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Preface

This is the proceedings of the Second Workshop on Probabilistic Logic Program-
ming (PLP 2015), which was held on August 31st 2015 in Cork, Ireland, as a
workshop of the 31st International Conference on Logic Programming (ICLP 2015).

Eight papers were submitted to the workshop. Each submission was reviewed by
three members of the program committee. All submitted papers were of sufficiently
high quality to be accepted to the workshop. In addition, the workshop also had
invited talks by Angelika Kimmig (KU Leuven) and Nicos Angelopoulos (Imperial
College, London).

This workshop is the second edition in what we hope will be a long series. The
first edition was held in 2014 in Vienna, Austria, also as part of the ICLP confer-
ence. More information about the current edition, the previous edition, and future
editions can be found at the following website:

http://stoics.org.uk/plp/

We would like to thank all authors who submitted papers, all program committee
members and all reviewers for their efforts. In addition, we are also grateful to the
organisers of ICLP and, in particular, to Mats Carlsson, ICLP’s Workshop Chair.

July 2015 Fabrizio Riguzzi, Joost Vennekens
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BIMS: for Bayesian inference of model structure

Nicos Angelopoulos

Department of Surgery and Cancer, Division of Cancer, Imperial College London,
Hammersmith Hospital Campus, London, UK.

MCMC methods in probabilistic logic programming settings are gaining pop-
ularity and a number of different approaches have been proposed recently. We
discuss theoretical results and experiences with applications of one of the first
approaches in the field. The knowledge representation capabilities of the under-
lying language, which are less well documented in the literature, are discussed,
as well as the machine learning applications of the general framework, which
have been presented in a number of publications. We focus on how to express
Bayesian prior knowledge in this formalism, and show how it can be used to
define generative priors over statistical model spaces: Bayesian networks and
classification and regression trees. Finally, we discuss a Metropolis-Hastings al-
gorithm that can take advantage of the defined priors and its application to
real-world machine learning tasks. Details of the associated publicly available
software are also discussed.
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Probabilistic (logic) programming: opportunities
and challenges

Angelika Kimmig

Department of Computer Science, KU Leuven, Belgium

Probabilistic logic programming has a long tradition dating back at least to
the seminal works of David Poole and Taisuke Sato in the early 90s. Still, the
enormous recent interest in probabilistic programming is very much focused on
other programming paradigms. This talk will explore commonalities as well as
differences between PLP and other PP languages, focusing on the opportunities
and challenges they provide.
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Advances in integrating statistical inference

Nicos Angelopoulos1 Samer Abdallah2 and Georgios Giamas1

1 Department of Surgery and Cancer, Division of Cancer, Imperial College London,
Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.

2 Department of Computer Science, University College London Gower Street,
London WC1E 6BT, UK.

Abstract. We present recent developments on the syntax of Real, a li-
brary for interfacing two Prolog systems to the statistical language R.
We focus on the changes in Prolog syntax within SWI-Prolog that ac-
commodate greater syntactic integration, enhanced user experience and
improved features for web-services. We recount the full syntax and func-
tionality of Real as well as presenting sister packages which include Pro-
log code interfacing a number of common and useful tasks that can be
delegated to R. We argue that Real is a powerful extension to logic
programming, providing access to a popular statistical system that has
complementary strengths in areas such as machine learning, statistical
inference and visualisation. Furthermore, Real has a central role to play
in the uptake of computational biology and bioinformatics as application
areas for research in logic programming.

1 Introduction

Real is a low level interface between Prolog and R (Angelopoulos et al., 2013).
It enables the user to call R functions on Prolog data and communicate the
results back to the logic system. The library works on two open source systems:
YAP (Costa et al., 2012) and SWI-Prolog (Wielemaker et al., 2012) whose C
language interface is compatible (Wielemaker and Costa, 2011). Since its first
introduction Real has evolved and has exerted some influence in advances to
Prolog syntax. Furthermore, it has been used in a number of projects and in
the process acquired a number of sister libraries that depend on it to deliver
Prolog interfaces to useful tasks that can be best be dealt by existing R code.
Real has thus be shown to be a useful and well integrated Prolog library that
can provide access to the wealth of open source code available in R which is
often accompanied by published scientific papers.

Here we focus on describing the full syntax of Real 1.4 and its role in recent
developments with syntactic changes in SWI-7. The changes in both systems
have made the integration of R code into Prolog more natural and unobtrusive.
Changes in the library itself had to be made to accommodate transition to the
new Prolog syntax while preserving compatibility with traditional implementa-
tions.

Real gives access to R libraries that can complement Prolog’s weaknesses in
areas such as statistical inference and visualisation. With the library installed it
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is straight forward with a basic grasp of R to call its functions on Prolog data.
However for users with no prior exposure to R there still might be a barrier. To
address this, and in order to increase general usability of the library a number
of sister packages have been developed. We highlight some of the predicates that
enable access to R code without any knowledge of R.

Central application areas in the inception of Real and its recent advances, has
been the areas of bioinformatics and computational biology. The sister libraries
we describe here have evolved in addressing real world bioinformatics tasks in
the context of a variety of projects: (Zhang et al., 2015; MacIntyre et al., 2015;
Stebbing et al., 2015). The main thesis of this paper is that Prolog can play a
central role as a unifying platform in research in bioinformatics, taking advantage
of its strong grip in knowledge representation and reasoning and in combinations
with recent advances with Real and web programming (Wielemaker et al., 2008;
Lager and Wielemaker, 2014).

2 Real

Here we first present the innovations of Real 1.4 before we summarise its overall
syntax and usage with particular focus on new features.

2.1 Innovations

In terms of syntax, Real faced three major clashes between Prolog notation and
syntax acceptable to R. Those were the use of ‘.’ in R identifiers, the use of
double quotes (‘ ” ’) to represent strings and the representation of terms with
0 arity ‘foo()’. In previous versions the library was able to bypass those by
employing a number of indirect techniques concentrating on keeping as faithful
as possible to the original syntax. Briefly,

– operator ‘..’ was used to construct arity 2 terms that were behind the scenes
converted to a Prolog atom interpreted as an R identifier (Prolog term
my..variable was translated to R variable my.variable, my..variable →
my.variable).

– operator + on non numerical values was used to convert atoms and code
lists to strings (+foo→ ”foo”)

– with the newly, at the time, introduced block operator ‘()’ it was possible to
parse foo‘()′ as foo()

With Real in mind, SWI-7 (Wielemaker, 2014) introduced syntax that le-
galised all of the above constructs, as well as the implementation of lists as
primary data structures (as oppose to ./2 terms). Dots in atoms and the use of
double quotes are now controlled by global flags, the former’s default being off
and the latter’s being on. Real has been adapted to utilise the new changes in
a backwards compatible manner. All of the following are now valid Real syntax
mapping to the corresponding R constructs, proviso of the appropriate global
flags been enabled,

Advances in integrating statistical inference
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– func.foo(a,b,c)
– write.csv( ”to file.csv”, x )
– foo()

Under the bonnet, list representations were additionally generalised to ac-
commodate the new data type. Also in the C interface, Real 1.4 includes im-
provements in that it can be employed within a web-service, thus allowing the
R-server thread to be an arbitrary one. This is of particular interest, as in itself
R is single threaded.

A final innovation at the syntactic level has been the introduction of ‘NA’
values in the interface. In R, NA values stand for not available or unknown value
placeholders. Prolog does not internally support such values, but the interface
enables mapping of such values within arithmetic vectors and matrices to ’$NaN’.
When passing numeric data from Prolog to R in addition to $NaN, the empty
atom (‘’) is also translated to R ’s NA value.

Taken together these innovations allow a tighter and smoother integration
of R code and enable Prolog programmers to tap in the wealth of statistical
functions implemented in R.

2.2 Communication with R

The bulk of the communication with R is via a single predicate ← /2 which is
also defined as an infix operator. This is an alternative assignment operator in R.
Within Real it can be used to transfer data between R and Prolog, to apply, in
an in-line fashion, R functions to Prolog data as well as destructively assigning
values to R variables. Disambiguation clearly distinguishes the different modes,
which can be summarised by:

+Rexpr ← +Rexpr
−PlV ar ← +Rexpr
+Rexpr ← +PlData

When the LHS of the operator is a uninstantiated variable, the second mode
is assumed, where the value of Rexpr is passed to PlV ar after it has been
evaluated in R. When the RHS is a c/n term or a list then the third mode is
applied and the data in the RHS is transferred to the LHS Rexpr (usually an R
variable).

The following examples show how to: transfer Prolog data to R and back
(1), transfer Prolog data to R and get the result of applying a function to the
data in the new R variable (2) and demonstrating how to apply an R function
on Prolog data without the use of an explicit R variable (3).

?− a← [1, 2, 3], A← a. (1)

A = [1, 2, 3].

Advances in integrating statistical inference
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Indicator Operator Symbol Description

r/1 <- ← evaluate R expression (no return value)
r/2 <- ← main communication to R library
r new/1 <<- և argument is a fresh v̊ariable
<<-/2 <<- և r/2 but with error if R variable exists
r call/2 <-C++O ← ++ r/1,2 with options (O)
r library/1 load R library in a hookable manner
r start/0 start the connection to R
r stop/0 stop the connection to R
r remove/1 remove R variable
r thread loop/0 start an R thread server
r serve/0 serve all R expressions on queue thread

Table 1. Library’s main predicates

?− a← [1, 2, 3],Mean← mean(a). (2)

Mean = 2.0.

?−Mean← mean([1, 2, 3]). (3)

Mean = 2.0.

2.3 Real’s predicates

Real 1.4 adopts the convention of a uniform prefix to all the library predicates.
The full list of Real ’s predicates along with the associated operators and brief
descriptions are shown in Table 1. New additions include a hookable locator for
R libraries, web server support, intuitive syntax for non-destructive assignment
and a generic predicate for mixing Prolog and R options and directing output
to graphic devices.

With new predicate r library/1 the user can load the standard R libraries
in their local installation. In addition, the predicate can be directed to user
specified locations where local, possibly, changed sources of such libraries can be
loaded preferentially. The flexibility allows for (a) specific code to be loaded only
known to Real thus living the remainder of the R installation intact, and (b)
user code that can be made available and can work either with the distributed
version while having extra functionality when used with the altered sources.

Real is inherently single threaded. To support the use of Real in multi-
threaded applications, in particular in web servers built on SWI Prolog’s HTTP
libraries (Wielemaker et al., 2008),Real 1.4 allows a single designatedReal server
thread to be started, which then takes over the task of executing or evaluating

Advances in integrating statistical inference
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R commands or expressions. Then, when the←/1 and←/2 predicates are used
on any other thread, the requests are redirected to the Real server thread and
the results awaited. Communication is handled synchronously using SWI Prolog
queues.

This system was implemented to support an application in the area of large
scale computational musicology, the Digital Music Laboratory, which is built on
SWI-Prolog’s semantic web server Cliopatria. Here, Real is used both for gen-
eral numerical computations and the generation of high-quality scalable vector
graphics. In comparison with previous versions of the system which used Mat-
lab’s engine API to communicate with a separate Matlab process, the lower over-
head of communicating with Real ’s in-process embedded R yields much better
performance when numerous relatively small computations are required.

As R supports destructive assignment, it can be the case that the programmer
might unwittingly overwrite variables already in the working space. To ease and
provide visual cues of the fact that a variable is fresh in a specific context, we
introduced operators և/2 and և/1 and predicate r new/1. The first ensures
that its first argument (an R variable) did not exist prior to assigning to it some
new values. The second removes its arguments from the R work-space and the
third fails if its argument is already a known R variable.

Integral to the R language design and practice is the use of options that con-
trol the details of function calls. These are = pairs of argument name to values,
which more often than not do not have to be present at invocation. When not
present, default values supplied by the function developers are used. Similarly
but not as widely used is the use of list of terms that control calls to Prolog pred-
icates. By convention an options list is placed at the last argument of a predicate
and commonly contains a number of single arity terms. Real now provides a uni-
form way to marry the two conventions and a flexible way of handling options
addressed to Prolog predicates accessing R functions. In addition, a number of
standard tasks have been incorporated to a new interface predicate:

r call(Func,Opts).

which can also be accessed as

← Func ++ Opts

Func is a compound term which is translated to an R function call and
Opts can be a combination of: (a) =/2 terms, which are added to Func, (b)
options controlling r call/2 ’s own execution and (c) Prolog style options which
can influence the caller’s behaviour but are ignored in the R call. Some of r call/2
options are:

rvar(Rvar) when given call becomes: Rvar ← Fcall
rmv(Rmv=false) removes Rvar after end of call
stem(Stem=real plot) stem to use for output files
outputs(Outs=false) a list of output devices
debug(Dbg=false) sets debug(real) for the duration of call
fcall(FinCall) returns the term constructed after =/2 additions
post call(Post) call this after the function call

Advances in integrating statistical inference
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Fig. 1. ggplot2 based bar plots. Left: with default options. Right: a number of options
have altered elements of the plot.

3 Associated packages

3.1 b real

b real is a library based on Real which contains a collection of predicates that
aim to provide a Prolog based interface to a number of simple tasks. The target
audience is Prolog users that have no previous experience with R. The predicates
described here can use the basic functionality of the underlying R functions and
can adjust some of the behaviour entirely in Prolog, while allowing arbitrary
option passing to users with some familiarity with R.

Bar plots are basic plots that can present comparative information in a in-
tuitive manner. Here we present a Prolog interface to ggplot2 (Wickham, 2009).
In its most general form, predicate gg bar plot/2 displays a number of grouped
measurements such as, for instance, the cpu-timings of a number of machine
learning algorithms ran on a number of datasets. The following query, produces
the plot in the LHS of Fig. 3.1.

?− Pairs = [a− [1, 2, 3], b− [2, 4, 6]], gg bar plot(Pairs, [ ]). (4)

ggplot2 is a complex piece of software able to display many types of plots while
gg bar plot/2 only accessing the bar plotting part. Within this, a number of plot
elements can be controlled with Prolog options passed in the second argument.
The following query changes elements such as the colour of the drawing pen
(black) the labels (x,y and main), legend title and fill colours, producing the
plot in the RHS of Fig. 3.1.

?− Pairs = [a− [1, 2, 3], b− [2, 4, 6]], (5)

Opts = [ geom bar draw colour(black),

f ill colours([”skyblue2”, ”khaki2”, ”#FB9A99”]),

Advances in integrating statistical inference
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Fig. 2. Heatmap generation with aheatmap() from package NMF.

flip(false), labels(x, y,main),

legend title(legend)],

gg bar plot(Pairs,Opts).

Heatmap functions are ubiquitous in R. b real provides a Prolog interface to
the aheatmap library. In addition to some simple option mapping aheatmap/2
provides polymorphic support for the first argument which could be a matrix R
variable or a Prolog representation of one. The following code uses the mtcars
example dataset, from which it plots a heatmap of two variables: hp (horsepower)
and disp (displacement).

?−MtC ← as.list(mtcars),memberchk(hp = HP,MtC), (6)

memberchk(disp = Disp,MtC), x← [HP,Disp],

rownames(x)← c(”horsepower”, ”displacement”),

< −aheatmap(x).

3.2 wgraph

R has a number of plotting functions for drawing graphs formed of nodes and
edges. Two of these are igraph() and qgraph(). The latter being based on the
former with some extra options and facilities for grouping nodes. The Prolog
pack wgraph provides a uniform Prolog interface to these R libraries. A plot

Advances in integrating statistical inference
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Fig. 3. Graphs generated by wgraph plot/2. Left: plot uses default rendering with
qgraph() call. Right: render changed to igraph() and a number of options specialised
the output.

with the default renderings can be easily drawn from a list representing the
graph connections and the weights on the edges:

?−G = [1− 2 : 200, 2− 3 : 400, 2− 4 : 300], (7)

wgraph plot(G, [ ]).

A set of Prolog options that control the choice of the drawing function and basic
parameters of the graph, and which work irrespective of the drawing function
can be provided in the second argument of wgraph plot/2. In the following ex-
ample igraph() is passed the size of nodes to use, the degree at which the node
labels should be displayed and the distance of the label from the node edge. The
resulting graph is shown in the RHS of Fig. 3.

?−G = [1− 2 : 200, 2− 3 : 400, 2− 4 : 300], (8)

Opts = [ plotter(igraph), label distance(−1),
label degree(2), node size(4) ],

wgraph plot(G,Opts).

3.3 Availability

The three libraries discussed here, (Real, b real and wgraph) are available as
SWI-Prolog packages3 which can be installed easily from within SWI-Prolog. To
download and install Real the user needs to query with:

?− install pack(real). (9)

3 http://swi-prolog.org/pack/list

Advances in integrating statistical inference
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4 Conclusions

We presented a number of recent advances in Real and in particular shown
how developments in Prolog syntax have made Real syntax blend naturally into
Prolog code. The resulting syntax provides a powerful platform for accessing the
extensive collection of freely available R code. As a consequence Real can have a
strong positive influence into the penetration of Prolog to new application areas
such as bioinformatics and machine learning. With version 1.4 Real has reached a
new level of maturity including facilities for using R in web-servers. In addition
we highlighted some predicates from two sister packages. As with Real itself,
these are freely available and can be easily installed via the SWI-Prolog package
manager. In the future we plan to work towards suggesting internal ways for
Prolog to work better, or more confluent to R, with NA values and infinity.

Real has been used in a number of projects in the area of bioinformatics and
has a steady stream of downloads via SWI-Prolog’s package manager. With the
enhanced level of integration, Real is becoming a powerful hybrid programming
language.

Advances in integrating statistical inference
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Towards a General Framework for Actual
Causation Using CP-logic

Sander Beckers and Joost Vennekens

Dept. Computer Science, Campus De Nayer
KU Leuven - University of Leuven

{Sander.Beckers, Joost.Vennekens}@cs.kuleuven.be

Abstract. Since Pearl’s seminal work on providing a formal language
for causality, the subject has garnered a lot of interest among philoso-
phers and researchers in artificial intelligence alike. One of the most
debated topics in this context is the notion of actual causation, which
concerns itself with specific – as opposed to general – causal claims.
The search for a proper formal definition of actual causation has evolved
into a controversial debate, that is pervaded with ambiguities and con-
fusion. The goal of our research is twofold. First, we wish to provide a
clear way to compare competing definitions. Second, we want to improve
upon these definitions so they can be applied to a more diverse range
of instances, including non-deterministic ones. To achieve these goals we
provide a general, abstract definition of actual causation, formulated in
the context of the expressive language of CP-logic (Causal Probabilis-
tic logic). We will then show that three recent definitions by Ned Hall
(originally formulated for structural models) and a definition of our own
(formulated for CP-logic directly) can be viewed and directly compared
as instantiations of this abstract definition, which also allows them to
deal with a broader range of examples.

Keywords: actual causation, CP-logic, counterfactual dependence

1 Introduction

Suppose we know the causal laws that govern some domain, and that we then
observe a story that takes place in this domain; when should we now say that, in
this particular story, one event caused another? Ever since [10] first analyzed this
problem of actual causation (a.k.a. token causation) in terms of counterfactual
dependence, philosophers and researchers from the AI community alike have
been trying to improve on his attempt. Following [11], structural equations have
become a popular formal framework for this [8, 9, 5, 7]. A notable exception is the
work of Ned Hall, who has extensively critiziced the privileged role of structural
equations for causal modelling, as well as the definitions that have been expressed
with it. He has proposed several definitions himself [2–4], the latest of which is
a sophisticated attempt to overcome the flaws he observes in those that rely too
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heavily on structural equations. We have developed a definition of our own in
[1, 13], within the framework of CP-logic (Causal Probabilistic logic).

The relation between these different approaches is currently not well un-
derstood. Indeed, they are all expressed using different formalisms (e.g., neu-
ron diagrams, structural equations, CP-logic, or just natural language). There-
fore, comparisons between them are limited to verifying on which examples they
(dis)agree. In this paper, we work towards a remedy for this situation. We will
present a general, parametrized definition of actual causation in the context of
the expressive language of CP-logic. Exploiting the fact that neuron diagrams
and structural equations can both be reduced to CP-logic, we will then show
that our definition and three definitions by Ned Hall can be seen as particular
instantiations of this parametrized definition. This immediately provides a clear,
conceptual picture of the similarities and differences between these approaches.
Our analysis thus allows for a formal and fundamental comparison between them.

This general framework for comparing different approaches to actual cau-
sation is the main contribution of this paper. In addition, placing existing ap-
proaches in this framework may make it easier to improve/extend them. Our
versions of Hall’s definitions illustrate this, as their scope is expanded to also
include non-deterministic examples, and cases of causation by omission. Further,
our formulations prove to be simpler than the original ones and their application
becomes more straightforward. While our ambition is to work towards a frame-
work that encompasses a large variety of approaches to actual causation, this
goal is obviously infeasible within the scope of a single paper. We have there-
fore chosen to focus most of our attention on Hall, because his work is both
among the most refined and most influential in this field; in addition, it is also
representative for a larger body of work in the counterfactual tradition.

We first introduce the CP-logic language in Section 2. In Section 3, a gen-
eral definition of actual causation is first presented, and then instantiated into
four concrete definitions. Section 4 offers a succinct representation of all these
definitions, and an illustration of how they compare to each other.

2 CP-logic

We give a short, informal introduction to CP-logic. A detailed description can be
found in [14]. The basic syntactical unit of CP-logic is a CP-law, which takes the
general form Head ← Body. The body can in general consist of any first-order
logic formula. However, in this paper, we restrict our attention to conjunctions of
ground literals. The head contains a disjunction of atoms annotated with prob-
abilities, representing the possible effects of this law. When the probabilities in
a head do not add up to one, we implicitly assume an empty disjunct, annotated
with the remaining probability.

Each CP-law models a specific causal mechanism. Informally, if the Body of
the law is satisfied, then at some point it will be applied, meaning one of the
disjuncts in the Head is chosen, each with their respective probabilities. If a
disjunct is chosen containing an atom that is not yet true, then this law causes
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it to become true; otherwise, the law has no effect. A finite set of such CP-laws
forms a CP-theory, and represents the causal structure of the domain at hand.
The domain unfolds by laws being applied one after another, where multiple
orders are often possible, and each law is applied at most once. We illustrate
with an example from [3]:

Suzy and Billy each decide to throw a rock at a bottle. When Suzy does
so, her aim is accurate with probability 0.9. Billy’s aim is slightly worse,
namely 0.8. If a rock hits it, the bottle breaks.

This small causal domain can be expressed by the following CP-theory T :

Throws(Suzy)← . (1)

Throws(Billy)← . (2)

(Breaks : 0.9)← Throws(Suzy). (3)

(Breaks : 0.8)← Throws(Billy). (4)

The first two laws are vacuous (i.e., they will be applied in every story) and
deterministic (i.e., they have only one possible outcome, where we leave implicit
the probability 1). The last two laws are non-deterministic, causing either the
bottle to break or nothing at all.

The given theory summarizes all possible stories that can take place in this
model. For example, it allows for the story consisting of the following chain of
events:

Suzy and Billy both throw a rock at a bottle. Suzy’s rock gets there
first, shattering the bottle. However Billy’s throw was also accurate, and
would have shattered the bottle had it not been preempted by Suzy’s
throw.

To formalize this idea, the semantics of CP-logic uses probability trees [12]. For
this example, one such tree is shown in Figure 1. Here, each node represents a
state of the domain, which is characterized by an assignment of truth values to
the atomic formulas, in this case Throws(Suzy), Throws(Billy) and Breaks.
In the initial state of the domain (the root node), all atoms are assigned their
default value false. In this example, the bottle is initially unbroken and the rocks
are still in Billy and Suzy’s hands. The children of a node x are the result of the
application of a law: each edge (x, y) corresponds to a specific disjunct that was
chosen from the head of the law that was applied in node x. In this particular
case, law (1) is applied first, so the assignment in the child-node is obtained by
setting Throws(Suzy) to true, its deviant value. The third state has two child-
nodes, corresponding to law (3) being applied and either breaking the bottle (left
child) or not (right child). The leftmost branch is thus the formal counterpart
of the above story, where the last edge represents the fact that Billy’s throw
was also accurate, even though there was no bottle left to break. A branch ends
when no more laws can be applied.

