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Abstract. The distribution semantics is an approach for integrating
logic programming and probability theory that underlies many languages
and has been successfully applied in many domains. When the program
has function symbols, the semantics was defined for special cases: either
the program has to be definite or the queries must have a finite number
of finite explanations. In this paper we show that it is possible to define
the semantics for all programs.

Keywords: Distribution Semantics, Function Symbols, ProbLog, Probabilistic
Logic Programming

1 Introduction

The distribution semantics [1, 2] was successfully applied in many domains and
underlies many languages that combine logic programming with probability the-
ory such as Probabilistic Horn Abduction, Independent Choice Logic, PRISM,
Logic Programs with Annotated Disjunctions and ProbLog.

The definition of the distribution semantics can be given quite simply in the
case of no function symbols in the program: a probabilistic logic program under
the distribution semantics defines a probability distribution over normal logic
programs called worlds and the probability of a ground query can be obtained
by marginalizing the joint distribution of the worlds and the query. In the case
the program has function symbols, however, this simple definition does not work
as the probability of individual worlds is zero.

A definition of the distribution semantics for programs with function symbols
was proposed in [1, 3] but restricted to definite programs. The case of normal
programs was taken into account in [4] where the semantics required that the
programs are acyclic. A looser condition was proposed in [5] but still required
each goal to have a finite set of finite explanations.

In this paper we show that the distribution semantics can be defined for all
programs, thus also for programs that have goals with an infinite number of
possibly infinite explanations. We do so by adapting the definition of the well-
founded semantics in terms of iterated fixpoints of [6] to the case of ProbLog,
similarly to the way in which the TP operator has been adapted in [7] to the
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case of stratified ProbLog programs using parameterized interpretations. In the
case of infinite number of infinite explanations, we show that the probability of
queries is defined in the limit and the limit always exists.

We consider the case of ProbLog but the results are equally applicable to all
other languages under the distribution semantics, as there are linear transfor-
mations from one language to another that preserve the semantics.

The paper is organized as follows. Section 2 presents preliminary material
on fixpoints and the well-founded semantics. Section 3 introduces the distribu-
tion semantics for programs without function symbols. Section 4 discusses the
definition of the distribution semantics with function symbols in the case of fi-
nite set of finite explanations. Section 5 represents the main contribution of this
paper and discusses the case of infinite set of infinite explanations. Finally, Sec-
tion 6 concludes the paper. The proofs of the main results are reported in the
Appendix.

2 Preliminaries

A relation on a set S is a partial order if it is reflexive, antisymmetric and
transitive. In the following, let S be a set with a partial order ≤. a ∈ S is an
upper bound of a subset X of S if x ≤ a for all x ∈ X. Similarly, b ∈ S is a lower
bound of X if b ≤ x for all x ∈ X.

a ∈ S is the least upper bound of a subset X of X if a is an upper bound
of X and, for all upper bounds a′ of X, we have a ≤ a′. Similarly, b ∈ S is the
greatest lower bound of a subset X of S if b is a lower bound of X and, for all
lower bounds b′ of X, we have b′ ≤ b. The least upper bound of X is unique, if
it exists, and is denoted by lub(X). Similarly, the greatest lower bound of X is
unique, if it exists, and is denoted by glb(X).

A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for
every subset X of L. We let > denote the top element lub(L) and ⊥ denote the
bottom element glb(L) of the complete lattice L.

Let L be a complete lattice and T : L → L be a mapping. We say T is
monotonic if T (x) ≤ T (y), whenever x ≤ y. We say a ∈ L is the least fixpoint of
T if a is a fixpoint (that is, T (a) = a) and for all fixpoints b of T we have a ≤ b.
Similarly, we define greatest fixpoint.

Let L be a complete lattice and T : L → L be monotonic. Then we define
T ↑ 0 = ⊥; T ↑ α = T (T ↑ (α− 1)), if α is a successor ordinal; T ↑ α = lub({T ↑
β|β < α}), if α is a limit ordinal; T ↓ 0 = >; T ↓ α = T (T ↓ (α − 1)), if α is a
successor ordinal; T ↓ α = glb({T ↓ β|β < α}), if α is a limit ordinal.

Proposition 1. Let L be a complete lattice and T : L→ L be monotonic. Then
T has a lest fixpoint, lfp(T ) and a greatest fixpoint gfp(T ).

A normal program P is a set of normal rules. A normal rule has the form

r = h← b1, . . . , bn, not c1, . . . , not cm (1)

where h, b1, . . . , bn, c1, . . . , cm are atoms.
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The set of ground atoms that can be built with the symbols of a program P
is called the Herbrand base and is denoted as BP .

A two-valued interpretation I is a subset of BP . I is the set of true atoms.
The set Int2 of two-valued interpretations for a program P forms a complete
lattice where the partial order ≤ is given by the subset relation ⊆. The least
upper bound and greatest lower bound are defined as lub(X) =

⋃
I∈X I and

glb(X) =
⋂
I∈X I. The bottom and top element are respectively ∅ and BP .

A three-valued interpretation I is a pair 〈IT ; IF 〉 where IT and IF are subsets
of BP and represent respectively the set of true and false atoms. The union of
two three-valued interpretations 〈IT , IF 〉 and 〈JT , JF 〉 is defined as 〈IT , IF 〉 ∪
〈JT , JF 〉 = 〈IT∪JT , IF∪JF 〉. The intersection of two three-valued interpretations
〈IT , IF 〉 and 〈JT , JF 〉 is defined as 〈IT , IF 〉 ∩ 〈JT , JF 〉 = 〈IT ∩ JT , IF ∩ JF 〉.

