Context-Aware Recommendations for Mobile Shopping

Béatrice Lamche
TU Miinchen
Boltzmannstr. 3
85748 Garching, Germany

lamche@in.tum.de

Yannick Rodl
TU Miinchen
Boltzmannstr. 3
85748 Garching, Germany

yannick.roedl@tum.de

Claudius Hauptmann
TU Miinchen
Boltzmannstr. 3
85748 Garching, Germany

hauptmac@in.tum.de

Wolfgang Waérndl
TU Minchen
Boltzmannstr. 3
85748 Garching, Germany

woerndl@in.tum.de

ABSTRACT

This paper presents a context-aware mobile shopping recom-
mender system. A critique-based baseline recommender sys-
tem is enhanced by the integration of context conditions like
weather, time, temperature and the user’s company. These
context conditions are embedded into the recommendation
algorithm via pre- and post-filtering. A nearest neighbor
algorithm, using the concept of an average selection con-
text, calculates how contextually relevant a recommendation
is. Out of 20 clothing items from the hybrid recommenda-
tion algorithm, context-aware post-filtering searches for the
nine best-fitting items. The resulting context-aware recom-
mender system is evaluated in a user study with 100 test
participants. The answers of the user study show, that the
recommendations were perceived as being better than the
recommendations of a non-context aware recommender sys-
tem.

Categories and Subject Descriptors

H.4.2 [Information Systems Applications|: Types of
Systems— Decision support

General Terms

Design, Experimentation, Human Factors.

Keywords

context-awareness, mobile recommender systems, location-
based services, user interaction, critiquing, mobile shopping

1. INTRODUCTION

Context-aware recommender systems (CARS) are systems
utilizing the user’s context such as the user’s position, weather

Copyright held by the author(s).
LocalRec’15, September 19, 2015, Vienna, Austria.

or social environment to recommend items. A context-aware
recommender system could for example recommend the “Al-
bertina” museum rather than visiting the “Prater” amuse-
ment park if the user spends a rainy day in Vienna. This
paper evaluates which kind of context information is rele-
vant in a mobile shopping recommender system and how this
information could be utilized to improve recommendations
of clothing items in a context-aware recommender system.
By integrating contextual mobile information into the rec-
ommendations it is expected, that the recommended items
better fit the customer’s needs and therefore customers are
more satisfied with the recommender system. The paper is
organized as follows. We first start off with some definitions
relevant for context-aware recommender systems and sum-
marize related work. The next section defines the context
factors and describes the system’s overall design. The user
study evaluating the developed system is discussed in sec-
tion 4. The paper concludes by summarizing its results and
giving an outlook on future research topics.

2. BACKGROUND AND RELATED WORK

A widely used definition in the area of context-aware ap-
plications is the definition by Dey:

“Context is any information that can be used to
characterize the situation of an entity. An entity
is a person, place, or object that is considered
relevant to the interaction between a user and an
application, including the user and applications
themselves” [6, p. 5].

They define context as relevant information for an interac-
tion between a user and an application. Therefore, if the
context of an entity shall be defined, it is necessary to ask
which information is relevant to the situation.

Context-aware recommender systems (CARS) integrate
context into the recommendation process. This process can
be described by this three dimensional recommendation func-
tion [2]:

R: User x Item x Context — Rating (1)

The rating function (R) considers the Context (which is de-
fined by all the different Context Factors) and recommends
items of the item set (Item) to a user by predicting the



rating that this user would give to an item. Context com-
plicates the recommendation process as items can be rated
in different contexts. An umbrella for example can be rated
at good weather conditions very highly, due to the fact that
it looks nice or is small. However, if it was raining the same
umbrella could get a bad rating, due to the fact that it breaks
at the slightest wind. So the context in the rating function
brings additional complexity as the recommendation algo-
rithm does not only have to match users with items, but
also with the context.

Adomavicius and Tuzhilin [2] identified three different points

in the recommendation process where context might be in-
corporated into the process:

1. Contextual Modeling - the recommendation algorithm
is altered such that it includes the context and already
considers it when calculating recommendations

2. Conteztual Pre-Filtering - the current context is used
to select only the most relevant data from the dataset

3. Contextual Post-Filtering - the context information is
ignored during the recommendation process, only the
resulting set is contextualized

All of these approaches have their specific strengths and
weaknesses. However, it is also possible to combine mul-
tiple context-based algorithms.