A probability tree of a theory T in CP-logic defines an a priori probability
distribution PT over all things that might happen in this domain, which can
be read off the leaf nodes of the branches by multiplying the probabilities on
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Fig. 1: Probability tree for Suzy and Billy.

the edges. For instance, the probability of the bottle breaking is the sum of the
probabilities of the leaves in which Breaks is true – the white circles in Figure
1 – giving 0.98. We have shown here only one such probability tree, but we can
construct others as well by applying the laws in different orders.

An important property however is that all trees defined by the same theory
result in the same probability distribution. Thus even though the order in a
branch can capture temporal properties of the corresponding story – which play
a role in deciding actual causation – it does not affect the resulting assignment.
To ensure that this property holds even when there are bodies containing neg-
ative literals, CP-logic makes use of a probabilistic variant of the well-founded
semantics [14]. Simply put, this means the condition for a law to be applied in a
node is not merely that its body is currently satisfied, but that it will remain so.
This implies that a negated atom in a body should not only be currently assigned
false, but actually has to have become impossible, so that it will remain false
through to the end-state. For atoms currently assigned true, it always holds
that they remain true, hence here there is no problem.

Counterfactual Probabilities In the context of structural equations, [11]
studies counterfactuals and shows how they can be evaluated by means of a
syntactic transformation. In their study of actual causation and explanations,
[6, p. 27] also define counterfactual probabilities (i.e., the probability that some
event would have had in a counterfactual situation). [15] present an equivalent
method for evaluating counterfactual probabilities in CP-logic, also making use
of syntactic transformations.

Assume we have a branch b of a probability tree of some theory T . To make
T deterministic in accordance with the choices made in b, we transform T into
T b by replacing the heads of the laws that were applied in b with the disjuncts
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that were chosen from those heads in b. For example, if we take as branch b the
previous story, then T b would be:

Throws(Suzy)← .

Throws(Billy)← .

Breaks← Throws(Suzy).

Breaks← Throws(Billy).

We will use Pearl’s do()-operator to indicate an intervention [11]. The inter-
vention on a theory T that ensures variable C remains false, denoted by do(¬C),
removes C from the head of any law in which it occurs, yielding T |do(¬C). For ex-
ample, to prevent Suzy from throwing, the resulting theory T |do(¬Throws(Suzy))
is given by:

← .

Throws(Billy)← .

(Breaks : 0.9)← Throws(Suzy).

(Breaks : 0.8)← Throws(Billy).

Laws with an empty head are ineffective, and can thus simply be omitted. The
analogous operation do(C) on a theory T corresponds to adding the deterministic
law C ←.

With this in hand, we can now evaluate a Pearl-style counterfactual probabil-
ity “given that b in fact occurred, the probability that ¬E would have occurred
if ¬C had been the case” as PT b(¬E|do(¬C)).

3 Defining Actual Causation Using CP-logic

We now formulate a general, parametrized definition of actual causation, which
can accommodate several concrete definitions by filling in details that we first
leave open. We demonstrate this using definitions by Hall and one by ourselves.
For the rest of the paper, we assume that we are given a CP-theory T , an actual
story b in which both C and E occurred, and we are interested in whether or
not C caused E. By Con we denote the quadruple (T, b, C,E), and refer to this
as a context.

3.1 Actual Causation in General

For reasons of simplicity, the majority of approaches (including Hall) only con-
sider actual causation in a deterministic setting. Further, it is taken for granted
that the actual values of all variables are given. In such a context, counterfac-
tual dependence of the event E on C is expressed by the conditional: if do(¬C)
then ¬E, where it is assumed that all exogenous variables take on their actual
values. In our probabilistic setting, the latter translates into making those laws
that were actually applied deterministic, in accordance with the choices made in
the story. However in many cases some exogenous variables simply do not have
an actual value to start with. For example, if Suzy is prevented from throwing
her rock, then we cannot say what the accuracy would have been had she done
so. In CP-logic, this would be represented by the fact that law (3) is not ap-
plied. Hence, in a more general setting, it is required only that do(¬C) makes
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¬E possible. In other words, we get a probabilistic definition of counterfactual
dependence:

Definition 1 (Dependence). E is counterfactually dependent on C in (T, b)
iff

PT b(¬E|do(¬C)) > 0.

As counterfactual dependency lies at the heart of causation for all of the
approaches we are considering, Dependence represents the most straightforward
definition of actual causation. It is however too crude and allows for many coun-
terexamples, preemption being the most famous.

More refined definitions agree with the general structure of the former, but
modify the theory T in more subtle ways than T b does. We identify two different
kinds of laws in T , that should each be treated in a specific way. The first are
the laws that are intrinsic with respect to the given context. These should be
made deterministic in accordance with b. The second are laws that are irrelevant
in the given context. These should simply be ignored. Together, the methods of
determining which laws are intrinsic and irrelevant, respectively, will be the
parameters of our general definition. Suppose we are given two functions Int
and Irr, which both map each context (T, b, C,E) to a subset of the theory T .
With these, we define actual causation as follows:

Definition 2 (Actual causation given Int and Irr). Given the context Con,
we define that C is an actual cause of E if and only if E is counterfactually
dependent on C according to the theory T ′ that we construct as:

T ′ = [T \ (Irr(Con) ∪ Int(Con))] ∪ Int(Con)b.

For instance, the naive approach that identifies actual causation with coun-
terfactual dependence corresponds to taking Irr as the constant function {} and
Int(Con) as {r ∈ T | r was applied in b}. From now on, we use the following,
more legible notation for a particular instantiation of this definition:

Irr-Dependence 1 No law r is irrelevant.

Intr-Dependence 1 A law r is intrinsic iff r was applied in b.

If desired, we can order different causes by their respective counterfactual
probabilities, as this indicates how important the cause was for E.

3.2 Beckers and Vennekens 2012 Definition

A recent proposal by the current authors for a definition of actual causation
was originally formulated in [13], and later slightly modified in [1]. Here, we
summarize the basic ideas of the latter, and refer to it as BV12. We reformulate
this definition in order to fit into our framework. It is easily verified that both
versions are equivalent.
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Because we want to follow the actual story as closely as possible, the condition
for intrinsicness is exactly like before: we force all laws that were applied in b to
have the same effect as they had in b.

To decide which laws were relevant for causing E in our story, we start from
a simple temporal criterion: every law that was applied after the effect E took
place is irrelevant, and every law that was applied before isn’t. For example, to
figure out why the bottle broke in our previous example, law (4) is considered
irrelevant, because the bottle was already broken by the time Billy’s rock arrived.
For laws that were not applied in b, we distinguish laws that could still be applied
when E occurred, from those that could not. The first are considered irrelevant,
whereas the second aren’t. This ensures that any story b′ that is identical to b
up to and including the occurrence of E provides the same judgements about
the causes of E, since any law that is not applied in b but is applied in b′, must
obviously occur after E.

Irr-BV12 1 A law r is irrelevant iff r was not applied before E in b, although
it could have. (I.e., it was not impossible at the time when E occurred.)

Intr-BV12 1 A law r is intrinsic iff r was applied in b.

3.3 Hall 2007

One of the currently most refined concepts of actual causation is that of [4].
Although Hall uses structural equations as a practical tool, he is of the opinion
that intuitions about actual causation are best illustrated using neuron diagrams.
A key advantage of these diagrams, which they share with CP-logic, is that they
distinguish between a default and deviant state of a variable. Proponents of
structural equations, on the other hand, countered Hall’s approach by criticizing
neuron diagrams’ limited expressivity [9, p. 398]. Indeed, a neuron diagram, and
thus Hall’s approach as well, is very limited in the kind of examples it can express.
In particular, neuron diagrams can only express deterministic causal relations
and they also lack the ability to directly express causation by omission, i.e.,
that the absence of C causes E. Hall’s solution is to argue against causation by
omission altogether. By contrast, we will offer an improvement of Hall’s account
that generalizes to a probabilistic context, and can also handle causation by
omission. In short, we propose CP-logic as a way of overcoming the shortcomings
of both structural equations and neuron diagrams.

In a neuron diagram, a neuron can be in one of two states, the default “off”
state and the deviant “on” state in which the neuron “fires”. Different kinds of
links define how the state of one node affects the other. For instance, in (a), E
fires iff at least one of B or D fires, D fires iff C fires, and B fires iff A fires
and C doesn’t fire. Nodes that are “on” are represented by full circles and nodes
that are “off” are shown as empty circles.
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Diagrams (a) and (b) represent the same causal structure, but different stories:
in both cases there are two causal chains leading to E, one starting with C
and another starting with A. But in (a) the chain through B is preempted by
C, whereas in (b) there is nothing for C to preempt, as A doesn’t even fire.
Therefore (a) is an example of what is generally known as Early Preemption,
whereas (b) is not.

Although Hall presents his arguments using neuron diagrams, his definitions
are formulated in terms of structural equations that correspond to such diagrams
in a straightforward way: for each endogenous variable there is one equation,
which contains a propositional formula on the right concisely expressing the
dependencies of the diagram.

Any structural model M can also be read as a CP-logic theory T . The firing of
the neurons and the resulting assignment to the variables in M , then correspond
to a story b.

One important difference between structural equations and CP-laws, is that
we are not limited to using a single CP-law for each variable. As each law repre-
sents a separate causal mechanism, and only one mechanism can actually make
a variable become true, we will represent dependencies such as that of E by
three laws, corresponding to the three different ways in which B and D can
cause E: each by themselves, or the two of them simultaneously. At first sight
the conjunctive law may seem redundant, but if one has a temporal condition
for irrelevance – eg. BV12 – then it may not be. The translation of examples
(a) and (b) into CP-logic is given by the following CP-theory – where p and q
represent some probabilities:

(A : p)← .

(C : q)← .

B ← A ∧ ¬C.
D ← C.

E ← B.

E ← D.

E ← B ∧D.
The idea behind Hall’s definition is to check for counterfactual dependence

in situations which are reductions of the actual situation, where a reduction is
understood as “a variant of this situation in which strictly fewer events occur”.
In other words, because the counterfactual dependence of E on C can be masked
by the occurrence of events which are extrinsic to the actual causal process, we
look at all possible scenario’s in which there are less of these extrinsic events.
Hall puts it like this [4, p. 129]:

Suppose we have a causal model for some situation. The model consists of
some equations, plus a specification of the actual values of the variables.
Those values tell us how the situation actually unfolds. But the same
system of equations can also represent nomologically possible variants:
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just change the values of one or more exogenous variables, and update
the rest in accordance with the equations. A good model will thus be able
to represent a range of variations on the actual situation. Some of these
variations will be – or more accurately, will be modeled as – reductions
of the actual situation, in that every variable will either have its actual
value or its default value. Suppose the model has variables for events C
and E. Consider the conditional

if C = 0; then E = 0

This conditional may be true; if so, C is a cause of E. Suppose instead
that it is false. Then C is a cause of E iff there is a reduction of the
actual situation according to which C and E still occur, and in which
this conditional is true.

Rather than speaking of fewer events occuring, in this definition Hall charac-
terizes a reduction in terms of whether or not variables retain their actual value.
This is because in the context of neuron diagrams, an event is the firing of a
neuron, which is represented by a variable taking on its deviant value, i.e., the
variable becoming true. In the dynamic context of CP-logic, the formal object
that corresponds most naturally to Hall’s informal concept of an event is the
transition in a probability tree (i.e., the application of a causal law) that makes
such a variable true. Therefore we take a reduction to mean that no law is ap-
plied such that it makes a variable true that did not become true in the actual
setting.

To make this more precise, we introduce some new formal terminology. Let
d be a branch of a probability tree of the theory T . Lawsd denotes the set of
all laws that were applied in d. The resulting effect of the application of a law
r ∈ Lawsd – i.e., the disjunct of the head which was chosen – will be denoted
by rd, or by 0 if an empty disjunct was chosen. The set of true variables in the
leaf of d will be denoted by Leafd.

A branch d is a reduction of b iff ∀r ∈ Lawsd : rd = 0∨∃s ∈ Lawsb : rd = sb.
Or, equivalently, Leafd ⊆ Leafb.

A reduction of b in which both C and E occur – i.e., hold in its leaf – will

be called a (C,E)-reduction. The set of all of these will be denoted by Red
(C,E)
b .

These are precisely the branches which are relevant for Hall’s definition.

Definition 3. We define that C is an actual cause of E iff

(∃d ∈ Red(C,E)
b : PTd(¬E|do(¬C)) > 0).

Theorem 1 shows the correctness of our translation. Proofs of all theorems can
be found in the Appendices.

Theorem 1. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T and story b
that we get when applying the translation discussed above. Then C is an actual
cause of E in the diagram according to Hall’s definition iff C is an actual cause
of E in b and T according to Definition 3.
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At first sight, Definition 3 does not fit into the general framework we intro-
duced earlier, because of the quantifier over different branches. However, we will
now show that for a significant group of cases it actually suffices to consider just
a single T ′, which can be described in terms of irrelevant and intrinsic laws.

Rather than looking at all of the reductions separately, we single out a mini-
mal structure which contains the essence of our story. In general such a minimal
structure need not be unique, as the story may contain elements none of which
are necessary by themselves yet without all of them the essence is changed. The
following makes this more precise.

Definition 4. A law r is necessary iff

– ∀d ∈ Red(C,E)
b : r ∈ Lawsd and

– ∀d, e ∈ Red(C,E)
b : rd = re.

We define Nec(b) as the set of all necessary laws.

In general it might be that there are two (or more) edges which are un-
necessary by themselves, but at least one of them has to be present. Consider
for example a case where C causes both A and B, and each of those in return
is sufficient to cause E. Then neither the law r = A : ... ← C nor the law
r′ = B : ... ← C is necessary, yet at least one of them has to be applied to get
E. In cases where this complication does not arise, we shall say that the story
is simple.

Definition 5. A story b is simple iff the following holds:

– ∀r ∈ Lawsb : the head of r contains at most two disjuncts;

– ∀d ∈ Red(C,E)
b , for all non-deterministic r ∈ Lawsd \Nec(b) : ∃e ∈ Red(C,E)

b

so that e = d up to the application of r, and rd 6= re.

As an example, note that the story in the previous paragraph is not simple.
Neither law r nor r′ is necessary. Now consider the (C,E)-reduction d where first
r′ fails to cause B, followed by r causing A, which in turn causes E. The branch
that is identical to d up to and including the application of r′ but in which r
does not cause A, is not a (C,E)-reduction.

We are now in a position to formulate a theorem that will allow us to adjust
Hall’s definition into our framework.

Theorem 2. If (∃d ∈ Red(C,E)
b : PTd(¬E|do(¬C)) > 0) then PTNec(b)(¬E|do(¬C)) >

0. If b is simple, then the reverse implication holds as well.

It is possible to add an additional criterion to turn this theorem into an equiv-
alence that also holds for non-simple stories. We choose not to do this, because
all of the examples Hall discusses are simple, as are all of the classical exam-
ples discussed in the literarure, such as Early and Late Preemption, Symmetric
Overdetermination, Switches, etc.

As a result of this theorem, rather than having to look at all (C,E)-reductions
and calculate their associated probabilities, we need only find all the necessary
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laws and calculate a single probability. If the story b is simple, then this proba-
bility represents an extension of Hall’s definition, since they are equivalent if one
ignores the value of the probability but for it being 0 or not. To obtain a work-
able definition of actual causation, we present a more constructive description
of necessary laws. From now on we call the node resulting from the application
of a law r in b Nodebr.

Theorem 3. If b is simple, then a non-deterministic law r is necessary iff there
is no (C,E)-reduction passing through a sibling of Nodebr.

With this result, we can finally formulate our version of Hall’s definition,
which we will refer to as Hall07.

Irr-Hall07 1 No law r is irrelevant.

Intr-Hall07 1 A law r is intrinsic iff r was applied in b, and there is no branch
d passing through a sibling of Nodebr such that {C,E} ⊆ Leafd ⊆ Leafb.

3.4 Hall 2004 Definitions

[3] claims that it is impossible to account for the wide variety of examples in
which we intuitively judge there to be actual causation by using a single, all-
encompassing definition. Therefore he defines two different concepts which both
deserve to be called forms of causation but are nonetheless not co-extensive.

Dependence The first of these is simply Dependence, as stated in Definition
1. As mentioned earlier, Hall only considers deterministic causal relations, and
thus the probabilistic counterfactual will either be 1 or 0.

Production The second concept tries to express the idea that to cause some-
thing is to bring it about, or to produce it. The original, rather technical, defini-
tion can be found in the appendices, but the following informal version suffices
for our purposes: C is a producer of E iff there is a directed path of firing neurons
in the diagram from C to E. In our framework, this translates to the following.

Irr-Production 1 A law r is irrelevant iff r was not applied before E in b, or
if its effect was already true when it was applied.

Intr-Production 1 A law r is intrinsic iff r was applied in b.

Theorem 4. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T , and a story b,
that we get when applying the translation discussed earlier. C is a producer of E
in the diagram according to Hall iff C is a producer of E in b and T according
to the CP-logic version stated here.

Besides providing a probabilistic extension, the CP-logic version of produc-
tion also offers a way to make sense of causation by omission. That is, just as
with all of the definitions in our framework in fact, we can extend it to allow
negative literals such as ¬C to be causes as well.
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4 Comparison

Table 1 presents a schematic overview of the four definitions discussed so far, as
well as two new ones, that we give appropriate names. The columns and rows
give the criteria for a law r of T to be considered intrinsic, respectively irrelevant,
in relation to a story b, and an event E. By r ≤b E, we denote that r was applied
in b before E occurred.

Table 1: Spectrum of definitions

Irrelevant Intrinsic
r ∈ Lawsb r ∈ Nec(b)

∅ Dependence Hall07
∃d : (d = b up to E) ∧ r ≥d E BV12 BV07

r ≮b E ∨ rb <b r Production Production07

In order to illustrate the working of the definitions and to highlight their
differences, we present an example:

Assassin decides to poison the meal of a victim, who subsequently Dies
right before dessert. However, Murderer decided to murder the victim
as well, so he poisoned the dessert. If Assassin had failed to do his job,
then Backup would have done so all the same.

The causal laws that form the context of this story are give by the following
theory:

(Assassin : p)← .

(Murderer : q)← .

(Backup : r)← ¬Assassin.

Dies← Assassin.

Dies← Backup.

Dies←Murderer.

In this story, did Assassin cause Dies? We leave it to the reader to verify
that in this case the left intrinsicness condition from the table applies to the
first two non-deterministic laws, whereas the right one only applies to the first.
The second irrelevance condition only applies to the last law, whereas the third
one applies to the last two laws and to the third. This results in the following
probabilities representing the causal status of Assassin:

Production BV12 Hall07 Dependence
1 1− r (1− r) ∗ (1− q) 0

Different motivations can be provided for these answers:

– Production: Assassin brought about the death of the victim all by himself,
hence he is the full cause.
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– BV12: If Assassin hadn’t killed him, then that omission itself would not
have lead to victim’s death with a probability of (1− r). Hence, Assassin is
a cause of the death to this extent.

– Hall07: Ignoring the actually redundant Murderer, if Assassin doesn’t kill
him, then there is a (1 − r) ∗ (1 − q) probability that the victim will die.
Hence he is the cause to that extent.

– Dependence: The victim would have died anyway, so Assassin is not a
cause at all.

Rather than saying that only one of these answers is correct, we prefer to
think of them as answering different questions, all of which have their use in some
context or other. (Eg., to determine responsibility, understand Assassin’s state
of mind, minimize the chance of murders, etc.) More generally, the definitions
could be characterized by describing which events are allowed to happen in the
counterfactual worlds they take into consideration to judge causation.

– Production: Only those events – i.e., applications of laws – which led to E,
and not differently – i.e., with the same outcome as in the actual story.

– BV12: Those events which led to E, and not differently, and also those
events which were prevented from happening by these.

– Hall07: Any event can happen, as long as those events that were essential
to lead to E do not happen differently.

– Dependence: Any event can happen, as long as those events that did ac-
tually happen do not happen differently.

5 Conclusion

In this paper we have used the formal language of CP-logic to formulate a general
definition of actual causation, which we used to express four specific definitions:
a proposal of our own, and three definitions based on the work of Hall. By mov-
ing from the deterministic context of neuron diagrams to the non-deterministic
context of CP-logic, the latter definitions improve on the original ones in two
ways: they can deal with a wider class of examples, and they allow for a graded
judgment of actual causation in the form of a conditional probability. Further,
comparison between the definitions is facilitated by presenting them as vari-
ous ways of filling in two central concepts. We have illustrated the flexibility of
CP-logic in expressing different definitions, opening the path to other proposals
beyond the ones here discussed.

6 Appendices

To facilitate the proof of the first theorem, we introduce the following lemma.

Lemma 1. Given a neuron diagram D with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T , and a story
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b, that we get when applying the translation discussed earlier. Then a neuron
diagram R is a reduction of D in which both C and E occur iff its translation d
– another branch of T – is a (C,E)-reduction of b.

Proof. Assume we have a reduction R of a neuron diagram D, and b is the
story corresponding to D. As R is simply a different assignment of the variables
occurring in D, brought about by the same equations that existed for D, this
reduction corresponds to another branch d of T , in which C and E hold in its
leaf. Moreover, R can be constructed starting from D by changing some of the
exogenous variables, say U ′, from their actual values to their default value, and
then updating the endogenous variables in accordance with the deterministic
equations. It being a reduction, this caused no new variables to take on their
deviant value in comparison to D. Let r be a law that occurs in d.

If r is non-deterministic, it must be one of the laws representing an exogenous
variable V , i.e., a law with an empty body, and hence it was also applied in b. R
being a reduction, either V has the same value in R as in the original diagram,
or it has its default value. In the former case, this means that rd = rb, in the
latter case rd = 0, both of which satisfy the requirement for d being a reduction.

If r is deterministic, the precondition for r has to be fulfilled in d, causing
some variable V to take on its deviant value. The same must hold true of the
precondition for the equation for V , and thus V takes on its deviant value in R
as well, implying it did so in D too. Therefore there must have been some law
applied in b that made V take on its deviant value as well. From this it follows
that d is a (C,E)-reduction of b.

Now assume we have a theory T and a story b that form the translation of a
neuron diagram D, such that C and E hold in b, and that d is a (C,E)-reduction
of b. As the leaf of d contains an assignment to all of the variables that satisfies
the equations of M , there is a neuron diagram R that corresponds to d. We can
easily go over all the previous steps in the other direction, to conclude that R is
a reduction of D in which C and E are true.

Theorem 1. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T and story b
that we get when applying the translation discussed above. Then C is an actual
cause of E in the diagram according to Hall’s definition iff C is an actual cause
of E in b and T according to Definition 3.

Proof. We start with the implication from left to right. Assume we have a neuron
diagram D, in which both C and E fire. This translates into a theory T and a
story b, for which C and E hold in its leaf. Further, assume there is a reduction R
of this diagram, in which both C and E continue to hold, and in this reduction,
if C = 0; then E = 0. By the above lemma, this translates into a (C,E)-reduction
of b, say d.

In R, if C = 0; then E = 0. The conditional C = 0 is interpreted as a counter-
factual locution, and corresponds to do(¬C). As there are no non-deterministic
laws with non-empty preconditions, T d is simply the deterministic theory that
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determines the same assignment as R, meaning PTd(¬E|do(¬C)) = 1, which
concludes this part of the proof.

Now assume we have a theory T and a story b that form the translation of a
neuron diagram D, such that C and E hold in b, and that d is a (C,E)-reduction
of b for which the given inequality holds. By the above lemma, the translation
of d, say R, is reduction of D in which C and E occur. As mentioned in the
previous paragraph, T d simply corresponds to an assignment of values to the
variables occurring in D that follows its equations. Since R describes this same
assignment, in R too if C = 0; then E = 0. This concludes the proof.