The set Int3 of three-valued interpretations for a program P forms a complete
lattice where the partial order ≤ is defined as 〈IT , IF 〉 ≤ 〈JT , JF 〉 if IT ⊆ JT
and IF ⊆ JF . The least upper bound and greatest lower bound are defined
as lub(X) =

⋃
I∈X I and glb(X) =

⋂
I∈X I. The bottom and top element are

respectively 〈∅, ∅〉 and 〈BP ,BP 〉.
The well-founded semantics (WFS) assigns a three-valued model to a pro-

gram, i.e., it identifies a three-valued interpretation as the meaning of the pro-
gram. The WFS was given in [8] in terms of the least fixpoint of an operator that
is composed by two sub-operators, one computing consequences and the other
computing unfounded sets. We give here the alternative definition of the WFS
of [6] that is based on a different iterated fixpoint.

Definition 1. For a normal program P , sets Tr and Fa of ground atoms, and
a 3-valued interpretation I we define

OpTruePI (Tr) = {a|a is not true in I; and there is a clause b← l1, ..., ln in P ,
a grounding substitution θ such that a = bθ and for every 1 ≤ i ≤ n either
liθ is true in I, or liθ ∈ Tr};

OpFalsePI (Fa) = {a|a is not false in I; and for every clause b ← l1, ..., ln in P
and grounding substitution θ such that a = bθ there is some i (1 ≤ i ≤ n)
such that liθ is false in I or liθ ∈ Fa}.

In words, the operator OpTruePI extends the interpretation I to add the new

atomic facts that can be derived from P knowing I, while OpFalsePI adds the new
negations of atomic facts that can be shown false in P by knowing I. OpTruePI
and OpFalsePI are both monotonic [6], so they both have a least and greatest
fixpoints. An iterated fixpoint operator builds up dynamic strata by constructing
successive three-valued interpretations as follows.

Definition 2 (Iterated Fixed Point). For a normal program P , let IFPP :
Int3→ Int3 be defined as IFPP (I) = I ∪ 〈lfp(OpTruePI ), gfp(OpFalsePI )〉.
IFPP is monotonic [6] and thus as a least fixed point lfp(IFPP ). Moreover, the
well-founded model WFM (P ) of P is in fact lfp(IFPP ). Let δ be the smallest
ordinal such that WFM (P ) = IFPP ↑ δ. We refer to δ as the depth of P . The
stratum of atom a is the least ordinal β such that a ∈ IFPP ↑ β (where a may
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be either in the true or false component of IFPP ↑ β). Undefined atoms of the
well-founded model do not belong to any stratum – i.e. they are not added to
IFPP ↑ δ for any ordinal δ.

3 The Distribution Semantics for Programs without
Function Symbols

We present the distribution semantics for the case of ProbLog [9] as it is the
language with the simplest syntax. A ProbLog program P is composed by a set
of normal rules R and a set F of probabilistic facts. Each probabilistic fact is of
the form pi :: ai where pi ∈ [0, 1] and ai is an atom, meaning that each ground
instantiation aiθ of ai is true with probability pi and false with probability
1 − pi. Each world is obtained by selecting or rejecting each grounding of all
probabilistic facts.

An atomic choice is the selection or not of grounding Fθ of a probabilistic
fact F . It is represented with the triple (F, θ, i) where i ∈ {0, 1}. A set κ of atomic
choices is consistent if it does not contain two atomic choices (F, θ, i) and (F, θ, j)
with i 6= j (only one alternative is selected for a ground probabilistic fact).
The function consistent(κ) returns true if κ is consistent. A composite choice
κ is a consistent set of atomic choices. The probability of composite choice κ
is P (κ) =

∏
(Fi,θ,1)∈κ pi

∏
(Fi,θ,0)∈κ 1− pi where pi is the probability of the i-th

probabilistic fact Fi. A selection σ is a total composite choice, i.e., it contains
one atomic choice for every grounding of each probabilistic fact. A world wσ is
a logic program that is identified by a selection σ. The world wσ is formed by
including the atom corresponding to each atomic choice (F, θ, 1) of σ.

The probability of a world wσ is P (wσ) = P (σ). Since in this section we
are assuming programs without function symbols, the set of groundings of each
probabilistic fact is finite, and so is the set of worlds WP . Accordingly, for a
ProbLog program P, WP = {w1, . . . , wm}. Moreover, P (w) is a distribution
over worlds:

∑
w∈WP P (w) = 1. We call sound a program for which every world

has a two-valued well-founded model. We consider only sound programs, as the
uncertainty should be handled by the choices rather than by the semantics of
negation.

Let q be a query in the form of a ground atom. We define the conditional
probability of q given a world w as: P (q|w) = 1 if q is true in w and 0 otherwise.
Since the program is sound, q can be only true or false in a world. The probability
of q can thus be computed by summing out the worlds from the joint distribu-
tion of the query and the worlds: P (q) =

∑
w P (q, w) =

∑
w P (q|w)P (w) =∑

w|=q P (w).

4 The Distribution Semantics for Programs with
Function Symbols

When a program contains functions symbols there is the possibility that its
grounding may be infinite. If so, the number of atomic choices in a selection that
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defines a world is countably infinite and there is an uncountably infinite number
of worlds. In this case, the probability of each individual world is zero since it is
the product of infinite numbers all smaller than one. So the semantics of Section
3 is not well-defined.