Since the consideration of context can enhance the use-
fulness of a recommendation for a user, CARS are recently
receiving a lot of attention [1]. For instance Anand and
Mobasher [3] define a recommendation process that inte-
grates context. They distinguish between a user’s short term
(STM) and long term memories (LTM). Contextual cues are
used to retrieve relevant preference models from LTM that
belong to the same context as the current interaction. This
information is merged with the current preference model
stored in STM for generating context-aware recommenda-
tions [3]. However, the proposed framework is very general
and does not emphasize how it can be applied in a mobile
scenario, where the context is different.

Baltrunas et al. [4] investigated the relationship between
contextual factors and item ratings in a tourist scenario. The
authors developed a web tool for acquiring subjective rat-
ings regarding points of interest in a mobile scenario within
a specific context. Users were asked if a specific context
factor (e.g. winter season) has a positive or negative influ-
ence on the rating of a particular item. Second, users were
asked to rate example contexts and recommendations. The
more influential a context factor seemed to be (according to
the results of the first step), the more contextual conditions
specifying this factor were generated. These imagined rat-
ings could be used as initial ratings in the database, such
that the cold start problem is minimized. Based on these
results, a predictive model that can be trained offline, was
developed. Results show that influencing context factors for
points of interests are inter alia distance, season, weather,
time, mood and companion [4]. This methodology seems to
be a very promising approach to acquire contextual ratings,
however ratings were only acquired for a travel planning
recommender system and the generated ratings of this work
can’t be directly applied to a mobile shopping scenario.

Researches have also been done on automatically predict-
ing the user’s context. For example in [5], a mobile leisure
recommender system was developed. It uses time, location,

as well as personal data, such as calendar appointments,
viewed documents and messages, to infer the user’s current
activity so that the user is not required to explicitly define
her profile or preferences. The recommendations include
stores, restaurants, parks and movies. However, up till now,
the techniques for automatic context detection are often un-
reliable and immature and require further research [9]. We
therefore decided to come up with a solution that takes the
users’ explicit stated preferences into account.

I’'m feeling LoCo [10] is an ubiquitous mobile recommender
system that recommends places nearby the user’s current lo-
cation, e.g. restaurants and museums. Physical context such
as the user’s current transportation mode and location are
automatically detected. This physical information is used
for a first filtering step: The user’s mode of transporta-
tion and location influences the radius within which places
for recommendations are considered. Moreover, the user’s
mood influences the recommendations: foursquare (a social
network app to save and share visited places with friends')
assigns each place to a category, which is mapped by the
authors to a particular feeling (e.g. the system recommends
events related to Arts & Entertainment when the user feels
“artsy”). As soon as the user states a mood, places assigned
with the category to which the feeling is mapped to are rec-
ommended. The system is based on text classification. It
considers the tags and categories associated with a place the
user has visited. The user model is therefore a document,
which holds all the names, categories and tags associated
with a visited place. A conducted user study shows that
I’'m feeling LoCo enhances the user experience and that the
recommended places were overall satisfying [10]. This mood-
based approach is in particular reasonable if a recommender
system is aimed to suggest different types of leisure activi-
ties since the user’s mood might highly influence the current
preferences. However, we consider the relevance of the user’s
mood as low in our mobile shopping scenario.

So far, no research exists that analyzed all the contextual
factors that might be useful when recommending clothing
items from different stores for mobile shoppers and investi-
gated how such a recommender system can be constructed
and is perceived. Such an application could help the user
detecting new (formerly unknown) brands or stores and find
clothes matching the user’s fashion style. Compared to ex-
isting mobile recommender systems, clothing items are dif-
ferent in the way, that they frequently change. Such a rec-
ommender system has to be frequently trained or being able
to provide good recommendations on a sparse dataset. We
therefore first acquire the relevant context factors in a mo-
bile shopping scenario and then come up with a promising
approach how to integrate this context into the recommen-
dation process.

