
Safe Management of Software Configuration

Markus Raab

Vienna University of Technology
Institute of Computer Languages, Austria
markus.raab@complang.tuwien.ac.at

Supervisor: Franz Puntigam

Abstract. We tend to write software in a parameterized way with pa-
rameter values specified in configuration files. Such configurability allows
us to deploy software in a context not initially thought of, but it also
has the downside that it introduces a new class of hard-to-track faults.
This issue arises because the use of configurations in programs is not in-
tegrated into configuration management needed by administrators. We
propose a light-weight specification language to be used by both parties.
From this specification we generate configuration access code that in-
cludes compile-time checks. Furthermore, we use the same specification
to add run-time checks for safe configuration management. We expect
that our approach averts many failures configurable software faces to-
day. Additionally, we think it improves the quality altogether, because
the documentation resulting from the specification leads to a better un-
derstanding of the overall system.

1 Introduction

Today many behavioral aspects of applications are not fixed at compile-time,
but are determined at run-time by examining configuration files, environment
variables, and command-line arguments. Even for an average software system the
configurability is complicated due to a huge number of possibilities, constraints
and dependencies.

As studies revealed [8], [13] much time and money is wasted because of con-
figuration errors. Misconfigurations are one of today’s major causes of system
failures. Faulty configuration files sometimes trigger crashes and make services
unavailable. These problems lead to downtimes, severe outages and a frustrating
process of debugging configuration problems.

The state of the art in software configuration is to use schemata to describe
the data in the key databases (they facilitate access to software configuration)
and type systems to describe the corresponding variables in the programming
languages. These two worlds are disconnected. We think that this gap causes
most of these failures.

A recent paper supports our view and argues that users are not the ones
to blame for misconfiguration [12]. The authors found evidence that the data-
flow path from variable initialization to variable use contains many potential



2

errors. We think that these errors are only the symptom of the state-of-the-art
development. We are positive that consequent use of a software configuration
specification mitigates these issues.

In the thesis discussed in this paper we design and study a novel specification
language and its integration in a key database. The specification should include
constraints for both the key database and the variables in order to achieve fol-
lowing benefits and goals:

– Provide safe use of variables within programming languages containing val-
ues of configuration files by exploiting compile-time checks using type sys-
tems.

– Adding run-time checkers when compile-time checking is not possible, e.g.
for managing the key databases.

– From the specification other artifacts can be derived, yielding improvement
compared to state-of-the-art systems. E.g., in PostgreSQL1 5 artifacts needs
to be maintained in the software engineering process.

The specification facilitates code generation in the programming languages
used by the applications. When the application and the generated code is com-
piled, compile-time checks detect many problems at an early stage. The spec-
ification allows software architects, developers and end-users to have a better
understanding of software configuration, e.g., it deals with documentation and
improves traceability. So the specification can even lead to an entirely better
software system.

For example, the OpenLDAP 2.4.39 daemon crashes when “listener-threads”
is configured to be larger than 15 [12]. The documentation for this configuration
item does not even mention this limit nor that these values are internally changed
to be a power of 2. In our approach we solve this issue by writing a specification:

[/ openldap/listener -threads]

type=enum 1 2 4 8

We have the identifier /openldap/listener-threads and one property type.
Because of this property, we know which values are permitted. When the user
changes the value of “listener-threads” to 16, the key database tells him/her
that 16 is not one of the allowed values 1, 2, 4 or 8. Using this specification
OpenLDAP would not crash and the difficult process of debugging is avoided.
For a developer the approach is intuitive: configuration items can be used like
variables, e.g., the following C++ code prints the value of the configuration item:

std::cout << openldap.listener -threads << std::endl;

The library libelektra provides access to the key database. The code generator
genelektra makes sure that configuration items used by the developer always
match with the specifications. We also generate documentation that includes
the type information from the specification. Any other property in addition to
type can be added, which means the specification is extensible.

1 Version 9.1.12, see http://doxygen.postgresql.org/guc_8c_source.html



3

We expect, given powerful properties in the specification, it is simple to write
a specification that avoids crashes, because 90% of all options are covered with
a dozen types [8]. Using this approach, mismatches are ruled out and faulty
use of the variable is detected by the compiler. The substantial gain is that
it enhances type safety without leaving the familiar programming environment.
Other potential benefits of our approach are improved software maintenance and
evolution as well as reduced duplication of code.

The rest of the paper is structured as follows: Section 2 describes the details
of our approach. In Section 3 we show how we plan to validate or falsify our
research questions. In Section 4 we talk about expected results based on our
current knowledge. Finally, in Section 5 we compare our approach to related
work before drawing our conclusions in Section 6.