Example 1. Consider the program

p(0)← u(0). t← ¬s. F1 = a :: u(X).
p(s(X))← p(X), u(X). s← r,¬q. F2 = b :: r.

q ← u(X).

The set of worlds is infinite and uncountable. In fact, each world can be put
in a one to one relation with a selection and a selection can be represented as
a countable sequence of atomic choices of which the first involves fact F2, the
second F1/{X/0}, the third F1/{X/s(0)} and so on. The set of selections can be
shown uncountable by Cantor’s diagonal argument. Suppose the set of selections
is countable. Then the selections could be listed in order, suppose from top to
bottom. Suppose the atomic choices of each selection are listed from left to right.
We can pick a composite choice that differs from the first selection in the first
atomic choice (if (F2, ∅, k) is the first atomic choice of the first selection, pick
(F2, ∅, 1− k)), from the second selection in the second atomic choice (similar to
the case of the first atomic choice) and so on. In this way we have obtained a
selection that is not present in the list because it differs from each selection in
the list for at least an atomic choice. So it is not possible to list the selections
in order.

We now present the definition of the distribution semantics for programs with
function symbols following [4]. The semantics for a probabilistic logic program P
with function symbols is given by defining a probability measure µ over the set of
worlds WP . Informally, µ assigns a probability to a set of subsets of WP , rather
than to every element of (the infinite set) WP . The approach dates back to [10]
who defined a probability measure µ as a real-valued function whose domain is
a σ-algebra Ω on a set W called the sample space. Together 〈W, Ω, µ〉 is called
a probability space.

Definition 3. [11, Section 3.1] The set Ω of subsets of W is a σ-algebra on
the set W iff (σ-1) W ∈ Ω; (σ-2) Ω is closed under complementation, i.e.,
ω ∈ Ω → (W \ ω) ∈ Ω; and (σ-3) Ω is closed under countable union, i.e., if
ωi ∈ Ω for i = 1, 2, . . . then

⋃
i ωi ∈ Ω.

The elements of Ω are called measurable sets. Importantly, for defining the dis-
tribution semantics for programs with function symbols, not every subset of W
need be present in Ω.

Definition 4. [10] Given a sample space W and a σ-algebra Ω of subsets of W,
a probability measure is a function µ : Ω → R that satisfies the following axioms:
(µ-1) µ(ω) ≥ 0 for all ω ∈ Ω; (µ-2) µ(W) = 1; (µ-3) µ is countably additive,
i.e., if O = {ω1, ω2, . . .} ⊆ Ω is a countable collection of pairwise disjoint sets,
then µ(

⋃
ω∈O) =

∑
i µ(ωi).

The Distribution Semantics is Well-Defined for All Normal Programs

73



We first consider the finite additivity version of probability spaces. In this
stronger version, the σ-algebra is replaced by an algebra.

Definition 5. [11, Section 3.1] The set Ω of subsets of W is an algebra on the
set W iff it respects conditions (σ-1), (σ-2) and condition (a-3): Ω is closed
under finite union, i.e., ω1 ∈ Ω,ω2 ∈ Ω → (ω1 ∪ ω2) ∈ Ω
The probability measure is replaced by a finitely additive probability measure.

Definition 6. Given a sample space W and an algebra Ω of subsets of W, a
finitely additive probability measure is a function µ : Ω → R that satisfies
axioms (µ-1) and (µ-2) of Definition 4 and axiom (m-3): µ is finitely additive,
i.e., ω1 ∩ ω2 = ∅ → µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) for all ω1, ω2 ∈ Ω.

Towards defining a suitable algebra given a probabilistic logic program P, we
define the set of worlds ωκ compatible with a composite choice κ as ωκ = {wσ ∈
WP |κ ⊆ σ}. Thus a composite choice identifies a set of worlds. For programs
without function symbols P (κ) =

∑
w∈ωκ P (w).

Given a set of composite choices K, the set of worlds ωK compatible with K
is ωK =

⋃
κ∈K ωκ. Two composite choices κ1 and κ2 are incompatible if their

union is not consistent. A set K of composite choices is pairwise incompatible if
for all κ1 ∈ K,κ2 ∈ K, κ1 6= κ2 implies that κ1 and κ2 are incompatible.

Regardless of whether a probabilistic logic program has a finite number of
worlds or not, obtaining pairwise incompatible sets of composite choices is an
important problem. This is because the probability of a pairwise incompatible
set K of composite choices is defined as P (K) =

∑
κ∈K P (κ) which is easily

computed. Two sets K1 and K2 of finite composite choices are equivalent if they
correspond to the same set of worlds: ωK1

= ωK2
.

One way to assign probabilities to a set K of composite choices is to construct
an equivalent set that is pairwise incompatible; such a set can be constructed
through the technique of splitting. More specifically, if Fθ is an instantiated fact
and κ is a composite choice that does not contain an atomic choice (F, θ, k)
for any k, the split of κ on Fθ is the set of composite choices Sκ,Fθ = {κ ∪
{(F, θ, 0)}, κ∪{(F, θ, 1)}}. It is easy to see that κ and Sκ,Fθ identify the same set
of possible worlds, i.e., that ωκ = ωSκ,Fθ , and that Sκ,Fθ is pairwise incompatible.
The technique of splitting composite choices on formulas is used for the following
result [12].

Theorem 1 (Existence of a pairwise incompatible set of composite choices [12])
Given a finite set K of composite choices, there exists a finite set K ′ of pairwise
incompatible composite choices such that K and K ′ are equivalent.