Theorem 2. If (∃d ∈ Red(C,E)
b : PTd(¬E|do(¬C)) > 0) then PTNec(b)(¬E|do(¬C)) >

0. If b is simple, then the reverse implication holds as well.

Proof. We start with proving the first implication. Assume we have a d ∈
Red

(C,E)
b such that PTd(¬E|do(¬C)) > 0. This implies that there is at least

one branch e of a probability tree of T d|do(¬C) for which ¬E holds in its leaf.
We prove by induction on the length of e that this implies the existence of a
similar branch e′ of a probability tree of TNec(b)|do(¬C) for which ¬E holds in
its leaf, which is what is required to establish the theorem.

Base case: if e consists of a single node – i.e., the root node where all atoms
are false – then this means that no laws of T d|do(¬C) can be applied. Since
the bodies of the laws in TNec(b)|do(¬C) are identical to those of the laws in
T d|do(¬C), we simply have e′ = e.

Induction case: Assume we have a sub-branch en of e with length n > 1,
starting from the root node, and that we also have a structurally identical sub-
branch e′n. By it being structurally identical we mean that they are identical
except for the fact that they may have different probabilities along the edges.

If en = e, then no more laws can be applied in the final node of en. This
must then hold for the final node of e′n as well, so we are finished. Otherwise,
we know that there is a sub-branch en+1 which extends en along e with a node
O. Assume that the law which was applied to get to O is r.

If r is deterministic, then r occurs in T d|do(¬C) exactly as it does in TNec(b)|do(¬C).
Since both branches are structurally identical, e′n can be extended in the exact
same manner as en, so there has to be a probability tree of TNec(b)|do(¬C) in
which there is a sub-branch e′n+1 with the desired properties. So assume r is
non-deterministic.

First assume r 6∈ Lawsd. This implies that r 6∈ Nec(b). So as in the deter-
ministic case, r occurs in T d|do(¬C) exactly as it does in TNec(b)|do(¬C), and
the branch can be extended in the same manner.

Now assume r ∈ Lawsd. If also r ∈ Nec(b), we know that rd = rb = rNec and
hence the previous argument holds. Remains the possibility that r 6∈ Nec(b). As
in the deterministic case, because r can be applied in the final node of e′n there
has to be a probability tree of TNec(b)|do(¬C) with a sub-branch like e′n where
r is applied next.

Assume rd = A. Since A was the outcome of r in d, the law r as it appears in
T – and also in TNec(b)|do(¬C) – contains A in its head with some probability
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attached to it. Therefore the final node of e′n in the said probability tree has
one child-node which contains A, extending e′n into a sub-branch e′n+1 with the
desired properties. This concludes this part of the proof.

Now we prove that if b is simple, the reverse implication holds as well.
Assume PTNec(b)(¬E|do(¬C)) > 0. This implies that there is at least one

branch e of a probability tree of TNec(b)|do(¬C) for which ¬E holds in its leaf.
We can repeat the first steps of the previous implication, so that we again arrive
at a law r which was applied to get to a node O.

The branch e′ we are considering occurs in a probability tree of a (C,E)-
reduction, say f . First assume r ∈ Nec(b). By definition, this implies that also
r ∈ Lawsf ∧ rNec = rf , and we can apply the reasoning from above. Likewise
as above, we can apply this reasoning to all other cases, except the one where
r 6∈ Nec(b), r is non-deterministic, and r ∈ Lawsf . Assume the law r has effect
A in the branch e we are considering. If rf = A, then we are back to our familiar
situation, so therefore assume rf = B, and A 6= B.

Since b is simple, A and B are the only two possible effects of r. Further,
remark that r ∈ Lawsb\Nec(b). This implies the existence of a (C,E)-reduction
g that is identical to f up to the application of r, but such that rg 6= rf , and
thus rg = A = re meaning there is a branch in a probability tree of g that is
structurally identical to e up to O. This concludes the proof of the theorem.

Theorem 3. If b is simple, then a non-deterministic law r is necessary iff there
is no (C,E)-reduction passing through a sibling of Nodebr.

Proof. Say the unique sibling of Nodebr is M . We start with the implication
from left to right, so we assume r is necessary. Assume rb = A, then there is no

d ∈ Red(C,E)
b for which rd 6= A, hence there is no (C,E)-reduction which passes

through M .
Remains the implication from right to left. Assume we have a law r such that

there is no (C,E)-reduction passing through a sibling of Nodebr. We proceed with
a reductio ad absurdum, so we assume r is not necessary.

Clearly b is a (C,E)-reduction of itself, and also r ∈ Lawsb \Nec(b). Hence,
by b’s simplicity, there is a (C,E)-reduction e which is identical to b up to the
application of r, but for which re 6= rb. Thus e passes through the sibling of
Nodebr, contradicting the assumption that r is necessary. This concludes the
proof.

Theorem 4. Given a neuron diagram with its corresponding equations M , and
an assignment to its variables V . Consider the CP-logic theory T , and a story b,
that we get when applying the translation discussed earlier. C is a producer of E
in the diagram according to Hall iff C is a producer of E in b and T according
to the CP-logic version stated here.

Proof. First we need to explain some terminology that Hall uses. A structure is
a temporal sequence of sets of events, which unfold according to the equations
of some neuron diagram. A branch, or a sub-branch, would be the corresponding
concept in CP-logic.
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Two structures are said to match intrinsically when they are represented
in an identical manner. The reason why Hall uses this term, is because even
though we use the same variable for an event occurring in different circumstances,
strictly speaking they are not the same. This is mainly an ontological issue, which
need not detain us for our present purposes.

A set of events S is said to be sufficient for another event E, if the fact
that E occurs follows from the causal laws, together with the premisse that S
occurs at some time t, and no other events occur at this time. A set is minimally
sufficient if it is sufficient, and no proper subset is. To understand this, note that
the ambiguity of the relation between an event and the value of a variable that
we noted earlier, resurfaces here. In the context of neuron diagrams, events are
temporal, and occur during the time-period that a neuron fires, i.e, becomes true.
However, at any later time-point, the variable corresponding to this neuron will
remain to be true, implying that the value of the variable has shifted in meaning
from “the neuron fires” to “the neuron has fired”. Given this interpretation, it
is natural to translate Hall’s notion of an event into CP-logic as the application
of a law, making a variable true, as we have done.

A further detail to be cleared out, is that in the context of neuron diagrams
there can be simultaneous events, since multiple neurons can fire at the same
time. In CP-logic, in each node only one law is allowed to be applied, hence this
translates to two consecutive edges in a branch. Therefore it is not the case that
each node-edge pair in a branch corresponds to a separate time-point, but rather
sets of consecutive pairs – with variable size – do. Given such a set, then for each
variable that was the result of the application of a law belonging to it, it holds
that its corresponding event occurs at the next time-point, corresponding to the
next set of nodes further down the branch. All the variables occuring in the
bodies of the laws in this set, represent events that occur during this time-point.

Now we can state the precise definition of production as it occurs in [3, p.25].

We begin as before, by supposing that E occurs at t′, and that t is an
earlier time such that at each time between t and t′, there is a unique
minimally sufficient set for E. But now we add the requirement that
whenever t0 and t1 are two such times (t0 < t1) and S0 and S1 the
corresponding minimally sufficient sets, then

– for each element of S1, there is at t0 a unique minimally sufficient
set; and

– the union of these minimally sufficient sets is S0.

...

Given some event E occurring at time t′ and given some earlier time t,
we will say that E has a pure causal history back to time t just in case
there is, at every time between t and t′, a unique minimally sufficient
set for E, and the collection of these sets meets the two foregoing con-
straints. We will call the structure consisting of the members of these
sets the “pure causal history” of E, back to time t. We will say that C
is a proximate cause of E just in case C and E belong to some structure
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of events S for which there is at least one nomologically possible struc-
ture S′ such that (i) S′ intrinsically matches S; and (ii) S′ consists of
an E-duplicate, together with a pure causal history of this E-duplicate
back to some earlier time. (In easy cases, S will itself be the needed
duplicate structure.) Production, finally, is defined as the ancestral [i.e.,
the transitive closure] of proximate causation.

We will start with the implication from left to right. So assume we have
a neuron diagram D, in which C is a producer of E. Say T is the CP-logic
theory that is the translation of the equations of the diagram, and b is the
branch representing the story. We already know that C and E hold in the leaf
of b. We need to proof that PT ′(¬E|do(¬C)) > 0. The theory T ′ only contains
deterministic laws, and no disjunctions, hence all its laws are of the form: V ←
A∧A′ ∧ ...∧¬B ∧¬B′, where the number of positive literals in the conjunction
is at least one. Therefore any probability tree for T ′ consists out of only one
branch, determining a unique assignment for all the variables. Further, even
though the theory T may contain several laws in which a variable occurs in the
head, because of our irrelevance criterion T ′ contains exactly one law for every
variable that is true. So for every true variable in this assignment, there is a
unique chain of laws – neglecting the order – which needs to be applied to make
this variable true. For any such variable V , we will say that it depends on all of
the variables occurring positively in the body of a law in this chain. Clearly, if
any true variable changes its value in this assignment, then all variables which
depend on it become false.

As a first case, assume C is a proximate cause of E. We start by assuming
that circumstances are nice, meaning that D contains itself a structure S which
is a pure causal history of E. This means that in the actual story b, C is part of
a unique minimally sufficient set for E. From this it follows that in T ′, C figures
positively in one of the laws on which E depends. Hence, if we apply do(¬C),
then E will no longer hold.

Now assume that there is a structure S occurring in D, such that there
exists another diagram, say D′, in which this structure occurs as well, and forms
a pure causal history of E. This diagram corresponds to a branch of T , say
d, That means that in T ′d – i.e., the theory T ′ constructed out d – C occurs
positively in the unique chain of laws which can make E true. But as all events
in S also occur in D, at the same moments as they do in D′, that means that
C must also occur positively in the unique chain of laws for E in the theory T ′b.
Hence, E depends on C in the theory T ′b as well.

Now look at the more general case, in which C occurs in a chain of proximate
causes, that leads up to E. I.e, in D, C is the proximate cause of some variable
V1, which in turn is the proximate cause of some variable V2, and so on until
we get to E. We know from the previous discussion, that this implies in T ′ that
do(¬C) then ¬V1, and do(¬V1) then ¬V2, and so on. Given what we know about
T ′, it directly follows that when we apply do(¬C), then ¬E. This concludes this
part of the proof.
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We continue with the implication from right to left. So assume that we are
given again a neuron diagram and a corresponding story b, and that we know
PT ′(¬E|do(¬C)) > 0. From our earlier analysis of T ′, we know that this means
that C occurs positively in the unique chain of laws that can make E true
according to T ′. From this chain of laws, we start from the one causing E and
from there pick out a series that gets us to a law where C occurs positively in the
body. More concretely, we take a series of the form: E ← ...A∧ ..., A← ...D∧ ...,
and so on until we get at a law Z ← ...C ∧ .... By definition of production,
it suffices to prove that in this chain, each of the variables in the body is a
proximate cause of the variable in the head.

Take such a law V ← ...W ∧ .... At the time that this law is applied, W
clearly is a member of a sufficient set of events for V , which occurs at the next
time point. Say S0 is the set of all events that occur together with W that figure
in the body of this law, and S1 is the set {V } that occurs at the next time-point,
then the structure consisting precisely of S0 and S1 and nothing else forms a
pure causal history of V containing W . The same reasoning applies to all laws
of the chain. This concludes the proof.
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Abstract. This paper, presents ongoing work that extends MetaProbLog
with Most Probable Explanation (MPE) inference method. The MPE
inference method is widely used in Hidden Markov Models in order to
derive the most likely states of a model. Recently, we started developing
an application that uses MetaProbLog to models phonocardiograms. We
target to use this application in order to diagnose heart diseases by using
phonocardiogram classification. Motivated by the importance of phono-
cardiogram classification, we started the implementation of the MPE
inference method and an improvement of representation for annotated
disjunctions.

1 Introduction

MetaProbLog1 is a framework of the ProbLog [4,6] probabilistic logic program-
ming language. ProbLog extent Prolog programs by annotating facts with proba-
bilities. In that way it defines a probability distribution over all Prolog programs.
ProbLog follows the distribution semantics presented by Sato [12]. MetaProbLog
first appeared in [10] where the focus was to solve meta calls for ProbLog.

The goal of this paper is to present ongoing work which extends MetaProbLog
with MPE inference. In Hidden Markov Models (HMM) this inference task is
known as the most likely sequence of hidden states and it is been solved with
the Viterbi algorithm [15]. Similarly, in Bayesian Networks this inference task
is called Maximum a posteriori (MAP) and is usually been estimated either by
Monte Carlo approximation or by an expectation maximization (EM) algorithm.

ProbLog semantics allow the description of different type of models, including
HMM, Bayesian Networks, and others. Solving this inference task for ProbLog
programs, boils down to finding the most probable witness of satisfiability. The
original implementation of ProbLog2 used a greedy search with pruning to find
the MPE [7], this algorithm was called MAX. While for the initial set of ProbLog
features the MAX algorithm was sufficient, newly added features have increased
1 https://www.dcc.fc.up.pt/metaproblog/tiki-index.php?page=HomePage
2 https://dtai.cs.kuleuven.be/problog/problog1/problog1.html
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the challenge for finding the MPE. ProbLog 23 [5] computes the MPE by first,
collecting all explanations as an AND-OR tree then by handling the introduced
cycles and finally traversing the tree to find the MPE. This approach currently
is the most complete and sound approach but does not take advantage of any
pruning strategy.

These new features are crucial for the implementation of an application that
classifies phonocardiogram (PCG) signals. We intent to use MetaProbLog in or-
der to implement an application that identifies the most likely characterizations
of PCG signals. These characterized PCG signals can then be used in classifica-
tion to diagnose heart diseases.

2 A Motivating Application

Lately, the classification of PCG signals has got significant attention in the aca-
demic community [1]. Classifying PCGs is both a challenging and an impor-
tant task. Heart sounds are non-trivial signals, since they might contain non-
stationary noise, have artifacts and murmur sounds. Heart sound auscultation
techniques is one of the most reliable and successful tools in early diagnosis
used for potentially deadly heart diseases, such as natural and prosthetic heart
valve dysfunction or even in heart failure. Therefore a computer-aided auscul-
tation may allow detection of diseases that are hardly recognized through the
traditional methods, for instance ischemic heart disease.

Several factors may complicate S1 (first heart sound) and S2 (second heart
sound) detection, such as variability in heart rhythm, dynamic background noise,
anatomical variations, artifacts, murmurs, respiratory sounds interference, clicks,
and extra-sounds such as S3 and S4 sounds. These factors in combination, result
in a low signal-to-noise ratio. A first fundamental step for the PCG analysis is
to segment the signal into periods. Several algorithms were successfully imple-
mented in heart sound segmentation problem, such as S-transform [11], recogni-
tion system based on Neural Networks [17] and Wavelet Decomposition [2].

Most of the heart sounds used in heart sound segmentation are primarily
recorded with specialized equipment and in a controlled environment, ensuring
a very high signal-to-noise ratio. However, routine sounds that are obtained with
handheld stethoscopes in clinical environments (such as screening campaigns like
Caravana do Coracão4 from where we possess data) have a low signal-to-noise
ratio. The correct identification of heart sounds is crucial for the analysis of these
signals in more detail.

Recently, HMMs have being used for modeling and characterizing real-word
signals such as heart sound signals [13]. We aim to model PCG signals as a
HMM and use MetaProbLog to find the most likely sequence of events (S1, S2,
S3, S4, noise, murmur, etc.) and finally, use our model in order to characterize
real life segmented signals. Driven by this real life problem we have set new
feature requirements for MetaProbLog’s implementation.
3 https://dtai.cs.kuleuven.be/problog/
4 https://www.circulodocoracao.com.br/sites/caravanadocoracao/en
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3 ProbLog Semantics

A ProbLog program T [4,6] consists of a set of facts annotated with probabili-
ties pi :: pf i – called probabilistic facts – together with a set of standard definite
clauses h : −b1, . . . , bn. that can have positive and negative probabilistic literals
in their body. A probabilistic fact pf i is true with probability pi. These facts
correspond to random variables, which are assumed to be mutually independent.
Together, they thus define a distribution over subsets of LT = {pf1, . . . , pfn}.
The definite clauses add arbitrary background knowledge (BK) to those sets of
logical facts. To keep a natural interpretation of a ProbLog program we assume
that probabilistic facts cannot unify with other probabilistic facts or with the
background knowledge rule heads.

Definition 1. ProbLog Program: Formally, a ProbLog program is of the form
T = {pf1, . . . , pfn} ∪BK.

Given the one-to-one mapping between ground definite clause programs and
Herbrand interpretations, a ProbLog program defines a distribution over its Her-
brand interpretations.

The distribution semantics are defined by generalising the least Herbrand
models of the clauses by including subsets of the probabilistic facts. If fact pfi
is annotated with pi, pfi is included in a generalised least Herband model with
probability pi and left out with probability 1 − pi. The different facts are as-
sumed to be probabilistically independent, however, negative probabilistic facts
in clause bodies allow the user to enforce a choice between two clauses.

The MPE of T for a query q, is the most probable set LMPE ⊆ LT of proba-
bilistic facts (pf) or their negation contained at a randomly sampled subprogram
d of T that entail q. The probability of the MPE is the product of the proba-
bilities (P (pf)) of each probabilistic fact contained in LMPE or 1.0− P (pf) for
contained probabilistic facts that are negated.

P (LMPE) =
∏

pfi∈Ltrue

P (pfi) ·
∏

pfj∈Lfalse

(1.0− P (pfj)) (1)

where Ltrue ∩ Lfalse = LMPE . Finally, LMPE is the set where:

argmax(LMPE∈Hinterpretations)P (LMPE). (2)

Because of the one-to-one mapping of explanations with Herbrand interpre-
tations, the MPE is also the most likely Herbrand interpretation of the program
T for the query q.

3.1 New Challenges

Originally, ProbLog did not supported general negation but only negated prob-
abilistic facts. General negation was introduced by [8]. General negation intro-
duces a new challenge for calculating the most probable witness of satisfiability.
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The inference task for a negated subgoal is converted into finding the most prob-
able witness of unsatisfiability.

A second challenge, originates in the introduction of Annotated Disjunctions
(ADs) for ProbLog. ADs in ProbLog are compiled, by using a program trans-
formation technique, to a set of probabilistic facts that through negation form
a mutually exclusive structure. While this modification, does not affect most in-
ference tasks, it makes the MPE humanly unreadable by returning the compiled
probabilistic facts and not the ADs.

Finally, the addition of evidence in the new implementations of ProbLog
impose a new challenge for computing the MPE. Evidence can be of an important
use for our application as in some cases we might have a priori knowledge of
some PCG signal characterizations. As shown and tackled in [14] ADs introduce
a further complication for computing the MPE together with evidence.

3.2 MetaProbLog

MetaProbLog is an implementation of the ProbLog semantics within Yap Pro-
log [3]. In addition, MetaProbLog extends the semantics of ProbLog by defining a
“ProbLog engine” which permits the definitions of probabilistic meta calls as pre-
sented in [10]. The “ProbLog engine” approach permits a more elegant handling
of general negation for ProbLog, the use of any inference approaches as subgoals
and the use of probabilistic meta calls. MetaProbLog inference, currently allows
the computation of marginal probabilities with or without evidence and imple-
ments two inference methods exact and program sampling. Furthermore, it
allows the computation of marginal probabilities for the answers of non-ground
queries through the use of a special meta inference task called ProbLog an-
swers. MetaProbLog has two unique features as a ProbLog implementation:
probabilistic meta calls and datasets [9].

4 MetaProbLog’s MPE for General ProbLog Programs
and Future Support

While this work is still ongoing, we do have a preliminary implementation of
ProbLog MPE inference that supports general negation. The original ProbLog
implementation based its MPE inference on the fact that derivations are mono-
tonic and that every added probabilistic fact will decrease the probability of the
explanation. Because of that the original ProbLog MPE implementation was
able to prune a big part of the search space.

Adding negated probabilistic facts (which the original ProbLog implemen-
tation supports) does not alter the MPE algorithm as the derivations remain
monotonous decreasing. On the other hand general negation creates a signifi-
cant complication. While the probability calculation remains monotonously de-
creasing and from the logic programming point of view the task remains the
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same (find the most probable Herbrand interpretation), the search tree5 tra-
versed alters significantly. From a SAT point of view, general negation, converts
the task in finding the most probable witness of unsastisfiability which is a hard
problem [16].

For ProbLog programs without negation the search tree is composed by
disjoint branches which are composed by conjoint literals (probabilistic facts).
When general negation is applied on a subtree then by De Morgan’s law the
disjunctions are converted to conjunctions, the conjunctions to disjunctions and
the literals become negated. In order to address this change on the search tree we
are forced to collect all the negated goal’s subtree and convert it by De Morgan’s
law. This however, delays the usage of the pruning mechanism which in some
cases results to a computational overhead. Fortunately, this approach though
does not increase the overall complexity of the inference algorithm. Further-
more, this mechanism is only activated for negated subgoals and not for the rest
parts of the search tree.

While, currently we have already a first implementation of the described
approach the next features are part of our work in progress.

4.1 Annotated Disjunction Representation

The existing representation for ADs creates a linear expansion of probabilistic
facts for each AD value. This representation imposes two problems: first, the
MPE returned to the user does not use the representation of the AD values
instead it uses the linear expansion of probabilistic facts; second as shown in [14]
the current representation computes wrongly the MPE in presence of evidence.
We are working on a novel approach which uses the AD values directly for MPE
and the linear representation only for other inference tasks solving both problems
in a different way than the one presented in [14].

4.2 ProbLog Queries with Evidence

Furthermore, we need to address the conditional MPE task. In order to address
this task we require a second search tree that provides the “evidence explanations
(EEs)”. Then we need to combine the candidate MPEs with the EEs in order
to find the combination that maximizes the conditioned probability (for every
probabilistic fact that is contained in EE, the probability of that fact does not
contribute for the probability of the candidate explanation). Fortunately, the
combinations can be pruned significantly.

4.3 Cycles and Tabling

Finally, in order for the algorithm and the implementation to fully support gen-
eral ProbLog programs we need to be able to compute the MPE task in the
presence of cycles. While this task is not needed for computing the MPE in
5 For our task the search tree is the SLD tree used to prove the goal.
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HMMs neither needed for our motivating application, it is necessary for the
completeness of the resulting algorithm and implementation.

Cyclic programs in MetaProbLog are only allowed/handled with the conjuc-
tion of tabling (similarly as in Prolog). Handling this type of cycles has been
already solved for the exact inference method in [8]. However, the combination
of tabling and pruning is tricky imposing a different challenge. Possibly, MPE
for cyclic programs will not be able to use pruning in the collection of explana-
tions and only at a second stage, similarly to when handling general negation.
ProbLog 2 MPE algorithm uses a similar strategy.

5 Conclusion

We presented the added challenges for calculating the MPE for general ProbLog
programs in MetaProbLog. The added challenges compared with the original
ProbLog are imposed by the new features of the new ProbLog implementations.
Furthermore, we outlined how we intent to tackle these challenges. We require
these features in order to apply them in our recent motivating application of
computing the most probable characterization of PCG signals.

