
Confirmation Engine Design Based on PSI Theory
Ondřej Dvořák

Faculty of Information Technology
Czech Technical University

Prague, Czech Republic
ondrej.dvorak@fit.cvut.cz

Robert Pergl
Faculty of Information Technology

Czech Technical University
Prague, Czech Republic
robert.pergl@fit.cvut.cz

Petr Kroha
Faculty of Information Technology

Czech Technical University
Prague, Czech Republic

kroha@informatik.tu-chemnitz.de

Abstract—Design & Engineering Methodology for Organ-
isations (DEMO) is a methodology for (re)designing and
(re)engineering of organisations. Having a strong theoretical
background in the PSI theory (Performance in Social Interac-
tions), DEMO deals with communication and interaction between
subjects (human beings) that play a crucial role within all
company processes. Advanced information systems are used
to support processes and communications. In these systems,
confirmations are very usual patterns. In this paper, we present
a design of a confirmation engine based on the transaction axiom
of the PSI theory. We discuss a theoretical background of this
engine, our implementation, and how this module fits into the IT
infrastructure.

I. INTRODUCTION

During design of a commercial software system CoRiMa
developed by COPS GmbH, a requirement for so-called con-
firmation principle came up. CoRiMa is a multi-user client-
server application and an application platform at once. Several
users communicate their demands to a server that cooperates
with a risk-management banking system. CoRiMa contends
with a processing of various operations carrying out necessary
information (deals, foreign exchanges, balances, etc.). This
information is necessary for an underlying risk-management
system to do proper calculations. Since much of this infor-
mation is critical for risk calculations, it cannot appear in
the target risk-management system unapproved by privileged
users, so-called confirmators. This integral principle is called
the confirmation principle.

DEMO sees organisations as systems of actors that are in
a social interaction. The actors perform so-called coordination
acts. The transaction axiom of the General PSI theory declares
that these acts are performed in patterns called transac-
tions [6]. Within transactions, the commitments of subjects
(human beings) are raised. As Dietz [6] claims: “Carrying
through a transaction is a “game” of entering into and
complying with commitments.”.

Copyright c© 2015 for the individual papers by the paper’s authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors

In: W. Schmidt, A. Fleischmann, L. Heuser, A. Oberweis, F. Schönthaler,
C. Stary, and G. Vossen (Eds.): Proceedings of the Workshop on Cross-
organizational and Cross-company BPM (XOC-BPM) co-located with the
17th IEEE Conference on Business Informatics (CBI 2015), Lisbon, Portugal,
July 13, 2015

The next important principle of DEMO is an operating
principle stating that: “Subjects enter into and comply with
commitments regarding the products/services they bring about
in coordination” [6]. This principle clearly sees enterprises as
social systems.

We believe the confirmations in CoRiMa are essentially
transactions of DEMO. Users of CoRiMa are mostly human
beings acting in roles of subjects. They enter into a commit-
ment regarding certain object affirmation. The affirmation is
a specific outcome of the confirmator’s decision. It may be a
yes/no result or something more complex, like a scale value
or even a free comment.

We argue that the confirmation principle can benefit from
the transaction axiom and the quoted operating principle of
the General PSI theory in DEMO. In this paper, we sum up
the key expectations on the confirmation principle in CoRiMa,
and we map them to the DEMO methodology while outlining
a possible design and a basic implementation.

The remainder of this paper is organised as follows. We be-
gin with an overview of DEMO in section II. Then we describe
what CoRiMa is, and what is the purpose of a confirmation
engine in section III. We map the confirmation principle to
DEMO and bring a suitable naming of all its fundamentals
in section IV. On the top of the confirmation principle we
introduce the confirmation engine in section V. We show how
it fits the CoRiMa architecture, and we present code snippets
of its main components. Finally, we present an example of
a deal confirmation in section VI, we mention the related work
in section VII, and we conclude the paper in section VIII.

II. DEMO OVERVIEW

DEMO stands for ,,Design & Engineering Methodology
for Organisations”, and we consider it to be the leading
methodology of Enterprise Engineering discipline, as it is
grounded in theories, mainly in the system ontology of Bunge,
teleology, and the theory of communicative act of Habermas.
At the same time, its benefits for the practical use has been
proven, as documented e.g. in [8] or [1].