Proof: Given a finite set of composite choices K, there are two possibilities to
form a new set K ′ of composite choices so that K and K ′ are equivalent:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, let K ′ =
K \ {κ2}.

2. splitting elements: if κ1, κ2 ∈ K are compatible (and neither is a superset
of the other), there is a (F, θ, k) ∈ κ1 \ κ2. We replace κ2 by the split of κ2
on Fθ. Let K ′ = K \ {κ2} ∪ Sκ2,Fθ.
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In both cases ωK = ωK′ . If we repeat this two operations until neither is ap-
plicable we obtain a splitting algorithm that terminates because K is a finite
set of composite choices. The resulting set K ′ is pairwise incompatible and is
equivalent to the original set. ♦

Theorem 2 (Equivalence of the probability of two equivalent pairwise incom-
patible finite set of finite composite choices [13]) If K1 and K2 are both pairwise
incompatible finite sets of finite composite choices such that they are equivalent
then P (K1) = P (K2).

For a probabilistic logic program P, we can thus define a unique probability
measure µ : ΩP → [0, 1] where ΩP is defined as the set of sets of worlds identified
by finite sets of finite composite choices: ΩP = {ωK |K is a finite set of finite
composite choices }. ΩP is an algebra over WP since WP = ωK with K = {∅}.
Moreover, the complement ωcK of ωK where K is a finite set of finite composite
choice is ωK where K is a finite set of finite composite choices. In fact, K can
obtained with the function duals(K) of [12] that performs Reiter’s hitting set
algorithm over K, generating an element κ of K by picking an atomic choice
(F, θ, k) from each element of K and inserting in κ the atomic choice (F, θ, 1−k).
After this process is performed in all possible ways, inconsistent sets of atom
choices are removed obtaining K. Since the possible choices of the atomic choices
are finite, so is K. Finally, condition (a-3) holds since the union of ωK1

with ωK2

is equal to ωK1∪K2 for the definition of ωK .
The corresponding measure µ is defined by µ(ωK) = P (K ′) where K ′ is a

pairwise incompatible set of composite choices equivalent to K. 〈WP , ΩP , µ〉 is a
finitely additive probability space according to Definition 6 because µ(ω{∅}) = 1,
µ(ωK) ≥ 0 for all K and if ωK1

∩ωK2
= ∅ and K ′1 (K ′2) is pairwise incompatible

and equivalent to K1 (K2), then K ′1 ∪K ′2 is pairwise incompatible and

µ(ωK1
∪ωK2

) =
∑

κ∈K′1∪K′2

P (κ) =
∑

κ1∈K′1

P (κ1)+
∑

κ2∈K′2

P (κ2) = µ(ωK1
)+µ(ωK2

).

Given a query q, a composite choice κ is an explanation for q if ∀w ∈ ωκ : w |= q.
A set K of composite choices is covering wrt q if every world in which q is true
belongs to ωK

Definition 7. For a probabilistic logic program P, the probability of a ground
atom q is given by P (q) = µ({w|w ∈WP , w |= q}).

If q has a finite set K of finite explanations such that K is covering then {w|w ∈
WP ∧ w |= q} = ωK ∈ ΩT and we say that P (q) is finitely well-defined for the
distribution semantics. A program P is finitely well-defined if the probability of
all ground atoms in the grounding of P is finitely well-defined.

Example 2. Consider the program of Example 1. The set K = {κ} with κ =
{(F1, {X/0}, 1), (F1, {X/s(0)}, 1)} is a pairwise incompatible finite set of finite
explanations that are covering for the query p(s(0)). Definition 7 therefore ap-
plies, and P (p(s(0))) = P (κ) = a2
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5 Infinite Covering Set of Explanations

In this section we go beyond [4] and we remove the requirement of the finiteness
of the covering set of explanations and of each explanation for a query q.

Example 3. In Example 1, the query s has the pairwise incompatible covering
set of explanations Ks = {κs0, κs1, . . .} with

κsi = {(F2, ∅, 1), (F1, {X/0}, 1), . . . , (F1, {X/si−1(0)}, 1), (F1, {X/si(0)}, 0)}

where si(0) is the term where the functor s is applied i times to 0. So Ks is count-
able and infinite. A covering set of explanation for t is Kt = {{(F2, ∅, 0)}, κt}
where κt is the infinite composite choice

κt = {(F2, ∅, 1), (F1, {X/0}, 1), (F1, {X/s(0)}, 1), . . .}

For a probabilistic logic program P, we can define the probability measure
µ : ΩP → [0, 1] where ΩP is defined as the set of sets of worlds identified
by countable sets of countable composite choices: ΩP = {ωK |K is a countable
set of countable composite choices }.
Lemma 3 ΩP is a an σ-algebra over WP .

Proof: (σ-1) is true as in the algebra case. To see that the complement ωcK of
ωK is in ΩP , let us prove by induction that the dual K of K is a countable
set of countable composite choices and then that ωcK = ωK . In the base case,
if K1 = {κ1}, then we can obtain K1 by picking each atomic choice (F, θ, k) of
κ1 and inserting in K1 the composite choice {(F, θ, 1 − k)}. As there is a finite
or countable number of atomic choices in κ1, K1 is a finite or countable set of
composite choices each with one atomic choice.