3. DESIGNING THE PROTOTYPE

We imagine a system that uses the user’s mobile con-
text to recommend clothing items available in shops close
to the user’s position. However, as in our previously devel-
oped baseline system (see Section 3.1), the new approach
should still allow critiquing of items. As described in Sec-
tion 2, context can be integrated into the recommender sys-
tem in three different ways: contextual pre-filtering, contex-
tual post-filtering and contextual modeling. In this work,

"https://foursquare.com



‘ Items ‘

‘ Context ‘—{Contextual Pre—Filteringj

‘ Limited Case Base ‘

‘ User preferences‘—b( Recommender System )

‘ Recommendations ‘

}—b@ontextual Post—Filteringj

‘ Context

‘ Filtered Recommendations ‘

Figure 1: The context-aware shopping recommender process

= . =
&7 ShoprX ] A
=4

What do you like about
"Chinos - camel” and
want to see more of?

-2 A
13" SLIM FIT WORK SHORT.. _ PARYD - Shorts - blac

0.
NEW YORK - Shorts - multic.
ol 500 € 3s,

4300€

00
ol ~ " » - x
153
7 Suggested for the following reason(s)
&
‘t g/) To determine your preference >
Select one or more
o= ea & [ Brown Calay
NEWYORK -Shors - dark ol TREMAN - Shots - fostgrey BERMUDA- Shorts - blue
i 1500¢€ s500¢ 9500¢€
Y I A [ YOUR TURN By
—
F% [ 25t050€ Plitee
f{ i / [# chino Type
\
R ovic: < . h s
ORAY S -ffilAOVCCOMBAT -S| 15 MUATIFOGET WORKS. T g
ole x - ¥ e ¥ T

(a) Recommendations in CARS (b) Critiquing View in CARS

Figure 2: User Interaction Design

two approaches (contextual pre-filtering and contextual post-
filtering) are combined to improve the recommendations (see
Figure 1). Pre-filtering (Section 3.2) is used to determine
which items of the case base are relevant to the user. Rel-
evance for example depends on the distance the user ac-
cepts to travel, or the opening hours of a shop. Post-filtering
(Section 3.4) is used to filter the items that shall be recom-
mended according to their adequacy to the current context
by using a nearest neighbor algorithm. In order to build a
database of contextually tagged items, a pre-study was ex-
ecuted asking users to classify items according to contexts
(Section 3.3). This data ensures, that some items already are
contextually tagged, which is needed for the post-filtering of
the recommendations. The user interface and interaction
design of our CARS is described in section 3.5.

3.1 The Baseline

The system presented in [7] forms the baseline for our
CARS. It was developed for the Android platform and incor-
porates an active learning algorithm. The user interfaces of
the baseline system are very similar to our developed CARS
and can be seen in Figures 2 and 3. The active learning al-
gorithm, called adaptive selection, is a critique-based recom-

é ShoprX

& Item Details

Are you happy with "Chinos - camel"
from YOUR TURN?

Type: Chino Vi 4
Sex: Male ol Diesel \
Color: Brown . } sells 0 recommended item
Stgck:1 Item Not crowded
Price: 25,00 € | Open today: 11:00 - 2000
Available at: Orsay Distance: 0,26 km
Crowded AETSITAD =L EHEL
Open today: 8 -
9:30 - 20:00h N
Distance: | <
0,13 km Q A
Suggested for the following reason(s) unchen g
( To determine your > Q

= preference

DeutscEs Museum' ¢ & <%

Select this and finish 9

o n)
=

AU-HAIDHAL

Google

(a) Item view in CARS (b) Map view in both systems

Figure 3: Detailed Information View

mendation algorithm. The algorithm uses a two-fold strat-
egy: On a positive critique of an item (touching the thumbs
up symbol) it shows items that more closely match the cri-
tiqued item. On a negative critique (thumbs down symbol)
more diverse items are shown. In both cases, the recommen-
dation algorithm uses a k-nearest neighbor algorithm to find
the k items that best fit the current requirements. In this
case k is set to nine, meaning that in each cycle, the user
is shown nine different recommendations. In the following
screen, the user selects which of the properties (color, brand,
price, type) of the item shall be critiqued. The recommender
system then shows more or less items (depending on the
critique) of the selected feature(s). By touching an item’s
picture in the recommendations view, the system displays a
result screen, where the user can select the item. The appli-
cation also shows the immediate surroundings of the user in
a map (see Figure 3). The system described in this section
without context-awareness is used as a baseline for testing
the context-aware recommender system. Furthermore we
have made some adjustments to this content-based recom-
mender system due to the changed dataset and performance
problems.