For a brief description of DEMO, we take a help of Op’t
Land and Dietz [8]:

“A complete, so-called essential model of an organisation
consists of four aspect models: Construction Model (CM),
Process Model (PM), Action Model (AM), and State Model
(SM). The CM specifies the composition, the environment



and the structure of the organisation. It contains the iden-
tified transaction kinds, the associated actor roles as well
as the information links between actor roles and transaction
banks (the conceptual containers of the process history). The
PM details each transaction kind according to the complete
transaction pattern. In addition, it shows the structure of the
identified business processes that are trees of transactions. The
AM specifies the imperatively formulated business rules that
serve as guidelines for the actors in dealing with their agenda.
The SM specifies the object classes, the fact types and the
declarative formulations of the business rules.”

For the purpose of this paper, we need to introduce briefly
the Construction Model. It shows a network of identified trans-
action kinds and the corresponding actor roles. For example,
transaction kind T01 (Figure 1) delivers a business service
to actor role A00. A00 is called the initiator (consumer) and
A01 the executor (producer). The executor of a transaction
is marked by a small black diamond on the actor’s role box.
The solid line between A00 and T01 is the initiator link; the
solid line between A01 and T01 is the executor link. Figure 1
also shows that another actor role (A07) needs to have access
to the history of transactions T01 (production facts as well
as coordination facts (e.g., status ,,requested”, ,,promised”,
,,stated”, ,,accepted”)). This is represented by the dashed line
between A07 and T01. However, the diagram notation is not
important for our purpose, we will just utilise the underlying
concepts.

Fig. 1. Typical constructs of a DEMO Construction Model [8]

The DEMO Process Model reveals details of the transac-
tions with the respect to complete transaction pattern. The so-
called standard transaction pattern is depicted in Figure 2. The
,,happy flow” consisting of request, promise, state and
accept, as is depicted in Figure 3, is also called the basic
transaction pattern. Apart from the happy flow, decline
may happen instead of promise, and reject may happen
instead of accept. Then, a new attempt may be made, or
quit, resp. stop may end the transaction unsuccessfully.
This logic is automatically included in all DEMO transactions,

which is one of the reasons why the models are so compact
– it would need a lot more diagram elements to express the
transaction pattern of every transaction kind using a flowchart-
like notation.

Fig. 2. DEMO Standard Transaction Pattern [2]

Fig. 3. Happy flow of a transaction [2]

However, real situations may become even more compli-
cated. It is addressed by the complete transaction pattern in
Figure 4. It incorporates the notion of revocation – an actor
may want to ,,take back” their act done before1. If that is
allowed by the other party, the transaction ,,rolls back” to the
desired state.

The PSD (Process Structure Diagram) notation is used to
depict the PM. However, we will not present it here, as we do
not need it for our purpose.

1In the DEMO theory, nothing can disappear, so the original fact remains
in the fact bank, however, the transaction flow is changed.



Fig. 4. DEMO Complete Transaction Pattern [3]

III. CORIMA AND THE CONFIRMATION PRINCIPLE

CoRiMa is an application platform for development and
execution of financial-oriented applications. It consists of
a runtime and a framework. Runtime is a client-server appli-
cation that can host and execute plugins composed of modules
and features offered by the framework. The plugins themselves
implement a client and a server core that is executable within
a corresponding part of the runtime. Each plugin maintains
certain instruments from a financial market. Its client-core
views the instruments, its server-core transfers the instruments
into an underlying risk-management system. For example,
rates of currencies are displayed in the client-core, whereas the
physical deposition of rates happens within the server-core.

Fig. 5. CoRiMa architecture

Various instruments with which the plugins operate must
undergo a specific confirmation process before landing in
the risk-management system. This process must go hand in
hand with the so-called confirmation principle. The principle
guides the process through predefined mandatory and optional
steps. The use-cases for confirmations can significantly differ
among the instruments. Some instruments can be confirmed

automatically after a given time is elapsed. Some can be
changed by a confirmator, while others cannot. Some in-
struments can even be cancelled and consequently result in
a cancellation of the confirmation. All in all, the demands for
various kinds of confirmations can be custom-built.

The general idea is to design a unit in the CoRiMa frame-
work that would meet expectations regarding the confirmation
principle. It should be clearly defined and easily applicable by
a developer facing a request on confirming a given instrument.
We call this unit confirmation engine, and we elaborate it in the
section V. The basic architecture of our approach is presented
in Figure 5.

IV. DEMO AND THE CONFIRMATION PRINCIPLE

A range of similarities can be identified when comparing
the confirmation principle and DEMO. Nevertheless, these can
only be seen from a certain point of view. In this section,
we analyse these similarities, and we evaluate a possibility of
the confirmation principle benefiting from them. We follow
up this section by outlining a DEMO-based design and an
implementation of the confirmation engine as a software unit
supporting the confirmation principle.

