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Abstract. In this paper we describe the KTIML team approach to RuleML 2015 

Rule-based Recommender Systems for the Web of Data Challenge Track. The 

task is to estimate the top 5 movies for each user separately in a semantically 

enriched MovieLens 1M dataset. We have three results. Best is a domain specif-

ic method like "recommend for all users the same set of movies from Spiel-

berg". Our contributions are domain independent data mining methods tailored 

for top-k which combine second order logic data aggregations and transfor-

mations of metadata, especially 5003 open data attributes and general GAP 

rules mining methods.  

Keywords: rule induction, second order logic rule systems, transformation of 
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1 Introduction and Related Work 

Rule-based recommender systems can provide a desirable balance between the 

quality of the recommendation and the understandability of the explanation for the 

human user. This challenge targets a new type of recommender problems which uses 

the Web of data to augment the feature set. The participating systems were requested 

to find and recommend for each user a limited set of 5 items. The challenge uses a 

semantically enriched version of the MovieLens 1M dataset. Recommender perfor-

mance is measured by F-measure at top-5 (F@5) and aggregate diversity (ILD). 

Compactness of explanation is measured qualitatively where good explanations in-

volve small number of easy to understand rules.  

Our best result "recommend for all users the same set of movies from Spielberg" is 

rather specific for this data. Our contribution is top-k focused data mining that com-

bines data aggregations and transformations of metadata, especially 5003 open data 

attributes. Results are in form of simple SQL queries which can be transformed to 

second order logic rules. We introduce 2GAP – a second order logic variant of GAP – 

generalized annotated logic programming rules of [1].  

In the area of recommender systems “same-data-challenges” probably the most 

famous is the Netflix challenge [8]. Netflix results were measured by improvement in 



RMSE of ranking prediction, while we find F@5 as more challenging metrics. We 

found relevant mining tricks in [7] and winners of 2014 ACM RecSys Challenge [9].  

Going to second order logic was motivated by [2], [4] and [5]. Induction of many 

valued rule systems was handled in [6] (see [3]). Nevertheless in [6] data sets for 

induction were much smaller. We hope our method is transferable, nevertheless in 

this paper we did not check it on other data. 

2 Data Preparation, Challenge Understanding 

In this chapter we will describe our approach to processing input data.  

To be able to handle data and understand them we have chosen to store them and 

analyze them in the relational database. The python script produced CSV files using 

data joins with very large results – so a standard 32bit PC or even 64bit desktop PC 

with usual amount of memory could not process it. Due to the size of the data, practi-

cal calculations were done using SQL queries and adapted ML tools. We converted 

results to simple SQL and constructed corresponding GAP rules.  

To be able to store data efficiently, we had to eliminate data redundancy again. 

Therefore we preprocessed obtained CSV files and loaded data about movies, users 

and known ratings in form of three database tables. Separately we stored the inci-

dence matrix of movies and 5003 DBPedia attributes.  

2.1 Task Analysis, Understanding and Steps of Solution.  

After a while spent with playing with the system and sending results in required 

format (CSV, columns userId,movieId,score), we discovered that  

the quality of solution does not depend on score. 

Further we observed that the recall Ru for user u is computed with respect to a larg-

er candidate set, nevertheless in average of size usually around 10. Hence recall and 

F-measure are approximately a fixed multiple of precision and for maximizing F@5 it 

suffices to maximize P@5. We did not try to improve ILD parameter by any activity. 

We can just observe that results indicate quite high dissimilarity of our top-5 objects.  

2.2 Natural Language Extraction of DBPedia Attributes 

First, really big obstacle, was the number of movie attributes, especially 5 003 

DBPedia binary attributes. First we removed their common prefix1 and the rest was 

processed by natural language extraction using database tools. First guess was to take 

most frequent properties and check their influence of our prediction task. We saw that 

these do not influence our rule mining achievements on the task significantly.  

Our second attempt was based on observation that certain types of properties like 

Films_directed_by_..., Films_set_in_..., Films_shot_in_..., Films_about_... etc. form 

                                                        
1 “uri_relation_http://dbpedia.org/resource/Category:” 



groups that can be seen as a predicates in form property=value. Nevertheless, this did 

not bring us much further in our rule mining task.   

Third attempt brought some progress. We counted occurrences of individual values 

of properties in all movies and compared it with number of occurrences in rated mov-

ies. The bigger the ratio between movie count and rating count the more important 

property-value pair. The result was submitted as user KSI (seeTable 2). For further 

use, we aggregate all these properties to a single indicator GoodProperty=1 iff at least 

one of properties is present. 