As we presented PCG signal characterization is an important motivating
task that can aid in the diagnosis of heart diseases. We have already modeled
the general behaviour of PCG signals in ProbLog as a HMM. We intent to grow
our model to input real PCG signals and by using specific features of the signals
to extract possible characterizations that later are been used as evidence in MPE
inference in order to characterize the remaining signal features.
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1 Introduction

A wide variety of models that combine logical and statistical knowledge can be
expressed succinctly in the Probabilistic Logic Programming (PLP) paradigm.
Specifically, models in standard statistical formalisms such as probabilistic graph-
ical models (PGMs) (e.g. Bayesian Networks), can be easily encoded as PLP
programs. For instance, Fig. 1(a) shows a program in PRISM, a pioneering PLP
language [16]. A widget, represented by a random variable X, is tested by two
different processes b1 and b2. The outcomes of these tests are represented by
random variables Y and Z, respectively. In PRISM, a special predicate of the
form msw(a,X) associates random variable X with a random process a. Con-
sider the problem of determining the distribution of X given that Y and Z are
identical. Note that evidence is defined as a constraint over instantiations of the
random variables, in contrast to a specific instantiation as in traditional PGMs.
However, such evidence can be easily specified in PLP (see predicate e/0). The
probability of a specific instantiation of X can also be computed based on a PLP
query (e.g. q(1) using predicate q/1). This simple example illustrates how logi-
cal clauses can be used to specify evidence and queries in PLP that go beyond
what is possible in traditional PGMs.

The Driving Problem. The expressiveness of PLP comes at a cost. Since PLP
is an extension to traditional logic programming, inference in PLP is undecid-
able in general. Probabilistic inference for a large class of statistical models (e.g.
Bayesian networks) is intractable. Even problems for which inference is tractable
can be encoded in multiple ways in PLP, with different inference complexity. For
instance, consider the PRISM program in Fig. 1(b). In that program, genlist/2
defines a list of the outcomes of N identically distributed random variables rang-
ing over {a,b}. Predicate palindrome/1 tests, using a definite clause grammar
definition, if a given list is a palindrome; and count as/2 tests if a given list
contains k (not necessarily consecutive) “a”s. Using these predicates, consider
the inference of the conditional probability of query(n, k) given evidence(n):
i.e., the probability that an n-element palindrome has k “a”s.

? This research was supported in part by NSF grants CCF-1018459 and IIS-1447549.
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1 % Model: Y and Z depend on X.
2 w(X,Y,Z) :-

3 msw(a, X),

4 msw(b1(X), Y),

5 msw(b2(X), Z).

6 % Evidence: Y and Z are same.
7 e :- w(_,S,S).

8 % Query: value of X.
9 q(X) :- w(X,_,_).

10 % Domains:
11 values(a, [1,2]).

12 values(b1(_), [1,2,3]).

13 values(b2(_), [2,3,4]).

14 % Distribution parameters:
15 set_sw(a, [0.4,0,6]).

16 set_sw(b1(1), [0.1,0.3,0.6]).

17 set_sw(b1(2), [0.2,0.4,0.4]).

18 set_sw(b2(1), [0.5,0.3,0.2]).

19 set_sw(b2(2), [0.6,0.1,0.3]).

1 % generate a list of N random variables.
2 genlist(N, L) :- (N=0 -> L= []

3 ; msw(flip, N, X),

4 L = [X|L1], N1 is N-1,

5 genlist(N1, L1) ).

6 % Evidence: string is a palindrome.
7 evidence(N) :- genlist(N, L), palindrome(L).

8 % Query: string has K ’a’s
9 query(N, K) :- genlist(N, L), count_as(L, K).

10 % Check if a given list is a palindrome
11 palindrome(L) :- phrase(palindrome, L).

12 palindrome --> [].

13 palindrome --> [_X].

14 palindrome --> [X], palindrome, [X].

15 % Query condition:
16 count_as([], 0).

17 count_as([X|Xs], K) :-

18 K > 0, (X=a -> L is K-1; L=K),

19 count_as(Xs, L).

20 % Domains:
21 values(flip, [a,b]).

22 % Distribution parameters:
23 set_sw(flip, [0.5, 0.5]).

(a) Bayesian Network PLP (b) Palindrome PLP

Fig. 1: Examples of PLPs

The conditional probability is well-defined according to PRISM’s distribution
semantics [17]. However, the PRISM itself will be unable to correctly compute the
conditional query’s probability, since the conditional query, as encoded above,
will violate the PRISM system’s assumptions of independence among random
variables used in an explanation. It should be noted that the above conditional
probability may be efficiently inferred by transforming the “generate-and-test”
program to one where the tests are folded into the generation phase. However,
such transformations are dependent on the encoding of the query and evidence
predicates, and are hard to generalize. Moreover, while the probability of goal
evidence(N) can be computed in linear time (by exploiting sharing in expla-
nation graphs), the size of the explanation graph for goal query(N) may be
exponential in N when the subgoals in the explanations are placed in the order
in which they are encountered.

Approximate inference based on rejection sampling performs poorly, reject-
ing a vast number of generated samples, since the likelihood of a string being
a palindrome decreases exponentially in N . Alternatives such as Metropolis-
Hastings-based Markov Chain Monte Carlo (MCMC) techniques [9, e.g.] do
not behave much better due to the fact that the chains exhibit poor conver-
gence (mixing), since most transitions lead to strings inconsistent with evidence.
Gibbs-sampling-based MCMC [8] cannot be readily applied since the dependen-
cies between random variables are hidden in the program and not explicit in the
model.

Constraint-Based Inference in Probabilistic Logic Programs

47



msw(a,X)

msw(b1(X), Y)

msw(b2(X), Z)

Y=Z

2

msw(a,X)

msw(b1(X), Y)

msw(b2(X), Z)

2

Y ∈ {2, 3}

Z ∈ {2, 3}, Z = Y

(a) Before Constraint Propagation (b) After Constraint Propagation

Fig. 2: Symbolic Derivation for evidence “e” in BN Example

Our Approach. We identify two basic problems that contribute to the diffi-
culty of inference in PLPs. First is that the random variable dependencies are not
explicit in the program but may vary based on the program’s control and data
flow. The second is that evidence (and query) specifications may be complex ren-
dering it difficult to predict whether a variable’s valuation will be consistent with
the evidence (or lead to query’s success). We use constraint propagation both
to uncover the hidden dependencies and to predict consistency with evidence.
We explicitly construct symbolic derivations that abstract actual valuations of
random variables and use a graphical structure to represent the derivations. We
then provide inference algorithms, both approximate and exact, that compute
the probability of a (possibly conditional) query based on this graphical struc-
ture.

Summary of Contributions. This paper describes a novel technique that
addresses the problem of scalability of inference in PLPs.

1. The paper introduces a structure called an Ordered Symbolic Derivation
Diagram to represent succinctly the set of possible derivations for a PLP
query or evidence (Section 2).

2. The paper presents a likelihood-weighted sampling method based on OSDDs
that can be used for approximate inference (Section 3).

3. The paper also presents an exact inference algorithm that operates directly
on OSDDs. While this algorithm has relatively narrow applicability, it pro-
vides a powerful way to infer over large problem sizes without enumerating
random variable valuations (Section 3).

We present experimental results which show the effectiveness of OSDD-based
inference methods, as well as their cost (Section 4). Related work is discussed in
detail in Section 5. The paper concludes with a discussion on the other uses of
OSDDs for inference in PLPs.

2 Symbolic Derivations and Diagrams

In this paper, we use PRISM’s syntax and distribution semantics, but without
the independence and mutual exclusion requirements on the explanations of a
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goal. Thus we consider PRISM programs with their intended model-theoretic
semantics, rather than that computed by the PRISM system.

As stated in the Introduction, the dependencies between random variables
implicit in the control and data flow of a PLP, and the impossibility of completely
representing the set of all random variable valuations that are consistent with
evidence contribute to the difficulty of inference in PLPs. To address these two
problems, we devise an inference technique based on constraint propagation,
to uncover hidden dependencies and predict evidence consistency. In the first
step, we build derivations symbolically, instantiating random variables only when
necessary. A symbolic derivation is a sequence of msw goals and constraints,
as illustrated in Fig. 2(a) by the derivation for evidence “e” from example of
Fig. 1(a).

In the second step, we propagate the constraints in a symbolic derivation,
resulting in possible restrictions on the domains of variables. For instance, in
the Bayesian Network (BN) example of Fig. 1(a), since the evidence demands
Y = Z, the domains of b1 and b2 get restricted to [2,3]. Such constraint
propagation is done using light-weight techniques such as node-consistency and
arc-consistency algorithms. We add inferred domain restrictions (if any) to the
derivation. We also place the constraints where their satisfaction can be effec-
tively tested. Fig. 2(b) shows the symbolic derivation for “e” in the BN example
after constraint propagation. The constraints denote a sufficient condition for
any concrete instance of the symbolic derivation to represent a successful deriva-
tion. Symbolic derivations, parameterized by the consistency algorithms used in
their construction, can be readily formalized; see [14]. Symbolic derivations can
be subsequently used in a number of ways, two of which are described below.

Generalization. For many standard statistical models (e.g. PGMs) our tech-
nique will construct at most one symbolic derivation. In general, however, PLPs
may have more than one symbolic derivation, as illustrated by the Birthday
Collision example in Fig. 5. This example encodes the problem of determining
the (unconditional) probability that two persons in a population of a given size
share the same birthday. The query same birthday(3), which fixes a population
of size 3, has 6 symbolic derivations, 3 of which are shown in Fig. 3(a). In such
cases, we combine the set of symbolic derivations into a tree structure, called
the Ordered Symbolic Derivation Diagram (OSDD), illustrated in Fig. 3(b). An
OSDD is analogous to a Constraint Decision Diagram (CDD) [3]: each node
defines a variable, and the outgoing edges are guarded by constraints on that
variable. An OSDD is constructed based on a total order over variables, as in
an Ordered Binary Decision Diagram [2]. Each path in an OSDD is a symbolic
derivation. In fact, every symbolic derivation is a rudimentary OSDD (with 0-
branches removed).

3 Inference Based on Symbolic Derivation Diagrams

We illustrate the process of generating likelihood-weighted samples [7,18] for goal
“e” from its symbolic derivation. We start with likelihood weight of 1. When
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msw(b(3), X3)

X3=X2
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msw(b(1),X1)

msw(b(2), X2)

msw(b(3), X3)

X2 = X1 X2 6=X1

1

X3 = X1 X3 6= X1 ∧
X3 = X2

X3 6= X1 ∧
X3 6= X2

1 1 0

(a) Selected Symbolic Derivations (b) Symbolic Derivation Diagram

Fig. 3: Symbolic Derivations for query “same birthday(3)” in Birthday Colli-
sion Example

visiting msw(a,X), we notice no domain restrictions on X, and hence bind X to a
random sample generated from a’s distribution. Assume the sample we drew is
X=1. We then visit msw(b1(1), Y) to sample Y. However, since Y has a domain
restriction Y ∈ {2, 3}, we generate a sample for Y such that Y ∈ {2, 3}. This
is done by picking from {2, 3} uniformly, and multiplying the likelihood weight
with the probability of the picked value. Assume we pick Y=2; then the current
likelihood is set to 0.3, the probability of 2 in b1(1)’s distribution. Finally,
we visit msw(b2(1),Z), whose two constraints restrict Z to {2}. Selecting Z=2,
we multiply the likelihood weight of the current derivation with 0.5. Thus we
generate a sample (X=1, Y=2, Z=2) consistent with evidence e with a likelihood
weight of 0.15.

In summary, likelihood-weighted samples are drawn by (a) independently
sampling random variables whose valuations are unconstrained; (b) uniformly
sampling variables whose valuations have domain constraints; and (c) computing
the probability of the sample as the product of probabilities of values picked in
step (b). This procedure can be readily formalized; see [14].

Exact Inference. For certain class of programs and queries, symbolic deriva-
tions can be directly used for exact inference. Fig. 4 shows the symbolic deriva-
tion of evidence evidence(6) from the Palindrome example (Fig. 1(b)). Note
that only the constraints in the symbolic derivation determine whether a con-
crete instance succeeds. Thus, if the distribution of flip is uniform, the three
constraints are each satisfied independently, resulting in 0.125 as the probability.
Such exact computation of probabilities is formalized in terms of measurability ;
a variable X with domain constraint η is said to be measurable if the size of X’s
domain (consistent with η) is independent of the valuation of other variables.
When a symbolic derivation diagram consists only of uniformly distributed mea-
surable variables, then the associated probability can be computed exactly. Such
exact computation is readily formalized as well; see [14].
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msw(flip, 6, X1)

msw(flip, 5, X2)

msw(flip, 4, X3)

msw(flip, 3, X4)

msw(flip, 2, X5)

msw(flip, 1, X6)
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X4 = X3

X5 = X2

X6 = X1

Fig. 4: Symbolic Derivation for ev-
idence “evidence(6)” in Palin-
drome Example

1 % Two from a population of size N
2 % share a birthday.
3 same_birthday(N) :-

4 person(N, P1),

5 % P1’s birthday is D
6 msw(b(P1), D),

7 person(N, P2),

8 P1 \= P2,

9 % and so is P2’s.
10 msw(b(P2), D).

11

12 person(N, P) :-

13 % bind P, backtracking through 1..N
14 basics:for(P, 1, N).

15

16 % Distribution parameters:
17 set_sw(b(_), uniform(1,365)).

Fig. 5: Birthday Collision PLP

4 Experimental Evaluation

We present the results of experiments using a prototype implementation of a
likelihood-weighted sampler based on symbolic derivations. The prototype uses
XSB Prolog to build symbolic derivations, propagate constraints and construct
OSDDs; and a few modules written in C for maintaining the sampler’s state and
dealing with random variable distributions. We used the following examples in
the experiments.

– Grid BN is a Bayesian Network with Boolean random variables arranged
in a 6×6 grid (with dependencies going left-to-right and top-to down). This
simple structure was used to evaluate the effectiveness of our technique when
the evidence probability is extremely low (˜10−12).

– Ising Model is a well-known undirected graphical model. We used a 6× 6
grid of Boolean random variables with factors on edges. The PRISM program
independently generates values of terminal nodes of all edges, and ties them
together by expressing equality constraints between shared variables of edges.

– Palindrome, which is shown in Fig. 1(b), with evidence limited to strings
of length 20, and query checking for a string with 4 “a”s.

– Birthday Collision, shown in Fig. 5 (page 6), with population size of 6,
i.e. query same birthday(6).

The first three examples involved conditional queries with low-likelihood evi-
dence. The birthday collision example had an unconditional query. It should
be noted that only the first example, Grid BN, can be evaluated in the PRISM
system; the other examples have queries that violate PRISM’s mutual exclusion
and independence assumptions and hence cannot be directly evaluated in that
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Fig. 6: Experimental Results

system. Our inference procedure, however, removes PRISM’s assumptions and
correctly evaluates the query probabilities for all the above examples.

The results of the experiments are shown in Fig. 6. Each subfigure plots the
estimated probability and variance of the estimate(on log scale), for two sam-
plers: the LW method described in this paper, and a simple independent sampler
(with rejection sampling for conditional queries). Note that the LW sampler’s re-
sults show significantly lower variance in all the examples. For the Grid BN and
Ising Model, the evidence probability was low enough that a rejection sampler
was unable to draw a consistent sample. The LW sampler, however, was able
to converge to a reasonable estimate of low variance in about 500,000 samples.
Both examples generated a single symbolic derivation. We directly sampled from
this instead of materializing a OSDD structure. For the Grid BN, node consis-
tency was sufficient to derive domain restrictions. For the Ising model, we found
that standard LW sampling (picking a restricted value uniformly and assigning
a likelihood weight) generated a number of samples with extremely low weights.
Instead the probabilites of the set of allowed values were normalized to create
a new proposal distribution. This resulted in generating samples with higher
likelihood weights.
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For the Palindrome example, we get a single symbolic derivation and the
LW sampler quickly converges to the actual probability, while the independent
sampler fails to converge even after a million samples. However, node- and arc-
consistency can discover no further domain restrictions; forward checking at
sampling time generated all the restrictions for LW sampler. The unusual pat-
tern of variance for independent sampler in the initial iterations is due to it
not being able to generate consistent samples and hence not having an estimate
for the answer probability. The birthday collision example produces a number
of symbolic derivations which were incorporated in an explicit OSDD. Domain
restrictions are discovered only via forward checking, and that too for only one
variable. The results show smaller difference between independent sampling and
LW sampling for this example, compared to the others. One interesting ob-
servation from this example was that independent sampling using the OSDD
structure was significantly faster (up to 2×) than using the program directly.
This is because the program’s non-deterministic evaluation has been replaced
by a deterministic traversal through the OSDD.

Overheads. For all the examples, the time to construct the symbolic deriva-
tions, and propagate constraints was negligible (ranging from 4ms for Grid BN
to 7ms for Birthday Collision, with XSB 3.5.0 on a 2.5GHz Intel Core 2 Duo
machine). The overheads for sampling however were more pronounced. While an
independent sampler picks values from the given distributions, the likelihood-
weighting sampler needs to construct restricted domains to draw samples from.
Consequently, our LW sampler takes up to 4× per sample as an independent
sampler.

Comparison with PITA and ProbLog. We evaluated the exact inference proce-
dures of PITA and ProbLog on the same examples. We used a timeout of 15
minutes for both systems. The exact inference algorithm of ProbLog using sen-
tential decision diagrams was able to handle Grid BN instances of size up to
9 × 9. However, ProbLog’s inference does not scale beyond small problem sizes
for the remaining three examples. In contrast, exact inference algorithm of PITA
scaled much better. PITA could successfully compute the conditional probabili-
ties for Grid BN (up to size 10×10), Ising model (up to 13×13) and Palindrome
with n = 18. For the Ising model example, PITA’s inference completes but with
numerical errors due to the low probability of evidence. Finally, PITA’s infer-
ence completed for the Birthday example with population size 2, but ran out of
memory for larger population sizes.

5 Related Work

Probabilistic Constraint Logic Programming [11] extends PLP with constraint
logic programming (CLP). It allows the specification of models with imprecise
probabilities. Whereas a world in PLP denotes a specific assignment of values to
random variables, a world in PCLP can define constraints on random variables,
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rather than specific values. Lower and upper bounds are given on the probabil-
ity of a query by summing the probabilities of worlds where query follows and
worlds where query is possibly true respectively. While the way in which “proof
constraints” of a PCLP query are obtained is similar to the way in which sym-
bolic derivations are obtained (i.e., through constraint based evaluation), the
inference techniques employed are completely different with PCLP employing
satisfiability modulo theory (SMT) solvers.

cProbLog extends ProbLog with first-order constraints [6]. This gives the
ability to express complex evidence in a succinct form. The semantics and in-
ference are based on ProbLog. In contrast, our work makes the underlying con-
straints in a query explicit and uses the OSDDs to drive inference.

CLP(BN ) [4] extends logic programming with constraints which encode con-
ditional probability tables. A CLP(BN ) program defines a joint distribution on
the ground skolem terms. Operationally, queries are answered by constructing
the relevant BN and performing BN inference.

There has been a significant interest in the area of lifted inference as ex-
emplified by the work of [15,1,12]. The main idea of lifted inference is to treat
indistinguishable instances random variables as one unit and perform inference
at the population level. In contrast, exact inference using OSDDs treats indistin-
guishable values of random variables as one unit, thereby computing probabilities
without grounding the random variables. Consequently, the method in this pa-
per is orthogonal to traditional lifted inference and can be used when inversion
and counting elimination are inapplicable (e.g. Birthday Collision example in
Fig. 5).

The use of sampling methods for inference in PLPs has been widespread.
The evidence has generally been handled by heuristics to reduce the number
of rejected samples [5,13]. However we provide a systematic approach to deal
with constraints imposed by evidence. When our constraint processing algorithm
is powerful enough, the sampler can generate consistent samples without any
rejections.

Adaptive sequential rejection sampling [10] is an algorithm that adapts its
proposal distributions to avoid generating samples which are likely to be rejected.
However, it requires a decomposition of the target distribution, which may not
be available in PLPs. Further, in our work the distribution from which samples
are generated is not adapted. It is an interesting direction of research to combine
adaptivity with the proposed sampling algorithm.

6 Discussion

We presented a technique for inference in PLPs based on constructing a symbolic
structure called OSDD using constraint propagation. The technique effectively
performs inference without enumeration for a number of programs. The tech-
nique also uncovers the dependencies between random variables, which can then
be exploited by more powerful inference techniques (e.g. Gibbs-sampling-based
MCMC) that were inapplicable otherwise. However, for programs where sym-
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bolic derivations match one-to-one with concrete derivations, the technique offers
no benefit. An important topic of future work is to statically analyze a program
to determine when (and when not to) use this technique. OSSDs are constructed
by exploiting the presence of explicit random variables due to msw’s in PRISM.
Application to other (equally expressive) PLP languages remains to be explored.
Finally, OSDDs introduce a style of inference where indistinguishable valuations
of random variables are treated together; combining this with lifted inference
that groups indistinguishable random variables together will improve the scala-
bility of inference in PLPs.
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Abstract. We present a probabilistic inductive logic programming frame-
work which integrates non-monotonic reasoning, probabilistic inference
and parameter learning. In contrast to traditional approaches to prob-
abilistic Answer Set Programming (ASP), our framework imposes only
comparatively little restrictions on probabilistic logic programs - in par-
ticular, it allows for ASP as well as FOL syntax, and for precise as well as
imprecise (interval valued) probabilities. User-configurable sampling and
inference algorithms, which can be combined in a pipeline-like fashion,
provide for general as well as specialized, more scalable approaches to
uncertainty reasoning, allowing for adaptability with regard to different
reasoning and learning tasks.

1 Introduction

With this paper, we present the probabilistic logic framework PrASP. PrASP
is both a probabilistic logic programming language and a software system for
probabilistic inference and inductive weight learning based on Answer Set Pro-
gramming (ASP). Compared to previous works on this framework [11, 10], we
introduce another inference algorithm and additional evaluation results.
Reasoning in the presence of uncertainty and relational structures such as social
networks or Linked Data is an important aspect of knowledge discovery and
representation for the Web, the Internet Of Things, and other heterogeneous
and complex domains. Probabilistic logic programing, and the ability to learn
probabilistic logic programs from data, can provide an attractive approach to
uncertainty reasoning and statistical relational learning, since it combines the
deduction power and declarative nature of logic programming with probabilistic
inference abilities traditionally known from graphical models, such as Bayesian
and Markov networks. We build upon existing approaches in the area of prob-
abilistic (inductive) logic programming in order to provide a new ASP-based
probabilistic logic programming language and inference tool which combines
the benefits of non-monotonic reasoning using state-of-the-art ASP solvers with
probabilistic inference and machine learning. The main enhancement provided by
PrASP over (non-probabilistic) ASP as well as existing probabilistic approaches
to ASP is the possibility to annotate any formula with point or interval (i.e.,
imprecise) probabilities (including formulas in full FOL syntax, albeit over finite
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domains of discourse only), while providing a hybrid set of inference approaches:
in addition to general inference algorithms, this includes specialized, more scal-
able inference algorithms for cases where certain optional assumptions hold (in
particular mutual independence of probabilistic events). As we will show later,
it can even make sense to combine different such algorithms (which can each on
its own obtain valid results if its specific prerequisites are fulfilled).
The remainder of this paper is organized as follows: the next section presents
related work. Section 3 describes the syntax and semantics of the formal frame-
work. Section 4 describes approximate inference algorithms, and Section 5 pro-
vided initial evaluation results. Section 6 concludes.

