
XGSN: An Open-source Semantic Sensing
Middleware for the Web of Things

Jean-Paul Calbimonte, Sofiane Sarni, Julien Eberle and Karl Aberer

Faculty of Computer Science and Communication Systems, EPFL, Switzerland.
firstname.lastname@epfl.ch

Abstract. We present XGSN, an open-source system that relies on se-
mantic representations of sensor metadata and observations, to guide the
process of annotating and publishing sensor data on the Web. XGSN is
able to handle the data acquisition process of a wide number of devices
and protocols, and is designed as a highly extensible platform, leveraging
on the existing capabilities of the Global Sensor Networks (GSN) mid-
dleware. Going beyond traditional sensor management systems, XGSN
is capable of enriching virtual sensor descriptions with semantically an-
notated content using standard vocabularies. In the proposed approach,
sensor data and observations are annotated using an ontology network
based on the SSN ontology, providing a standardized queryable repre-
sentation that makes it easier to share, discover, integrate and interpret
the data. XGSN manages the annotation process for the incoming sensor
observations, producing RDF streams that are sent to the cloud-enabled
Linked Sensor Middleware, which can internally store the data or perform
continuous query processing. The distributed nature of XGSN allows de-
ploying different remote instances that can interchange observation data,
so that virtual sensors can be aggregated and consume data from other
remote virtual sensors. In this paper we show how this approach has
been implemented in XGSN, and incorporated to the wider OpenIoT
platform, providing a highly flexible and scalable system for managing
the life-cycle of sensor data, from acquisition to publishing, in the context
of the semantic Web of Things.

1 Introduction
From wearable devices for health monitoring to geospatial and environmental
sensors, we are surrounded by objects or things which are susceptible to be
present in the Web, in one way or another. Sensed data on the web is a need and
a reality in many real-life use cases and scenarios nowadays. The gap between
the real and virtual world is narrowing and there is an increasing necessity to
identify everyday life entities in the Web, and let them interact among them,
as well as with real people. Many of these challenges have converged towards
concepts such as the Internet of Things and the Web of Things, which have
gathered enormous attention from academia and the industry [3].

However, when comes the time to expose these data in the Web, there are
several problems that data providers may encounter on the way. One is the het-
erogeneity of the data sources. Starting from the devices themselves, there is



an enormous range of gadgets and equipment with different capabilities, accu-
racy, range or frequency. There also exist numerous possible IoT protocols and
technologies that devices can use to publish data to the Web (CoAP, XMPP,
MQTT, DDS, etc.) each targeting different use cases. Many of these challenges
have been addressed in previous years from different perspectives [4]. Through a
middleware system, applications and users may access data from interconnected
objects and things, hiding the internal communication and low-level acquisition
aspects. As an example, the GSN middleware has already provided an exten-
sible protocol-agnostic mechanism to acquire data from sensing devices, using
configurable wrappers [1], and implementing some of these protocols.

However, these technical difficulties at the lower layers are only the tip of the
iceberg, considering that even if they are addressed by platforms such as GSN,
there is still a large heterogeneity problem when the data that is sensed needs
to be interpreted and understood. For example, the number of possible observed
properties that may be sensed by an entity, such as humidity, radiation, soil
moisture, location detection, etc. can include almost any type of phenomenon or
event in the surrounding world. Even if these elements can be abstracted in a
domain-model, there are also different ways of exposing and publishing the data
in the web, through different formats, under different data models and using
different service abstractions. In the end, in many cases the result is a use-case-
tailored system that gathers data from a particular set of sources, and exposes
them using some ad-hoc data model, creating yet-another isolated silo of data
in the web, with very few possibilities of re-use or integration.

One of the ways to tackle these heterogeneity issues is by following a semantics-
based approach. Using semantically rich models (ontologies which can be ex-
tended for a particular use case), a number of systems [21, 19] have shown how
very uneven data sources can be shared and be mutually understandable, while
following emerging standards and principles such as Linked Data [7]. In the more
specific case of sensor data, specific ontologies and vocabularies such as the SSN
(Semantic Sensor Network) Ontology [10] have been created by the community,
and have been adopted in a number of projects already [6, 14, 9, 16, 20]. Existing
standards for publishing and accessing semantically annotated data (SPARQL1,
Linked Data Platform2, etc.) are gaining adoption and establishing best practices
for sharing data.

