
WEB SERVICE INTERACTIONS:
ANALYSIS AND DESIGN

Jianwen Su
Tevfik Bultan
Department of Computer Science
University of California at Santa Barbara

Xiang Fu
School of Computer & Information Sciences
Georgia Southwestern State University

Abstract The conversation model captures interactions among the components of a com-
posite web service. A conversation is the global sequence of messages ex-
changed among the components. We discuss the impact of asynchronous com-
munication on the conversation behavior. It turns out that the conversation be-
havior is significantly different for synchronous and asynchronous communica-
tion and demands new techniques for static analysis of composite web services.
We outline strategies of model checking service composition for both bottom-up
and top-down design approaches.

Keywords: Process interactions, conversations

Introduction
The success of business-to-consumer applications (e.g. in electronic com-

merce) over the Internet and the web has already lead to the need of the devel-
opment of business-to-business applications. Integrating business processes of
different organizations through network accessible software components faces
several hurdles: (1) Different organizations could use different, incompatible
implementation platforms. (2) Organizations may not want to share the inter-
nal details of their applications which can hinder integration. (3) No organiza-
tion would want their application to get stuck due to pauses in availability of a
software component residing in another organization.

Web services standards and technologies provide a framework for integra-
tion and interoperability of web accessible software applications by addressing
these challenges as follows:



Standardized data transmission via XML enables interaction among soft-
ware components that are implemented using different platforms.

Loose coupling of interacting services through standardized interfaces
such as Web Service Definition Language (WSDL) provides a clear sep-
aration between the internals of an application and its interface visible
to outside organizations.

Use of asynchronous communication to lessen the effects of pauses in
availability of other services and slow data transmission through the In-
ternet.

In this short paper, we focus on asynchronous communication and its ef-
fects on the interaction behavior of composite web services. In asynchronous
communication when a message is sent, it is inserted into a FIFO message
queue, and the receiver consumes the message when it reaches to the front of
the queue. This type of asynchronous communication is supported by mes-
sage delivery platforms such as Java Message Service (JMS) [9], Microsoft
Message Queuing Service (MSMQ) [10], WebSphere, Web Logic Integration,
etc.

We focus on the behavior of composite web services that usually consist
of many interacting component services. We consider two design approaches:
“bottom-up” that starts from developing (identifying through discovery) com-
ponent services, and “top-down” that derives the individual services from the
specification for the composite service. A main goal is to analyze composite
web services (obtained either through bottom-up or top-down) against proper-
ties specified in some logic language.

Modeling Interactions of Web Services
A composite web service consists of a set of peers (or component services)

which communicate with each other using asynchronous messages. The mes-
sages exchanged among the peers are XML documents. This model fits nicely
with the existing web service standards such as WSDL, BPEL (Business Pro-
cess Execution Language for Web Services), and WSCL (Web Service Con-
versation Language [12]). In particular, we can view that each peer is defined
as a BPEL service, while messages are received through its WSDL ports. As a
starting point, we restrict each peer to a finite state machine that communicates
with other peers through FIFO message queues.

A promising component of the web services framework that facilitates inte-
gration and interoperability is the conversation model [12][7][3][1]. A conver-
sation is the sequence of messages exchanged among web services recorded
in the order they are sent. Note that a conversation does not specify when
the “receive” events occur, it only specifies the global ordering of the “send”



events. Conversations allows specification and analysis of interactions among
web services. It is an intuitive model that is easy to understand and it allows
specification and analysis of interactions without exposing the implementa-
tions details about the peers. For this reason, such a method of synchronizing
interactions is also a part of the recently proposed Web Service Choreography
Description Language (WS-CDL) [11].

Approaches to Design of Composite Web Services
There are two fundamentally distinguished approaches to composite web

service design:

In the bottom-up approach each peer participating in the web service
composition is specified separately (as a state machine) and then the
composed system can be studied by analyzing the combined behaviors
of these individual peer specifications.

In the top-down approach the desired global behavior is specified first
and the detailed peer implementations are left blank initially. Any peer
implementation that conforms to the desired global behavior is an ac-
ceptable implementation of a peer.

Conversation protocols are a top-down specification for composite web ser-
vices. A conversation protocol is a finite state machine that specifies the de-
sired set of conversations for a composite web service. A composite web
service realizes a conversation protocol if the conversations accepted by the
conversation protocol are exactly those generated by the composite web ser-
vice. In other words, if the conversation sets of a conversation protocol and a
composite web service are equal then we say that the composite web service
realizes the conversation protocol.

A conversation protocol is realizable if there exists a composite web service
that realizes it. It is known that not every conversation protocol is realizable;
however, if a conversation protocol is realizable then it is realizable by its pro-
jections to each peer [5]. We project a conversation protocol to a peer p by
replacing all transitions that have a send or a receive operation for which p

is neither the sender nor the receiver with empty transitions. A conversation
protocol is realizable if its projections to peers satisfy the “synchronous com-
patibility” and “autonomy” conditions and, additionally, if the conversation
protocol satisfies the “lossless join” condition [5].

On the other hand, if we start from the peer implementation as in the bottom-
up approach, the set of all possible conversations may not be identical to any
conversation protocols. The reason is that the conversation sets of some com-
posite web services may not be regular nor even context-free [3]. A sufficient



condition, called synchronizability, of the conversation sets of composite web
services identical to conversation protocols is developed [5].