A. Requester, Confirmator, Confirmation Pattern, Confirma-
tion, and Affirmation

In DEMO, a transaction is a sequence of acts involving
two actor roles, an initiator and an executor. The sequence
must respect the transaction pattern defining legal acts during
a transaction processing. A transaction is started by the initia-
tor who performs a request to have a desired product stated.
Such an act leads to the status requested. The executor
reacts by promising the product, and the transaction advances
to the status promised. This act represents a guarantee
that the executor is going to produce the requested product
within an execution phase of the transaction2. As soon as the
executor finishes the production, it performs the state act,
thus bringing the transaction into the status stated meaning
the product is ready. At this moment, the initiator can accept
the product and thus the transaction ends. However, by reject-
ing the product, the initiator could express its disagreement
with the product, and the transaction goes back to the status
stated. Such a decision would result in a negotiation to
clarify mutual expectations on the product.

In CoRiMa, the confirmation is a sequence of acts, too. It
involves two subjects, a requester and a confirmator. As well
as in DEMO, the sequence must respect a given confirmation
pattern. The sequence is started by a requester performing a re-
quest to create a desired product. However, it is important to
realize what the product actually is. The confirmation principle
insists on preventing a subject to persist an object that has not
been seen and subsequently confirmed by anybody else. Thus,
the object itself is not a product, the sole affirmation pertaining
to an object is. In case the confirmator has in mind to analyze
the created object, it can give a promise and proceed to an

2Technically, it may happen that the promise is revoked later by the
executor, however, we do not deal with this possibility at this place.



execution phase. The production of an affirmation must result
in a state act performed by a confirmator. Again, it is highly
important to realize what the state practically means in a con-
text of the confirmation principle. The confirmator must have
at least an option to express its agreement or disagreement
with an object, yet there can be much more. Nevertheless,
this outcome must be a property of the affirmation. As soon
as the confirmation is brought to the status stated, the
initiator can proceed with either accepting or rejecting the
stated affirmation.

Let us summarize the initial mapping between DEMO
and the confirmation principle. The confirmation principle is
generally a PSI theory of DEMO adopted to the needs of
CoRiMa. The notions of initiator and executor in DEMO are
represented by the notions of requester and confirmator in
the confirmation principle. The transaction pattern and the
confirmation pattern both define appropriate steps of a process
and relations among them. Transaction resp. confirmation is
then a walkthrough in the corresponding pattern. Product and
affirmation are the interests regarding of which subjects (re-
quester and confirmator) enter into a commitment by initiating
the transaction (resp. confirmation).

B. Confirmation Kind and Affirmation Kind

In DEMO, the transaction kinds imply a specific flow of
allowed acts and the corresponding states of the transaction.

The same may be applied to a confirmation kind. The
confirmation kind is based on a specific confirmation pattern.
The main difference is that within the confirmation engine,
the acts are performed explicitly (e.g., by calling a method
request()). One can only define what should be an evi-
dence that the act just happened (e.g., sending an email to
its counterpart)3. If a certain act is senseless or not allowed
for the given confirmation kind (e.g., if the requester is not
allowed to disagree with a created affirmation), this must
be declared. This is similar to specifying action rules in the
Action Model of DEMO.

A transaction in DEMO (hopefully) results in a product
successfully delivered. Each transaction kind has a specific
product kind as its result. Similarly, each confirmation kind
has a specific affirmation kind as its result. An affirmation is
the product of a confirmation. Thus a confirmation (hopefully)
results in an affirmation successfully produced. The affirmation
itself is a set of properties and their corresponding values. All
these properties represent the confirmator’s notion regarding
an object which is tasked to approve (e.g., a property called
result can transfer an information whether the confirmator is
fine with the object or not). Nevertheless, one has to introduce
all required properties before a confirmation process is started.
This is done by an affirmation kind which defines it.

To sum up, a transaction kind in DEMO corresponds to
a confirmation kind. The product kind is represented by
an affirmation kind. The product is the affirmation itself. It

3This corresponds to facts in the PSI theory described above, however we
do not go into such detail here.

DEMO Confirmation Principle
Transaction Pattern Confirmation Pattern

Transaction Kind Confirmation Kind

Transaction Confirmation

Product Kind Affirmation Kind

Product Affirmation

Initiator Requester

Executor Confirmator
TABLE I

MAPPING BETWEEN DEMO AND THE CONFIRMATION PRINCIPLE

expresses a decision of a confirmator whether the given object
is approved or not.