In this paper we describe XGSN, a middleware solution that handles the life-
cycle of virtual sensors (devices, objects or people observing properties around
them), providing semantic annotations for them and the observation data that
they produce. The key idea is to provide an end-to-end semantic-enabled plat-
form for IoT data management, in which XGSN plays the role of a fully dis-
tributed data acquisition middleware with semantic annotation capabilities. We
describe the architecture of this system and its implementation, emphasizing on
the distributed data processing that allows XGSN to produce different layers
of aggregated observations. XGSN extends the successful Global Sensor Net-

1 W3C Recommendation SPARQL 1.1 http://www.w3.org/TR/sparql11-query/
2 W3C Candidate Recommendation LDP: http://www.w3.org/TR/ldp/



works [1] system with the semantics-aware capabilities described in this paper,
and is available as an open-source package that can be used and extended. The
existing community of developers and users inherited from GSN positions this
software project as one of the most comprehensive and extensible tools for IoT
data management, as it has been shown in several real-life deployments and
environmental scientific research. XGSN is a ready-to-use system3, also avail-
able as part of the OpenIoT platform4, and has also been integrated with the
Linked Sensor Middleware (LSM) [16], showing that it can be plugged to an
RDF-enabled data store. The remainder of the paper is structured as follows: In
Section 2 we describe the general approach of XGSN. Then we present the ontol-
ogy management aspects and annotation process in Section 3. The architecture
is described in Section 4 and the distributed virtual sensor management and
experimentation in Section 5. We discuss the related work in Section 6 before
concluding.

2 The XGSN Approach for Semantic Data Management

XGSN is built as an extended fork of the GSN middleware [1], which already
implemented pluggable sensor data acquisition mechanisms, combined with a
distributed stream processing layer. GSN is an inherently decentralized system
where different instances can exist in a distributed deployment (see Figure 1),
and interchange observation data as needed. The distribution can be based on
geographical, economic, privacy or scalability constraints, and each instance can
expose a number of different virtual sensors. These virtual sensors can be logical
abstractions of one or more real sensors or objects or any entity that captures
data. They can also be aggregators or filters applied to other virtual sensors,
which can be deployed locally or remotely. The interface between devices, sensors
or inter-connected things and a virtual sensor is a wrapper, of which different
implementations can co-exist. Different wrappers are already available in the
system (e.g. UDP, serial, HTTP, etc.) and creating a new one is generally a
simple extension task. Once the data is captured by the wrapper, GSN also
provides an extendable processing layer which can be programmed to store the
observation data, annotate it, apply correction algorithms over it, etc.

Although GSN already dealt with the problem of handling heterogeneity at
the device and acquisition level, it was not able to provide higher level abstrac-
tions over the virtual sensors, so that applications could interpret and reuse the
data without an external entity deciphering it. In XGSN we follow a semantics-
based approach, annotating the virtual sensors with relevant metadata using an
extension of the SSN ontology. Two main types of semantic annotations have
been added in XGSN. The first are metadata annotations, related to sensors,
sensing devices and their capabilities5, which could not be described before in
GSN. These are typically linked to the virtual sensors declared in an XGSN
3 GSN: http://gsn.epfl.ch
4 OpenIoT: http:/openiot.eu
5 Related to the Measuring and Measuring Capability modules in the SSN ontology



Fig. 1: GSN high level architecture, also applicable for XGSN. XGSN instances may interchange
observation data remotely. Each one acquires data through a set of wrappers, and offer continuous
data handling capabilities through extensible processors.

instance: e.g. describe the sensing device that produces the data in a particular
virtual sensor, its location, the type of observation it produces, the responsi-
ble person or organization, the source type, etc. The other type of annotations
are related to the observations or measurements produced continuously by the
sensors. This includes the semantic information that describes the time and con-
text when the observation happened, the observed property, unit, the values
themselves, etc. We will see in Section 3 how these metadata and observation
annotations can be exposed as Linked Data using an RDF-enabled cloud system
such as LSM.