2 Related Work

Approaches related to PrASP include [18, 8, 3–6, 14, 13, 15] which support prob-
abilistic inference based on monotonic reasoning and [9, 1, 17, 2] which are based
on non-monotonic logic programming. Like P-log [1], our approach computes
probability distributions over answer sets (that is, possible worlds are identified
with answer sets). However, P-log as well as [17] do not allow for annotating
arbitrary formulas (including FOL formulas) with probabilities. [2] allows to
associate probabilities with abducibles (only) and to learn both rules and prob-
abilistic weights from given data (in form of literals). Again, PrASP does not
impose such restrictions on probabilistic annotations or example data. On the
other hand, PrASP cannot make use of abduction for learning. Various less
closely related approaches to probabilistic reasoning exist (either not based on
logic programming at all, or not in the realm of non-monotonic logic program-
ming): Stochastic Logic Programs (SLP) [8] are an influential approach where
sets of rules in form of range-restricted clauses can be labeled with probabilities.
Parameter learning for SLPs is approached in [3] using the EM-algorithm. Ap-
proaches which combine concepts from Bayesian network theory with relational
modeling and learning are, e.g., [4–6]. Probabilistic Relational Models (PRM)
[4] can be seen as relational counterparts to Bayesian networks. In contrast to
these, our approach does not directly relate to graphical models such as Bayesian
or Markov Networks but works on arbitrary possible worlds which are generated
by ASP solvers in form of stable models (answer sets). ProbLog [14] allows for
probabilistic facts, annotated disjunctions and definite clauses, and approaches
to probabilistic rule and parameter learning (from interpretations) also exist for
ProbLog. ProbLog builds upon the Distribution Semantics approach introduced
for PRISM [18], which is also used by other influential approaches, such as In-
dependent Choice Logic (ICL) [13]. Another important approach outside the
area of ASP are Markov Logic Networks (MLN) [15]. A Markov Logic Network
consists of first-order formulas annotated with weights (which are, in contrast to
PrASP, not in general probabilities). MLNs are used as templates for the con-
struction of Markov networks. The (ground) Markov network generated from the
MLN then determines a probability distribution over possible worlds, with in-
ference performed using weighted SAT solving (which is related to but different
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from ASP). MLNs are syntactically roughly similar to the logic programs in our
framework (where weighted formulas can also be seen as soft or hard constraints
for possible worlds).

3 Syntax and Semantics

In this section, we briefly describe the formal language and its semantics. Com-
pared to [10], the syntax of PrASP programs has been extended (in particular
by allowing interval and non-ground weights) and a variety of approximate in-
ference algorithms have been added (see next section) to the default inference
approach which is described below and which still underlies the formal semantics
of PrASP programs.
PrASP is a Nilsson-style [12] probabilistic logic language. Let Φ be a set of
function, predicate and object symbols and L(Φ) a first-order language over
Φ with the usual connectives (including both strong negation “-” and default
negation “not”) and first-order quantifiers. It can be assumed that this lan-
guage covers both ASP and FOL syntax (ASP “specialties” such as choice con-
structs can be seen as syntactic sugar which we omit here in order to keep
things simple). A PrASP program (background knowledge) is a non-empty fi-
nite set Λ = {[li;ui]fi} ∪ {[li;ui|ci]fi} ∪ {indep({f i1, ..., f in})} of annotated for-
mulas (each concluded by a dot) and optional independence constraints (PrASP
does not require an independence assumption but makes optionally use of de-
clared or automatically discovered independence). [l;u]f asserts that the impre-
cise probability of f is within interval [l, u] (i.e., l ≤ Pr(f) ≤ u) whereas [l;u|c]f
states that the probability of f conditioned on formula c is within interval [l, u]
(l ≤ Pr(f |c) ≤ u).
Formulas can be non-ground (including existentially or universally quantified
variables in FOL formulas). For the purpose of this paper, weights need to be
ground (real numbers), however, the prototype implementation also allows for
certain non-ground weights. An independence constraint indep({f i1, ..., f in}) spec-
ifies that the set of formulas {f i1, ..., f in} is mutually independent in the proba-
bilistic sense (independence can also be discovered by PrASP by analyzing the
background knowledge, but this is computationally more costly).
If the weight of a formula is omitted, [1; 1] is assumed. Point probability weights
[p] are translated into weights of the form [p; p] (analogously for conditional
probabilities). Weighted formulas can intuitively be seen as constraints which
specify which possible worlds (in the form of answer sets) are indeed possi-
ble, and with which probability. w(f) denotes the weight of formula f . The
fi and ci are formulas either in FOL syntax and supported by means of a
transformation into ASP syntax described in [7]) or plain AnsProlog syntax,
e.g., [0.5] win :- coin(heads). Informally, every FOL formula or program with
FOL formulas results in a set of ASP formulas. The precise AnsProlog syntax
depends on the external ASP grounder being employed by PrASP - in principle,
any grounder could be used. The current prototype implementation has been
tested with Gringo/Clingo 3 and 4 (http://potassco.sourceforge.net).
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The semantics of PrASP is defined in terms of probability distributions over
possible worlds which are identified with answer sets (models) - an assumption
inspired by P-Log [1]. Let M = (D,Θ, π, µ) be a probability structure where D
is a finite discrete domain of objects, Θ is a non-empty set of possible worlds, π
is a function which assigns to the symbols in Φ predicates, functions and objects
over/from D, and µ = (µl, µu) is a discrete probability function over Θ, a PrASP
program and a query formula, as defined further below.
Each possible world is a Herbrand interpretation over Φ. Since we will use an-
swer sets (i.e., stable models of a (disjunctive) answer set program) as possible
worlds, defining Γ (a) to be the set of all answer sets of answer set program a
will become handy.

We define a (non-probabilistic) satisfaction relation of possible worlds and
unannotated programs as follows: let Λ− be is an unannotated program and
lp a transformation which transforms such a program (which might contain
formulas in first-order logic syntax in addition to formulas in ASP syntax) into
a disjunctive program. The details of this transformation are outside the scope
of this paper and can be found in [7].

Then (M, θ) �Θ Λ− iff θ ∈ Γ (lp(Λ−)) and θ ∈ Θ. For a disjunctive program
ψ, we define (M, θ) �Θ ψ iff θ ∈ Γ (ψ) and θ ∈ Θ.

To do groundwork for the computation of a probability distribution over
possible worlds Θ from a given PrASP program, we define a (non-probabilistic)
satisfaction relation of possible worlds and unannotated formulas:
Let φ be a PrASP formula (without weight) and θ be a possible world. Fur-
thermore, let (M, θ) �Λ φ iff (M, θ) �Θ ρ(Λ) ∪ lp(φ) and Θ = Γ (ρ(Λ)) (we say
formula φ is true in possible world θ). Sometimes we will just write θ |=Λ φ if
M is given by the context. We abbreviate (M, θ) �Λ φ as θ �Λ φ. At this, the
spanning program ρ(Λ) of PrASP program Λ is a non-probabilistic disjunctive
program (without independence constraints) generated by removing all weights
and transforming each formerly weighted formula f or ¬f into a disjunction
f |¬ f , where ¬ stands for default negation. Informally, the spanning program
represents the uncertain but unweighted beliefs of the knowledge engineer or
agent. With Γ (a) as defined above, the set of possible worlds deemed possible
according to existing belief ρ(Λ) is denoted as Γ (ρ(Λ)).
We define the minimizing parameterized probability distribution µl(Λ,Θ, q) over
a set Θ = {θ1, ..., θm} = Γ (ρ(Λ)) of answer sets (possible worlds), a PrASP
program Λ = {([pi]fi, i = 1..n)} ∪ {([pi|ci]f ci )} ∪ {indep({f i1, ..., f ik})} and a
query formula q as {θi 7→ Pr(θi) : θi ∈ Θ} where (Pr(θ1), ..., P r(θm)) is
any solution of the following system of inequalities (constraints) such that 1)
Prl(q) =

∑
θi∈Θ:θi�Λq Pr(θi) is minimized and 2) the distribution has maximum

entropy [19] among any other solutions which minimize the said sum. Anal-
ogously, µu denotes a maximum entropy probability distribution so that the
Pr(θ1), ..., P r(θm) maximize Pru(q) =

∑
θi∈Θ:θi�Λq Pr(θi).

l(f1) ≤
∑

θi∈Θ:θi�Λf1
Pr(θi) ≤ u(f1) · · · l(fn) ≤

∑

θi∈Θ:θi�Λfn
Pr(θi) ≤ u(fn) (1)
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∑

θi∈Θ
θi = 1 (2)

∀θi ∈ Θ : 0 ≤ Pr(θi) ≤ 1 (3)

At this, l(fi) and u(fi) denote the lower and upper endpoints of the probability
interval (imprecise probability) of unconditional formula fi (analogous for inter-
val endpoints l(f ci |ci) and u(f ci |ci) of conditional probabilities).
In addition, any indep-declaration indep(F i) in the program induces for every
subset {f i1, ..., f ir} ⊆ F i, r > 1 constraints of the following form:∏
fik=1..r

l(f ik) ≤ ∑
θj∈Θ:θj�Λ

∧
fik=1..r

Pr(θj) ≤
∏
fi
k={1..r}

u(f ik). In the case of

point (i.e., precise) probabilities, these encode Pr(
∧
k=1..r f

i
k) =

∏
k=1..r Pr(f

i
k).

Furthermore, any conditional probability formula [pi|ci]f ci ) in the program in-
duces constraints for ensuring l(f ci |ci) ≤ Pr(f ci |ci) ≤ u(f ci |ci)
(with pi = [l(f ci |ci);u(f ci |ci)]), namely∑
θj∈Θ Pr(θj)ν(θj , f

c
i ∧ ci) +

∑
θj∈Θ −l(f ci |ci)Pr(θj)ν(θj , ci) > 0∑

θj∈Θ Pr(θj)ν(θj , f
c
i ∧ ci) +

∑
θj∈Θ −u(f ci |ci)Pr(θj)ν(θj , ci) < 0

At this, we define ν(θ, f) =

{
1, if θ �Λ f
0, otherwise

For small systems, PrASP can compute minimizing and maximizing probability
distributions directly using the inequalities above with linear programming, and
a maximum entropy solution amongst a number of candidate distributions (so-
lutions of an underdetermined system) can be discovered using gradient descent.
However, to make distribution finding tractable, we need to use different algo-
rithms, as described in the next section. That is, the inequalities system above
serves mainly as a means to define the semantics of PrASP formulas.
Finally, marginal inference results are obtained as follows: the result of a query
of form [?] q is defined as the interval [Prl(q), P ru(q)] and the result of con-
ditional queries of form [?|c] f (which stands for Pr(f |c), where c is some
evidence) is computed using Pr(f ∧ c)/Pr(c). An example PrASP program:

coin(1..10).

[0.4;0.6] coin_out(1,heads).

[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

1{coin_out(N,heads), coin_out(N,tails)}1 :- coin(N).

n_win :- coin_out(N,tails), coin(N).

win :- not n_win.

[0.8|win] happy.

:- happy, not win.

The line starting with [[0.5]]... is syntactic sugar for a set of weighted rules
where variable N is instantiated with all its possible values (i.e.,
[0.5] coin_out(2,heads) :- coin(2), 2 != 1 and
[0.5] coin_out(3,heads) :- coin(3), 3 != 1). It would also be possible to use
[0.5] as annotation of this rule, in which case the weight 0.5 would specify the
probability of the entire non-ground formula instead.
1{coin_out(N,heads), coin_out(N,tails)}1 (Gringo AnsProlog syntax) denotes
that a coin comes up with either heads or tails but not both.
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Our system accepts query formulas in format [?] a, which asks PrASP for
the marginal probability of a and [?|b] a which computes the conditional
probability Pr(a|b). E.g., query [?|coin_out(2,tails)] happy results in [0;0].

4 Sampling and Inference Algorithms

PrASP (as a software system) contains a variety of exact and approximate in-
ference algorithms which can be partially combined in a hybrid fashion. Using
command line options, the user selects a pipeline of alternative pruning (simpli-
fication), sampling and inference steps (depending on the nature and complexity
of the respective problem). E.g., the user might chose to sample possible worlds
from a near-uniform distribution and to pass on the resulting models to a sim-
ulated annealing algorithm which computes a probability distribution over the
sampled possible worlds. Finally, this distribution is used to compute the condi-
tional or marginal probabilities of the query formulas. The inference algorithms
available in the current prototype (version 0.7) of PrASP are:
Linear programming Direct solution for the linear inequalities system de-
scribed before. Precise and very fast for very small systems, intractable other-
wise.
Various answer set sampling algorithms for so-called initial sampling
These can in some cases be used directly for inference, by computing a distri-
bution which complies with the constraints (linear system) described before. An
exemplary such algorithm is Algorithm 1. Alternatively, they can be followed
by another inference algorithm (simulated annealing or iterative refinement, see
below) which corrects the initial distribution computed by initial sampling.
Parallel simulated annealing This approach (Algorithm 2) performs simu-
lated annealing for inference problems where no assumptions can be made about
independence or other properties of the program (except consistency). It can be
used either stand-alone or in a hybrid combination with an initial sampling stage
(e.g., Algorithm 1).
Iterative refinement An adaptation of the inference algorithm described in
[16] with guaranteed minimal Kullback−Leibler divergence to the uniform dis-
tribution (i.e., maximum entropy).
Direct counting Weights are transformed into unweighted formulas and queries
are then solved by mere counting of models (see [10] for details).

Most of our algorithms rely heavily on near-uniform sampling, either using
randomization provided by the respective external ASP solver (fast but typically
rather low quality, i.e., weakly uniform) or using so-called XOR-constraints as
described in [10] (which provides higher sampling quality at expense of speed).
From PrASP’s inference algorithms, we describe one of the initial sampling al-
gorithms (Algorithm 1) and parallel simulated annealing (Algorithm 2).
An interesting property of the first algorithm is its ability to provide a suitable
distribution over possible worlds directly if all weighted formulas in the PrASP
program are mutually independent (analogously to the independence assump-
tion typically made by distribution semantics-based approaches). Algo. 2 can be
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used stand-alone or subsequently to Algo. 1: in that case, the probability dis-
tribution computer by initial sampling (with replacement) is used as the initial
distribution which is then refined by simulated annealing until all constraints
(given probabilities) are fulfilled. The benefit of this pipelined approach to in-
ference is that the user (knowledge engineer) doesn’t need to know about event
independence - if the uncertain formulas in the program are independent, ini-
tial sampling already provides a valid distribution and the subsequent simulated
annealing stage almost immediately completes. Otherwise, simulated annealing
“repairs” the insufficient distribution computed by the initial sampling stage.
Concretely, Algo. 1 samples answer sets and computes a probability distribution
over these models which reflects the weights provided in the PrASP program,
provided that all uncertain formulas in the program describe a mutually in-
dependent set of events. Other user-provided constraints (such as conditional
probabilities in the PrASP program) are ignored here. Also, Algo. 1 does not
guarantee that the solution has maximum entropy.

Algorithm 1 Sampling from models of spanning program (point probabilities
only)

Require: max number of samples n, set of uncertain formulas uf =
{[w(uf i)]uf i with 0 < w(uf i) < 1}, set of certain formulas cf = {cf i : w(uf i) = 1}
(i.e., with probability 1)

1: i ← 1
2: for i ≤ |uf | do
3: ri ← random element of Sym({1, ..., n}) (permutations of {1, ..., n})
4: i ← i+ 1
5: end for
6: m← ∅, j ← 1
7: parfor j ∈ {1, ..., n} do
8: p← ∅, k ← 1
9: for k ≤ |uf | do

10: if rkj ≤ n · w(uf k) then p← p ∪ {uf k} else p← p ∪ {¬uf k} endif
11: k ← k + 1
12: end for
13: s ← model sampled uniformly from models of program cf ∪ p (∅ if UNSAT)
14: m ← m ] {s}
15: end parfor
Ensure: Multiset m contains samples from all answer sets of spanning program such

that

16: ∀uf i : w(uf i) ≈
|{s∈m:s|=uf i}|

|m| iff set uf mutually independent.

Algorithm 2 presents the approach PrASP uses for approximate inference
using a parallel form of simulated annealing (which does not require event in-
dependence). The initial list of samples initSamples are computed according to
an initial sampling approach such as Algo. 1.
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Algorithm 2 Inference by parallel simulated annealing Part 1.
We show only the basic variant for non-conditional formulas with point weights.
The extension for conditional probabilities and interval probabilities (imprecise
probabilities) is straightforward.

Require: maxTime, maxEnergy, initTemp, initSamples (from, e.g., Algo. 1).
initSamples is a multiset which encodes a probability distribution via frequen-
cies of models), frozen, degreeOfParallelization, α, F (set of weighted formulas), Λ
(PrASP program)

1: s← initSamples, k ← 0, temp ← initTemp
2: e ← energy(s)
3: while k ≤ maxTime ∧ temp ≥ frozen do
4: parfor i← 1, degreeOfParallelization do
5: s′′i ← s′′ ] sampleStep(samplingMethod)
6: end parfor
7: s′ ← argmins′′(energy(s′′1 ), ..., energy(s′′n))
8: e′ ← energy(s′)

9: if e′ < e ∨ random1
0 < e−(e′−e)/temp) then

10: s ← s′

11: e ← e′

12: end if
13: temp ← temp · α
14: k ← k + 1
15: end while

Ensure: Multiset s = (pw, frq) = µapprox(Λ) approximates the probability distribu-
tion µ(Λ) = Pr(Γ (ρ(Λ))) over the set pw = {pwi} = Γ (ρ(Λ)) of possible worlds

by {Pr(pwi) ≈ frq(pw)
|s| }.

16: function energy(s)
17: parfor fi ∈ |F | do

18: freqfi ←
|{{s′∈s:s′|=Λfi}}|

|s|
19: end parfor

return
√∑

fi∈F (freqfi − weightfi)
2

20: end function
21: . (Continued in Part 2 below)

In addition to the actual inference algorithms, it is often beneficial to let
PrASP remove (prune) all parts of the spanning program which cannot influence
the probabilities of the query formulas. The approach to this is straightforward
(program dependency analysis) and therefore omitted here. We will show in the
evaluation section how such simplification affects inference performance.
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Algorithm 2 Inference by parallel simulated annealing Part 2.

22: function stepSample(samplingMethod)
. The framework provides various configurable methods for the simulated

annealing sampling step, of which we show here only one.
23: F ′ ← ∅
24: for fi ∈ |F | do
25: if random1

0 < weightfi then
26: F ′ ← F ′ ∪ {fi}
27: else
28: F ′ ← F ′ ∪ {¬fi}
29: end if
30: end for

return answerSets(F ′) (might be ∅)
31: end function

While for space-related reasons this paper covers deductive inference only,
PrASP also supports induction (learning of weights of hypotheses from example
data). Please refer to [10] for details.

5 Experiments

The main goal of PrASP is not to outperform existing approaches in terms
of speed but to provide a flexible, scalable and highly configurable framework
which puts as few restrictions as possible on what users can express in terms
of (non-monotonic) certain and uncertain beliefs while being competitive with
more specialized inference approaches if the respective conditions (like event
independence) are met.
For our first experiment, we model a coin game (a slightly simplified variant of
the example code shown before): a number of coins are tossed and the game is
won if a certain subset of all coins comes up with “heads”. The inference task
is the approximation of the winning probability. In addition, another random
subset of coins are magically dependent from each other and one of the coins is
biased (probability of “heads” is 0.6). Despite its simplicity, this scenario shows
how inference copes with independent as well as dependent uncertain facts, and
how effective the pruning approach of the respective framework works (since
winning depends only on a subset of coins). Also, inference complexity clearly
scales with the number of coins. In PrASP syntax, such a partially randomly
generated program looks, e.g., as follows (adaptation to MLN or ProbLog syntax
is straightforward):

coin(1..8).

[0.6] coin_out(1,heads).

[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

1{coin_out(N,heads), coin_out(N,tails)}1 :- coin(N).

win :- 2{coin_out(3,heads),coin_out(4,heads)}2.

coin_out(4,heads) :- coin_out(6,heads).
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The inference algorithm used is initial sampling (Algo. 1) followed by sim-
ulated annealing (Algo. 2). Using Algo. 1, we computed 100 random models
(number of samples n), which is sufficient to obtain a precision of +/-0.01 for
the query probabilities. The winning subset of coins and the subset of mutually
dependent coins (from which a rule of the form
coin_out(a,heads) :- coin_out(b,heads), coin_out(c,heads), ...

is generated) is each a random set with 25% of the size of the respective full set of
coins. “PrASP 0.7.2 simp” in Fig. 1 stands for results obtained with pruning (i.e.,
parts of the program on which the query result cannot depend have been auto-
matically removed). We also report the results obtained solely using (Algorithm
2) (“noinit” in Fig. 1), in order to see whether the initial sampling stage provides
any benefits here. Simulated annealing parameters have been maxEnergy = 0.15,
initTemp = 5, frozen = 10−150, α = 0.85.
We compared the performance (duration in dependency of the number of coins
(x-axis), minimum number of 18 coins) of the current prototype of PrASP with
that of Tuffy 0.3 (http://i.stanford.edu/hazy/hazy/tuffy/), a recent implemen-
tation of Markov Logic Networks which uses a database system in order to in-
crease scalability, and ProbLog2 2.1 (https://dtai.cs.kuleuven.be/problog/) (de-
spite random dependencies). Times are in milliseconds, obtained using an i7
4-cores processor with 3.4GHz over five trials.
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Fig. 1. Biased coins game

ProbLog2 and Tuffy scale
very well here, with some
additional time required by
Tuffy probably due to the
overhead introduced by ex-
ternal database operations.
With PrASP, we observe that
priming simulated annealing
with an initial sampling step
(which would give inaccurate
results if used standalone)
improves performance mas-
sively, whereas pruning ap-
pears to suffer from the addi-

tional overhead introduced by the required dependency analysis of the logic
program. Our hypothesis regarding this behavior is that the initial distribution
over possible worlds is, albeit not perfect, quite close to the accurate distribution
so that the subsequent simulated annealing task takes off a lot faster compared
to starting from scratch (i.e., from the uniform distribution).
The next experiment shows how PrASP copes with a more realistic benchmark
task - a form of the well-known friends-and-smokers problem [15] - which can
be tractably approached using Algorithm 1 alone since the independence as-
sumption is met (which also makes it suitable for ProbLog). On the other
hand, the rules are more complex. In this benchmark scenario, a randomly
chosen number of persons are friends, a randomly chosen subset of all people
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smoke, there is a certain probability for being stressed ([[0.3]] stress(X)),
it is assumed that stress leads to smoking (smokes(X) :- stress(X)),
and that some friends influence each other with a certain probability
([[0.2]] influences(X,Y)), in particular with regard to their smoking behavior
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y). With a certain proba-
bility, smoking leads to asthma ([[0.4]] h(X). asthma(X) :- smokes(X), h(X)).
The query comprises of [?] asthma(X) for each person X.
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Fig. 2. Smokers social network

The results (Fig. 2) have
been averaged over five trials.
Again, ProbLog2 scores best
in this scenario. PrASP, using
Algorithm 1 (since all uncer-
tain facts in this scenario are
mutually independent), does
quite well for most of episodes
but looses on ProbLog2. Tuffy
does very well below 212 per-
sons, then performance mas-
sively breaks in for unknown
reasons (possibly due to some
internal cache overflow). For

technical reasons, we couldn’t get the smokers-scenario working with the pub-
licly available current implementation of P-Log (we received segmentation faults
which couldn’t be resolved), but experiments with examples coming with this
software seem to indicate that this approach also scales fine.

6 Conclusion

We have presented a new software framework for uncertainty reasoning and pa-
rameter estimation based on Answer Set Programming. In contrast to most other
approaches to probabilistic logic programming, the philosophy of PrASP is to
provide a very expressive formal language (ASP or full FOL syntax over finite
domains for formulas annotated with precise as well as imprecise probabilities)
on the one hand and a variety of inference algorithms which are able to take
advantage of certain problem domains which facilitate “fast track” reasoning
and learning (in particular inference in the presence of formula independence)
on the other. We see the main benefit of our framework, besides its support for
non-monotonic reasoning, thus in its semantically rich and configurable uncer-
tainty reasoning approach which allows to combine various sampling and infer-
ence approaches in a pipeline-like fashion. Ongoing work focuses on additional
experiments and the integration of further inference algorithms, and the direct
integration of an ASP solver into PrASP, in order to avoid expensive calls of ex-
ternal reasoning tools. Another area of ongoing work is the support for so-called
annotated disjunctions [20]. Sponsored by SFI grant n. SFI/12/RC/2289.
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Abstract. The distribution semantics is an approach for integrating
logic programming and probability theory that underlies many languages
and has been successfully applied in many domains. When the program
has function symbols, the semantics was defined for special cases: either
the program has to be definite or the queries must have a finite number
of finite explanations. In this paper we show that it is possible to define
the semantics for all programs.