C. Revocations

In DEMO, revocation is a situation when the initiator or
the executor change their minds after performing a certain
act. DEMO defines four different revocation patterns for
request, promise, state and accept, as can be seen
in Figure 4. If allowed by the other side, each of them can lead
to a transaction step in the standard transaction pattern, which
constitutes the complete transaction pattern. It means that not
all transaction kinds allow to revoke an already performed
act. Revocations may be even technically impossible (e.g.,
shredding of a document).

Confirmations in CoRiMa exhibit the same behaviour. For
instance, shortly after a requester requests an affirmation of
a given object, it can change its mind and want to take the
request back. It depends on the confirmation kind if such
a step is allowed, and how the confirmation engine should
react. Since these situations are expectable, we want to support
them, too. Thus, we have to introduce revocation patterns into
the confirmation principle. To make it work, we have to define
their specification for each confirmation kind individually.

D. The Confirmation Principle Summary

In this section, we clarified how DEMO and the underlying
PSI theory can be mapped to the confirmation principle. We
identified a mapping between a requester and an initiator,
and a mapping between a confirmator and an executor. We
showed that a confirmation kind maps to a transaction kind,
and an affirmation maps to a product in DEMO. DEMO
models successfully describe the whole enterprise process
logic by transaction kinds derived from the complete trans-
action pattern. Thus, we argue that confirmations based on the
same complete transaction pattern can handle all necessary
situations of various confirmation processes. Table I presents
the overview of the resulting mapping.

V. THE CONFIRMATION ENGINE

Let us recall that the confirmation engine is supposed to
be a unit in CoRiMa supporting the confirmation principle. It
should be universal, thus independent on objects it is used for.
It must allow an easy creation of a new confirmation kind for
a given type of an object. In the end, it must be able to integrate



new confirmation kinds and thereby enable the confirmation
principle for any corresponding object.

In this section, we elaborate a possible design of the con-
firmation engine. We show how it fits the architecture of
CoRiMa.

Since the implementation itself is out of scope of this
paper, we only present basic code snippets in C# of its most
interesting parts. We follow a similar scenario as we did
while describing the mapping of DEMO to the confirmation
principle in section IV. We start with an overall architecture by
identifying the key components. We subsequently investigate
these components deeper. We discuss a design of a requester,
an executor, and a confirmation service. We show how the
notions of the confirmation pattern, a confirmation, and an
affirmation are embodied in these components. We continue
with a confirmation and an affirmation kind, and we explain
how they are integrated in the whole engine. We end up with
revocations by determining their proper involvement.

A. The Overall Architecture (The Confirmation Clients and
the Confirmation Service

CoRiMa is a client-server application platform. Users inter-
act only with a CoRiMa client. In a suitable user interface,
they observe and maintain financial-based data. All the data
changes are communicated to a server that stores them into
an underlying risk-management system. The confirmation is
a process (a sequence of acts) between two users, the first
one in a role of a requester and the second one in a role
of a confirmator. The requester performs a data change, and
a confirmator approves it before leaving it in an underlying
risk-management system.

Figure 6 covers the usual confirmation process. A user in
a requester role is connected to a CoRiMa client. It performs
a change of a certain data object. The object is sent to a server
within a request call. The server just publishes a temporary
created object for the corresponding confirmator. The object
is transferred to the CoRiMa client and displayed within an
user interface designed for making confirmations.

A user in a role of a confirmator confirms the given object
(i.e., it creates the affirmation) and sends it back to a server.
Finally, the confirmed object is saved to the risk-management
system by the confirmation service.

Fig. 6. General Confirmation Process

It is obvious that a unit supporting such a confirmation
process must take a part on both, client, and server side.

On the client side, two components must be introduced.
The first component comes from the requester, the second
from the confirmator point of view. Let us call them Re-
quester Client and Confirmator Client. These components
represent actors in DEMO, the initiator and the executor.
They provide methods for performing all valid acts. Tech-
nically, RequesterClient and ConfirmatorClient
are classes that mediate all clients’ demands to the server
(see the C# code snippet below). For a simplicity, access
modifiers and the detailed implementation are omitted. The
ConfirmatorClient will be implemented analogously.

class RequesterClient<...>
...
void Request(object obj) {

// Client-server call requesting an
// affirmation of an object

};
void Quit(object obj) { ... };
void Accept(object obj) { ... };
void Reject(object obj) { ... };
...
}

