. Marciniak, editor, Encyclopedia of Software Engineering, volume 1,
pages 469–476. John Wiley & Sons, 1994.

[BR91] Victor R. Basili and H. Dieter Rombach. 6XSSRUW�IRU�FRPSUHKHQVLYH�UHXVH. IEEE
Software Engineering Journal, 6(5):303–316, September 1991.

[Hen97] Scott Henninger. &DSWXULQJ�DQG�)RUPDOL]LQJ�%HVW�3UDFWLFHV�LQ�D�6RIWZDUH�'HYHO�

RSPHQW�2UJDQL]DWLRQ. In Proceedings of the 9th International Conference on
Software Engineering and Knowledge Engineering, Madrid, Spain, June 1997.

[Kot96] John P. Kotter. /HDGLQJ�&KDQJH. Harvard Business School Press, Boston, 1996.

��

[Ric95] Michael M. Richter. The Knowledge Contained in Similarity Measures. Invited
talk at the First International Conference on CBR 1995 (ICCBR-95). Slide copies
and abstract available via 85/��KWWS���ZZZDJU�LQIRUPDWLN�XQL�

NO�GH�aOVD�&%5�5LFKWHULFFEU��UHPDUNV�KWPO

[Sen90] P.M. Senge. 7KH�ILIWK�GLVFLSOLQH��7KH�DUW�DQG�SUDFWLFH�RI�WKH�OHDUQLQJ�RUJDQL]D�
WLRQ. Doubleday Currency, New York, 1990

[TA97a] Carsten Tautz and Klaus-Dieter Althoff. 8VLQJ�FDVH�EDVHG�UHDVRQLQJ�IRU�UHXVLQJ
VRIWZDUH�NQRZOHGJH. In Proceedings of the 2nd International Conference on
Case-Based Reasoning, Providence, RI, July 1997. Springer-Verlag.

[TA97b] Carsten Tautz and Klaus-Dieter Althoff. 2SHUDWLRQDOL]LQJ�WKH�5HXVH�RI�6RIWZDUH
.QRZOHGJH�8VLQJ�&DVH�%DVHG�5HDVRQLQJ. Technical Report IESE-Report No.
017.97/E, Fraunhofer Institute for Experimental Software Engineering, Kaiser-
slautern (Germany), 1997.

[TA98] Carsten Tautz and Klaus-Dieter Althoff. Operationalizing Comprehensive Soft-
ware Knowledge Reuse Based on CBR Methods. In L. Gierl & M. Lenz (eds.),
Proc. of the 6th German Workshop on Case-Based Reasoning (GWCBR-98),
Technical Report, University of Rostock, IMIB series vol. 7, March 1998, 89-98.

[TEC98] CBR-Works (http://www.tecinno.de/tecinno_e/ecbrwork.htm)
[TG98] Carsten Tautz and Christiane Gresse von Wangenheim. REFSENO: A repre-

sentation formalism for software engineering ontologies. Technical Report IESE-
Report No. 015.98/E, Fraunhofer Institute for Experimental Software Engineer-
ing, Kaiserslautern (Germany), 1998.

[UG96] Mike Uschold and Michael Gruninger. Ontologies: Principles, methods, and ap-
plications. 7KH�.QRZOHGJH�(QJLQHHULQJ�5HYLHZ, 11(2): 93-136, 1996.

���"QQFOEJY�p�4BNQMF�4DFOBSJP

This scenario shows how a:
• software development project is planned and performed using experiences from past

projects provided by the experience base
• software development organization learns, i.e., how the contents of the experience base

are enhanced and restructured according to new project experience.

����� 6LPSOLILHG�6WUXFWXUH�0RGHO�IRU�WKH�([SHULHQFH�%DVH

Before the mechanisms for reusing and learning software engineering knowledge can be
explained, the structure model of the experience base must be presented. The structure
model of the experience base can be seen in analogy to the data models of database man-
agement systems. It guides the user while he/she retrieves or stores knowledge.
The experience base shall contain several types of knowledge each represented by a sepa-
rate case model. Every case in the case base is described by exactly one of these case
models. During retrieval, one of the case models is used as a template to be filled in, in or-
der to specify the knowledge to be searched for. This implies that the user has to know the
type of knowledge he needs when he formulates a query. The type of knowledge can be
regarded as a filter: only cases described by the selected case model will be returned.
For the scenario described here, the structure model shown in Figure 9 is used. The mean-
ing of the different case models is described in the Table below. Each case model has two
kinds of attributes: terminal and nonterminal attributes. Terminal attributes model how soft-
ware engineering entities are specified for storage and retrieval, whereas nonterminal at-
tributes model semantic relationships. Nonterminal attributes are implemented using refer-
ences. All semantic relationships are bidirectional. This is indicated in Figure 9 by the arcs
between the case models.