Keywords: Distribution Semantics, Function Symbols, ProbLog, Probabilistic
Logic Programming

1 Introduction

The distribution semantics [1, 2] was successfully applied in many domains and
underlies many languages that combine logic programming with probability the-
ory such as Probabilistic Horn Abduction, Independent Choice Logic, PRISM,
Logic Programs with Annotated Disjunctions and ProbLog.

The definition of the distribution semantics can be given quite simply in the
case of no function symbols in the program: a probabilistic logic program under
the distribution semantics defines a probability distribution over normal logic
programs called worlds and the probability of a ground query can be obtained
by marginalizing the joint distribution of the worlds and the query. In the case
the program has function symbols, however, this simple definition does not work
as the probability of individual worlds is zero.

A definition of the distribution semantics for programs with function symbols
was proposed in [1, 3] but restricted to definite programs. The case of normal
programs was taken into account in [4] where the semantics required that the
programs are acyclic. A looser condition was proposed in [5] but still required
each goal to have a finite set of finite explanations.

In this paper we show that the distribution semantics can be defined for all
programs, thus also for programs that have goals with an infinite number of
possibly infinite explanations. We do so by adapting the definition of the well-
founded semantics in terms of iterated fixpoints of [6] to the case of ProbLog,
similarly to the way in which the TP operator has been adapted in [7] to the
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case of stratified ProbLog programs using parameterized interpretations. In the
case of infinite number of infinite explanations, we show that the probability of
queries is defined in the limit and the limit always exists.

We consider the case of ProbLog but the results are equally applicable to all
other languages under the distribution semantics, as there are linear transfor-
mations from one language to another that preserve the semantics.

The paper is organized as follows. Section 2 presents preliminary material
on fixpoints and the well-founded semantics. Section 3 introduces the distribu-
tion semantics for programs without function symbols. Section 4 discusses the
definition of the distribution semantics with function symbols in the case of fi-
nite set of finite explanations. Section 5 represents the main contribution of this
paper and discusses the case of infinite set of infinite explanations. Finally, Sec-
tion 6 concludes the paper. The proofs of the main results are reported in the
Appendix.

2 Preliminaries

A relation on a set S is a partial order if it is reflexive, antisymmetric and
transitive. In the following, let S be a set with a partial order ≤. a ∈ S is an
upper bound of a subset X of S if x ≤ a for all x ∈ X. Similarly, b ∈ S is a lower
bound of X if b ≤ x for all x ∈ X.

a ∈ S is the least upper bound of a subset X of X if a is an upper bound
of X and, for all upper bounds a′ of X, we have a ≤ a′. Similarly, b ∈ S is the
greatest lower bound of a subset X of S if b is a lower bound of X and, for all
lower bounds b′ of X, we have b′ ≤ b. The least upper bound of X is unique, if
it exists, and is denoted by lub(X). Similarly, the greatest lower bound of X is
unique, if it exists, and is denoted by glb(X).

A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for
every subset X of L. We let > denote the top element lub(L) and ⊥ denote the
bottom element glb(L) of the complete lattice L.

Let L be a complete lattice and T : L → L be a mapping. We say T is
monotonic if T (x) ≤ T (y), whenever x ≤ y. We say a ∈ L is the least fixpoint of
T if a is a fixpoint (that is, T (a) = a) and for all fixpoints b of T we have a ≤ b.
Similarly, we define greatest fixpoint.

Let L be a complete lattice and T : L → L be monotonic. Then we define
T ↑ 0 = ⊥; T ↑ α = T (T ↑ (α− 1)), if α is a successor ordinal; T ↑ α = lub({T ↑
β|β < α}), if α is a limit ordinal; T ↓ 0 = >; T ↓ α = T (T ↓ (α − 1)), if α is a
successor ordinal; T ↓ α = glb({T ↓ β|β < α}), if α is a limit ordinal.

Proposition 1. Let L be a complete lattice and T : L→ L be monotonic. Then
T has a lest fixpoint, lfp(T ) and a greatest fixpoint gfp(T ).

A normal program P is a set of normal rules. A normal rule has the form

r = h← b1, . . . , bn, not c1, . . . , not cm (1)

where h, b1, . . . , bn, c1, . . . , cm are atoms.
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The set of ground atoms that can be built with the symbols of a program P
is called the Herbrand base and is denoted as BP .

A two-valued interpretation I is a subset of BP . I is the set of true atoms.
The set Int2 of two-valued interpretations for a program P forms a complete
lattice where the partial order ≤ is given by the subset relation ⊆. The least
upper bound and greatest lower bound are defined as lub(X) =

⋃
I∈X I and

glb(X) =
⋂
I∈X I. The bottom and top element are respectively ∅ and BP .

A three-valued interpretation I is a pair 〈IT ; IF 〉 where IT and IF are subsets
of BP and represent respectively the set of true and false atoms. The union of
two three-valued interpretations 〈IT , IF 〉 and 〈JT , JF 〉 is defined as 〈IT , IF 〉 ∪
〈JT , JF 〉 = 〈IT∪JT , IF∪JF 〉. The intersection of two three-valued interpretations
〈IT , IF 〉 and 〈JT , JF 〉 is defined as 〈IT , IF 〉 ∩ 〈JT , JF 〉 = 〈IT ∩ JT , IF ∩ JF 〉.

The set Int3 of three-valued interpretations for a program P forms a complete
lattice where the partial order ≤ is defined as 〈IT , IF 〉 ≤ 〈JT , JF 〉 if IT ⊆ JT
and IF ⊆ JF . The least upper bound and greatest lower bound are defined
as lub(X) =

⋃
I∈X I and glb(X) =

⋂
I∈X I. The bottom and top element are

respectively 〈∅, ∅〉 and 〈BP ,BP 〉.
The well-founded semantics (WFS) assigns a three-valued model to a pro-

gram, i.e., it identifies a three-valued interpretation as the meaning of the pro-
gram. The WFS was given in [8] in terms of the least fixpoint of an operator that
is composed by two sub-operators, one computing consequences and the other
computing unfounded sets. We give here the alternative definition of the WFS
of [6] that is based on a different iterated fixpoint.

Definition 1. For a normal program P , sets Tr and Fa of ground atoms, and
a 3-valued interpretation I we define

OpTruePI (Tr) = {a|a is not true in I; and there is a clause b← l1, ..., ln in P ,
a grounding substitution θ such that a = bθ and for every 1 ≤ i ≤ n either
liθ is true in I, or liθ ∈ Tr};

OpFalsePI (Fa) = {a|a is not false in I; and for every clause b ← l1, ..., ln in P
and grounding substitution θ such that a = bθ there is some i (1 ≤ i ≤ n)
such that liθ is false in I or liθ ∈ Fa}.

In words, the operator OpTruePI extends the interpretation I to add the new

atomic facts that can be derived from P knowing I, while OpFalsePI adds the new
negations of atomic facts that can be shown false in P by knowing I. OpTruePI
and OpFalsePI are both monotonic [6], so they both have a least and greatest
fixpoints. An iterated fixpoint operator builds up dynamic strata by constructing
successive three-valued interpretations as follows.

Definition 2 (Iterated Fixed Point). For a normal program P , let IFPP :
Int3→ Int3 be defined as IFPP (I) = I ∪ 〈lfp(OpTruePI ), gfp(OpFalsePI )〉.
IFPP is monotonic [6] and thus as a least fixed point lfp(IFPP ). Moreover, the
well-founded model WFM (P ) of P is in fact lfp(IFPP ). Let δ be the smallest
ordinal such that WFM (P ) = IFPP ↑ δ. We refer to δ as the depth of P . The
stratum of atom a is the least ordinal β such that a ∈ IFPP ↑ β (where a may
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be either in the true or false component of IFPP ↑ β). Undefined atoms of the
well-founded model do not belong to any stratum – i.e. they are not added to
IFPP ↑ δ for any ordinal δ.

3 The Distribution Semantics for Programs without
Function Symbols

We present the distribution semantics for the case of ProbLog [9] as it is the
language with the simplest syntax. A ProbLog program P is composed by a set
of normal rules R and a set F of probabilistic facts. Each probabilistic fact is of
the form pi :: ai where pi ∈ [0, 1] and ai is an atom, meaning that each ground
instantiation aiθ of ai is true with probability pi and false with probability
1 − pi. Each world is obtained by selecting or rejecting each grounding of all
probabilistic facts.

An atomic choice is the selection or not of grounding Fθ of a probabilistic
fact F . It is represented with the triple (F, θ, i) where i ∈ {0, 1}. A set κ of atomic
choices is consistent if it does not contain two atomic choices (F, θ, i) and (F, θ, j)
with i 6= j (only one alternative is selected for a ground probabilistic fact).
The function consistent(κ) returns true if κ is consistent. A composite choice
κ is a consistent set of atomic choices. The probability of composite choice κ
is P (κ) =

∏
(Fi,θ,1)∈κ pi

∏
(Fi,θ,0)∈κ 1− pi where pi is the probability of the i-th

probabilistic fact Fi. A selection σ is a total composite choice, i.e., it contains
one atomic choice for every grounding of each probabilistic fact. A world wσ is
a logic program that is identified by a selection σ. The world wσ is formed by
including the atom corresponding to each atomic choice (F, θ, 1) of σ.

The probability of a world wσ is P (wσ) = P (σ). Since in this section we
are assuming programs without function symbols, the set of groundings of each
probabilistic fact is finite, and so is the set of worlds WP . Accordingly, for a
ProbLog program P, WP = {w1, . . . , wm}. Moreover, P (w) is a distribution
over worlds:

∑
w∈WP P (w) = 1. We call sound a program for which every world

has a two-valued well-founded model. We consider only sound programs, as the
uncertainty should be handled by the choices rather than by the semantics of
negation.

Let q be a query in the form of a ground atom. We define the conditional
probability of q given a world w as: P (q|w) = 1 if q is true in w and 0 otherwise.
Since the program is sound, q can be only true or false in a world. The probability
of q can thus be computed by summing out the worlds from the joint distribu-
tion of the query and the worlds: P (q) =

∑
w P (q, w) =

∑
w P (q|w)P (w) =∑

w|=q P (w).

4 The Distribution Semantics for Programs with
Function Symbols

When a program contains functions symbols there is the possibility that its
grounding may be infinite. If so, the number of atomic choices in a selection that
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defines a world is countably infinite and there is an uncountably infinite number
of worlds. In this case, the probability of each individual world is zero since it is
the product of infinite numbers all smaller than one. So the semantics of Section
3 is not well-defined.

Example 1. Consider the program

p(0)← u(0). t← ¬s. F1 = a :: u(X).
p(s(X))← p(X), u(X). s← r,¬q. F2 = b :: r.

q ← u(X).

The set of worlds is infinite and uncountable. In fact, each world can be put
in a one to one relation with a selection and a selection can be represented as
a countable sequence of atomic choices of which the first involves fact F2, the
second F1/{X/0}, the third F1/{X/s(0)} and so on. The set of selections can be
shown uncountable by Cantor’s diagonal argument. Suppose the set of selections
is countable. Then the selections could be listed in order, suppose from top to
bottom. Suppose the atomic choices of each selection are listed from left to right.
We can pick a composite choice that differs from the first selection in the first
atomic choice (if (F2, ∅, k) is the first atomic choice of the first selection, pick
(F2, ∅, 1− k)), from the second selection in the second atomic choice (similar to
the case of the first atomic choice) and so on. In this way we have obtained a
selection that is not present in the list because it differs from each selection in
the list for at least an atomic choice. So it is not possible to list the selections
in order.

We now present the definition of the distribution semantics for programs with
function symbols following [4]. The semantics for a probabilistic logic program P
with function symbols is given by defining a probability measure µ over the set of
worlds WP . Informally, µ assigns a probability to a set of subsets of WP , rather
than to every element of (the infinite set) WP . The approach dates back to [10]
who defined a probability measure µ as a real-valued function whose domain is
a σ-algebra Ω on a set W called the sample space. Together 〈W, Ω, µ〉 is called
a probability space.

Definition 3. [11, Section 3.1] The set Ω of subsets of W is a σ-algebra on
the set W iff (σ-1) W ∈ Ω; (σ-2) Ω is closed under complementation, i.e.,
ω ∈ Ω → (W \ ω) ∈ Ω; and (σ-3) Ω is closed under countable union, i.e., if
ωi ∈ Ω for i = 1, 2, . . . then

⋃
i ωi ∈ Ω.

The elements of Ω are called measurable sets. Importantly, for defining the dis-
tribution semantics for programs with function symbols, not every subset of W
need be present in Ω.

Definition 4. [10] Given a sample space W and a σ-algebra Ω of subsets of W,
a probability measure is a function µ : Ω → R that satisfies the following axioms:
(µ-1) µ(ω) ≥ 0 for all ω ∈ Ω; (µ-2) µ(W) = 1; (µ-3) µ is countably additive,
i.e., if O = {ω1, ω2, . . .} ⊆ Ω is a countable collection of pairwise disjoint sets,
then µ(

⋃
ω∈O) =

∑
i µ(ωi).
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We first consider the finite additivity version of probability spaces. In this
stronger version, the σ-algebra is replaced by an algebra.

Definition 5. [11, Section 3.1] The set Ω of subsets of W is an algebra on the
set W iff it respects conditions (σ-1), (σ-2) and condition (a-3): Ω is closed
under finite union, i.e., ω1 ∈ Ω,ω2 ∈ Ω → (ω1 ∪ ω2) ∈ Ω
The probability measure is replaced by a finitely additive probability measure.

Definition 6. Given a sample space W and an algebra Ω of subsets of W, a
finitely additive probability measure is a function µ : Ω → R that satisfies
axioms (µ-1) and (µ-2) of Definition 4 and axiom (m-3): µ is finitely additive,
i.e., ω1 ∩ ω2 = ∅ → µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) for all ω1, ω2 ∈ Ω.

Towards defining a suitable algebra given a probabilistic logic program P, we
define the set of worlds ωκ compatible with a composite choice κ as ωκ = {wσ ∈
WP |κ ⊆ σ}. Thus a composite choice identifies a set of worlds. For programs
without function symbols P (κ) =

∑
w∈ωκ P (w).

Given a set of composite choices K, the set of worlds ωK compatible with K
is ωK =

⋃
κ∈K ωκ. Two composite choices κ1 and κ2 are incompatible if their

union is not consistent. A set K of composite choices is pairwise incompatible if
for all κ1 ∈ K,κ2 ∈ K, κ1 6= κ2 implies that κ1 and κ2 are incompatible.

Regardless of whether a probabilistic logic program has a finite number of
worlds or not, obtaining pairwise incompatible sets of composite choices is an
important problem. This is because the probability of a pairwise incompatible
set K of composite choices is defined as P (K) =

∑
κ∈K P (κ) which is easily

computed. Two sets K1 and K2 of finite composite choices are equivalent if they
correspond to the same set of worlds: ωK1

= ωK2
.

One way to assign probabilities to a set K of composite choices is to construct
an equivalent set that is pairwise incompatible; such a set can be constructed
through the technique of splitting. More specifically, if Fθ is an instantiated fact
and κ is a composite choice that does not contain an atomic choice (F, θ, k)
for any k, the split of κ on Fθ is the set of composite choices Sκ,Fθ = {κ ∪
{(F, θ, 0)}, κ∪{(F, θ, 1)}}. It is easy to see that κ and Sκ,Fθ identify the same set
of possible worlds, i.e., that ωκ = ωSκ,Fθ , and that Sκ,Fθ is pairwise incompatible.
The technique of splitting composite choices on formulas is used for the following
result [12].

Theorem 1 (Existence of a pairwise incompatible set of composite choices [12])
Given a finite set K of composite choices, there exists a finite set K ′ of pairwise
incompatible composite choices such that K and K ′ are equivalent.

Proof: Given a finite set of composite choices K, there are two possibilities to
form a new set K ′ of composite choices so that K and K ′ are equivalent:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, let K ′ =
K \ {κ2}.

2. splitting elements: if κ1, κ2 ∈ K are compatible (and neither is a superset
of the other), there is a (F, θ, k) ∈ κ1 \ κ2. We replace κ2 by the split of κ2
on Fθ. Let K ′ = K \ {κ2} ∪ Sκ2,Fθ.
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In both cases ωK = ωK′ . If we repeat this two operations until neither is ap-
plicable we obtain a splitting algorithm that terminates because K is a finite
set of composite choices. The resulting set K ′ is pairwise incompatible and is
equivalent to the original set. ♦

Theorem 2 (Equivalence of the probability of two equivalent pairwise incom-
patible finite set of finite composite choices [13]) If K1 and K2 are both pairwise
incompatible finite sets of finite composite choices such that they are equivalent
then P (K1) = P (K2).

For a probabilistic logic program P, we can thus define a unique probability
measure µ : ΩP → [0, 1] where ΩP is defined as the set of sets of worlds identified
by finite sets of finite composite choices: ΩP = {ωK |K is a finite set of finite
composite choices }. ΩP is an algebra over WP since WP = ωK with K = {∅}.
Moreover, the complement ωcK of ωK where K is a finite set of finite composite
choice is ωK where K is a finite set of finite composite choices. In fact, K can
obtained with the function duals(K) of [12] that performs Reiter’s hitting set
algorithm over K, generating an element κ of K by picking an atomic choice
(F, θ, k) from each element of K and inserting in κ the atomic choice (F, θ, 1−k).
After this process is performed in all possible ways, inconsistent sets of atom
choices are removed obtaining K. Since the possible choices of the atomic choices
are finite, so is K. Finally, condition (a-3) holds since the union of ωK1

with ωK2

is equal to ωK1∪K2 for the definition of ωK .
The corresponding measure µ is defined by µ(ωK) = P (K ′) where K ′ is a

pairwise incompatible set of composite choices equivalent to K. 〈WP , ΩP , µ〉 is a
finitely additive probability space according to Definition 6 because µ(ω{∅}) = 1,
µ(ωK) ≥ 0 for all K and if ωK1

∩ωK2
= ∅ and K ′1 (K ′2) is pairwise incompatible

and equivalent to K1 (K2), then K ′1 ∪K ′2 is pairwise incompatible and

µ(ωK1
∪ωK2

) =
∑

κ∈K′1∪K′2

P (κ) =
∑

κ1∈K′1

P (κ1)+
∑

κ2∈K′2

P (κ2) = µ(ωK1
)+µ(ωK2

).

Given a query q, a composite choice κ is an explanation for q if ∀w ∈ ωκ : w |= q.
A set K of composite choices is covering wrt q if every world in which q is true
belongs to ωK

Definition 7. For a probabilistic logic program P, the probability of a ground
atom q is given by P (q) = µ({w|w ∈WP , w |= q}).

If q has a finite set K of finite explanations such that K is covering then {w|w ∈
WP ∧ w |= q} = ωK ∈ ΩT and we say that P (q) is finitely well-defined for the
distribution semantics. A program P is finitely well-defined if the probability of
all ground atoms in the grounding of P is finitely well-defined.

Example 2. Consider the program of Example 1. The set K = {κ} with κ =
{(F1, {X/0}, 1), (F1, {X/s(0)}, 1)} is a pairwise incompatible finite set of finite
explanations that are covering for the query p(s(0)). Definition 7 therefore ap-
plies, and P (p(s(0))) = P (κ) = a2

The Distribution Semantics is Well-Defined for All Normal Programs

75



5 Infinite Covering Set of Explanations

In this section we go beyond [4] and we remove the requirement of the finiteness
of the covering set of explanations and of each explanation for a query q.

Example 3. In Example 1, the query s has the pairwise incompatible covering
set of explanations Ks = {κs0, κs1, . . .} with

κsi = {(F2, ∅, 1), (F1, {X/0}, 1), . . . , (F1, {X/si−1(0)}, 1), (F1, {X/si(0)}, 0)}

where si(0) is the term where the functor s is applied i times to 0. So Ks is count-
able and infinite. A covering set of explanation for t is Kt = {{(F2, ∅, 0)}, κt}
where κt is the infinite composite choice

κt = {(F2, ∅, 1), (F1, {X/0}, 1), (F1, {X/s(0)}, 1), . . .}

For a probabilistic logic program P, we can define the probability measure
µ : ΩP → [0, 1] where ΩP is defined as the set of sets of worlds identified
by countable sets of countable composite choices: ΩP = {ωK |K is a countable
set of countable composite choices }.
Lemma 3 ΩP is a an σ-algebra over WP .

Proof: (σ-1) is true as in the algebra case. To see that the complement ωcK of
ωK is in ΩP , let us prove by induction that the dual K of K is a countable
set of countable composite choices and then that ωcK = ωK . In the base case,
if K1 = {κ1}, then we can obtain K1 by picking each atomic choice (F, θ, k) of
κ1 and inserting in K1 the composite choice {(F, θ, 1 − k)}. As there is a finite
or countable number of atomic choices in κ1, K1 is a finite or countable set of
composite choices each with one atomic choice.

In the inductive case, assume that Kn−1 = {κ1, . . . , κn−1} and that Kn−1
is a finite or countable set of composite choices. Let Kn = Kn−1 ∪ {κn} and
Kn−1 = {κ′1, κ′2, . . .}. We can obtain Kn by picking each κ′i and each atomic
choice (F, θ, k) of κn. If (F, θ, k) ∈ κ′i, then discard κ′i, else if (F, θ, k′) ∈ κ′i
with k′ 6= k, insert κ′i in Kn. Otherwise generate the composite choice κ′′i where
κ′′i = κ′i ∪ {(F, θ, 1 − k)} and insert it in Kn. Doing this for all atomic choices
(F, θ, k) in κn generates a finite set of composite choices if κn is finite and a
countable number if κn is countable. Doing this for all κ′i we obtain that Kn is a
countable union of countable sets which is a countable set [14, page 3]. ωcK = ωK
because all composite choices of K are incompatible with each world of ωK , as
they are incompatible with each composite choice of K. So ωcK ∈ ΩP . (σ-3) is
true as in the algebra case. ♦

We can see K as limn→∞Kn where Kn = {κ1, . . . , κn}. Each Kn is a finite
set of composite choices and we can compute an equivalent finite pairwise incom-
patible set of composite choices K ′n. For each K ′n we can compute the probability
P (K ′n), noting that the probability of infinite composite choices is 0.

Now consider limn→∞ P (K ′n). We can see the P (K ′n)s as the partial sums
of a series. Moreover, it can be shown that P (K ′n−1) ≤ P (K ′n) so the series
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has non-negative terms. Such a series converges if the sequence of partial sums
is bounded from above [15, page 92]. Since P (K ′n) is bounded by 1, the limit
limn→∞ P (K ′n) exists. So we can define measure µ as µ(ωK) = limn→∞ P (K ′n).

Theorem 4 〈WP , ΩP , µ〉 is a probability space according to Definition 4.

Proof: (µ-1) and (µ-2) hold as for the finite case and for (µ-3) let O =
{ωL1 , ωL2 , . . .} be a countable set of subsets of ΩP such that the ωLis are pair-
wise disjoint. Let L′i be the pairwise incompatible set equivalent to Li and let
L be

⋃∞
i=1 L

′
i. Since the ωLis are pairwise disjoint, then L is pairwise incom-

patible. ΩP is a σ-algebra, so L is countable. Let L be {κ1, κ2, . . .} and let
K ′n be {κ1, . . . , κn}. Then µ(O) = limn→∞ P (K ′n) = limn→∞

∑
κ∈K′n P (κ) =∑

κ∈L P (κ). Since L =
⋃∞
i=1 L

′
i, by rearranging the terms in the last summation

we get µ(O) =
∑
κ∈L P (κ) =

∑∞
n=1 P (L′n) =

∑∞
n=1 µ(ωLn). ♦

For a probabilistic logic program P, the probability of a ground atom q is
again given by P (q) = µ({w|w ∈ WP , w |= q}). If q has a countable set K of
explanations such that K is covering then {w|w ∈ WP ∧ w |= q} = ωK ∈ ΩP
and we say that P (q) is well-defined for the distribution semantics. A program
P is well-defined if the probability of all ground atoms in the grounding of P is
well-defined.