2 Elektra

Our approach, called Elektra, introduces a specification for configuration. Instead
of many places containing constraints and types, Elektra defines a clear way how
to specify configuration. The key database libelektra enforces the constraints at
run-time and a code generator genelektra ensures program code conforms to it.

The approach is still in its infancy and thus many vital questions are not yet
answered. The aim of our thesis is to answer following question: What kind
of influence has the use of our configuration specification framework,
i.e. Elektra, on software? The two subquestions, to solve or at least alleviate
the problems stated in Section 1, are:

1. Which properties in the specification have the strongest influence on avoiding
software failures caused by invalid configuration files?

2. How does the specification interact during software engineering processes
with software architectures, software evolution, and software quality?

Elektra’s Architecture

generate

key
database

conf. data

specification type safe
access code

genelektra

ac
ces

s

program
code

uses
plugins

tooling

access

access

load, store
and check

is part of

libelektra

Fig. 1. Boxes represent software artifacts. The bold boxes show artifacts developers
need to implement. Our Elektra implementation provides the other libraries and tools.

In Fig. 1 we see how to apply our approach and which artifacts it consists of.
We immediately spot the configuration data structure in the center. It contains



4

all key/value pairs representing configuration items. As used in every configura-
tion parser they form a generic, but unsafe, container. In our approach we pass
it around between tools, plugins and the type safe access code to avoid tight
coupling between these components.

2.1 Key Database

The key database is responsible for retrieval and storage of configuration items.
We inherit Elektra’s key database and plugin system from our earlier work [5].
Configuration is retrieved and stored using different plugins. While some of the
plugins are responsible for the obvious tasks, e.g. parsing configuration files,
others take care of cross-cutting concerns or implement run-time checkers. Latter
plugins use the specification as input and perform run-time checks and validate
input before it is stored in the key database.

2.2 Specification

As we see in Fig. 1 the specification is deployed as part of the key database.
By including the specification in the key database, we build up an information
system which supports administrators in the process of creating correct software
configuration. Constraints, types and links support administrators in this pro-
cess. The specification states how a valid configuration is structured and which
values are permitted.

For our thesis we are particularly interested in specification validation. The
specification validation needs to fulfill the following tasks:

1. Check if the specification is consistently typed and has no conflicting con-
straints.

2. Compile a minimal list of plugins that can perform the run-time checks.
3. Check if the plugins will work together. For run-time checkers it is known

that such a check is a non-trivial task.
4. Check if the specification has a safe upgrade path from its previous version.
5. Ensure that the particular configuration file (syntax and structure) works

with this specification by checking if they have a common supertype.

2.3 Code Generation

The code generator is used to generate all other configuration-related artifacts
from the specification. We are especially interested in the generation of type safe
access code. In earlier work, context awareness turned out to be useful to provide
a type safe access code using C++ [6], [7]. The types used in the specification
must be mapped to types or generated classes within programming languages
for code generation.

The compile-time safety of the approach stems from the fact that no identifier
string nor self written type conversions exist in the application’s source code.
Instead, the developer prefers to use generated variables. Without our approach,
file names and other identifiers usually exist as strings in the code.



5

3 Validation & Methods

The scientific foundation and starting point of our research is in the area of
modularity [5]. To validate our first question, i.e. which properties have the
strongest influence, we first must find out which properties are good choices
for our problem domain and need an implementation of them. The following
run-time checkers are candidates as properties in the specification:

– structure validation with CORBA data types (as shown in our thesis [5]),
– more powerful data types, e.g. units of measurement,
– novel ways to define subtyping,
– types inference using unification,
– global constraints, e.g. using Gecode, Coinor and Z3,
– schemas, e.g. Relax NG Schema and XSD,
– Data Format Description Languages,
– configuration value deduction and
– any combination of the approaches above.

With the described tooling and an implementation of run-time checkers the
validation of the first question in Section 2 is straight forward:

1. By analyzing real-world problems we find out which kinds of typical and
sophisticated configuration errors occur in practice, e.g.:
(a) Typos (e.g. insertion, substitution, transposition),
(b) Structural errors (e.g. missing sections, parameters in wrong sections),
(c) Semantic errors (e.g. wrong version, documentation, confusing similar

applications) and
(d) Domain-specific errors (e.g. no such resource)

2. We build a model [3] that allows us to construct such configuration errors.
3. We build a run-time checker that permits us to reject erroneous configuration

based on a promising technique, i.e., one of those listed above.
4. We evaluate the run-time checker, e.g., by comparing the expressiveness and

usability of the specification.