��

1SPK��$IBS�

/BNF

,-0$

%VSBUJPO

5FBN�TJ[F

1SPEVDU�NPEFM

5FDIOJRVFT

2VBOUJUBUJWF�FYQ�

"QQM��EPNBJO

4PM��%PNBJO

(FOFSBMJ[BUJPO

4QFDJBMJ[BUJPO

2VBOUJUBUJWF�FYQ�

0CKFDU

1VSQPTF

2VBMJUZ�GPDVT

7JFXQPJOU

$POUFYU

3FTVMUT�

�

1SPDFTT�TUFQ

/BNF

*OQVUT

0VUQVUT

5BTL

1SPDFTT�EFTDS�

1SPEVDU�NPEFM

3PMFT

1SPDFTT�NPEFM

3PMF

/BNF

3FTQPOTJCJMJUJFT

5FDIOJRVFT

1SPDFTT�TUFQT

2VBOUJUBUJWF�FYQ�

1SPDFTT�NPEFM

/BNF

1SPDFTT�TUFQT

1SPKFDUT

5FDIOJRVF

2VBOUJUBUJWF�FYQ�

1SPEVDU�NPEFM

/BNF

"SUJGBDUT

5BTLT

1SPDFTT�TUFQT

1SPKFDUT

2VBOUJUBUJWF�FYQ�

%FTDSJQUJPO

Figure 9: Simplified structure model of an exemplary experience base

Process Model A process model specifies in which order which process steps are per-
formed

Process Step A process step is an atomic action of a process that has no externally
visible substructure.

Product Model A product model defines the structure of software development products
as well as the tasks to be performed. It does not describe, however, how
to perform these tasks (described by the corresponding process step)
nor in which order the tasks are to be performed (described by the proc-
ess model)

Project
Characterization

A project characterization summarizes the relevant characteristics of a
project. It contains applicability conditions for most other types of soft-
ware engineering knowledge.

Quantitative
Experience

Quantitative experience is a pair consisting of a measurement goal and
the results of the measurement. It is collected in a goal-oriented way.
This means that the measurement goal is defined at the beginning of a
project. Such a goal is described using five facets: the object to be ana-
lyzed, the purpose for measuring, the property to be measured (quality
focus), the role for which the data is collected and interpreted (view-
point), and the context in which the data is collected. The data collected
and interpreted is only valid within the specified context.

Role A role is defined through a set of responsibilities and enacted by hu-
mans.

��

Technique A technique is a prescription of how to represent a software develop-
ment product and/or a basic algorithm or set of steps to be followed in
constructing or assessing a software development product.

����� 3URMHFW�6HWWLQJ

The fictive scenario described below is based on the following assumptions:
• the experience factory is established at department level at an automotive equipment

manufacturer
• the department is made up of several groups; however, in the scenario only the groups

responsible for the software development of "ABS" and "fuel injection" equipment are in-
volved

• the group "fuel injection" has just closed a contract with a car maker requiring a "design
review", something the group has never done before

• the new project is named "Maui"

�����*HWWLQJ�WKH�3URMHFW�RII�WKH�*URXQG

�������&KDUDFWHUL]H

The project manager has never managed a project with a design review before. Therefore,
he needs information on projects conducted where a design review has been performed.
From the requirement to perform a "design review" he deduces that the software docu-
mentation must at least contain the requirements and the design. Furthermore, the product
model must allow the construction and verification of these products (according to the glos-
sary of the organization, the "design review" is a verification of the design). He estimates
that the project will run 12 months with 3-5 people working on it at any given time.

1SPK��$IBS��

%VSBUJPO���������������NPOUIT

5FBN�TJ[F ������QFPQMF

5FDIOJRVFT ��\� �����^

1SPEVDU�NPEFM ��

•
•

5FDIOJRVF�

/BNF ��m%FTJHO�SFWJFXn

1SPKFDUT��\� �^•

1SPEVDU�NPEFM

"SUJGBDUT ��\3FR��%FTJHO^

5BTLT ��\$POTUSVDUJPO�7FSJGJDBUJPO^

1SPKFDUT ��\� �^•

Figure 10: Query for similar project characterizations

As a first step the project manager enters his knowledge in the form of a query searching
for similar projects (in our scenario these are projects with roughly the same duration and
team size) which also employed design reviews (Figure 10). The three most promising proj-
ect characterizations returned by the Experience Base are shown in Figure 11. As can be
seen, two projects, named "Hugo" and "Judy", have been performed using design reviews.