In the inductive case, assume that Kn−1 = {κ1, . . . , κn−1} and that Kn−1
is a finite or countable set of composite choices. Let Kn = Kn−1 ∪ {κn} and
Kn−1 = {κ′1, κ′2, . . .}. We can obtain Kn by picking each κ′i and each atomic
choice (F, θ, k) of κn. If (F, θ, k) ∈ κ′i, then discard κ′i, else if (F, θ, k′) ∈ κ′i
with k′ 6= k, insert κ′i in Kn. Otherwise generate the composite choice κ′′i where
κ′′i = κ′i ∪ {(F, θ, 1 − k)} and insert it in Kn. Doing this for all atomic choices
(F, θ, k) in κn generates a finite set of composite choices if κn is finite and a
countable number if κn is countable. Doing this for all κ′i we obtain that Kn is a
countable union of countable sets which is a countable set [14, page 3]. ωcK = ωK
because all composite choices of K are incompatible with each world of ωK , as
they are incompatible with each composite choice of K. So ωcK ∈ ΩP . (σ-3) is
true as in the algebra case. ♦

We can see K as limn→∞Kn where Kn = {κ1, . . . , κn}. Each Kn is a finite
set of composite choices and we can compute an equivalent finite pairwise incom-
patible set of composite choices K ′n. For each K ′n we can compute the probability
P (K ′n), noting that the probability of infinite composite choices is 0.

Now consider limn→∞ P (K ′n). We can see the P (K ′n)s as the partial sums
of a series. Moreover, it can be shown that P (K ′n−1) ≤ P (K ′n) so the series
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has non-negative terms. Such a series converges if the sequence of partial sums
is bounded from above [15, page 92]. Since P (K ′n) is bounded by 1, the limit
limn→∞ P (K ′n) exists. So we can define measure µ as µ(ωK) = limn→∞ P (K ′n).

Theorem 4 〈WP , ΩP , µ〉 is a probability space according to Definition 4.

Proof: (µ-1) and (µ-2) hold as for the finite case and for (µ-3) let O =
{ωL1 , ωL2 , . . .} be a countable set of subsets of ΩP such that the ωLis are pair-
wise disjoint. Let L′i be the pairwise incompatible set equivalent to Li and let
L be

⋃∞
i=1 L

′
i. Since the ωLis are pairwise disjoint, then L is pairwise incom-

patible. ΩP is a σ-algebra, so L is countable. Let L be {κ1, κ2, . . .} and let
K ′n be {κ1, . . . , κn}. Then µ(O) = limn→∞ P (K ′n) = limn→∞

∑
κ∈K′n P (κ) =∑

κ∈L P (κ). Since L =
⋃∞
i=1 L

′
i, by rearranging the terms in the last summation

we get µ(O) =
∑
κ∈L P (κ) =

∑∞
n=1 P (L′n) =

∑∞
n=1 µ(ωLn). ♦

For a probabilistic logic program P, the probability of a ground atom q is
again given by P (q) = µ({w|w ∈ WP , w |= q}). If q has a countable set K of
explanations such that K is covering then {w|w ∈ WP ∧ w |= q} = ωK ∈ ΩP
and we say that P (q) is well-defined for the distribution semantics. A program
P is well-defined if the probability of all ground atoms in the grounding of P is
well-defined.

Example 4. Consider Example 3. Since the explanations in Ks are pairwise in-
compatible the probability of s can be computed as

P (s) = b(1− a) + ba(1− a) + ba2(1− a) + . . . =
b(1− a)

1− a = b.

since the sum is a geometric series. Kt is also pairwise incompatible and P (κt) =
0 so P (t) = 1− b+ 0 = 1− b which is what we intuitively expect.

We now want to show that every program has countable set of countable expla-
nations that is covering for each query. In the following, we consider only ground
programs that however may be countably infinite, thus they can be the result of
grounding a program with function symbols.

Given two sets of composite choices K1 and K2, define the conjunction K1⊗
K2 of K1 and K2 as K1⊗K2 = {κ1 ∪κ2|κ1 ∈ K1, κ2 ∈ K2, consistent(κ1 ∪κ2)}

Similarly to [7], we define parametrized interpretations and a IFPCP oper-
ator. Differently from [7], here parametrized interpretations associate a set of
composite choices instead of a Boolean formula to each atom.

Definition 8 (Parameterized two-valued interpretations). A parameter-
ized positive two-valued interpretation Tr of a ground probabilistic logic program
P with and atoms BP is a set of pairs (a,Ka) with a ∈ atoms and Ka a set
of composite choices. A parameterized negative two-valued interpretation Fa of
a ground probabilistic logic program P with atoms BP is a set of pairs (a,K¬a)
with a ∈ BP and K¬a a set of composite choices.

Parametrized two-valued interpretations form a complete lattice where the par-
tial order is defined as I ≤ J if ∀(a,Ka) ∈ I, (a, La) ∈ J : ωKa ⊆ ωLa . The
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least upper bound and greatest lower bound always exist and are lub(X) =
{(a,⋃(a,Ka)∈I,I∈X Ka)|a ∈ BP} and glb(X) = {(a,⊗(a,Ka)∈I,I∈X Ka)|a ∈ BP}.
The top element > is {(a, {∅})|a ∈ BP} and the bottom element ⊥ is {(a, ∅)|a ∈
BP}.

Definition 9 (Parameterized three-valued interpretation). A parameter-
ized three-valued interpretation I of a ground probabilistic logic program P with
atoms BP is a set of triples (a,Ka,K¬a) with a ∈ BP and Ka and K¬a sets of
composite choices.