These explicit semantics in the virtual sensor representation facilitate the
tasks of discovery and search in an IoT environment. Also for actual observations,
XGSN can provide different levels of semantic annotations to them, depending
on the type of virtual sensor that is exposed. For example, in an air quality
scenario, XGSN can annotate each measurement made by a sensor (including
value, unit, data type, etc.) as an observation of a property (e.g. NO2), as
depicted in Figure 2. However, for some use cases low level annotations are not
useful or relevant, so XGSN can aggregate, filter or process several observations
over time or space. This will produce indicators in a higher level virtual sensor,
each of which can be annotated with even higher-level concepts of a domain
ontology (e.g. a “low air quality” observation). Furthermore, even more complex
correlations, and processing including external data sources or data from other
XGSN instances, can lead to annotations that denote actionable and human-
comprehensible concepts like alerts or activities.

In order to make this possible, XGSN relies on ontologies for sensor and
observation representation, with three main extensibility points: at the model,
data acquisition and processing levels, as we will detail next.

3 Ontologies and Annotation in XGSN

The basis of the abstract model used by XGSN for sensing entities and obser-
vations in the web of things, is the SSN ontology6. This ontology is not limited
6 SSN Ontology: http://purl.oclc.org/NET/ssnx/ssn



Fig. 2: XGSN annotations at different abstraction levels. From annotation of particular observations
to high level concepts that aggregate, summarize or combine more data sources, the processing
capabilities of XGSN allow defining annotation at different levels depending on the IoT use cases
(i.e. air quality, mobility use cases, etc.)

to sensors thought as devices like thermistors or wind anemometers but more
generally to any entity capable of observing a property of a feature of inter-
est [10]. Therefore, interconnected objects and things can provide information
about the events, facts and observations surrounding them. The SSN ontology
is designed to be extended depending and according to the domain of use. With
this in mind, XGSN takes this model as a the core of the metadata and obser-
vation annotations. We can see a summary of the main concepts of the ontology
in Figure 3 along with extensions and examples of domain-specific vocabularies.
The first important extension point is at the sensor level. Any virtual sensor (in-
dependently of being a device or other type of entity) is annotated in XGSN as a
instance of ssn:Sensor7 or a sub-class of it, like a thermistor or a capacitive bead.
Individuals can also be sensors, as they can also observe events and observations
surrounding them. The other two key extension points are related to the observed
property and to which feature of interest it is associated. XGSN requires each
sensor to observe at least one property, which can be a domain specific instance,
such as the cf-prop:air_temperature of the dim:Temperature quantity in Figure 3.
Each of these observed properties of a sensor corresponds to a field defined in
a XGSN virtual sensor. Accordingly, each of these properties is associated to
a certain feature of interest, e.g. the air or water surface in some geographical
region, an observed person moving in a defined area, etc. XGSN also considers
the location of the virtual sensor, which is annotated with geo-location vocab-
ularies. Finally, other specific metadata such as accuracy, operating range, and
other capabilities can be added as we will see in the following subsections.

In the case of observations, XGSN considers that every tuple generated by
a virtual sensor includes one observation per field, considering that every field
corresponds to an observed property, in terms of the SSN Ontology. Neverthe-
less, the data from virtual sensors can range from low level measurements to
complex events built on top of other virtual sensors and external data, as seen
in Section 2. We provide a summary of the main ontology concepts used at the
observation level by XGSN in Figure 4. While for low level observations (e.g. a
particular NO2 measurement at a certain point in time) XGSN can annotate
values using the quantities ontology, for higher level concepts the observation
may be symbolic and represent an alert or an actionable event. In the following

7 For brevity, we represent ontology URIs in its prefixed form, e.g. ssn: denotes http:

//purl.oclc.org/NET/ssnx/ssn#.



Fig. 3: Excerpt of some of the main ontology elements used by XGSN, based on the SSN ontology
and QU/CF domain ontologies [17]. Notice the different extensions, marked by grayed dotted lines,
with specialized ontologies defining specific sensors, features or observed properties.

sections we describe in more detail how this process occurs in XGSN, within the
life-cycle of virtual sensors.

Fig. 4: Main ontology concepts used for observations in XGSN, based on the SSN ontology.