The question of the influence during software development asked in Section 2
is much more challenging, because it involves user studies. Case studies of in-
dividual attempts can provide valuable insight. The following validation plan is
even more precious:

1. We create an assignment (a list of requirements) that is specifically designed
to have a non-trivial, but not too complex configuration. To reduce the effort
for the participants, we implement most parts of the application, except of
the configuration relevant parts.

2. We train all participants how to use our approach. The explanation includes
how to write the specification.

3. We randomly choose two groups A and B out of the participants:
(a) Group A solves the task by using a specification (with the best checkers

from the previous validation step present).



6

(b) Group B solves the task without a specification.
4. During the development we make snapshots of the work. Each snapshot will

be tested by injection of erroneous configuration and running unit tests.
5. Finally, the participant fills out a questionnaire to answer the usefulness of

the specification and checkers on a Likert scale.

Using this method, we can answer the questions if there is a difference be-
tween group A and B regarding:

1. The needed efforts.
2. Which applications are more safe.
3. If the participants think the specification was useful.

We identified following risks and threads to validity:

1. The selection of participants might be biased.
2. The participants may not have many years of experience and their learning

curve might not be representative.
3. When we teach the specification we might give a group an unfair advantage.
4. The number of participants might be too small to give results beyond the

group.

To mitigate these issue we add graduates and employees to our pool. Addition-
ally, we will use case studies and benchmarks to show other properties.

4 Expected Results

4.1 Performance

In previous work [7], we showed that the access of the variables representing
the configuration values does not impact performance compared to the use of
native variables. Because many applications use strings at run-time, we expect
that applications will even benefit from our approach in respect of run-time.
For initial startup we expect that only a reasonable overhead will be added.
Some additional startup time compared to hard-coded solutions, however, is
unavoidable because of the abstraction Elektra provides: no configuration file
names are fixed at compile-time and a generic container is used.

4.2 Specification

We expect that the specification will present a powerful way to precisely define
all influencing parts of the software configuration. We also think that the quality
of documentation will rise as a result of less duplication. The properties of the
specification, that includes type information, will give valuable hints often not
available in today’s systems. More assumptions will be stated explicitly.

We expect the availability of the specification in the key database to play a
crucial role for interoperability: It will allow us to facilitate validation on every
access, even by applications not aware of a specific specification.

Moreover the specification will allow us to add traceability links to architec-
tural decisions [2]. As a result, we expect our approach to improve the traceability
and decision making process.



7

4.3 Safety

Type safety means that a system prevents certain kinds of errors. Because of
the additional compile-time and run-time checks, we expect applications using
our approach to be safer in respect to the problems mentioned in Section 1.
We think that most problems can be solved by adding a minimal amount of
properties in the specification. For some issues, more effort will be required from
the developers.

4.4 Less Effort

We expect that a key database with integrated specification will make it easier for
administrators to make the right decisions in shorter time. We also think that
validation sometimes even will avoid the necessity of debugging configuration
problems.

The integration with the key database will allow us to change many configu-
ration items in a safe way across applications without manual intervention. We
expect this property to have a similar effect as has the use of DNS names instead
of IP addresses.

5 Related Work

Currently, to the best of our knowledge, no other approach permits us to specify
configuration independent of the used technology (e.g. XSD works with XML).
Configuration parsers (e.g. Apache commons configuration) need the specifica-
tion of configuration data additional to the specification of configuration vari-
ables. They do not detect mismatches between code accessing configuration and
the schemata of the data. We conclude the use of these libraries leads to all
issues described in Section 1. Moreover, they do not provide means to abstract
over file location and syntax, but need this information hard-coded.

Pluggable types [4] tackle some issues mandatory type systems have and
are still an active research topic. These type systems are both used for popular
dynamic and static programming languages, but are currently not available for
specification of software configuration systems.

ConfErr [3] is able to detect configuration errors by injecting wrong configu-
rations before starting the application. The main difference to our approach is,
that ConfErr does not use a specification. We cannot directly extend ConfErr
for our benchmarks because it uses an internal representation which does not
support all configuration standards Elektra supports.

Range Fixes [11] make use of constraints in order to support the administra-
tor in the decision making process, but the authors did not tackle the problem
of wrong use of configuration items in the code of applications.