3.2 Contextual Pre-Filtering

In the contextual pre-filtering step, we make sure that
only relevant data is loaded into the recommender system.
Therefore, the context factors distance to shop, shop crowd-
edness, shop opening hours and item in stock are used to
restrict the case base and avoid unnecessary search in items
the user does not want to see. The user may state prefer-
ences for each of these context factors. The user might state
a different distance to the shops or that she wants to see
crowded places as well.

The case base is filtered in four steps. First, all shops
that are not within the specified distance, then shops that
are not open at the specified time and shops that do not
match the crowdedness criterion are excluded. Finally, it
is verified that the item is in stock. After pre-filtering the
items based on these conditions, it is verified that at least
300 items are available in the case base, as our tests showed



Context setting for Items

—~ I

(112902 Leather jacket - anticbrown  [1060: FILLY - Shirt - black

between 0" and5°C ||

- snow whit... []305: ROMA - Hoodie - blu

The weather:
m M ﬁ [ 4
/ARA - .

[1619: Tracksuit top - blue melange [12312: FALCONI -

[11695: Trou [11934: DOMINIC -

Submit and categor

Figure 4: Tool for elicitation of item preferences in contexts

that this is the minimum amount of data to adequately react
on the user’s preferences. However, if there were not enough
items available in the case base, these conditions are relaxed
and the user is notified about this step.

3.3 Acquisition of Context Relevance

Before being able to recommend items based on context,
the relevant context has to be defined. A promising ap-
proach to assess the context relevance for a tourism sce-
nario is presented by Baltrunas et al. [4] and is therefore
adapted for our shopping scenario (see also subsection 2).
Using this methodology we assess the following context fac-
tors as relevant for our context-aware mobile shopping rec-
ommender system: time of the day, day of the week, tem-
perature, weather, company, distance to shop, crowdedness,
shop opening hours and item is in stock. In order to ac-
quire contextual ratings, a convenience sample of the target
population was asked to specify which items they are likely
to buy in a specified context. We developed a simple Java
tool (Figure 4) which shows nine pictures and descriptions
of clothing items. The testers could specify if they would
consider buying the product depending on a randomly se-
lected company, temperature or weather, which is specified
on the right side of the tool. Overall 747 contextual ratings
for 674 different items were created by six users. This data
forms the basis for the decision generation in the contextual
post-filtering algorithm.

3.4 Contextual Post-Filtering

Based on the pre-filtered item set the critique-based rec-
ommender selects 20 items. Out of these 20 items only
nine are actually displayed. Therefore, the contextual post-
filtering algorithm (illustrated in algorithm 1) has to elimi-
nate eleven items in each cycle. The context factors time of
the day, day of the week, company, temperature and weather
are used to post-filter the recommendations. For this pur-
pose, we use a k-nearest neighbor method because this tech-
nique has proven to be adequate in different CARS. The
most important component in nearest neighbor algorithms
is the used distance metric. In our approach, the user is
not able to rate an item within a given context, but only to
select it (and therefore implicitly rating it as good). Based
on this consideration, we came up with a distance metric
that defines an average context in which an item is selected.

The average context specifies in which context an item is
selected. If an item was not selected in any context, it can
be assumed, that this item neither is liked by a lot of users
nor in a specific context and can therefore receive a higher
distance to the current context. Popular items, which are
selected in many different contexts will receive a distance
which is close to 0.5. However, as they are very popular,
they should not receive a high distance and therefore their
distance is reduced by a defined percentage of their distance.

bgﬂ wyp - dist(cy, b) N

N (ia) > wj

j€i;

(2)

avgContextDist(c,i) =

Equation 2 defines the distance metric. It calculates the dis-
tance between an item’s (i) average context (in which the
item is selected) and the current context (c¢). The first quo-
tient calculates the average distance to the current context
whereas the second quotient normalizes the distances.