3.1 Virtual Sensor Registration

Virtual sensors in XGSN are set up using a configuration descriptor (an XML
document as in Listing 1), and can be deployed and started at any time in an
XGSN container. The output-structure element in the descriptor defines a set
of fields for the virtual sensor. These fields are associated to observed properties
according to the SSN ontology, and also correspond to the fields in the query
element in the configuration. The wrapper information is also specified in this
descriptor, and their parameters vary from wrapper to wrapper: e.g. the address
of the data source, pull rates, security parameters, etc.
<virtual-sensor name="sens1" priority="10" >

<processing-class>

<class-name>org.openiot.gsn.vsensor.LSMExporter</class-name>

...

<output-structure>



<field name="temperature" type="double" />

<field name="humidity" type="double" />

</output-structure>

</processing-class>

<streams>

<stream name="input1">

<source alias="source1" sampling-rate="1" storage-size="1">

<address wrapper="csv">

...

</address>

<query>select * from wrapper</query>

</source>

<query>select temp as temperature,humid as humidity, timed from source1</query>

</stream>

</streams>

</virtual-sensor>

Listing 1: Virtual sensor sample configuration in XGSN.

Each virtual sensor in a XGSN container has an associated sensor instance
in an RDF cloud store (managed by the LSM middleware [16]) , i.e. a URI
that uniquely identifies it. As we have seen in Figure 3, each sensor instance is
connected to the respective properties, features of interest, location and other
metadata needed by the system. All these metadata properties can be provided
attached to the virtual sensor configuration, as in the example in Listing 2.
In XGSN, we have limited the existing XML configuration solely to internal
wrapper and processing class parameters, while all the high-level metadata of
the sensors themselves is managed as RDF, and hence can be later shared as
Linked Data. In the example, the sensor URI http://openiot.eu/test/id/sensor/

5010 observes air temperature, and has a number of other attributes including
location, authorship, feature of interest, etc. Notice that the metadata can be
extensible although XGSN internally requires only a handful of these, mainly
the observed property, unit, feature and sensor type.
@base <http://openiot.eu/test/id/> .

<sensor/5010> rdf:type aws:CapacitiveBead,ssn:Sensor;

rdfs:label "Sensor 5010";

ssn:observes aws:air_temperature ;

phenonet:hasSerialNumber <sensor/5010/serial/serial2> ;

ssn:onPlatform <site/narrabri/Pweather> ;

ssn:ofFeature <site/narrabri/sf/sf_narrabri> ;

ssn:hasMeasurementProperty <sensor/5010/accuracy/acc_1> ;

prov:wasGeneratedBy "AuthorName";

DUL:hasLocation <place/location1>;

lsm:hasSensorType <sensorType1>;

<sensor/5010/serial/serial2> rdf:type phenonet:SerialNumber;

phenonet:hasId "5010" .

<site/narrabri/Pweather> rdf:type ssn:Platform ;

ssn:inDeployment <site/narrabri/deployment/2013> .

<site/narrabri/deployment/2013> rdf:type ssn:Deployment.

<sensor/5010/accuracy/acc_1> rdf:type ssn:Accuracy ;

qu:numericalValue "0.3"^^xsd:double ;

DUL:hasParameter phenonet:degreeCelsius .

Listing 2: Excerpt of a virtual sensor sample semantic descriptor in RDF used by XGSN. Prefixes
ommitted.



The set up of the virtual sensor configuration and its annotation with the
ontology constitutes the registration process, as illustrated in Figure 5. The
registration and update of metadata can be performed using RESTful services
provided by XGSN, simply by providing an RDF document with the required
contents. In practice, the RDF metadata of virtual sensors is exposed as Linked
Data by LSM, and can be queried or discovered by external applications and
the upper layer components of the OpenIoT platform. Once the virtual sensor is
registered and its metadata is available, it can produce (annotated) observations.

Fig. 5: Registration of a virtual sensor and annotation process performed in XGSN, storing the
metadata through LSM.