On the server, a confirmation service component will take
a part. It is a component responsible for reacting on acts
performed on the client. It basically contains two subcom-
ponents, Confirmation Provider and a Confirmation Handler.
The Confirmation Provider publishes end points to which the
client-server calls are communicated. The calls are directly
forwarded to a Confirmation Handler that maintains the whole
confirmation process. Technically, these subcomponents are
implemented by two classes, ConfirmationProvider
and ConfirmationHandler. Again, we omit the imple-
mentation details and concentrate on the general structure only.
We list the code snippets below.

class ConfirmationProvider
...
void OnRequested(

...,
object obj) {

// Forward of a request to a
Confirmation Handler

};
void OnQuit(...) { ... };
void OnAccepted(...) { ... };
void OnRejected(...) { ...};
void OnPromised(... { ... };
void OnDeclined(...) { ... };
void OnStated(...) { ... };
void OnStopped(...) { ... };
...
}

class ConfirmationHandler {
...



void Register(...) { }

void Request(
...,
object obj) {

// Request confirmation of a given id
};
void Quit(...) { ... };
void Accept(...) { ... };
void Reject(...) { ... };
void Promise(...) { ... };
void Decline(...) { ... };
void State(...) { ... };
void Stop(...) { ... };
...
}

In this section, we clarified key components of the whole
confirmation engine architecture. A requester and a confirma-
tor roles, we identified in subsection IV-A, are represented
by RequesterClient and ConfirmatorClient. Both
mediate demands to the server side. The confirmation princi-
ple itself is realised using ConfirmationProvider and
ConfirmationHandler. These constitute a Confirmation
Service maintaining the entire confirmation logic. In the next
section, we describe how the confirmation pattern, a confir-
mation, and an affirmation fits into the Confirmation Service.

B. The Confirmation Pattern in the Confirmation Service

The confirmation in CoRiMa is a sequence of legal acts
(see subsection IV-B). Their legality is given by the current
context of a confirmation (who is executing the act, which
acts have already passed, and which object is a subject of
the confirmation). Such a sequence must respect a certain
confirmation pattern. We already pointed out that we suppose
the standard transaction pattern in DEMO should satisfy all
needs for confirming various objects. Thus, the valid subse-
quences of acts in a confirmation are driven by a standard
transaction pattern.

In fact, the Confirmation Service, we built up in the previous
section, is merely an implementation of this pattern. It contains
a method for each possible act in the standard transaction
pattern. It behaves in accordance to that pattern and evaluates
if a given act (method call) is legal in the current situation. If
so, it moves the confirmation into another state.

Each confirmation in CoRiMa is of a specific kind, a
confirmation kind. The purpose of each confirmation is a
creation of an affirmation. Technically, an affirmation is just
a set of properties and their values. It is an instance of a class
specifying these properties. Confirmation Service only have to
know how to deal with such an instance. When a confirmator
performs a state act, a new value of this instance is
delivered within a client-server call. In case the Confirmation
Service persists this value, a proper way of persisting it must
take place. We already explained in subsection IV-B) that
an affirmation kind specifies the information contained in an

affirmation (being its product). It means that if a Confirmation
Service knows beforehand the affirmation kind, it can persist
the affirmation appropriately.

Now, we are ready to discuss which information is actually
needed by a Confirmation Service to serve the acts performed
on the client (e.g. request or state). It must at least
know the confirmation kind, and the affirmation kind, and the
object being confirmed. To identify this information smoothly,
we introduce a concept of registrations. The confirmation
kind is paired with the corresponding affirmation kind and
registered with a confirmation handler. All client-server calls
use the identifier of a registration to manifest in which
confirmation kind they are interested in. The methods of
ConfirmationHandler are enhanced as follows:

...
void Register(

int registrationId,
IConfirmationKind ck,
IAffirmationKind ak);

void Request(
int registrationId,
object obj);

...

In this section, we outlined that the Confirmation Service
implements the complete transaction pattern from DEMO. It
registers pairs of confirmation kinds and affirmation kinds,
and it uses these registrations for handling the client-server
calls. To recognise the registered pair, registrationId is
placed in each client-server call. In the next section, we show
the purpose of a confirmation kind and an affirmation kind,
and we describe how the Confirmation Service uses them.

C. The Role of a Confirmation Kind and an Affirmation Kind

The primary responsibility of a confirmation kind is to
manage the process flow, namely to:

• decide if the act is allowed or not,
• specify whether the act is tacit4 or not.
Next, in CoRiMa, it is necessary to support custom actions

tied to different acts in different confirmation kinds. For ex-
ample, sending an email after giving a promise is a custom
action that is applied only for some confirmation kinds. Thus,
the second responsibility of a confirmation kind is to specify
these custom actions.