The set of all context conditions in which an item has
been chosen is defined by i,. An individual context condi-
tion in which an item has been chosen is defined by b. For
each clothing type, the context factors are of different im-
portance. Hence, different weights (w;,) can be assigned to
context conditions. We assigned the weights for each cloth-
ing type based on a previously conducted experiment [11].
The distance function dist(cy,b) (Equation 3) calculates the
distance between the current context condition ¢y (f stands
for the context factor) and a context condition b in which
the item was chosen. For an improved readability the vari-
ables were renamed to z and y in Equation 3. The number
of context conditions in which an item has been chosen is
defined by N(iq). In this work N(is) always is a multiple
of five - the number of context factors - as we assume all
context conditions to be set in our artificial environment.

In order to make different items (with different overall
weights) comparable, we normalize the distance between
zero and one by multiplying with the second quotient of
the function. Here N(f) defines the number of context fac-
tors (five) we use for post-filtering. The number of context
factors is divided by the sum of weights of all context factors
(w;) for the specific item (j € i;).

graphDistance(z,y) if y is nominal

dist(z,y) = { lo—y]

rangey

®3)

otherwise

If the context factor is ordinal, interval or ratio-scaled, the
distances are calculated based on the euclidean distance.
Otherwise the graphDistance, a pre-defined distance for
nominal attributes, is used. This graphDistance is similar
to the distance used by Lee and Lee [8]. The context factors
weather and company use this graphDistance and define an
undirected graph with distances between all context condi-
tions (e.g. the weather conditions Sunny and Rainy have
a higher distance than Sunny and Cloudy). The assigned
distances are used as an input for the distance method. For
the context factor time of the day we use a cycle, as the
afternoon ends with the night, whereas the night is the first
part of the day. For all other conditions it is expected that
the euclidean distance provides good results. Although we
want to achieve a high item frequency, we consider very pop-
ular items as being interesting for the user, especially in a
shopping scenario. Therefore, we alter the resulting distance



(avgContextDist(c, 1)) if the item was selected in more than
30% of all contexts: The item’s distance is reduced by 20 %
so that it is more likely to be displayed to the user. Every
item that is not selected in any context receives a distance of
0.51. We came up with this value because it is the average
distance at the second tertile when considering all distances
of items rated in a specific context to a randomly selected
context. This ensures that items which have not been rated
within a specific context in our pre-study (see Section 3.3)
are more likely to be presented to the user than items that
were considered as being uninteresting in that specific con-
text. The whole algorithm for contextual post-filtering is
presented as algorithm 1.

Algorithm 1 Post-filtering by current and item context

1: procedure CONTEXTPOSTFILTER(items, context, k)
2: for all item in items do

3 avgContextDistance(context, item)
4 if itemDistance == null then
5 setDe fault Distance(item)
6: end if

T end for

8 decreaseDistanceFor PopularItems(items)
9 return kNearestNeighbors(items, k)
10: end procedure

The algorithm’s disadvantage is that it weights each fac-
tor independently without taking into consideration possible
connections between the individual context factors. For ex-
ample the connection of rain and being with a friend might
be more different from rain and being with the family, than
the individual distances between being with the family and
being with a friend. This detection of dependencies could
be done by decision trees or other machine learning tech-
niques. Nevertheless, we expect that the algorithm provides
reasonable recommendations for the user’s current context
without these dependencies. The algorithm calculates the
context distances in less than 100 ms on a Samsung Galaxy
S3 mini for 20 items with the items being set in (overall) 200
different contexts. It allows weighting of context factors for
each clothing type separately and distances for nominal at-
tributes. The method kNearestNeighbors(items, k) sorts
the items by their distance to the current context. In case
of any ties it uses the similarity measure that has already
been applied in our baseline system (Section 3.1).

3.5 Navigation and Interface Design

When starting the application, the user is asked to set the
following context conditions manually: preferred distance to
the shop, opening hours, temperature, weather and com-
pany. Moreover the user can specify if she wants to exclude
items that are not in stock and shops that are too crowded.
The conditions for time of the day and day of the week, are
not captured, as it is expected that the users are aware of
these conditions subconsciously. The context determination
interfaces can be seen in Figure 5.

Figure 2a shows an example of a calculated set of recom-
mendations. With the thumbs up or thumbs down button the
user is able to critique the item’s attributes such as price,
brand, clothing type and color (see Figure 2b). Besides this
critiquing possibility, the user is able to see some expla-
nations such as why the particular item is recommended.