3.2 Streaming Observation Annotations

Each time that the virtual sensor produces a value, XGSN annotates it and
produces the corresponding observation according to the ontology model, as il-
lustrated in Figure 6. Essentially, every time a tuple is produced in the virtual
sensor stream (through the wrapper), a processing class automatically generates
the RDF annotations that can be later transmitted to an RDF-aware data store
or query processor. In the OpenIoT implementation, this processor is the LSM
middleware, but it could even be processed by an RDF Stream Processor (RSP)
such as CQELS [15], which is capable of evaluating continuous queries, extend-
ing the SPARQL language. Feeding any other continuous RDF query processor
would follow a similar path: XGSN can feed the stream of RDF observations of
an RSP. The advantage of this approach is that it decouples data acquisition
from query processing, although it does add the complexity of having to man-
age both an RSP and XGSN. Also, RDF can be too verbose for certain stream
processing tasks, depending on the volume and velocity of the data stream. No-
tice that XGSN observations could also be stored or processed through other
channels, depending on the logic included in the virtual sensor processing class.
For example, as it has been shown in [9], XGSN could expose a SPARQL-like
(SPARQLStream) interface using R2RML mappings, through query rewriting
techniques. Although for the OpenIoT reference implementation only the LSM
integration has been wired, these types of extensions can be added in future
stages.



Fig. 6: XGSN annotation of observations produced by the virtual sensor, to the LSM middleware.

4 Architecture and Implementation

As already explained, the core abstraction in XGSN is the virtual sensor, which
is hosted and deployed in a XGSN container. Each container is independent and
runs its own set of virtual sensors, although different containers or instances
may interchange data between them in a peer-to-peer fashion. Each container is
structured in different layers, as detailed in Figure 7.

Fig. 7: XGSN container architecture, and virtual sensor acquisition and data stream provision [1].

A pool of deployed virtual sensors is administered by the virtual sensor man-
ager. This includes handling the life-cycle of a virtual sensor (initialization, inter-
actions, resources, disposal, etc.) and managing the incoming streams provided
through the wrapper. The streams produced by each virtual sensor have an out-
put structure, composed of one or more fields, which can be defined in terms of
a continuous query that operates over one or more sources, each of them getting
data through a wrapper. Notice that a wrapper can also encapsulate other (local
or remote) virtual sensors, opening the possibility of having layered streams of
data, as discussed in Section 2. Once the data is ready for processing, the stor-
age layer handles persistent or temporary storage of the incoming data streams,
depending on the virtual sensor configuration parameters. For some use cases



where observations need to be archived this may include storage in a relational
database. Alternatively, in stream processing scenarios this can be handled in a
memory-only database or a stream processor. Next, at the query manager layer,
the system can host running queries that are continuously evaluated by a pro-
cessor, acting directly on the streams produced at the lower layers. The query
capabilities are exposed though the service interfaces, currently implemented
as an HTTP RESTful interface that can be accessed by external applications.
Moreover, each XGSN instance can be accessed through a native interface (inter-
XGSN communication) implemented on top of ØMQ (ZeroMQ, see Section 5)8.
Finally, there is an access layer on top of the services, that allows defining per-
missions over the virtual sensors and the observations they produce. More details
about the internal architecture of XGSN can be found in [1].

The system has been implemented mainly in Java, while some out-of-the-
box wrappers are implemented in other languages. The entire project is open-
source, and is available in Github, as a standalone project9 and also as part of
the OpenIoT platform10, with an existing and growing community of users and
developers. The project documentation in the Github site provides more detailed
information about the installation, deployment, development and production use
of the system.

5 XGSN in a Distributed Environment

As we have mentioned, one of the main features of XGSN is its capability to
work on a fully distributed mode, in such a way that data processing is as close
as possible to the data sources. At the same time, this allows virtual sensors
in one XGSN instance to be fed from other remote virtual sensors, enabling
the definition of high level events that can be semantically annotated. We have
experimented in a controlled environment how a network of XGSN instances
works in this distributed scenario. We were interested in the generation rates,
processing rates and network usage in our experimentation.