Let us consider an interface of a confirmation kind in
the code-snippet below. If each method is implemented, the
Confirmation Service can take it into account. For instance, if
the promise happens, the Confirmation Service can execute
PromiseAct defining a custom action (e.g. sending an
email).

Another example is a tacit execution. Let us consider
a situation when the accept is tacit, and the reject is not

4A tacit execution of an act means that the act is performed automatically,
without being explicitly requested.



allowed. If a confirmator performs the state, the Confirma-
tion Service can react by directly moving the confirmation
into the state accepted and execute the custom method
AcceptAct.

interface IConfirmationKind {
Act RequestAct { get; set; }
Act QuitAct { get; set; }
Act AcceptAct { get; set; }
Act RejectAct { get; set; }
Act PromiseAct { get; set; }
Act DeclineAct { get; set; }
Act StateAct { get; set; }
Act StopAct { get; set; }
}

class Act {
bool IsAllowed { get; }
bool IsTacit { get; set; }
Action<...> Execute { get; set; }
}

An affirmation kind is implemented as a class having a set of
custom properties characterising the affirmation. The requester
and the confirmator operate with those properties while per-
forming acts (e.g., if the requester is deciding whether the
stated affirmation is acceptable or not).

To sum up, confirmation kinds define the process flow and
the custom behaviour of the Confirmation Service. Affirmation
kinds hold custom properties, whose values constitute the
affirmation.

D. Revocations in the Confirmation Service

In CoRiMa, a revocation is a situation when a requester
or a confirmator change their mind just after performing an
act. If we want to support such situation, we have to enhance
the confirmation senrvice.

In DEMO, four revocation patterns exist in the complete
transaction pattern (section II). We believe that by extending
the implementation with revocation patterns, we cover all ex-
ceptional cases within the confirmation principle. The changes
will affect all the identified components. We do not pursue this
topic any further here, let us just show the relevant extension
of RequesterClient:

class RequesterClient<...>
...
void RevokeRequest(object obj);
void RevokeAccept(object obj);
...
}

E. Confirmation Engine Summary

We conclude our description of the confirmation engine
with Figure 7 illustrating how the engine fits into the CoRiMa
infrastructure.

Fig. 7. Confirmation engine in the CoRiMa infrastructure

The confirmation engine consists of the following key
components:

• RequesterClient
• ConfirmatorClient
• ConfirmationProvider
• ConfirmationHandler

The client plugin dedicated for requesters uses
RequesterClient to mediate its requests to the server.
The client plugin for confirmators handles its demands via
ConfirmatorClient.

The server publishes end points using
ConfirmationProvider that forwards all requests
into ConfirmationHandler. This is a central unit
handling the entire confirmation process. Without an extra
information, this unit is useless. It must be supplemented by
ConfirmationKind paired with AffirmationKind.
Both are registered with ConfirmationHandler during
the CoRiMa server startup.

VI. AN ILLUSTRATIVE EXAMPLE

Let us demonstrate how the engine can be used to address
a concrete problem.

Let us consider deals and their confirmations. Each creation
of a deal must be confirmed before the deal ends up in the
risk-management system. It means that the created deal is
not automatically persisted in the risk-management system.
Instead, it stays in a temporary state until a privileged con-
firmator approves it. In case the confirmator is not satisfied
with the deal, he can deny the creation and drop a comment
explaining why.

First, we clarify the whole problem deeper and write down
rules for deal confirmations. Second, we show how the rules
influence the implementation. We conclude with a description
of how the entire integration works.

A. Rules of the Deal Confirmation Case Study

To successfully integrate the confirmation of deals into
CoRiMa, we have to scrutinize the problem and specify the
rules first.



• Rule (1): The confirmator is not allowed to refuse a
request to perform a confirmation. Once he is asked to
confirm a deal, he has to produce a result.

• Rule (2): No revocations are allowed. Neither the re-
quester, nor the confirmator can change their minds after
performing an act.

• Rule (3): As soon as the confirmator approves or denies
the deal, the confirmation is over. The requester cannot
express a disagreement with the confirmator’s decision.

• Rule (4): An email notification is sent to a confirmator
once a request is performed.

• Rule (5): The confirmator does not have other option but
to approve or deny a deal. He can just optionally leave a
comment.