(& Context Determination (& Context Determination

Please set your current context factors, such that
you can be provided the best possible
recommendations.

Please set your current context factors, such that
you can be provided the best possible
recommendations

Shop Specific Settings Other settings

Distance to shop Up to 2 km . Current temperature: <0°C 4
Shop shall be open - . Current weather conditions Sunny ,
Only show items in stock: _No My company: Alone Y
Show shops that are crowded: - Biasaes

Proceed

Figure 5: Explicit context determination via questionnaire

By clicking on an item’s picture, the user gets to another
screen with more detailed information about the item and
the store. Here, the user can finally select the item (see
Figure 3a). This information should enhance the trust the
user has in the recommendations as she can check whether
the initial preferences (about distances to shop, crowded-
ness, etc.) were incorporated. Moreover, we implemented a
map showing all available shops. On click of a shop we show
the shop’s opening hours, the crowdedness, the name, the
distance to the current position and how many items (out
of the current recommendations) are available at this shop
(see Figure 3b).

4. USER STUDY

The user study was designed in order to test the differ-
ences in user perceptions between the baseline application
and the context-aware recommender system. We want to
find out whether the users perceive a difference in the ac-
curacy of recommendations. A second goal of the study is
to find out whether users are more satisfied with a recom-
mender system that takes the mobile context into account.
Therefore, the goal of the user study is to evaluate if the
following hypotheses are true:

Hypothesis 1: The integration of context-awareness leads
to better perceived accuracy compared to non-context-
aware recommendations.

Hypothesis 2: The integration of context-awareness im-
proves the overall user satisfaction.

Hypothesis 1 is tested by comparing the ratings of recom-
mendations in a context-aware system and a baseline sys-
tem. The users should rate how they perceived the recom-
mendations on a seven-point Likert-scale. Hypothesis 2 shall
test whether the users are more likely to use, reuse or rec-
ommend the application. This is an indication on how well
the system adapts to the users and how satisfied they are.

4.1 Setup
The user study is designed as a supervised within-subjects
user survey to minimize the number of survey participants



Scenario selection

You are in the following scenario;

It is Thursday 10:53. You are at the Universitat.
It is between 10° and 15° C and Partly cloudy. You ars together with a friend.
You decided ta go shopping now and are searching for a clothing item.

You are starting with the application ShoprX.
Your user id is: 7.

It Is your task to find a clothing item, that you would consider buying, If t suited you.
Please consider your scenario, s stated above,

(Generate new scenariol

Figure 6: Tool to generate a user’s scenario

and improve the comparability between the applications.
Each user tests both applications (the baseline system and
the CARS) and answers a questionnaire afterwards. Which
system is tested first is flipped in between subjects so that a
bias because of learning effects could be reduced. The par-
ticipants are asked to imagine being in the scenario, the tool
generated for them, whereby the location is always Munich.
The participant’s task is to find one item only, which they
would like to try on. As soon as the users have found a
suitable item, they are asked to select it, such that they can
finish the test and answer the corresponding questionnaire.
The target population of this application are young smart-
phone users that like to go shopping. In the user survey qual-
itative and quantitative data are collected. Qualitative data
is measured via a questionnaire. It mainly consists of state-
ments, the user should assess on a seven-point Likert-scale
(from 1 - strongly agree, to 7 - strongly disagree), e.g. how
satisfied the user is with the recommendations and the appli-
cation in general. The quantitative data is directly measured
within the application and includes the number of critiquing
cycles, the time between viewing the first recommendations
and selecting an item, and the item diversity. Before the
user starts using the application, a scenario describing the
user’s location, weather and company is generated for her
(see Figure 6).

The participants are asked to actively select their context
in the application and imagine it. This scenario is visually
displayed to the users throughout the whole survey on a
computer screen directly in front of them. The context con-
ditions not mentioned in the scenario description, such as
the crowdedness, can be selected by the user based on her
own preferences.