First, we used an XML-based protocol of exchange of observations between
instances, and then we implemented an alternative and more efficient mechanism
based in ZeroMQ. The first protocol is available in two versions: a push-based one
that works in a publish-subscribe manner, and a pull-based that can work even if
the client XGSN is behind a NAT (does not have a public IP address). The main
advantage of this protocol is that is easier to debug, as it is human-readable, and
that is based on well supported standards (XML and HTTP), but the overhead
for processing the data distribution is not negligible. The alternative protocol,
using ØMQ and the Java serialization library Kryo, is similar to the push version
of the HTTP wrapper, using a PUB and SUB sockets, as shown on Figure 8.
A proxy takes care of forwarding the subscriptions and the data to allow the
simultaneous use of internal (inproc sockets) and external connections (by IP
8 ZeroMQ: http://www.zeromq.org/
9 GSN github repository: https://github.com/LSIR/gsn/

10 OpenIoT github repository: https://github.com/OpenIotOrg/openiot



Fig. 8: XGSN ZeroMQ communication through asynchronous publish-subscribe sockets. Wrappers
can subscribe to data of local or remote virtual sensors through a proxy.

address). It also serves as a directory, listing the available sensors and their data
structure for external connections.

To evaluate the inter-server communication, we set up a use-case where each
server is receiving or generating a stream of data and need to share it with all the
other servers, in a kind of worst-case scenario. We deployed 24 XGSN servers,
each on its own virtual machine, distributed over 9 physical machines. The vir-
tual machines were provisioned with 2 cores (2.66GHz) and 3GB of RAM. Each
server had 25 virtual sensors: one generating data every 10 ms and 24 connected
to the other instances (including itself). The storage was kept in memory using
the H2:mem database to reduce the disk writing overload.

In the first experiment, the remote HTTP XML wrapper was used to connect
the 24 virtual sensors, in the second one the ZeroMQ wrapper was used with
XML serialization and finally in the last experiment ZeroMQ with Kryo serial-
ization. Each experiment lasted around 20 minutes during which two snapshots
were taken.

In the first execution of the test-bed, using the remote wrapper and XML
serialization, the CPU load of the virtual machines stayed around 36% and the
network traffic was around 120kbps. The counter on the virtual sensor generating
data indicated a rate of 90 element per seconds (Figure 9 (a)). This means
XGSN needed 1 ms to generate the element and then wait for 10 ms before
generating the next one. The network traffic is perfectly symmetric as every
server is sending and receiving to, respectively from, all the others. From this
results, it is clear that the network is saturated and cannot follow the element
production. The second and third run, using the ZeroMQ wrappers presented a
similar behavior regarding the CPU load and network traffic. CPU was almost at
its maximum and network showed some differences in incoming versus outgoing



(a) (b)

Fig. 9: Generation of data items in one XGSN instance (a); and CPU and network usage during the
experiment with ZeroMQ (b).

traffic (Figure 9 (b)). This can be explained by the distribution of the generation
rate among the servers. All XGSN instances received the same amount of data
(same incoming traffic), but the ones generating less elements had also less data
to send (lower outgoing traffic).

In the experiment using XML serialization, the communication protocol be-
ing lighter than HTTP, it was possible to send and process twice as much ele-
ments per seconds per virtual sensor (see Figure 10). But for processing those
elements, the CPU was also more solicited (almost 100%) and was not able to
keep the production rate. Finally using the Kryo serialization, the network was
saturated, and similarly to the previous experiment the CPU had less time pro-
ducing elements, around 38 per second in each instance. In this last experiment
we almost reached the maximum performance possible with our virtual machines
limitation: 860 elements sent, received and processed per second. In summary, we
see that we can reach a fairly reasonable processing throughput, even more with
the ZeroMQ implementation, although at the cost of losing reliability (relaxing
packet loss guarantees).

6 Related Work & Discussion

Several systems have been devised to provide access to data streams on the Web
in the form of Linked Data. Early approaches, including the architectures de-
scribed in [18] and [13], rely on bulk-import operations that transform the sensor
data into an RDF representation that can be queried using SPARQL in mem-
ory, lacking scalability and real-time querying capabilities. The Semantic Sensor
Web [20] pioneered in bringing sensor data to the Linked Open data cloud,
although it served more as a static repository without streaming or dynamic
change in the observation data. Semantic annotations have also been considered
at the service layer, for example for registering new sensors to observation ser-
vices in [8]. In [12] an SOS service with semantic annotations on sensor data is



Fig. 10: Throughput in terms of data items received and processed per second, for the three config-
urations: Remote XML, ZeroMQ XML and ZeroMQ Kryo.

proposed, embedding terminology from an ontology in the XML of O&M and
SensorML documents. In a different approach, the framework presented in [16]
provides sensor data readings annotated with metadata from the Linked Data
Cloud. This framework evolved into the LSM middleware that is now part of
the OpenIoT platform, and that is used in conjunction with XGSN to man-
age the annotated sensor data and metadata. In most cases these systems have
helped bringing sensor data to the (semantic) web, but resulted mainly in off-line
archives of Linked Data, as opposed to the live annotation of sensor observations
in XGSN. Moreover, we provide an end-to-end solution that manages the data
from the acquisition layer up to the RDF and SPARQL data provision, through
the LSM integration.