We described that the confirmation engine (respectively
its confirmation handler) does not support any confirmation
process on its own. This knowledge is represented by injected
confirmation kind and an affirmation kind. Both the kinds have
to be implemented and registered in the confirmation handler.
Thus we have to implement the following:

• DealConfirmationKind, a class representing a con-
firmation kind. The interface IConfirmationKind
must be implemented by this class.

• DealAffirmationKind, a class representing an af-
firmation kind.

The way the classes are implemented directly depends on
the rules stated before. Let us examine each rule and describe
how it is implemented:

• Rule (1): The fact that the confirmator cannot refuse
a confirmation request means that the promise
act is performed tacitly. The implementation of
DealConfirmationKind must consider it and set a
value of its PromiseAct property to IsTacit=true.

• Rule (2): No revocation is allowed, thus all the properties
regarding the revocations must be set accordingly
(e.g. RevokeRequestAct.IsAllowed=false).

• Rule (3): Because the requester cannot actually react on
a decision done by a confirmator, his accept is tacit5.
That means the property AcceptAct must reflect this.

• Rule (4): Sending of an email is a custom action. It must
follow the request. Thus the method Execute of
RequestAct must be implemented to send an email
to the confirmator.

• Rule (5): The options available to a confirmator determine
directly how DealAffirmationKind will look like.
It must be a class having two properties. One of a
type enum, having two possible values: Approved and
Denied. The second property representing a comment,
so most probably of a type string.

In this part, we described how each of the rules af-
fects the implementation of DealConfirmationKind and
DealAffirmationKind. In the next part, we register them

5This means that the result phase will practically lack the accept act,
however, formally, it is present, so the transaction axiom is still valid.

in a confirmation handler. We show how the requester and the
confirmator undertake the expected deal confirmation process.

B. Deal Confirmation Process

Let us demonstrate the entire deal confirmation process now.
It is depicted in Figure 8.

Fig. 8. Deal Confirmation Process

During a CoRiMa server startup, the server-side Deal Con-
firmation plugin is loaded and DealConfirmationKind
together with DealAffirmationKind are registered in the
confirmation handler under a specific identifier Id, let us
assume the number 248. This identifier must be known to
both the client and the server-side.

A pair of client-side CoRiMa plugins must be present to
provide user interfaces for the deal confirmations. One plugin
aimed for the creation of the deal, the other is dedicated
for its approval. Once a requester creates a deal, the deal
must be confirmed. It is done by pressing a Request button.
The command related to this button is implemented as follows:

OnRequestExecuted(Deal deal) {
var rct = new RequesterClient(248);
rct.Request(deal);
...
}

This method results in a client/server call to the confirmation
provider. The provider forwards the call to the confirmation
handler asking for a confirmation identified by 248. The con-
firmation handler searches for the confirmation kind registered
under the number 248. Subsequently, the handler changes the
status of the confirmation to requested, and it executes the
method Execute of the corresponding RequestAct. Since
RequestAct of the DealAffirmationKind has to send
an email to the confirmator, it is done consequently. Because
the PromiseAct is tacit, the handler instantly adjusts the
status of the confirmation to promised.

Now, the whole process waits for the confirmator’s act.
The client-side plugin Deal Approval responsible for making
approvals is designed for this purpose. Its implementation is
more or less analogical to the previous one, thus we do not
elaborate it any further.



VII. RELATED WORK

Formetis is a Dutch commercial company that has devel-
oped and successfully applied a DEMO Engine (also called
a DEMO Processor) for its customers, as documented in [5]
and [7]. The Engine enables the construction and execution of
DEMO models. It is also implemented in the .Net platform
using the C# language. The engine itself is independent on
the technological environment. It has been used to implement
desktop workflow applications and an educational application
http://demoworld.nl.

The first DEMO Engine application in production is a case
management system for a company that provides energy and
utility services. The customers – citizens – are active co-
producers of the service by providing information, coordina-
tion of some tasks, approval of decisions, etc. The contract
covers issues such as type of services provided, costs, costs
calculation procedures, conditions for payments, letters, mails,
instructions for the subcontractors, etc. There is an enforced
compliance to legal procedures, policies, conditions, approvals
etc.

Formetis’s solution is currently the leading industrial solu-
tion of a software system based on DEMO and its underlying
theories. However, its scope is much broader than our con-
firmation engine. It is a complete general workflow engine,
while our confirmation engine is a rather lightweight, compact
module for CoRiMa fully focused on its specific task. Overall,
technically, it would be perfectly possible to use Formetis’
DEMO engine as a confirmation engine, however, from the
software engineering point, often lightweight focused solutions
may be preferred, as is the case of CoRiMa.