The dataset used to test the application includes 5157
randomly selected fashion items, that were extracted from
the Zalando API? of their UK-store in February and March
2015. Since our dataset is artificial, we distributed the items
equally across all 129 shops and made realistic assumptions
for our shops. The shop’s opening hours were set to realistic
values with moderate modifications to have some differences

Zhttps:/ /www.zalando.co.uk

in the dataset. The crowdedness was set randomly with
probability of 20 % and an item is in stock with a probability
of 90 %.

4.2 Results

All in all 100 participants (48 females, 52 males), between
the ages of 17 and 30, took part in the user study. The an-
swers to the Likert-statements (from 1 - strongly agree, to 7 -
strongly disagree) in this work either followed a positively or
negatively skewed distribution and are ordinal scaled instead
of interval scaled. Therefore, a two-tailed paired Wilcoxon
signed rank test is executed, rather than a paired t-test, to
detect whether there are any significant differences between
the distributions. The results of the two-sided tests are re-
ported by stating a V' and a p value. The V is the sum of
ranks assigned to differences with a positive sign. Therefore,
a higher V stands for higher differences in the user’s deci-
sions. The p value defines how significant the results are.
In general we evaluate whether the null hypothesis is likely
to be true. The means, as well as the V and p values of
the most important metrics of the two systems are shown in
Table 1.

In order to test the user’s perceived prediction accuracy,
we asked if the recommended products fitted the individual
preferences. The baseline application’s mean is 2.71 whereas
the CARS mean is 2.34 (Median = 2 for both systems).
The Wilcoxon signed rank test reveals, that the recommen-
dations of the CARS fitted significantly better to the user’s
preferences than the baseline’s recommendations (V' = 1807,
p < .01).

The context-awareness of the applications is evaluated by
asking whether the products were in line with the provided
scenario. The baseline application’s mean is 2.82 whereas
the CARS mean is 2.66 (Median = 2 for both applications).
The Wilcoxon signed rank test shows V = 1346, p = .54.
This means that the users did not perceive any of the sys-
tems as being more context-aware than the other.

When asking the users whether they are likely to use the
application again, the users stated that they are significantly
more likely to use the CARS (Median = 2, Mean = 2.64)
again, than the baseline (Median = 3, Mean = 3.06) appli-
cation (V = 1563, p < .01).

The maximum time needed to find an item in the base-
line application was 867 seconds (Median = 142s, Mean =
179s) and in the CARS application 697 seconds (Median =
149s, Mean = 182s). The time needed to select an item
is not significantly different between the applications (V =
2302.5, p = .45).

Another measure for the effectiveness of the recommen-
dation algorithm is the number of critiquing cycles until an
item was selected. Participants completed their task in aver-
age 1.24 cycles less using CARS (Median = 5, Mean = 6.1
with CARS, Median = 5, Mean = 7.34 with the baseline
system). Again a Wilcoxon signed rank test was executed
(V =2393.5, p = .11). However, the result is not significant,
meaning that the null hypothesis cannot be rejected.

One of the goals of the CARS was to reduce the number
of times an individual item is shown (item frequency) and
thus increase the number of different items (item coverage).
All in all the baseline application showed 7506 (1690 dif-
ferent; 22.5% unique) and the CARS 6390 (1754 different;
27.4 % unique) items. We measured every time that an item
was displayed to any user. The maximum number of times



Table 1: The means of some important measured values
comparing both variations of the system.

BASE | CARS| p value | V value
mean | mean
Perceived accuracy || 2.71 2.34 <.01 1807
Perceived context- || 2.82 2.66 .54 1346
awareness
Intention to return || 3.06 2.64 <.01 1563
Time 179s | 182s | .45 2302.5
Cycles 7.34 6.1 11 2393.5
Item frequency 4.39 3.62 <.01 285253.5

an item was shown was 115 (Median = 3, Mean = 4.392)
for the baseline application and 53 (Median = 2, Mean =
3.622) for the CARS. A Wilcoxon signed rank test reveals
that there is a significant difference between the samples
(V = 285253.5, p < .01), meaning that the CARS showed
items significantly less frequent than the baseline. Although
the CARS showed less items overall, more different items
have been shown. This indicates that the recommended
items have been more diverse.

Overall, 59 participants reported that they prefer the con-
text-aware application (CARS). This are significantly more
compared to a random distribution of answers as a chi-
squared test reveals (X% = 30.38, with 2 df [degrees of
freedom], p < .001).