Other works have focused in the problem of continuous processing and query-
ing over RDF streams, including CQELS [15], SPARQLStream [9], CSPARQL [5]
or EP-SPARQL [2]. As explained in Section 3 these systems could be used in
conjunction with XGSN, which can delegate the processing of the annotated
observations to these systems, simply by implementing a processing class in a
virtual sensor.

Nevertheless, even if our approach is capable of providing a solid seman-
tic layer over IoT deployments, there are still many open challenges to tackle
the problem of efficient stream processing. In the current OpenIoT implemen-
tation individual stream elements are annotated as they arrive, generating a
non-negligeable volume of RDF which may be prohibitive for certain work-
loads. Stream compression techniques or virtualized RDF views over native data
streams [9] are possible alternatives that have shown interesting results in other
scenarios.

For handling continuous queries over streams, several Data Stream Manage-
ment Systems (DSMS) have been designed and built in the past years, exploiting
the power of continuous query languages and providing pull and push-based data
access. Other systems, cataloged as complex event processors (CEP), emphasize
on pattern matching in query processing and defining complex events from basic
ones through a series of operators [11]. In recent years several commercial systems



have implemented the CEP paradigms, including Oracle CEP11, StreamBase12,
Microsoft StreamInsight13, IBM InfoSphereStream14 and Esper15. Some of these
systems provide similar (or alternative) streaming data techniques as those of
XGSN, and they could even be used as an alternative processing class for XGSN
virtual sensors. However, none of them provides semantically rich annotation
capabilities on top of the query interfaces. XGSN could allow plugging different
types of commercial CEPs, replacing its internal data streaming core, but the
lack of query standards (such as SQL in the database world) makes it difficult
to design such a mechanism.

Finally, there has been a large amount of work in the IoT community regard-
ing suitable protocols for device-to-device and device-to-server communication.
While XGSN is designed as a protocol-agnostic middleware (new protocols can
be supported through new wrappers) it will be important in the immediate fu-
ture to natively support these protocols. For this it is also envisaged to allow
deploying a constrained version of XGSN inside sensors and mobile devices, so
that these things can transparently communicate with standard XGSN instances
and therefore with the Web.

7 Conclusions

We have presented XGSN, an open-source middleware that is capable of collect-
ing data from sensors and things in the real world, abstracted as virtual sensors,
process them and publish the data using a semantic model based on the SSN
ontology. We have shown in detail how the annotation process has been designed
and implemented, for both the sensor metadata and the produced observations.
We have also described a multi-layered scheme for defining observations at dif-
ferent levels of abstraction, for which XGSN provides a very flexible, extendable
and scalable infrastructure. We have shown how the system goes beyond other
existing sensor middleware, by adding the semantic aspect at its core, and by
integrating its existing features and complementing them with the LSM frame-
work for RDF storage and querying. XGSN is a fully functional and ready-to-use
system, with a growing community of users and developers, and is now part of
the wider OpenIoT platform. XGSN has been shown to be effective and useful in
several different types of use cases, including air quality monitoring, environmen-
tal alpine experimentation, participatory sensing, smart agriculture, intelligent
manufacturing, etc.