Example 4. Consider Example 3. Since the explanations in Ks are pairwise in-
compatible the probability of s can be computed as

P (s) = b(1− a) + ba(1− a) + ba2(1− a) + . . . =
b(1− a)

1− a = b.

since the sum is a geometric series. Kt is also pairwise incompatible and P (κt) =
0 so P (t) = 1− b+ 0 = 1− b which is what we intuitively expect.

We now want to show that every program has countable set of countable expla-
nations that is covering for each query. In the following, we consider only ground
programs that however may be countably infinite, thus they can be the result of
grounding a program with function symbols.

Given two sets of composite choices K1 and K2, define the conjunction K1⊗
K2 of K1 and K2 as K1⊗K2 = {κ1 ∪κ2|κ1 ∈ K1, κ2 ∈ K2, consistent(κ1 ∪κ2)}

Similarly to [7], we define parametrized interpretations and a IFPCP oper-
ator. Differently from [7], here parametrized interpretations associate a set of
composite choices instead of a Boolean formula to each atom.

Definition 8 (Parameterized two-valued interpretations). A parameter-
ized positive two-valued interpretation Tr of a ground probabilistic logic program
P with and atoms BP is a set of pairs (a,Ka) with a ∈ atoms and Ka a set
of composite choices. A parameterized negative two-valued interpretation Fa of
a ground probabilistic logic program P with atoms BP is a set of pairs (a,K¬a)
with a ∈ BP and K¬a a set of composite choices.

Parametrized two-valued interpretations form a complete lattice where the par-
tial order is defined as I ≤ J if ∀(a,Ka) ∈ I, (a, La) ∈ J : ωKa ⊆ ωLa . The
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least upper bound and greatest lower bound always exist and are lub(X) =
{(a,⋃(a,Ka)∈I,I∈X Ka)|a ∈ BP} and glb(X) = {(a,⊗(a,Ka)∈I,I∈X Ka)|a ∈ BP}.
The top element > is {(a, {∅})|a ∈ BP} and the bottom element ⊥ is {(a, ∅)|a ∈
BP}.

Definition 9 (Parameterized three-valued interpretation). A parameter-
ized three-valued interpretation I of a ground probabilistic logic program P with
atoms BP is a set of triples (a,Ka,K¬a) with a ∈ BP and Ka and K¬a sets of
composite choices.

Parametrized three-valued interpretations form a complete lattice where the par-
tial order is defined as I ≤ J if ∀(a,Ka,K¬a) ∈ I, (a, La, L¬a) ∈ J : ωKa ⊆ ωLa
and ωK¬a ⊆ ωL¬a . The least upper bound and greatest lower bound always exist
and are lub(X) = {(a,⋃(a,Ka,K¬a)∈I,I∈X Ka,

⋃
(a,Ka,K¬a)∈I,I∈X K¬a)|a ∈ BP}

and glb(X) = {(a,⊗(a,Ka,K¬a)∈I,I∈X Ka,
⊗

(a,Ka,K¬a)∈I,I∈X K¬a)|a ∈ BP}. The

top element > is {(a, {∅}, {∅})|a ∈ BP}, the bottom element ⊥ is {(a, ∅, ∅)|a ∈
BP}.

Definition 10. For a ground program P, a two-valued parametrized positive
interpretation Tr with pairs (a, La), a two-valued parametrized negative inter-
pretation Fa with pairs (a,M¬a) and a three-valued parametrized interpretation
I with triples (a,Ka,K¬a), we define OpTrueCPI (Tr) = {(a, L′a)|a ∈ BP} where

L′a =




{{(a, ∅, 1)}} if a ∈ F⋃
a←b1,...,bn,¬c1,...,cm∈R((Lb1 ∪Kb1)⊗ . . .
⊗(Lbn ∪Kbn)⊗K¬c1 ⊗ . . .⊗K¬cm)

if a ∈ BP \ F

OpFalseCPI (Fa) = {(a,M ′a)|a ∈ BP} where

M ′¬a =




{{(a, ∅, 0)}} if a ∈ F⊗

a←b1,...,bn,¬c1,...,cm∈R((M¬b1 ⊗K¬b1) ∪ . . .
∪(M¬bn ⊗K¬bn) ∪Kc1 ∪ . . . ∪Kcm)

if a ∈ BP \ F

Proposition 5 OpTrueCPI and OpFalseCPI are monotonic.

Since OpTrueCPI and OpFalseCPI are monotonic, they have a least fixpoint and
a greatest fixpoint.

Definition 11 (Iterated Fixed Point). For a ground program P, let IFPCP

be defined as IFPCP(I) = {(a,Ka,K¬a)|(a,Ka) ∈ lfp(OpTrueCPI ), (a,K¬a) ∈
lfp(OpFalseCPI )}.

Proposition 6 IFPCP is monotonic.

So IFPCP has a least fixpoint. Let WFMC (P) denote lfp(IFPCP), and let δ
the smallest ordinal such that IFPCP ↑ δ = WFMC (P). We refer to δ as the
depth of P.
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Theorem 7 For a ground probabilistic logic program P with atoms BP , let Kα
a

and Kα
¬a be the formulas associated with atom a in IFPCP ↑ α. For every atom

a and total choice σ, there is an iteration α0 such that for all α > α0 we have:

wσ ∈ ωKα
a
↔WFM (wσ) |= a wσ ∈ ωKα

¬a ↔WFM (wσ) |= ¬a

Theorem 8 For a ground probabilistic logic program P, let Kα
a and Kα

¬a be the
formulas associated with atom a in IFPCP ↑ α. For every atom a and every
iteration α, Kα

a and Kα
¬a are countable sets of countable composite choices.

So every query for every program has a countable set of countable explanations
that is covering and the probability measure is well defined. Moreover, since the
program is sound, for all atoms a, ωKδ

a
= ωcKδ

¬a
where δ is the depth of the

program, as in each world a is either true or false.

5.1 Comparison with Sato and Kameya’s Definition

Sato and Kameya [3] define the distribution semantics for definite programs.
They build a probability measure on the sample space WP from a collection
of finite distributions. Let F be {F1, F2, . . .} and let Xi be a random variable
associated to Fi whose domain is {0, 1}.

The finite distributions P
(n)
P (X1 = k1, . . . , Xn = kn) for n ≥ 1 must be such

that





0 ≤ P (n)
P (X1 = k1, . . . , Xn = kn) ≤ 1∑

k1,...,kn
P

(n)
P (X1 = k1, . . . , Xn = kn) = 1∑

kn+1
P

(n+1)
P (X1 = k1, . . . , Xn+1 = kn+1) = P

(n)
P (X1 = k1, . . . , Xn = kn)

(2)
The last equation is called the compatibility condition. It can be proved [16] from
the compatibility condition that there exists a probability space (WP , ΨP , η)
where η is a probability measure on ΨP , the minimal σ-algebra containing open
sets of WP such that for any n,

η(X1 = k1, . . . , Xn = kn) = P
(n)
T (X1 = k1, . . . , Xn = kn). (3)

P
(n)
P (X1 = k1, . . . , Xn = kn) is defined as P

(n)
P (X1 = k1, . . . , Xn = kn) =

p1 . . . pn where pi is the annotation of alternative ki in fact Fi. This definition

clearly satisfies the properties in (2). P
(n)
P (X1 = k1, . . . , Xn = kn) is then ex-

tended to a probability measure over BP .
We conjecture that this definition of the distribution semantics with function

symbols coincides for definite programs with the one given above.
To show that the two definition coincide, we conjecture that ΨP = ΩT .

Moreover, X1 = k1, . . . , Xn = kn is equivalent to the set of composite choices
K = {{(F1, ∅, k1), . . . , (Fn, ∅, kn)}} and µ(ωK) gives p1 . . . pn which satisfies
equation (3).
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6 Conclusions

We have presented a definition of the distribution semantics in terms of an
iterated fixpoint operator that allowed us to prove that the semantics is well
defined for all programs. The operator we have presented is also interesting from
an inference point of view, as it can be used for forward inference similarly to
[7].
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A Proofs of Theorems

Proposition 5 OpTrueCPI and OpFalseCPI are monotonic.

Proof: Let us consider OpTrueCPI . We have to prove that if Tr1 ≤ Tr2

then OpTrueCPI (Tr1) ≤ OpTrueCPI (Tr2). Tr1 ≤ Tr2 means that ∀(a, La) ∈
Tr1, (a,Ma) ∈ Tr2 : La ⊆ Ma. Let (a, L′a) be the elements of OpTrueCPI (Tr1)
and (a,M ′a) the elements of OpTrueCPI (Tr2). We have to prove that L′a ⊆M ′a

If a ∈ F then L′a = M ′a = {{(a, θ, 1)}}. If a ∈ BP \ F , then L′a and M ′a have
the same structure. Since ∀b ∈ BP : Lb ⊆Mb, then L′a ⊆M ′a

We can prove similarly that OpFalseCPI is monotonic. ♦
Proposition 6 IFPCP is monotonic.

Proof: We have to prove that if I1 ≤ I2 then IFPCP(I1) ≤ IFPCP(I2).
I1 ≤ I2 means that ∀(a, La, L¬a) ∈ I1, (a,Ma,M¬a) ∈ I2 : La ⊆ Ma, L¬a ⊆
M¬a. Let (a, L′a, L

′
¬a) be the elements of IFPCP(I1) and (a,M ′a,M

′
¬a) the el-

ements of IFPCP(I2). We have to prove that L′a ⊆ M ′a and L′¬a ⊆ M ′¬a. This
follows from the montonicity of OpTrueCPI1 and OpFalseCPI2 in I1 and I2 re-
spectively, which can be proved as in Proposition 5. ♦
Lemma 9 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Lαa be the formula associated with atom a in
OpTrueCPI ↑ α. For every atom a, total choice σ and iteration α, we have:

wσ ∈ ωLαa →WFM (wσ|I) |= a

where wσ|I is obtained by adding to wσ the atoms a for which (a,Ka,K¬a) ∈ I
and wσ ∈ Ka as facts and by removing all the rules with a in the head for which
(a,Ka,K¬a) ∈ I and wσ ∈ K¬a.

Proof: Let us prove the lemma by transfinite induction: let as assume the thesis
for all β < α and let us prove it for α. If α is a successor ordinal, then it is easily
verified for a ∈ F . Otherwise assume wσ ∈ ωLαa where

Lαa =
⋃

a←b1,...,bn,¬c1,...,cm∈R
((Lα−1b1

∪Kb1)⊗. . .⊗(Lα−1bn
∪Kbn)⊗K¬c1⊗. . .⊗K¬cm)

This means that there is rule a ← b1, . . . , bn,¬c1, . . . , cm ∈ R such that wσ ∈
ωLα−1

bi
∪Kbi

for i = 1, . . . , n and wσ ∈ ωK¬cj for j = 1 . . . ,m. By the induc-

tive assumption and because of how wσ|I is built then WFM (wσ|I) |= bi and
WFM (wσ|I) |= ¬cj so WFM (wσ|I) |= a.

If α is a limit ordinal, then

Lαa = lub({Lβa |β < α}) =
⋃

β<α

Lβa

If wσ ∈ ωLαa then there must exist a β < α such that wσ ∈ ωLβa . By the inductive
assumption the hypothesis holds. ♦
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Lemma 10 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Mα

¬a be the set of composite choices associated
with atom a in OpFalseCPI ↓ α. For every atom a, total choice σ and iteration
α, we have:

wσ ∈ ωM¬a →WFM (wσ|I) |= ¬a

where wσ|I is built as in Lemma 9.

Proof: Similar to the proof of Theorem Lemma 9. ♦

Lemma 11 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Kα

a and Kα
¬a be the formulas associated with atom

a in IFPCP ↑ α. For every atom a, total choice σ and iteration α, we have:

wσ ∈ ωKα
a
→WFM (wσ) |= a (4)

wσ ∈ ωKα
¬a →WFM (wσ) |= ¬a (5)

Proof: Let us first prove that for all α, WFM (wσ) = WFM (wσ|IFPCP ↑ α).
We can prove it by transfinite induction. Consider the case of α a successor
ordinal. Consider an atom b. If wσ 6∈ ωKα

b
and wσ 6∈ ωKα

¬b then the rules for b in

wσ and wσ|IFPCP ↑ α are the same. If wσ ∈ ωKα
b

then b is a fact in wσ|IFPCP ↑
α but, according to Lemma 9, WFM (wσ|IFPCP ↑ (α−1)) |= b. For the inductive
hypothesis WFM (wσ) |= b so b has the same truth value in WFM (wσ) and
WFM (wσ|IFPCP ↑ α). Similarly, if wσ ∈ ωKα

¬b , then WFM (wσ) |= ¬b and b

has the same truth value in WFM (wσ) and WFM (wσ|IFPCP ↑ α). So overall
WFM (wσ) = WFM (wσ|IFPCP ↑ α).

If α is a limit ordinal, then Kα
b =

⋃
β<αK

β
b and Kα

¬b =
⋃
β<αK

β
b . So if wσ ∈

ωKα
b

there is a β such wσ ∈ ωKβ
b

and for the inductive hypothesis WFM (wσ) |= b

so b has the same truth value in WFM (wσ) and WFM (wσ|IFPCP ↑ α). Similarly
if wσ ∈ ωKα

¬b .

We can now prove the lemma by transfinite induction. Consider the case of
α a successor ordinal. Since (a,Kα

a ) ∈ lfp(OpTrueCPIFPC↑(α−1)), by Lemma 9

wσ ∈ ωKα
a
→WFM (wσ|IFPCP ↑ (α− 1)) |= a

Since WFM (wσ|IFPCP ↑ (α− 1)) = WFM (wσ), (4) is proved.

Since (a,Kα
¬a) ∈ gfp(OpFalseCPIFPCP↑(α−1)), by Lemma 10

wσ ∈ ωKα
¬a →WFM (wσ|IFPCP ↑ (α− 1)) |= ¬a

Since WFM (wσ|IFPCP ↑ (α− 1)) = WFM (wσ), (5) is proved.

If α is a limit ordinal, Kα
a =

⋃
β<αK

β
a and Kα

¬a =
⋃
β<αK

β
a . If wσ ∈ ωKα

a

there is a β such that wσ ∈ ωKα
b

and by the inductive hypothesis (4) is proved.
Similarly for (5). ♦
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Lemma 12 For a ground probabilistic logic program P with probabilistic facts
F , rules R and atoms BP , let Kα

a and Kα
¬a be the formulas associated with atom

a in IFPCP ↑ α. For every atom a, total choice σ and iteration α, we have:

a ∈ IFPwσ ↑ α→ wσ ∈ Kα
a

¬a ∈ IFPwσ ↑ α→ wσ ∈ Kα
¬a

Proof: Let us prove it by double transfinite induction. If α is a successor ordinal,
assume that

a ∈ IFPwσ ↑ (α− 1)→ wσ ∈ Kα−1
a

¬a ∈ IFPwσ ↑ (α− 1)→ wσ ∈ Kα−1
¬a

Let us perform transfinite induction on the iterations of OpTruePIFPCP↑(α−1).
Let us consider a successor ordinal δ: assume that

a ∈ OpTruewσIFPwσ↑(α−1) ↑ (δ − 1)→ wσ ∈ Lδ−1a

¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ (δ − 1)→ wσ ∈M δ−1
¬a

and prove that
a ∈ OpTruewσIFPwσ↑(α−1) ↑ δ → wσ ∈ Lδa
¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ δ → wσ ∈Mδ

¬a

Consider a. If a ∈ F then it is easily proved.
For other atoms a, a ∈ OpTruewσIFPwσ↑(α−1) ↑ δ means that there is a rule a←

b1, . . . , bn,¬c1, . . . , cm such that for all i = 1, . . . , n bi ∈ OpTruewσIFPwσ↑(α−1) ↑
(δ − 1) and for all j = 1, . . . ,m ¬cj ∈ IFPwσ ↑ (α − 1). For the inductive
hypothesis ∀i : wσ ∈ Lδ−1bi

∨ wσ ∈ Kα−1
bi

and ∀j : wσ ∈ Kα−1
¬cj so, for the

definition of OpTruewσIFPwσ↑(α−1), wσ ∈ Lδa. Analogously for ¬a.

If δ is a limit ordinal, then Lδa =
⋃
µ<δ L

µ
a and Mδ

¬a =
⊗

µ<δM
µ
¬a. For the

inductive hypothesis for all µ < δ

a ∈ OpTruewσIFPwσ↑(α−1) ↑ µ→ wσ ∈ Lµa
¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ µ→ wσ ∈Mµ

¬a

If a ∈ OpTruewσIFPwσ↑(α−1) ↑ δ, then there exists a µ < δ such that a ∈
OpTruewσIFPwσ↑(α−1) ↑ µ. For the inductive hypothesis, wσ ∈ Lδa.

If ¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓ δ, then, for all µ < δ, ¬a ∈ OpFalsewσIFPwσ↑(α−1) ↓
µ. For the inductive hypothesis, wσ ∈M δ

a .
Consider a limit α. Then Kα

a =
⋃
β<αK

β
a and Kα

¬a =
⋃
β<αK

β
¬a. The in-

ductive hypothesis is
a ∈ IFPwσ ↑ β → wσ ∈ Kβ

a

¬a ∈ IFPwσ ↑ β → wσ ∈ Kβ
¬a

If a ∈ IFPwσ ↑ α, then there exists a β < α such that a ∈ IFPwσ ↑ β. For the
inductive hypothesis wσ ∈ Kβ

a so wσ ∈ Kα
a . Similarly for ¬a. ♦
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Theorem 7 For a ground probabilistic logic program P with atoms BP , let Kα
a

and Kα
¬a be the formulas associated with atom a in IFPCP ↑ α. For every atom

a and total choice σ, there is an iteration α0 such that for all α > α0 we have:

wσ ∈ ωKα
a
↔WFM (wσ) |= a wσ ∈ ωKα

¬a ↔WFM (wσ) |= ¬a

Proof: The→ direction is Lemma 11. In the other direction, WFM (wσ) |= a
implies ∃α0∀α ≥ α0 : IFPwσ ↑ α |= a. For Lemma 12, wσ ∈ ωKα

a
. WFM (wσ) |=

¬a implies ∃α0∀α ≥ α0 : IFPwσ ↑ α |= ¬a. For Lemma 12, wσ ∈ ωKα
¬a . ♦

Theorem 8 For a ground probabilistic logic program P, let Kα
a and Kα

¬a be the
formulas associated with atom a in IFPCP ↑ α. For every atom a and every
iteration α, Kα

a and Kα
¬a are countable sets of countable composite choices.

Proof: It can be proved by observing that each iteration ofOpTrueCP
IFPCP↑β

and OpFalseCPIFPCP↑β generates countable sets of countable explanations since
the set of rules is countable. ♦
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Abstract. Probabilistic logic programming has traditionally focused on
languages where probabilities or weights are specified or inferred directly,
rather than through Bayesian priors. To address this limitation, we pro-
pose a probabilistic logic programming language that bridges the gap
between logical and probabilistic inference in categorical models with
Dirichlet priors. The language is described in terms of its general plate
model, syntax, semantics and the relation between the three. A prototype
implementation is evaluated on two case studies: latent Dirichlet alloca-
tion (LDA) on synthetic data, where we compare it with collapsed Gibbs
sampling, and repeated insertion model (RIM) on real data. Universal
probabilistic programming is not always scalable beyond toy examples
on some models. However, our promising results show that the infer-
ence yields similar results to state-of-the-art solutions reported in the
literature, produced with model-specific implementations.

Keywords: probabilistic programming, Bayesian inference, abductive logic pro-
gramming, latent Dirichlet allocation, repeated insertion model

1 Introduction

Probabilistic programming is an area of research that aims to generalize infer-
ence in probabilistic models specified as inputs to a programming language. In
this context, evaluating the program corresponds to prediction with or inference
on the described model. A wide range of probabilistic programming languages
(PPLs) have been developed, based on different programming languages and ex-
pressing a variety of classes of probabilistic models. Examples of PPLs include
Church [8], Anglican [18], BUGS [15], Stan [22] and Figaro [19].1 While some
PPLs, such as Church, typically enrich a functional programming language with
exchangeable random primitives, there also exist logic based PPLs that add
probabilistic annotations or primitives to a logical encoding of the model. This
encoding usually relates either to first-order logic, e.g. Alchemy[6], BLOG [17]
or to logic programming PPLs, e.g. PRiSM [21], ProbLog [7].

1 For a more comprehensive list cf. http://probabilistic-programming.org/.
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Typical PPLs based on functional programming can express a wide range
of probabilistic models, and inference is based on general sampling algorithms.
Existing logic based PPLs mostly focus on discrete probabilistic models, and,
generally, they do not consider Bayesian inference with prior distributions. For
instance, Alchemy is a PPL which implements Markov logic, encoding a first or-
der knowledge base into a Markov random field. Here, uncertainty is expressed
by weights on the logical formulae and one cannot specify prior distributions on
the weights. ProbLog is a PPL that primarily targets the inference of conditional
probabilities and the most probable explanation (maximum likelihood solution)
and it does not feature the specification of prior distributions. PRiSM is a PPL
which introduces conjugate Dirichlet priors over categorical distributions; how-
ever, it is limited to probabilistic models described at the abductive level by
non-overlapping explanations, such as hidden Markov models and probabilistic
context-free grammars.

These observations motivate our present paper: we develop a logic program-
ming based PPL specialized on probabilistic models involving categorical vari-
ables with conjugate Dirichlet priors that can be encoded as abductive logic
programs with overlapping explanations. The programs evaluated by our PPL
are abductive logic programs [11] enriched with probabilistic definitions and in-
ference queries. We consider as case studies the latent Dirichlet allocation (LDA,
[2]) and the repeated insertion model (RIM, [5]).

The contributions of this paper are:

– the design of peircebayes, a logic programming based PPL for inference in
discrete models with categorical variables and Dirichlet priors.

– the description of the class of probabilistic models that can be expressed in
the PPL, and their relation to the language.

– a prototype implementation of the language. For probabilistic inference, we
adapt the Gibbs sampling algorithm described in [10].

– the formulation of RIM [5] as a probabilistic program.
– the evaluation of the PPL on an LDA task with synthetic data and on a

RIM task with real data.

The rest of the paper is organized as follows. In Section 2 we describe the
class of probabilistic models supported by our PPL. Section 3 explains the key
features of the syntax and semantics of the PPL. We present the results of two
experiments with our PPL in Section 4. Finally, in Section 5 we relate our PPL
to other PPLs and methods, and we conclude.

2 The Probabilistic Model

This section introduces peircebayes2, referred to in the rest of the paper as PB,
a probabilistic logic programming language designed for inference in a subclass
of the class of models called “propositional logic-based probabilistic models”,
described in [10].

2 Named, in Church style, after Charles Sanders Peirce, the father of logical abduction,
and Thomas Bayes, the father of Bayesian reasoning. Pronounced [’p3rs’beIz].
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αa θai xnai vnaij fn

ka − 1

Ia

A

N

Fig. 1. The PB plate model. Unbounded nodes are constants, circle nodes are latent
variables, shaded nodes are observed variables, diamond nodes are deterministic vari-
ables. A, Ia, N , and ka are positive integers, ka ≥ 2.