The test participants found that the CARS recommenda-
tions fitted significantly better to their preferences. There-
fore, hypothesis 1 that the recommendations by a context-
aware system are perceived as better is retained. Hypothe-
sis 2 that the overall user satisfaction is improved can also
be retained to a certain degree as users were more satisfied
with the CARS. The results might be less significant than
expected as only six users rated items in context as an ini-
tial dataset. However, we wanted the dataset to be sparse
as there are frequent changes to fashion collections.

S. CONCLUSION AND FUTURE WORK

In this work, a context-aware recommender system was
developed and evaluated in a mobile shopping scenario. Our
CARS is based on an active learning algorithm and uses a
nearest neighbor algorithm. Compared to a system with-
out context-awareness, the recommendations were perceived
as significantly better in the CARS. Interestingly, the users
did not attribute the better recommendation quality to the
more context-aware recommendations but to better adapt-
ability to their preferences and their clothing style, although
the only difference from an algorithmic perspective is the
context-awareness. It should be investigated in more detail,
whether context-awareness is only perceived subconsciously.
The next step for this application would be to test it in
an online-experiment where real context-aware information
is elicited. In a first approach the clothing data of some
selected retailers would be enough to test this application
online. In the future, we plan to conduct a user study where
real context-aware information is elicited. Still a major chal-
lenge for context-aware applications is to acquire context-
aware data to train or tweak a context-aware algorithm. For
this user study, selected users classified the contexts in which
they would try the clothes on. As the users in the user sur-

vey also imagined these contexts, we expect no significant
differences between the classification of the items and the
imagined scenario in the user study. This approach might
help in narrowing down the problem of acquiring relevant
context data as a quick start for a context-aware applica-
tion. However, it has to be evaluated how close real contex-
tual ratings can be estimated with this method. In order
to adapt the existing approaches of estimating a rating to a
yes or no decision we had to develop the concept of an av-
erage context, in which an item is selected. We believe that
every context-aware recommender system relying on yes or
no decisions might have benefits from adapting its context
incorporation by using our approach. We also aim to find
out whether the results of this work can be transferred to
other application scenarios, such as for grocery shopping or
leisure activity recommendation systems.

6. REFERENCES

[1] G. Adomavicius, L. Baltrunas, E. W. De Luca,

T. Hussein, and A. Tuzhilin. 4th workshop on
context-aware recommender systems (cars 2012). In
RecSys, pages 349-350, 2012.

[2] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In F. Ricci, L. Rokach,

B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 217-253. Springer, 2011.

[3] S. S. Anand and B. Mobasher. Contextual
recommendation. Lecture Notes in Artificial
Intelligence, 4737:142-160, 2007.

[4] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci.
Context Relevance Assessment and Exploitation in
Mobile Recommender Systems. Personal Ubiquitous
Comput., 16(5):507-526, June 2012.

[5] V. Bellotti and et al. Activity-Based Serendipitous
Recommendations with the Magitti Mobile Leisure
Guide. Proceeding of the twenty-sixzth annual CHI
conference on Human factors in computing systems -
CHI 08, pages 11571166, 2008.

[6] A. K. Dey. Understanding and using context. Personal
and Ubiquitous Computing, 5:4-7, 2001.

[7] B. Lamche, U. Trottmann, and W. Wérndl. Active
learning strategies for exploratory mobile
recommender systems. ACM International Conference
Proceeding Series, pages 10-17, 2014.

[8] J. S. Lee and J. C. Lee. Context awareness by
case-based reasoning in a music recommendation
system. Lecture Notes in Computer Science,
4836:45-58, 2007.

[9] F. Ricci. Mobile recommender systems. Information
Technology & Tourism, 12(3):205-231, 2010.

[10] S. Savage, M. Baranski, N. E. Chavez, and
T. Hollerer. I'm feeling loco: A location based context
aware recommendation system. In Advances in
Location-Based Services: 8th International Symposium
on Location-Based Services, Lecture Notes in
Geoinformation and Cartography. Springer, Vienna,
Austria, 2011.

[11] W. Wérndl and B. Lamche. User interaction with
context-aware recommender systems on smartphones.
In icom, volume 14, pages 19-28, 2015.