We plan to add several features to XGSN in the near future. First, we plan
to make use of the semantic annotations of virtual sensors to allow enhancing
the M2M communication among XGSN instances or even other semantics-aware
applications. We also plan to integrate the semantic features not only with LSM
11 Oracle:http://www.oracle.com/technetwork/middleware/complex-event-processing/overview
12 StreamBase: http://www.streambase.com/
13 StreamInsight: http://msdn.microsoft.com/en-us/sqlserver/ee476990
14 InfoSphereStream: http://www-01.ibm.com/software/data/infosphere/streams/
15 Esper: http://esper.codehaus.org/



but with other backends (not only cloud-based but also local-based). Another
future direction is exploring parallelized execution of streaming data algorithms
over the observation data (e.g. Spark16 or Storm17), and how these can be com-
bined with our system. There is also room for work integrating this system with
mobile sensing and participatory sensing, where the mixture of incentives and
privacy can be a challenging problem. While there is a need for having accurate
data from a crowdsensing community, it is also important to protect privacy of
individuals contributing to the dataset. Finally, we are re-designing the web ser-
vices interfaces of XGSN, expanding its functionalities (e.g. including discovery,
exploiting the semantic annotations for linkage, provenance support, etc.) and
adhering to the Linked Data Platform.

Acknowledgments Partially supported by the OpenIoT FP7-287305 and the
SNSF-funded Nano-Tera OpenSense2 projects.

References

1. Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor
network deployment. In: Proc. 32nd International Conference on Very Large Data
Bases VLDB, pp. 1199–1202. VLDB Endowment (2006)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proc. 20th International Conference
on World Wide Web, pp. 635–644 (2011)

3. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
networks 54(15), 2787–2805 (2010)

4. Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: Role of middleware for
internet of things: A study. International Journal of Computer Science and Engi-
neering Survey 2(3), 94–105 (2011)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: Proc. 7th Extended
Semantic Web Conference, pp. 1–15 (2010)

6. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of
things: early progress and back to the future. International Journal on Semantic
Web and Information Systems (IJSWIS) 8(1), 1–21 (2012)

7. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

8. Bröring, A., Janowicz, K., Stasch, C., Kuhn, W.: Semantic challenges for sensor
plug and play. In: Proc. 9th International Symposium on Web and Wireless Geo-
graphical Information Systems. vol. 5886, pp. 72–86. Springer (2009)

9. Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies
for the semantic sensor web. International Journal On Semantic Web and Infor-
mation Systems (IJSWIS) 8(1), 43–63 (2012)

10. Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K.,
Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page,

16
https://spark.apache.org/streaming/

17
http://storm.incubator.apache.org/



K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic
sensor network incubator group. Journal of Web Semantics 17, 25–32 (2012)

11. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys 44(3), 15:1–15:62 (2011)

12. Henson, C., Pschorr, J., Sheth, A., Thirunarayan, K.: SemSOS: Semantic Sensor
Observation Service. In: Proc. International Symposium on Collaborative Tech-
nologies and Systems CTS 2009. pp. 44–53. IEEE (2009)

13. Huang, V., Javed, M.: Semantic sensor information description and processing.
In: Proc. 2nd International Conference on Sensor Technologies and Applications
SENSORCOMM 2008. pp. 456–461. IEEE (2008)

14. Janowicz, K., Scheider, S., Pehle, T., Hart, G.: Geospatial semantics and linked
spatiotemporal data–past, present, and future. Semantic Web 3(4), 321–332 (2012)

15. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Proc. 10th International Semantic Web Conference ISWC, pp. 370–388. Springer
(2011)

16. Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware
framework for scalable management of linked streams. Web Semantics: Science,
Services and Agents on the World Wide Web 16, 42–51 (2012)

17. Lefort, L., Henson, C., Taylor, K.: Semantic sensor network xg final report. Tech.
rep., W3C SSN XG (2011), http://www.w3.org/2005/Incubator/ssn/XGR-ssn/

18. Lewis, M., Cameron, D., Xie, S., Arpinar, B.: ES3N: A semantic approach to data
management in sensor networks. In: Proc. 1st International Workshop on Semantic
Sensor Networks SSN 2006 (2006)

19. Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., Hase-
mann, H., Kroller, A., Pagel, M., Hauswirth, M., et al.: Spitfire: toward a semantic
web of things. Communications Magazine, IEEE 49(11), 40–48 (2011)

20. Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. Internet Computing,
IEEE 12(4), 78–83 (2008)

21. Song, Z., Cárdenas, A.A., Masuoka, R.: Semantic middleware for the internet of
things. In: Internet of Things (IOT), 2010. pp. 1–8. IEEE (2010)