Parametrized three-valued interpretations form a complete lattice where the par-
tial order is defined as I ≤ J if ∀(a,Ka,K¬a) ∈ I, (a, La, L¬a) ∈ J : ωKa ⊆ ωLa
and ωK¬a ⊆ ωL¬a . The least upper bound and greatest lower bound always exist
and are lub(X) = {(a,⋃(a,Ka,K¬a)∈I,I∈X Ka,

⋃
(a,Ka,K¬a)∈I,I∈X K¬a)|a ∈ BP}

and glb(X) = {(a,⊗(a,Ka,K¬a)∈I,I∈X Ka,
⊗

(a,Ka,K¬a)∈I,I∈X K¬a)|a ∈ BP}. The

top element > is {(a, {∅}, {∅})|a ∈ BP}, the bottom element ⊥ is {(a, ∅, ∅)|a ∈
BP}.

Definition 10. For a ground program P, a two-valued parametrized positive
interpretation Tr with pairs (a, La), a two-valued parametrized negative inter-
pretation Fa with pairs (a,M¬a) and a three-valued parametrized interpretation
I with triples (a,Ka,K¬a), we define OpTrueCPI (Tr) = {(a, L′a)|a ∈ BP} where

L′a =




{{(a, ∅, 1)}} if a ∈ F⋃
a←b1,...,bn,¬c1,...,cm∈R((Lb1 ∪Kb1)⊗ . . .
⊗(Lbn ∪Kbn)⊗K¬c1 ⊗ . . .⊗K¬cm)

if a ∈ BP \ F

OpFalseCPI (Fa) = {(a,M ′a)|a ∈ BP} where

M ′¬a =




{{(a, ∅, 0)}} if a ∈ F⊗

a←b1,...,bn,¬c1,...,cm∈R((M¬b1 ⊗K¬b1) ∪ . . .
∪(M¬bn ⊗K¬bn) ∪Kc1 ∪ . . . ∪Kcm)

if a ∈ BP \ F

Proposition 5 OpTrueCPI and OpFalseCPI are monotonic.

Since OpTrueCPI and OpFalseCPI are monotonic, they have a least fixpoint and
a greatest fixpoint.

Definition 11 (Iterated Fixed Point). For a ground program P, let IFPCP

be defined as IFPCP(I) = {(a,Ka,K¬a)|(a,Ka) ∈ lfp(OpTrueCPI ), (a,K¬a) ∈
lfp(OpFalseCPI )}.

Proposition 6 IFPCP is monotonic.

So IFPCP has a least fixpoint. Let WFMC (P) denote lfp(IFPCP), and let δ
the smallest ordinal such that IFPCP ↑ δ = WFMC (P). We refer to δ as the
depth of P.
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Theorem 7 For a ground probabilistic logic program P with atoms BP , let Kα
a

and Kα
¬a be the formulas associated with atom a in IFPCP ↑ α. For every atom

a and total choice σ, there is an iteration α0 such that for all α > α0 we have:

wσ ∈ ωKα
a
↔WFM (wσ) |= a wσ ∈ ωKα

¬a ↔WFM (wσ) |= ¬a

Theorem 8 For a ground probabilistic logic program P, let Kα
a and Kα

¬a be the
formulas associated with atom a in IFPCP ↑ α. For every atom a and every
iteration α, Kα

a and Kα
¬a are countable sets of countable composite choices.

So every query for every program has a countable set of countable explanations
that is covering and the probability measure is well defined. Moreover, since the
program is sound, for all atoms a, ωKδ

a
= ωcKδ

¬a
where δ is the depth of the

program, as in each world a is either true or false.

5.1 Comparison with Sato and Kameya’s Definition

Sato and Kameya [3] define the distribution semantics for definite programs.
They build a probability measure on the sample space WP from a collection
of finite distributions. Let F be {F1, F2, . . .} and let Xi be a random variable
associated to Fi whose domain is {0, 1}.

The finite distributions P
(n)
P (X1 = k1, . . . , Xn = kn) for n ≥ 1 must be such

that





0 ≤ P (n)
P (X1 = k1, . . . , Xn = kn) ≤ 1∑

k1,...,kn
P

(n)
P (X1 = k1, . . . , Xn = kn) = 1∑

kn+1
P

(n+1)
P (X1 = k1, . . . , Xn+1 = kn+1) = P

(n)
P (X1 = k1, . . . , Xn = kn)

(2)
The last equation is called the compatibility condition. It can be proved [16] from
the compatibility condition that there exists a probability space (WP , ΨP , η)
where η is a probability measure on ΨP , the minimal σ-algebra containing open
sets of WP such that for any n,

η(X1 = k1, . . . , Xn = kn) = P
(n)
T (X1 = k1, . . . , Xn = kn). (3)

P
(n)
P (X1 = k1, . . . , Xn = kn) is defined as P

(n)
P (X1 = k1, . . . , Xn = kn) =

p1 . . . pn where pi is the annotation of alternative ki in fact Fi. This definition

clearly satisfies the properties in (2). P
(n)
P (X1 = k1, . . . , Xn = kn) is then ex-

tended to a probability measure over BP .
We conjecture that this definition of the distribution semantics with function

symbols coincides for definite programs with the one given above.
To show that the two definition coincide, we conjecture that ΨP = ΩT .

Moreover, X1 = k1, . . . , Xn = kn is equivalent to the set of composite choices
K = {{(F1, ∅, k1), . . . , (Fn, ∅, kn)}} and µ(ωK) gives p1 . . . pn which satisfies
equation (3).
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6 Conclusions

We have presented a definition of the distribution semantics in terms of an
iterated fixpoint operator that allowed us to prove that the semantics is well
defined for all programs. The operator we have presented is also interesting from
an inference point of view, as it can be used for forward inference similarly to
[7].
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A Proofs of Theorems

Proposition 5 OpTrueCPI and OpFalseCPI are monotonic.