��

1SPK��$IBS��

/BNF ��O�B

,-0$ ��O�B

%VSBUJPO���������� ��������NPOUIT

5FBN�TJ[F ��O�B

1SPEVDU�NPEFM ��

5FDIOJRVFT ��\� �� ^

2VBOUJUBUJWF�FYQ� ��\� �^

"QQMJDBUJPO�%PNBJO ��m"#4n

4PM��%PNBJO ��O�B

(FOFSBMJ[BUJPO ��VOEFGJOFE

4QF[JBMJ[BUJPO ��\�

•
• •
•

•, •, ...}

5FDIOJRVF�

/BNF ��m%FTJHO�JOTQFDUJPOn

3PMFT ��\� c�̂

1SPDFTT�.PEFM ��c

2VBOUJUBUJWF�FYQ����<�

(VJEFMJOFT� ��<�

)BOECPPL� �����

1SPKFDUT ��\� ^

5PPMT ��\�c��^

•,

•, •..]
•, ...}

•, •, •, •..

1SPEVDU�NPEFM

/BNF ��m4UBOEBSE�"#4n

"SUJGBDUT ��\3FR��%FTJHO�$PEF�5FTU�

%FTJHO�$3

����413�4VCTZTUFN�4ZTUFN^

5BTLT ��\$POTUSVDUJPO�7FSJGJDBUJPO

����7BMJEBUJPO��*OUFHSBUJPO^

1SPDFTT�TUFQT ��c

1SPKFDUT ��\� �^

2VBOUJUBUJWF�FYQ� �

%FTDSJQUJPO

•, •, •, •..

3PMF�

/BNF ��m*OTQFDUJPO��NBOBHFSn

3FTQPOTJCJMJUJFT ��c

5FDIOJRVFT ��\�

2VBOUJUBUJWF�FYQ� ��\� �^

•, ...}

•, •, ...
1SPDFTT�TUFQT ��\�c�^

2VBOUJUBUJWF�FYQ��

0CKFDU ��

1VSQPTF ��1SFEJDUJPO

2VBMJUZ�GPDVT ��&GGFDUJWFOFTT

7JFXQPJOU ��

$POUFYU ��

3FTVMUT� ��

•

•
•
•

1SPK��$IBS��

/BNF ��m)VHPn

,-0$ �����

%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

1SPEVDU�NPEFM ��

5FDIOJRVFT ��\� �� ^

2VBOUJUBUJWF�FYQ� ��\�����^

"QQMJDBUJPO�%PNBJO ��m"#4n

4PM��%PNBJO �����

(FOFSBMJ[BUJPO ��\� ^

4QF[JBMJ[BUJPO ��O�B

•
• •, ...

•

1SPK��$IBS��

/BNF ��m+VEZn

,-0$ �����

%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

1SPEVDU�NPEFM ��

5FDIOJRVFT ��\� �� ^

2VBOUJUBUJWF�FYQ� ��\� �̂

"QQMJDBUJPO�%PNBJO ��m"#4n

4PM��%PNBJO �����

(FOFSBMJ[BUJPO ��\� �̂

4QF[JBMJ[BUJPO ��O�B

•
• •, ...
•, ...

•

5FDIOJRVF�

/BNF ��m%FTJHO�SFWJFXn

3PMFT ��\�c�^

1SPDFTT�.PEFM ��c

2VBOUJUBUJWF�FYQ����c

(VJEFMJOFT� ��c

)BOECPPL� �����

1SPKFDUT ��\� ^

5PPMT ��\�c��^

•, •, •, •..

�

� � ��

%P�OPU�JOTQFDU�

CFGPSF�EFTJHOFS�

BHSFFT�UIBU�EFTJHO�JT�

SFBEZ�GPS�JOTQFDUJPO�

+VTUJGJDBUJPO�����

Eff.

Prep. effort

Figure 11: Result of first query

However, they have not been performed in the "fuel injection" group, but rather in the "ABS"
group. Quite strikingly, in both cases a design inspection was performed besides the design
review. A project characterization generalizing the characterizations of “Hugo” and “Judy”
shows this explicitly.

By interviewing the project manager of "Judy", our project manager finds out that the in-
spections were performed for preparing the design review. The goal was to identify and
eliminate as many design defects as possible before the customer takes a look at the de-
sign, thus increasing the confidence and/or satisfaction of the customer. Based on this dis-
cussion, our project manager decides to employ design inspections as well.