AutoBash [9] and ConfAid [1] have similar goals as Elektra. In these ap-
proaches predicates, that test the application, must be available on the produc-
tive system. We think that testing should not happen on the productive system,



8

but instead earlier in the software engineering process. In our approach, possible
problems will be ruled out by the specification so that they cannot occur in the
productive system.

Spex [12] can infer parts of the specification by analyzing the code. This
approach is complementing our approach in the sense that it can be used for
initial construction of the specification for legacy code. It is, however, not suitable
for a software engineering process. Even though Spex is the best tool available
at the moment, it can only detect less than 40% of bad reactions. Because in
our approach constraints are explicitly defined in the specification, the number
is expected to be much higher, only limited by mistakes in the specification.

Software product lines often assume that different products have different
deliveries. In our approach, the same binary can be used in different deployments.
In approaches that delay variability up to the execution of the application [10] our
work complements product lines by increasing safety on configuration changes.

6 Conclusion

In this paper we discussed further directions of a thesis with the objective to
improve integration and safety of key databases. We propose a simple config-
uration specification language that is only data integrated in a key database.
The specification provides support for administrators configuring the system.
Additionally, the specification allows us to synthesize code in order to eliminate
potential incorrect use of configuration items in the application.

So far, we have achieved:

1. A fully working key database [5] with several dozens of plugins to support
many configuration file standards and to provide some run-time checkers.

2. A fully working code synthesis tool [7] with support for thread-local and
global context awareness for embedded systems [6].

3. No overhead when reading configuration items [7].
4. An implementation of Elektra (see http://www.libelektra.org) is freely

available and can be used to see current progress of our work. Elektra already
includes all components as shown in Fig. 1.

These contributions are significant, because they lead to a specification lan-
guage for code synthesis and run-time checkers that mitigate the issues as men-
tioned in Section 1. They are also practically relevant, because they provide
stakeholders a good understanding of their system’s configurability and might
even reduce crashes and downtime.

In the next steps we will:

1. further define a specification language and its properties,
2. implement tooling to verify specifications and configurations (run-time and

compile-time checkers), and
3. conduct the implementation and study as outlined in Section 3.



9

References

1. Attariyan, M., Flinn, J.: Automating configuration troubleshooting with dynamic
information flow analysis. In: Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation. pp. 1–11. OSDI’10, USENIX Associ-
ation, Berkeley, CA, USA (2010)

2. Harrison, N.B., Avgeriou, P., Zdun, U.: Using patterns to capture architectural
decisions. Software, IEEE 24(4), 38–45 (2007)

3. Keller, L., Upadhyaya, P., Candea, G.: Conferr: A tool for assessing resilience to
human configuration errors. In: Dependable Systems and Networks With FTCS
and DCC, 2008. pp. 157–166. IEEE (2008)

4. Papi, M.M., Ali, M., Correa Jr, T.L., Perkins, J.H., Ernst, M.D.: Practical plug-
gable types for java. In: Proceedings of the 2008 international symposium on Soft-
ware testing and analysis. pp. 201–212. ACM (2008)

5. Raab, M.: A modular approach to configuration storage. Master’s thesis, Vienna
University of Technology (2010)

6. Raab, M.: Global and thread-local activation of contextual program execution envi-
ronments. In: Proceedings of 11th International IEEE/IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems. pp. 1–8. IEEE (2015)

7. Raab, M., Puntigam, F.: Program execution environments as contextual values. In:
Proceedings of 6th International Workshop on Context-Oriented Programming. pp.
8:1–8:6. ACM, NY, USA (2014), http://doi.acm.org/10.1145/2637066.2637074

8. Rabkin, A., Katz, R.: Static extraction of program configuration options. In: Soft-
ware Engineering (ICSE), 2011 33rd International Conference on. pp. 131–140.
IEEE (2011)

9. Su, Y.Y., Attariyan, M., Flinn, J.: Autobash: improving configuration manage-
ment with operating system causality analysis. ACM SIGOPS Operating Systems
Review 41(6), 237–250 (2007)

10. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software
product lines. In: Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on. pp. 45–54. IEEE (2001)

11. Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range fixes for software
configuration. In: Proceedings of the 34th International Conference on Software
Engineering. pp. 58–68. ICSE ’12, IEEE Press, Piscataway, NJ, USA (2012), http:
//dl.acm.org/citation.cfm?id=2337223.2337231

12. Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., Pasupathy,
S.: Do not blame users for misconfigurations. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. pp. 244–259. ACM (2013)

13. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An
empirical study on configuration errors in commercial and open source systems. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples. pp. 159–172. SOSP ’11, ACM, New York, NY, USA (2011)