Proof: Let us consider OpTrueCPI . We have to prove that if Tr1 ≤ Tr2

then OpTrueCPI (Tr1) ≤ OpTrueCPI (Tr2). Tr1 ≤ Tr2 means that ∀(a, La) ∈
Tr1, (a,Ma) ∈ Tr2 : La ⊆ Ma. Let (a, L′a) be the elements of OpTrueCPI (Tr1)
and (a,M ′a) the elements of OpTrueCPI (Tr2). We have to prove that L′a ⊆M ′a

If a ∈ F then L′a = M ′a = {{(a, θ, 1)}}. If a ∈ BP \ F , then L′a and M ′a have
the same structure. Since ∀b ∈ BP : Lb ⊆Mb, then L′a ⊆M ′a

We can prove similarly that OpFalseCPI is monotonic. ♦
Proposition 6 IFPCP is monotonic.

Proof: We have to prove that if I1 ≤ I2 then IFPCP(I1) ≤ IFPCP(I2).
I1 ≤ I2 means that ∀(a, La, L¬a) ∈ I1, (a,Ma,M¬a) ∈ I2 : La ⊆ Ma, L¬a ⊆
M¬a. Let (a, L′a, L

′
¬a) be the elements of IFPCP(I1) and (a,M ′a,M

′
¬a) the el-

ements of IFPCP(I2). We have to prove that L′a ⊆ M ′a and L′¬a ⊆ M ′¬a. This
follows from the montonicity of OpTrueCPI1 and OpFalseCPI2 in I1 and I2 re-
spectively, which can be proved as in Proposition 5. ♦
Lemma 9 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Lαa be the formula associated with atom a in
OpTrueCPI ↑ α. For every atom a, total choice σ and iteration α, we have:

wσ ∈ ωLαa →WFM (wσ|I) |= a

where wσ|I is obtained by adding to wσ the atoms a for which (a,Ka,K¬a) ∈ I
and wσ ∈ Ka as facts and by removing all the rules with a in the head for which
(a,Ka,K¬a) ∈ I and wσ ∈ K¬a.

Proof: Let us prove the lemma by transfinite induction: let as assume the thesis
for all β < α and let us prove it for α. If α is a successor ordinal, then it is easily
verified for a ∈ F . Otherwise assume wσ ∈ ωLαa where

Lαa =
⋃

a←b1,...,bn,¬c1,...,cm∈R
((Lα−1b1

∪Kb1)⊗. . .⊗(Lα−1bn
∪Kbn)⊗K¬c1⊗. . .⊗K¬cm)

This means that there is rule a ← b1, . . . , bn,¬c1, . . . , cm ∈ R such that wσ ∈
ωLα−1

bi
∪Kbi

for i = 1, . . . , n and wσ ∈ ωK¬cj for j = 1 . . . ,m. By the induc-

tive assumption and because of how wσ|I is built then WFM (wσ|I) |= bi and
WFM (wσ|I) |= ¬cj so WFM (wσ|I) |= a.

If α is a limit ordinal, then

Lαa = lub({Lβa |β < α}) =
⋃

β<α

Lβa

If wσ ∈ ωLαa then there must exist a β < α such that wσ ∈ ωLβa . By the inductive
assumption the hypothesis holds. ♦
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Lemma 10 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Mα

¬a be the set of composite choices associated
with atom a in OpFalseCPI ↓ α. For every atom a, total choice σ and iteration
α, we have:

wσ ∈ ωM¬a →WFM (wσ|I) |= ¬a

where wσ|I is built as in Lemma 9.

Proof: Similar to the proof of Theorem Lemma 9. ♦

Lemma 11 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Kα

a and Kα
¬a be the formulas associated with atom

a in IFPCP ↑ α. For every atom a, total choice σ and iteration α, we have:

wσ ∈ ωKα
a
→WFM (wσ) |= a (4)

wσ ∈ ωKα
¬a →WFM (wσ) |= ¬a (5)

Proof: Let us first prove that for all α, WFM (wσ) = WFM (wσ|IFPCP ↑ α).
We can prove it by transfinite induction. Consider the case of α a successor
ordinal. Consider an atom b. If wσ 6∈ ωKα

b
and wσ 6∈ ωKα

¬b then the rules for b in

wσ and wσ|IFPCP ↑ α are the same. If wσ ∈ ωKα
b

then b is a fact in wσ|IFPCP ↑
α but, according to Lemma 9, WFM (wσ|IFPCP ↑ (α−1)) |= b. For the inductive
hypothesis WFM (wσ) |= b so b has the same truth value in WFM (wσ) and
WFM (wσ|IFPCP ↑ α). Similarly, if wσ ∈ ωKα

¬b , then WFM (wσ) |= ¬b and b

has the same truth value in WFM (wσ) and WFM (wσ|IFPCP ↑ α). So overall
WFM (wσ) = WFM (wσ|IFPCP ↑ α).

If α is a limit ordinal, then Kα
b =

⋃
β<αK

β
b and Kα

¬b =
⋃
β<αK

β
b . So if wσ ∈

ωKα
b

there is a β such wσ ∈ ωKβ
b

and for the inductive hypothesis WFM (wσ) |= b

so b has the same truth value in WFM (wσ) and WFM (wσ|IFPCP ↑ α). Similarly
if wσ ∈ ωKα

¬b .