1SPK��$IBS��

%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

"QQMJDBUJPO�%PNBJO ��m'VFM�JOKFDUJPOn

2VBOUJUBUJWF�FYQ� ��\� �^•

1SPDFTT�NPEFM�

/BNF ��m4UBOEBSE�����n

2VBOUJUBUJWF�FYQ� ��\� �^•

3PMF�

/BNF ��m1SPKFDU�NBOBHFSn

2VBOUJUBUJWF�FYQ� ��\� �^•

2VBOUJUBUJWF�FYQ��

0CKFDU ��

1VSQPTF ��$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT ��&GGJDJFODZ

7JFXQPJOU ��

$POUFYU ��

�

•

•
•

Figure 12: Query for similar quantitative experience

��

�������6HW�*RDOV

As the experience about inspections stems from a different application domain (i.e., ABS
system development), the models available may not be valid for the application domain at
hand. Therefore, it is decided (i.e., a measurement goal is set) to measure the effectiveness
of inspections in this application domain, so as to extend the experience base by effective-
ness models for inspections in the “fuel-injection” domain.

2VBOUJUBUJWF�FYQ�

0CKFDU���

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU���

$POUFYU��� �

3FTVMUT�������,-0$���1.

�

•

•
•

2VBOUJUBUJWF�FYQ�

0CKFDU��� �

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU��� �

$POUFYU���

3FTVMUT�������,-0$���1.�

�

•

•
•

2VBOUJUBUJWF�FYQ�

0CKFDU���

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU���

$POUFYU���

3FTVMUT���������������,-0$���1.�

�

•

•
•

1SPK��$IBS�

/BNF���m7FTVWn

,-0$������

%VSBUJPO������NPOUIT

5FBN�TJ[F�������QFPQMF

1SPEVDU�NPEFM������

5FDIOJRVFT������

2VBOUJUBUJWF�FYQ����\� ��

"QQM��%PNBJO���m'VFM�*OKFDUJPOn

4PM��%PNBJO���

(FOFSBMJ[BUJPO���\�

4QFDJBMJ[BUJPO���O�B

•, ...}

•
• }

1SPK��$IBS�

/BNF���m1VSBDFn

,-0$������

%VSBUJPO������NPOUIT

5FBN�TJ[F�������QFPQMF

1SPEVDU�NPEFM������

5FDIOJRVFT������

2VBOUJUBUJWF�FYQ����\�

"QQM��%PNBJO���m'VFM�*OKFDUJPOn

4PM��%PNBJO���

(FOFSBMJ[BUJPO���\�

4QFDJBMJ[BUJPO���O�B

•, ...}

•
• }

3PMF

/BNF���m1SPKFDU�NBOBHFSn

3FTQPOTJCJMJUJFT������

5FDIOJRVFT���O�B

1SPDFTT�TUFQT������

2VBOUJUBUJWF�FYQ����\�•, •, •, •, ...}

1SPDFTT�NPEFM

/BNF���m4UBOEBSE�����n

1SPDFTT�TUFQT������

1SPKFDUT���\�

5FDIOJRVF���O�B

2VBOUJUBUJWF�FYQ����\�

•, •, •, ...}

•, •, •, ...}

�

Figure 13: Result of second query

Furthermore, inspections are seen as a chance to improve the overall efficiency of software
projects, because defects can be found in the life cycle earlier than can be if system tests
were conducted at the end of coding and integration. It is therefore hypothesized that the
rework effort for the correction of defects can be greatly reduced. In order to validate this
hypothesis with quantitative data, a second query is formulated (Figure 12). The query
searches for quantitative experiences on efficiency which were collected on similar projects
in the "fuel injection" group using the standard process model "Standard 4711" which is to
be used in "Maui".
The results of the query (Figure 13) show an efficiency range of 2.7+-0.4 KLOC per person
month. If inspections make projects more efficient, the efficiency of "Maui" should be higher
than 3.1 KLOC/PM.

�������'HYHORS�3URMHFW�3ODQ

As the final planning step for “Maui”, the actual process models and measurement plans are
being developed. The process model "Standard 4711" is taken as a basis and extended by
design inspections and reviews. This results in a new process model "Standard 4711 with
design insp.+review". The measurement plan used in the old projects "Vesuv" and "Purace"

��

is tailored to the new needs, i.e., the effort for performing the inspections is also considered
for the computation of the efficiency.
In order to plan the inspections, our project manager also relies on the quantitative experi-
ence gained in the group "ABS". For example, he sets the goal to achieve an effectiveness
of 0.5 and estimates the needed preparation effort based on this goal.
At the same time he identifies this as a risk factor, since the model upon which these esti-
mations are based has not been validated for "fuel injection" projects (Subsection 10.3.2).