The general plate notation [4] of the models expressible in PB is given in
Figure 1. The plate model encodes the following (joint) probability distribution:

P (f, v, x, θ;α) =
(

A∏

a=1

Ia∏

i=1

P (θai;αa)

(
N∏

n=1

P (xnai|θai)P (vnai∗|xnai)
))

N∏

n=1

P (fn|vn∗) (1)

We use ∗ to denote the set of variables obtained by iterating over the missing
indexes, e.g. vnai∗ is the set of all the variables vnaij , for j = 1, . . . , ka − 1,
and vn∗ is the set of all the variables vnaij , for a = 1, . . . , A, i = 1, . . . , Ia,
j = 1, . . . , ka − 1. Unindexed variables are implicitly such sets, e.g. x = x∗.

In the model, each αa, for a = 1, . . . , A, is a vector of finite length ka ≥ 2 of
positive real numbers. Each αa may have a different length, and it represents the
parameters of a Dirichlet distribution. From each such distribution Ia samples
are drawn, i.e.:

θai ∼ Dirichlet(αa) a = 1, . . . , A , i = 1, . . . , Ia

The samples θ are parameters of categorical distributions. Sampling N times
from the latter yields:

xnai ∼ Categorical(θai) a = 1, . . . , A , i = 1, . . . , Ia , n = 1, . . . , N

Each xnai ∈ {1, . . . , ka} is encoded, similarly to [20], as a set of propositional
variables vnaij ∈ {0, 1}, for j = 1, . . . , ka − 1, in the following manner:

P (vnai∗|xnai = l) =

{
vnai1 . . . vnail−1vnail , if l < ka
vnai1 . . . vnail−1 , if l = ka

where v denote boolean negation. Finally, the observed variables of the model,
fn ∈ {0, 1}, represent the output of boolean functions of v, such that:

Probabilistic Abductive Logic Programming using Dirichlet Priors

87



P (fn|vn∗) = [fn = Booln(vn∗)] n = 1, . . . , N

Booln(v) denotes an arbitrary boolean function of variables v, and [i = j] is
the Kronecker delta function δij . The observed value for each fn is 1 (or true)
as we will explain in the following paragraph.

Inference in PB can be described in direct relation to a general schema of
probabilistic inference, i.e. the characterization of P (θ|∆;α), where θ are param-
eters of interest, α are constants (hyper-parameters) and ∆ is some observed
data. In PB, the parameters and the hyper-parameters correspond to θ and α,
respectively. The observed data is captured by f and is assumed to be a set of N
data points or observations. By convention, the realization fn = 1 ensures that
the n-th observation is included in the model, and, as such, we assume this is
always the case. Furthermore, fn is independent of the other observations given
x (since x determines v), as implied by the joint distribution in Equation 1.

The various ways in which a data point can be generated, as well as the
distributions involved in this process, are encoded through the boolean function
Booln(vn∗) corresponding to the n-th data point. It is important to note that
the data ∆ can take any finite number of values, and Booln(vn∗) encodes the
process of generating a single realization thereof.

Example. We illustrate the encoding of a popular probabilistic model for
topic modelling, the latent Dirichlet allocation (LDA) [2] as a PB model. This will
also serve as a running example throughout Section 3. LDA can be summarized
as follows: given a corpus of D documents, each document is a list of tokens, the
set of all tokens in the corpus is the vocabulary, with size V and assume there
exist T topics. There are two sets of categorical distributions: D distributions
over T categories, each distribution indexed µd, and T distributions over V
categories, each distribution indexed φt. The words of a document d are produced
independently by sampling a topic t from µd, then sampling a word from φt.
Furthermore, each distribution in µ is sampled using the same Dirichlet prior
with parameters γ, and, similarly, each distribution in φ is sampled using β.
Note that µ and φ correspond to the parameters θ in the general model, and
γ and β correspond to α. Assume that there is a corpus with 3 documents, 2
topics and a vocabulary of 4 words. The plate notation of the PB model of LDA
is given in Figure 2.

Let the first data point be the observation of the second word of the vocab-
ulary in document 3. Then the associated boolean function is:

Bool1(v1∗) = v15v111v112 + v15v121v122

The literals v15 and v15 denote the choice, in document 3, of topic 1 and
2, respectively, and the conjunctions v111v112 and v121v122 denote the choice
of the second word from topic 1 and 2, respectively. Note that, in Figure 2,
even though all possible edges between deterministic nodes and fn are drawn,
not all the variables must affect the probability of fn, for instance the value of
Bool1(v1∗) doesn’t depend on the value of v13.
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β γ

φ1 φ2 µ3 µ4 µ5

yn1 yn2 zn3 zn4 zn5

vn11 vn12 vn13 vn21 vn22 vn23 vn3 vn4 vn5

fn

N

Fig. 2. The PB model for the LDA example.

3 Syntax and Semantics

Having established the semantics of the PB model, we proceed to describe the
syntax and semantics of PB programs, and show how they relate to the proba-
bilistic model.

A PB program is an abductive logic program [11] enhanced with probabilis-
tic predicates. The abductive logic program encodes the generative story of the
model, as well as the observed data. The most important probabilistic predicates
are pb dirichlet and pb plate. The former provides a way to declare the prob-
ability distributions of the model, the latter is a query mechanism: it iterates
through the data and computes all the possible ways it could have been gener-
ated according to the model, enabling the application of probabilistic inference
algorithms.

The probabilistic predicate pb dirichlet specifies a set of categorical dis-
tributions with the same Dirichlet prior, i.e. the elements on the outer plate
indexed by a in Figure 1. Therefore, a set of such predicates express the whole
outer plate. The syntax of the predicate is pb dirichlet(Alpha a, Name, K a,

I a). The first argument, Alpha a, corresponds to αa in the model, and can be
either a list of ka positive scalars specifying the parameters of the Dirichlet, or
a positive scalar that specifies a symmetric prior. The second argument, Name is
an atom that will be used as a functor when calling a predicate that represents
a realization of a categorical random variable on the a-th plate. The third argu-
ment K a corresponds to ka, and I a represents Ia, i.e. the number of categorical
distributions having the same prior. The semantics of the predicate is that Name
can be called in the program as a predicate, with the first argument denoting a
category from 1, . . . , ka, and the second argument a distribution from 1, . . . , Ia.
In this paper, Name(K a, I a) is assumed to be a ground atom when called.

The probabilistic predicate pb plate(OuterQuery, Count, InnerQuery) is
the querying mechanism of PB. Informally, the first argument, OuterQuery is a
usual Prolog query that iterates through the data. It must not call any predi-
cates defined by pb dirichlet. The argument Count is a positive integer that
indicates that a particular observation is observed Count times. The final argu-
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ment, InnerQuery is an abductive query that computes the explanation of the
observations iterated in the OuterQuery. The formal semantics of pb plate will
be discussed after we introduce additional notation.

Example. Consider the LDA example from the previous section. Suppose
we observe more data and we encode it in a PB program as:

observe(d(1),[(w(1),4),(w(4),2)]).

observe(d(2),[(w(3),1),(w(4),5)]).

observe(d(3),[(w(2),2)]).

Each observe fact encodes a document, indexed by an id using the first
argument, and consisting of a bag-of-words in the second argument. The bag-
of-words is a list of pairs: word index and its (positive) count per document.
The next part of the PB program specifies the probability distributions as the
following facts: pb dirichlet(1.0, mu, 2, 3) and pb dirichlet(1.0, phi,

4, 2).
The pb plate query iterates through document and word indexes and “ex-

plains” each such pair using the generate predicate. Note that observe and
generate are not keywords, but descriptive conventional names.

pb_plate(

[observe(d(Doc), TokenList), member((w(Token), Count), TokenList)],

Count, [generate(Doc, Token)] ).

generate(Doc, Token) :- Topic in 1..2, mu(Topic, Doc), phi(Token, Topic).

Having described the core syntax of PB programs and its relation to the
probabilistic model, we explain what is the result of executing a PB program
and how probabilistic inference is performed to estimate P (θ|f, x, v;α), or, in

more typical applications, to produce an estimate θ̂.
In a traditional abductive logic programming setting [11,12,16], the result

of evaluating a query is a list of abductive solutions, and an abductive solution
is a list of abducibles. An abducible is a predicate that has no definition in
the program. Some systems [20,23] represent an abductive solution as a pair
of lists: a list of positive abducibles, i.e. abducibles that must be true, and a
list of negative abducibles, i.e. abducibles that must be false. Since PB queries
are abductive queries, an identical representation is obtained if the predicates
defined by pb dirichlet are parsed as annotated disjunctions [20].

Example. Consider the LDA example, more specifically the probabilistic
predicate defining φ: pb dirichlet(1.0, phi, 4, 2). Let idx denote a pos-
itive integer such that pa(Idx) is a new abducible w.r.t. previously parsed
pb dirichlet predicates, i.e. the one defining µ. Abusing notation, idx+ incr is
denoted by Idx+incr. The corresponding annotated disjunction is shown below:

phi(1,1) :- pa(Idx).

phi(2,1) :- \+pa(Idx), pa(Idx+1).

phi(3,1) :- \+pa(Idx), \+pa(Idx+1), pa(Idx+2).

phi(4,1) :- \+pa(Idx), \+pa(Idx+1), \+pa(Idx+2).
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A similar annotated disjunction is produced for phi(Token,2). Note that
pa(Idx), pa(Idx+1), pa(Idx+2) represent vn11,vn12 and vn13 in Figure 2.

This encoding generates abductive representations of linear size in the num-
ber of categories of the distribution. In common LDA tasks, the size of the
vocabulary of a corpus is frequently (much) more than 10.000 words, making it
difficult to represent abductive solutions efficiently in a traditional way.

For the above reasons, PB uses a different representation of an abductive
solution: a list of tuples (a, i, l), where a and i index the distribution as in the
previous section, and l is a category 1 ≤ l ≤ ka. In the rest of the paper, the
term “abductive solution” denotes this representation. The result of a PB query
is a list of abductive solutions, and the result of calling pb plate is a list of PB
query results, one for each solution to OuterQuery. For the moment, consider
programs with exactly one pb plate definition. A generalization is presented
once the necessary notation has been introduced.

Example. In the LDA program, the OuterQuery simply grounds Doc and
Token in the order they are specified, e.g. the first grounding is (1, 1), the second
is (1, 4), the third (2, 3) etc. Assuming that square brackets represent lists, the
result of pb plate is shown below:

[ [ [(1,1,1),(2,1,1)], [(1,1,2),(2,2,1)] ],

[ [(1,1,1),(2,1,4)], [(1,1,2),(2,2,4)] ],

[ [(1,2,1),(2,1,3)], [(1,2,2),(2,2,3)] ],

[ [(1,2,1),(2,1,4)], [(1,2,2),(2,2,4)] ],

[ [(1,3,1),(2,1,2)], [(1,3,2),(2,2,2)] ] ]

The observation of word 2 in document 3 is the last element of the big list,
and it can be produced using either topic 1 or 2, hence the two lists representing
abductive solutions. The tuple (1, 3, 1) means we choose topic 1 (last element) in
document 3 (first two elements), and (2, 1, 2) means we choose word 2 in topic
1 (with the same remarks).

Each result of a PB query is then parsed into a boolean formula which corre-
sponds to Booln(vn∗) from the previous section. The key feature of PB is that it
implicitly assumes that every result of a PB query on a pb plate produces the
same formula. This allows more concise query definitions, as well as improved
time and memory performance, as a trade off with the user’s expertise in PB. If
the user were agnostic, she would write a pb plate predicate for each data point
(thus making the OuterQuery trivial). In future work we plan on investigating
the automatic partition of the dataset in pb plate definitions in an efficient way.

Example. The formula for the LDA example is v0v1 + v0v2. Notice it is
different from the one in Section 2, because the indexes have no semantic meaning
w.r.t. the plate model, and the annotated disjunction is compiled w.r.t. the
choices present in the same PB query, rather than the whole sample space.

The formula is compiled into a reduced ordered binary decision diagram
(ROBDD, in the rest of the paper the RO attributes are implicit) [1,3], with
the variables in ascending order according to their index. This means that the
order of pb dirichlet predicates matters, and that it should correspond to the
sampling order in the generative story of the model. The BDD is the key data

Probabilistic Abductive Logic Programming using Dirichlet Priors

91



structure that is used for probabilistic inference. The inference algorithm we use
is an adaptation of Ishihata and Sato’s Gibbs sampling for PLP models [10].
The algorithm is uncollapsed Gibbs sampling along two dimensions (θ and x).3

The difference between the original inference algorithm and the PB one is that
instead of sampling from a Bernoulli, we sample from a multinomial with Count

trials. We also sample all the (identical) BDDs for a pb plate at once, using a
single BDD, making sure to stop sampling a node when it isn’t sampled in any of
the implicit BDDs. Furthermore, sampling θ is followed by a re-parametrization
such that the probabilities of the boolean variables in the BDD correspond to
the new θ.

The generalization to multiple pb plate predicates is straightforward: we
sample each BDD, corresponding to one pb plate, in turn, and all the samples
update a common data structure representing x, and the probabilities of the
boolean variables in each BDD are re-parametrized to adjust to the sampled θ.

In principle, it is possible to use the learned θ, or, to be more Bayesian, the
posterior parameters of the Dirichlet α′, to perform “forward” inference in a
PB program: if we freeze θ, then the backward probability of the BDD yields
the estimated parameter of a new observation. Otherwise, we sample x and θ
using as priors α′, record the backward probabilities of the BDD, then output
the average thereof.

4 Evaluation

In this section we present experiments with PB4. No burn-in or lag was used in
the experiments.

PB and collapsed Gibbs sampling (CGS) for LDA on synthetic
data5. We run a variation of the experiment performed in [9,10]. A synthetic
corpus is generated from an LDA model with parameters: 25 words in the vo-
cabulary, 10 topics, 1000 documents, 100 words per document, and a symmetric
prior on the mixture of topics µ, γ = 1. The topics used as ground truth specify
uniform probabilities over 5 words, cf. [9,10]. We evaluate the convergence of PB
and a traditional collapsed Gibbs sampling implementation6. The parameters
are: β = γ = 1 as hyper-parameters, and we run 200 iterations of the samplers.
The experiments are run 10 times over each corpus from a set of 10 identically
sampled corpora, yielding 100 values of the log likelihoods per iteration. The
average and 95% confidence interval (under a normal distribution) per iteration
are shown in Figure 3. The experiment confirms the conclusions of the LDA ex-
periment in [10]: both sampling algorithms converge, albeit PB converges slower

3 The original Gibbs sampling for LDA [9] is collapsed Gibbs sampling along a number
of dimensions equal to the number of words in the corpus.

4 See supplementary materials for details on implementation and software availability
(Appendix A).

5 For details on likelihood formulation and comparison with the Church PPL, see
supplementary materials (Appendices B and C).

6 We use the topicmodels R package.
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Fig. 3. Comparison between PB and collapsed Gibbs sampling on 10 sampled synthetic
corpora (10 runs per corpus).

π1 = 0.144 π2 = 0.191 π3 = 0.153 π4 = 0.185 π5 = 0.187 π6 = 0.138

fatty tuna fatty tuna fatty tuna fatty tuna fatty tuna fatty tuna
shrimp tuna sea urchin sea urchin tuna tuna
sea eel shrimp salmon roe salmon roe shrimp salmon roe
squid squid sea eel shrimp sea eel shrimp
tuna sea eel tuna sea eel squid squid

tuna roll tuna roll shrimp squid tuna roll sea eel
salmon roe egg tuna roll tuna roll egg tuna roll
sea urchin cucumber roll squid tuna salmon roe sea urchin

egg salmon roe egg egg cucumber roll egg
cucumber roll sea urchin cucumber roll cucumber roll sea urchin cucumber roll

Table 1. Maximum likelihood preference profiles and mixture parameters on the Sushi
dataset.

than CGS. However, we report different values for the log likelihood and note
that PB takes 200 iterations rather than 100 to converge to a value that is close,
under usual statistical assumptions, to the one produced by CGS.

PB for RIM on Sushi dataset. A repeated insertion model (RIM, [5])
provides a recursive and compact representation of K probability distributions,
called preference profiles, over the set of all permutations of M items. This intu-
itively captures K different types of people with similar preferences. We evaluate
a variant of the repeated insertion model in an experiment inspired by [14], on a
dataset published in [13]. The data consists of 5000 permutations over M = 10
Sushi ingredients, each permutation expressing the preferences of a surveyed
person. Following [14], we use K = 6 preference profiles, however we use the
RIM rather than a Mallows model, and we train on the whole dataset. The pa-
rameters of the model are 50/K symmetric prior for the mixture of profiles, and
0.1 symmetric prior for all categorical distributions in all profiles. We run PB
10 times with 100 iterations and average the parameters. For each categorical
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observe([5,0,3,4,6,9,8,1,7,2]). observe([0,9,6,3,7,2,8,1,5,4]).

% ... 4998 ’observe’ facts ommited

pb_dirichlet(8.33333333333, pi, 6, 1).

pb_dirichlet(0.1, p2, 2, 6). pb_dirichlet(0.1, p7, 7, 6).

pb_dirichlet(0.1, p3, 3, 6). pb_dirichlet(0.1, p8, 8, 6).

pb_dirichlet(0.1, p4, 3, 6). pb_dirichlet(0.1, p9, 9, 6).

pb_dirichlet(0.1, p5, 5, 6). pb_dirichlet(0.1, p10, 10, 6).

pb_dirichlet(0.1, p6, 6, 6).

pb_plate( [observe(Sample)], 1,

[generate([0,1,2,3,4,5,6,7,8,9], Sample)] ).

generate([H|T], Sample):-

K in 1..6, pi(K, 1), generate(T, Sample, [H], 2, K).

generate([], Sample, Sample, _Idx, _K).

generate([ToIns|T], Sample, Ins, Idx, K) :-

% insert next element at Pos yielding a new list Ins1

append(_, [ToIns|Rest], Sample),

insert_rim(Rest, ToIns, Ins, Pos, Ins1),

% build prob predicate in Pred

number_chars(Idx, LIdx), append([’p’], LIdx, LF),

atom_chars(F, LF), Pred =.. [F, Pos, K],

% call prob predicate and recurse

pb_call(Pred), Idx1 is Idx+1,

generate(T, Sample, Ins1, Idx1, K).

insert_rim([], ToIns, Ins, Pos, Ins1) :-

append(Ins, [ToIns], Ins1), length(Ins1, Pos).

insert_rim([H|_T], ToIns, Ins, Pos, Ins1) :-

nth1(Pos, Ins, H), nth1(Pos, Ins1, ToIns, Ins).

insert_rim([H|T] , ToIns, Ins, Pos, Ins1) :-

\+member(H, Ins), insert_rim(T, ToIns, Ins, Pos, Ins1).

Table 2. PB program for a RIM with K = 6 preference profiles.

distribution in a profile, we select its maximum likelihood realization to build
the corresponding maximum likelihood preference profile, shown in Table 1. The
inference yields similar conclusions to [14]: there is a strong preference for fatty
tuna, a strong dislike of cucumber roll and a strong positive correlation between
salmon roe and sea urchin. We show the PB program used in Table 2, noting
that pb call/1 is a special PB predicate that allows the evaluation of its argu-
ment as a predicate defined by pb dirichlet. We are not aware of any other
implementation of RIM in a PPL, therefore we briefly describe the program.
The mixture of profiles is characterized by π, a set of K distributions, and for
each profile there are M − 1 categorical distributions that specify the proba-
bilities over the set of permutations of M elements. An observed permutation
is produced by selecting a latent profile, then generating that permutation by
consecutively inserting elements from an insertion order, e.g. [0, 1, . . . , 9], at the
right position, according to the distributions in that profile. The right position
is chosen using the insert rim predicate, as naively generating all the possible
permutations is intractable.
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5 Related Work and Conclusions

In this paper, we introduced PB, a probabilistic logic programming language for
categorical models with Dirichlet priors. The idea of PB was sparked by [10],
which defines a similar class of probabilistic models and provides a Gibbs sam-
pling algorithm for BDDs. However, BDDs are not a programming language,
nor are they an intuitive representation for a non-expert. This paper bridges the
gap between logical and probabilistic inference in the considered class of mod-
els, and addresses issues on representation of abductive solutions and inference
on “syntactically” identical BDDs. Similarly to ProbLog [7], the pipeline of PB
can be described as logical inference, followed by knowledge compilation, fol-
lowed by probabilistic evaluation. Unlike ProbLog, the most difficult task in PB
is probabilistic evaluation, rather than knowledge compilation, though for com-
plex programs, PB could benefit from using more compact decision diagrams.
In relation to Church [8] and many other related PPLs, PB is similar in that it
uses a Turing-complete declarative language, but the set of probabilistic primi-
tives available in PB is very restricted compared to Church. PB uses a different
probabilistic model than Alchemy [6], and by using abductive logic programming
instead of a first-order knowledge base, it can easily encode recursive generative
models, such as RIM. Although in this paper we present well studied models,
they can be easily adapted to include various constraints, e.g. seed words in
LDA. In future work, we hope to explore more probabilistic models that fit the
PB paradigm, and to design, implement, and compare efficient algorithms for
generalized probabilistic inference.
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A Implementation

PB is implemented in YAP and Python (2.7), and is currently available as a
command-line script. YAP is used to parse input files and produce files for prob-
abilistic inference (e.g. solutions to each pb plate query, information on the
probability distributions). PyCUDD is used to compile ROBDDs and computa-
tionally intensive parts of the sampling algorithm are implemented in Cython.
This prototype implementation and any additional files are released under a
GNU General Public License (GPL3).

For more information and documentation see:
http://raresct.github.io/peircebayes

To access the source code see:
http://www.github.com/raresct/peircebayes

To reproduce the experiments, more concretely Figure 3 and Table 1, see:
http://www.github.com/raresct/peircebayes_experiments

On an Intel R© CoreTM i7-4710HQ CPU @ 2.50GHz ×8, the LDA experiment
took: ≈ 265 minutes for PB, ≈ 4 minutes for CGS, and the RIM experiment
took ≈ 10 minutes. Note that there is significant overhead for PB because we
don’t measure only sampling time, but also logical inference and knowledge
compilation.

B A Note on the Joint Distribution of the PB model and
Likelihood for LDA

The joint distribution of collapsed PB models is:

P (f, v, x;α) = P (f |v)P (v|x)P (x;α)

If x is the result of sampling the appropriate BDDs, then P (f |v)P (v|x) = 1,
and the joint distribution reduces to P (x;α). This type of distribution has been
well studied, cf. equations 2 and 3 in [9] for LDA, and in the case of PB models,
it is:

P (x;α) =

A∏

a=1



(

Γ(
∑ka

l=1 αal)∏ka

l=1 Γ(αal)

)Ia Ia∏

i=1

∏ka

l=1 Γ(
∑N

n=1[xnai = l] + αal)

Γ(
∑N

n=1 xnai +
∑ka

l=1 αal)




The likelihood for LDA is recovered by using the factors of the joint distri-
bution involving only β, φ, y.

C PB and Church on LDA

In Section 4 we compare PB with CGS on a synthetic LDA task. We add to
the comparison a much more expressive, universal PPL called Church [8]. The
experimental setting differs from the LDA experiment in Section 4 in that we
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Fig. 4. Comparison between PB and Church on one sampled synthetic corpus (10 runs
per corpus).

sample only one synthetic corpus of 100 documents. This is due to the fact that
the Church implementation of LDA is slow. Furthermore, we take 300 samples
(no lag, no burn-in for PB, 10 lag, no burn-in for Church). We use two implemen-
tations of LDA in Church7, and report the results in Figure 4. Note that we use
the uncollapsed likelihood for the Church models (which is more “optimistic”
than the collapsed one), mainly due to the fact that we were unable to find an
implementation of the log Γ function in Church.

Neither Church LDA programs seems to converge, while PB behaves consis-
tently with the previous experiment. The average time per run is: ≈ 0.36 minutes
for PB, ≈ 13.5 minutes for Church1 and ≈ 16.7 minutes for Church2.

7 We use adaptations of the two programs shown here: http://forestdb.org/

models/lda.html and run them with webchurch (https://github.com/probmods/
webchurch) as command-line scripts.
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