We can now prove the lemma by transfinite induction. Consider the case of
α a successor ordinal. Since (a,Kα

a ) ∈ lfp(OpTrueCPIFPC↑(α−1)), by Lemma 9

wσ ∈ ωKα
a
→WFM (wσ|IFPCP ↑ (α− 1)) |= a

Since WFM (wσ|IFPCP ↑ (α− 1)) = WFM (wσ), (4) is proved.

Since (a,Kα
¬a) ∈ gfp(OpFalseCPIFPCP↑(α−1)), by Lemma 10

wσ ∈ ωKα
¬a →WFM (wσ|IFPCP ↑ (α− 1)) |= ¬a

Since WFM (wσ|IFPCP ↑ (α− 1)) = WFM (wσ), (5) is proved.

If α is a limit ordinal, Kα
a =

⋃
β<αK

β
a and Kα

¬a =
⋃
β<αK

β
a . If wσ ∈ ωKα

a

there is a β such that wσ ∈ ωKα
b

and by the inductive hypothesis (4) is proved.
Similarly for (5). ♦
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Lemma 12 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Kα

a and Kα
¬a be the formulas associated with atom

a in IFPCP ↑ α. For every atom a, total choice σ and iteration α, we have:

a ∈ IFPwσ ↑ α→ wσ ∈ Kα
a

¬a ∈ IFPwσ ↑ α→ wσ ∈ Kα
¬a

Proof: Let us prove it by double transfinite induction. If α is a successor ordinal,
assume that

a ∈ IFPwσ ↑ (α− 1)→ wσ ∈ Kα−1
a

¬a ∈ IFPwσ ↑ (α− 1)→ wσ ∈ Kα−1
¬a

Let us perform transfinite induction on the iterations of OpTruePIFPCP↑(α−1).
Let us consider a successor ordinal δ: assume that

a ∈ OpTruewσIFPwσ↑(α−1) ↑ (δ − 1)→ wσ ∈ Lδ−1a

¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ (δ − 1)→ wσ ∈M δ−1
¬a

and prove that
a ∈ OpTruewσIFPwσ↑(α−1) ↑ δ → wσ ∈ Lδa
¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ δ → wσ ∈Mδ

¬a

Consider a. If a ∈ F then it is easily proved.
For other atoms a, a ∈ OpTruewσIFPwσ↑(α−1) ↑ δ means that there is a rule a←

b1, . . . , bn,¬c1, . . . , cm such that for all i = 1, . . . , n bi ∈ OpTruewσIFPwσ↑(α−1) ↑
(δ − 1) and for all j = 1, . . . ,m ¬cj ∈ IFPwσ ↑ (α − 1). For the inductive
hypothesis ∀i : wσ ∈ Lδ−1bi

∨ wσ ∈ Kα−1
bi

and ∀j : wσ ∈ Kα−1
¬cj so, for the

definition of OpTruewσIFPwσ↑(α−1), wσ ∈ Lδa. Analogously for ¬a.

If δ is a limit ordinal, then Lδa =
⋃
µ<δ L

µ
a and Mδ

¬a =
⊗

µ<δM
µ
¬a. For the

inductive hypothesis for all µ < δ

a ∈ OpTruewσIFPwσ↑(α−1) ↑ µ→ wσ ∈ Lµa
¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ µ→ wσ ∈Mµ

¬a

If a ∈ OpTruewσIFPwσ↑(α−1) ↑ δ, then there exists a µ < δ such that a ∈
OpTruewσIFPwσ↑(α−1) ↑ µ. For the inductive hypothesis, wσ ∈ Lδa.

If ¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ δ, then, for all µ < δ, ¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓
µ. For the inductive hypothesis, wσ ∈M δ

a .
Consider a limit α. Then Kα

a =
⋃
β<αK

β
a and Kα

¬a =
⋃
β<αK

β
¬a. The in-

ductive hypothesis is
a ∈ IFPwσ ↑ β → wσ ∈ Kβ

a

¬a ∈ IFPwσ ↑ β → wσ ∈ Kβ
¬a

If a ∈ IFPwσ ↑ α, then there exists a β < α such that a ∈ IFPwσ ↑ β. For the
inductive hypothesis wσ ∈ Kβ

a so wσ ∈ Kα
a . Similarly for ¬a. ♦
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Theorem 7 For a ground probabilistic logic program P with atoms BP , let Kα
a

and Kα
¬a be the formulas associated with atom a in IFPCP ↑ α. For every atom

a and total choice σ, there is an iteration α0 such that for all α > α0 we have:

wσ ∈ ωKα
a
↔WFM (wσ) |= a wσ ∈ ωKα

¬a ↔WFM (wσ) |= ¬a

Proof: The→ direction is Lemma 11. In the other direction, WFM (wσ) |= a
implies ∃α0∀α ≥ α0 : IFPwσ ↑ α |= a. For Lemma 12, wσ ∈ ωKα

a
. WFM (wσ) |=

¬a implies ∃α0∀α ≥ α0 : IFPwσ ↑ α |= ¬a. For Lemma 12, wσ ∈ ωKα
¬a . ♦

Theorem 8 For a ground probabilistic logic program P, let Kα
a and Kα

¬a be the
formulas associated with atom a in IFPCP ↑ α. For every atom a and every
iteration α, Kα

a and Kα
¬a are countable sets of countable composite choices.

Proof: It can be proved by observing that each iteration ofOpTrueCP
IFPCP↑β

and OpFalseCPIFPCP↑β generates countable sets of countable explanations since
the set of rules is countable. ♦
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