1SPK��$IBS�

/BNF���m.BVJn

,-0$������

%VSBUJPO������NPOUIT

5FBN�TJ[F�������QFPQMF

1SPEVDU�NPEFM���\� �

5FDIOJRVFT����\�

2VBOUJUBUJWF�FYQ����\�

"QQM��%PNBJO���'VFM�*OKFDUJPO

4PM��%PNBJO���

(FOFSBMJ[BUJPO���VOEFGJOFE

4QFDJBMJ[BUJPO���O�B

•, ...}
•, •,...}

•, •, ...}

•

%FTJHO�FYQFSJFODF���mMPXn

2VBOUJUBUJWF�FYQ�

0CKFDU���

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGFDUJWFOFTT

7JFXQPJOU���

$POUFYU���

3FTVMUT������

•

•
•

2VBOUJUBUJWF�FYQ�

0CKFDU���

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU���

$POUFYU���

3FTVMUT�������,-0$���1.�

�

•

•
•

1SPDFTT�NPEFM

/BNF���m4UBOEBSE������XJUI�%FT��*OTQ��3FWJFXn

1SPDFTT�TUFQT������

1SPKFDUT���\�

5FDIOJRVF���O�B

2VBOUJUBUJWF�FYQ����\�

• }

• }

�

� �

�

�

�

Figure 14: Updated experience base

Looking for further risk factors, our project manager also searches the experience base for
guidelines associated with the techniques applied. For instance, the guideline "Do not in-
spect before the designer agrees that the design is ready for inspection" was found and will
be employed because the justification sounds reasonable.

����� 3HUIRUP�3URMHFW

During the performance of the project, the data for the defined measurement goals is col-
lected. In addition, the experience base is consulted for reusable components and problem
solution statements.
Detailing these reuse attempts is, however, beyond the scope of this scenario.

����� /HDUQLQJ�IURP�3URMHFW�([SHULHQFH

�������$QDO\]H

After the project was completed, 250 KLOC had been developed. Instead of the planned
maximum of 5 people, 7 people had been working on the project. Also, the project duration
was prolonged by 1 month. Yet the efficiency was measured to be 3.2 KLOC/PM.

��

However, the effectiveness of the inspections was only 0.4 instead of the planned 0.5.
Therefore, further analysis was conducted. It turned out that the experience of the design-
ers was not considered in the model of effectiveness. In all projects conducted in the "ABS"
group, the designers had a medium level of experience, whereas the designers in the
"Maui" project had only little experience.

�������3DFNDJH

The project characterization which is the result of the post-mortem analysis, the gathered
quantitative experiences, and the tailored process model "Standard 4711 with design
insp.+review" become new cases. The relationships to existing cases are also specified
(Figure 14; the relationships are indicated by connectors to figures 11 and 13).
Since a new important applicability factor (design experience) was identified, all existing
project characterizations are extended by this new attribute (see gray texts in figures 11, 13,
and 14). For "Maui" the attribute value is "low", whereas for "Hugo" and "Judy" as well as
their generalization the attribute value is "medium". For all other projects, the attribute value
is set to "unknown", because it would require too much effort to collect this information.
Moreover, this information would be impossible to get (at least in part), since some of the
old project managers have already left the software development organization.

����� 6WUDWHJLF�$IWHUPDWK

Looking at the inspection effectiveness and the project efficiency, no conclusive evaluation
can be done with respect to the hypothesis that inspections increase project efficiency, be-
cause "Maui" could be an outlier regarding efficiency. However, the 3.2 KLOC/PM are quite
promising. Therefore, further empirical evidence is needed. For this reason, the "fuel injec-
tion" group creates a new process model "Standard 4711 with design insp.". This process
model shall be applied in the next three "fuel injection" projects in order to be able to build a
more valid efficiency model.
It is also expected that the inspection effectiveness will be better if more experienced de-
signers are part of the project. Therefore, inspection effectiveness will also be measured in
future projects.

�����&RQFOXVLRQ

The scenario illustrates that:
• An experience base can supply knowledge users did not expect (in the scenario, the

project manager did not know that design reviews were performed only in the “ABS”
group).

• Goal-oriented, organizational learning leads to strategically relevant knowledge faster
than learning on the level of individuals or groups (see strategic aftermath). Even if the
explicitly available knowledge does not meet the current needs perfectly, it can be taken
advantage of (see utilization of “design review” experience in the “ABS” group).

• Software engineering knowledge is not static. It is complemented on a continuous basis.
In the scenario, both concrete cases and structural knowledge (e.g., “design experience”
is relevant for selecting the right effectiveness model) is added. This mirrors the experi-
mental approach Fraunhofer IESE takes.