Agreement Technologies [9] may seem similar to our
approach, however there is a fundamental difference. Our
approach addresses confirmations of ontological transactions,
which cannot be automated [4], while agreement technologies
are focused on automated agents, i.e. the infological level.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we mapped the PSI theory to the confirmation
principle. We designed and outlined an implementation of
a confirmation engine, as a unit supporting the confirmation
principle in the CoRiMa framework. The described imple-
mentation has been fully implemented and deployed to a
testing environment of a banking institution. As we do not
have feedback from the operation yet, we cannot perform a
thorough evaluation. However, the validation by the customer
passed successfully. It proves that the concepts were designed
adequately, and the mapping fulfilled its goal.

Due to space limitations, we covered just the essential
aspects of the implementation. The goal of this paper was
to show that utilising the PSI theory for a design of the
confirmation engine in CoRiMa brought considerable benefits.
Mainly, designing the confirmation pattern by mapping the
corresponding concepts from the PSI theory results in a
guarantee that all possible confirmation situations are covered.

Since CoRiMa is a running project, we now want to focus
on improvements of the engine. We want to emphasize the

implementation of simple and self-explaining components to
speed-up an integration of requests on confirming certain
objects.

ACKNOWLEDGMENT

We would like to express a special thanks to mr. Robert
Lukas who came up with a concept for a confirmation principle
in CoRiMa. Indeed, this concept evoked an idea that such
a kind of request perfectly fits DEMO methodology. This
opens up a space for further mapping of the theoretically
grounded DEMO to a commercial software requirements.

This paper was written with the support of the SGS15 CTU
grant no. 118/OHK3/1T/18.

REFERENCES

[1] Céline Décosse, Wolfgang A. Molnar, and Henderik A. Proper. What
Does DEMO Do? A Qualitative Analysis about DEMO in Practice:
Founders, Modellers and Beneficiaries. In Wil van der Aalst, John
Mylopoulos, Michael Rosemann, Michael J. Shaw, Clemens Szyperski,
David Aveiro, José Tribolet, and Duarte Gouveia, editors, Advances
in Enterprise Engineering VIII, volume 174, pages 16–30. Springer
International Publishing, Cham, 2014.

[2] Jan L. G. Dietz. Enterprise ontology: theory and methodology. Springer,
Berlin; New York, 2006.

[3] Jan L.G. Dietz. THE ESSENCE OF ORGANIZATION - AN INTRODUC-
TION TO ENTERPRISE ENGINEERING. Sapio bv, 2012.

[4] Jan L.G. Dietz. Red garden gnomes don’t exist. Sapio Enterprise
Engineering, 2013.

[5] Sérgio Guerreiro, Steven J. H. van Kervel, André Vasconcelos, and José
Tribolet. Executing Enterprise Dynamic Systems Control with the Demo
Processor: The Business Transactions Transition Space Validation. In
Wil van der Aalst, John Mylopoulos, Michael Rosemann, Michael J.
Shaw, Clemens Szyperski, Hakikur Rahman, Anabela Mesquita, Isabel
Ramos, and Barbara Pernici, editors, Knowledge and Technologies in
Innovative Information Systems, volume 129, pages 97–112. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[6] Dietz Jan and Hoogervorst Jan. Theories in Enterprise Engineering
Memorandum - PSI.

[7] Steven JH Van Kervel, John Hintzen, Tycho van Meeuwen, Joost Ver-
molen, and Bob Zijlstra. A professional case management system in
production, modeled and implemented using DEMO. In Molnar, Wolf-
gang A., Henderik A. Proper, Jelena Zdravkovic, Peri Loucopoulos, Oscar
Pastor, and Sybren de Kinderen, editors, Complementary proceedings
of the 8th Workshop on Transformation & Engineering of Enterprises
(TEE 2014), and the 1st International Workshop on Capability-oriented
Business Informatics (CoBI 2014), volume 1182, Geneva, Switzerland,
July 2014. Technical University of Aachen.

[8] Martin Op ’t Land and Jan L. G. Dietz. Benefits of Enterprise Ontology
in Governing Complex Enterprise Transformations. In Wil van der
Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, Clemens
Szyperski, Antonia Albani, David Aveiro, and Joseph Barjis, editors,
Advances in Enterprise Engineering VI, volume 110, pages 77–92.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[9] Sascha Ossowski. Agreement Technologies. Springer, 2013.