Model Checking Conversations
Given a composite web service where each peer is specified as a state ma-

chine, an interesting problem is to verify if the conversations generated by the
composite web service satisfy certain properties. For example, it would be
very useful to verify properties such as a payment message is always eventu-
ally followed by a receipt message. Such properties can be specified in Linear
Temporal Logic (LTL) [4] using the temporal operators G (globally), F (eventu-
ally), X (next), and U (until). For example, the property above can be expressed
in LTL as follows: G(payment→ Freceipt).

Model checking [4] is a technique for automated verification of temporal
logic properties on finite state systems. There are tools such as the Spin model
checker [8] which provide efficient implementation of the model checking
techniques. However, most model checkers can only handle finite state sys-
tems, whereas asynchronous communication with unbounded message queues
makes the state space of a composite web service infinite. One approach is
to put an upper bound on the sizes of the message queues and transform the
system to a finite state system. However, the state space of the composite web
service can increase exponentially with the increasing queue sizes. This ex-
ponential increase in the state space can make verification of composite web
services infeasible for large queue sizes even for a highly optimized finite state
model checker such as Spin.

Known results indicate that automated verification of conversation behavior
is not always possible in the presence of asynchronous communication with
unbounded queues [2][5].

The synchronizability and realizability results lead to following verification
strategies. For example, in the case of bottom-up specifications (design), the
analysis strategy consists of the following steps:

1 We first check the synchronizability of the composite web service.

2 If the web service is synchronizable we verify the LTL properties on its
conversations. (In this case the results we obtain hold for all conversa-
tions generated by the composite web service even in the presence of
unbounded message queues.)

3 If the web service is not synchronizable we verify the LTL properties
on its conversations by bounding the sizes of FIFO queues. In this case
the verification results we obtain are guaranteed as long as the message
queues remain within the specified bound. However if we find that a
property is violated, then a counter-example generated using the model



checking techniques provide a concrete counter-example demonstrating
the error.

A slightly different 3-step strategy is developed for top-down specification.
The synchronizability and realizability analysis have been implemented as

a part of the Web Service Analysis Tool (WSAT) [6]. The front-end of WSAT
accepts web service standards such as WSDL and BPEL. The core analysis
engine of WSAT is based on an internal state machine representation. The
back-end employs model checker Spin for verification. At the front-end, a
translation algorithm from BPEL to the internal state machine representation is
implemented, and support for other languages can be added without changing
the analysis and the verification modules of the tool. WSAT also supports XML
data manipulation by extending its internal state representation using transition
guards written as XPath expressions. The synchronizability and realizability
analysis are also extended to handle XML data manipulation. At the back-end,
translation algorithms are implemented from the internal state machine repre-
sentation to Spin. Based on the results of the realizability and the synchroniz-
ability analysis, the LTL verification at the back-end can be performed using
the synchronous communication semantics instead of asynchronous commu-
nication semantics.

Conclusions
Conversation model provides a promising framework for analyzing interac-

tions among web services. Asynchronous communication can effect the con-
versation behavior and if unbounded queues are used to model asynchronous
communication then the verification of temporal logic properties of conver-
sations becomes undecidable. We outlined two approaches to overcome the
difficulties that arise in verification due to asynchronous communication. Syn-
chronizability analysis identifies web service compositions for which the con-
versation behavior does not change when synchronous communication is re-
placed with asynchronous communication. This enables us to verify proper-
ties of conversations using the simpler synchronous communication semantics
without giving up the benefits of asynchronous communication. On the other
hand realizability analysis helps us to make sure that for top-down web service
specifications asynchronous communication does not create unintended behav-
iors. This enables us to verify the conversation properties at a higher level of
abstraction without considering the asynchronous communication semantics.

References

[1] B. Benatallah, F. Casati, and F. Toumani. Web service conversation modeling: A corner-
stone for e-business automation. IEEE Internet Computing, 8(1):46–54, 2004.



[2] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the
ACM, 30(2):323–342, 1983.

[3] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new approach to design
and analysis of e-service composition. In Proc. Int. World Wide Web Conf. (WWW), May
2003.

[4] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cam-
bridge, Massachusetts, 2000.

[5] X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification and
verification of reactive electronic services. Theoretical Computer Science, 328(1-2):19–
37, 2004.

[6] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of web services. In Proc.
16th Int. Conf. on Computer Aided Verification (CAV), pages 510–514, Boston, MA, July
2004.

[7] J. E. Hanson, P. Nandi, and S. Kumaran. Conversation support for business process
integration. In Proc. 6th IEEE Int. Enterprise Distributed Object Computing Conference,
2002.

[8] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston, Massachusetts, 2003.

[9] Java Message Service. http://java.sun.com/products/jms/.
[10] MicroSoft Message Queuing Service. http://www.microsoft.com/msmq/.
[11] Web Services Choreography Description Language Version 1.0. http://www.w3.org/

TR/ws-cdl-10/, December 2004.
[12] Web Services Conversation Language (WSCL) 1.0. http://www.w3.org/TR/2002/

NOTE-wscl10-20020314/, March 2002.