Our other approach was to create set of explanatory attributes of movies and set 

them to 1, respectively 0 according to appearance of some word or phrase in the mov-

ie flag description. So we created attribute Spielberg and set it to 1 for each movie 

directed, produced or any other way connected to Steven Spielberg, similarly we cre-

ated attribute LA and assigned it to all movies located to LA etc. Then we tried to 

compare movie ordering based on this attribute with the ordering based of ratings (the 

ground truth). Attributes producing most corresponding orderings were combined to 

query that ordered movies using expression: 

 100*Movies.Spielberg + 50*Movies.Original + Movies.BayesAVG (1) 

Where BayesAvg=(3.5*50+AVG_Rating*MovieCNT)/(MovieCNT+50). Shown 

weights are proportional to number of occurrences of given attribute in movies. On 

the other hand the ordering is quite robust and is not overly dependent on specific 

numbers as long as coefficients decrease from left to right. F@5 shown in Table 2 via 

user SCS_CUNI is surprisingly good. The result can be interpreted that (in ideal case) 

three quarters of users have at least one Spielberg movie in their top 5. Nevertheless 

we do not consider this as our challenge contribution, because it is probably domain 

dependent and rather a property of the respective dataset.  

3 Modeling 

First, we learned different ML models to predict “interesting” movies. All models 

gave similarly good results, we aimed for decision tree as our preferred expression 

language because it can be more easily converted to rules. 

The goal was to recommend 5 movies, i.e. to select 5 best (unseen) predictions for 

any user. It appeared that a tree with more than one hundreds leaves can be pruned to 

five rules without significant decrease in the goal measure. 

Before sending a file for an evaluation, simple post processing was done to transfer 

the prediction of (any) our model to 5 recommended movies. 

3.1 Model Building 

As training data, we used records in form (movieID, userID,Age, BayesAVG, 

GoodProperty, Gender, GenreMatch, TAG), where the TAG=1 iff the movieID was 

rated by the user, TAG=0 otherwise. We trained several machine learning models. 

Since there was only 5% positive cases, the equal-cost recommendation was always 0. 



If we measure the error as an average of the error on positive and negative cases, we 

got errors 73% for Generalized Linear Models, 72% for decision trees and Naive 

Bayes and 52% for Support Vector Machines. Since the difference between first three 

models is small and we have strong preference for rule models we proceed further 

with the Decision Tree model (DT). 

3.2 Pruned Model 

Our DT model predict preference on movies for users. Our goal was quite differ-

ent. For a given user predict the top 5 movies. This makes some attribute test superfi-

cial (e.g. young users rated more movies, therefore the chance of TAG=1 was higher, 

but it does not influence the ordering on movies for a given user; similarly, UserAVG 

and so on). The only user-depended attribute left was the attribute GenreMatch, an 

indicator whether the genre mostly selected by the user is the same as the genre of 

currently considered movie. 

Furthermore, the ordering on most movies was not important since we were inter-

ested only in top 5 out of 3.1 thousands. This makes most of the DT splits unim-

portant. We selected only the 5 most important nodes out of 126 learned (those with 

the highest percentage of positive cases and a reasonable support). We got F@5 is 

0.04978 and precision 0.0714. We hope this dramatic pruning can be successful in 

other tasks aiming for top-k predictions. These 5 rules are listed in Table 1, all rules 

have additional condition GenreMatch=1. 

 

RulePreference Rule 

0.11 R1:GoodProperty=1 

0.25 R2: 113.5<CNT<400 

0.29 R3: R1 and R2  

0.58 R4: GoodProperty=0& CNT>399 

0.57 R5: GoodProperty=1 & CNT>399 

Table 1. Rules obtained pruning the decision tree model and weights assigned by relative fre-

quency of the positive examples. „Has good property“ means that at least one property from 

Table 4 that appears in at least 5 movies has non-zero value, all rules have additional condition 

GenreMatch=1. 

3.3 Post Processing 

The overall ordering was given by the combination of the GenreMatch (a neces-

sary condition for high ranking), RulePreference as a rough ordering and movie aver-

age ranking for ordering movies indifferent for rules. Expressed by a formula: 

 p.Prediction := p.GenreMatch*(p.BayesAVG+100*p.RulePreference) (2) 

for each user, we ordered all candidate movies according the Prediction and select-

ed the first 5 unseen movies.  



Query motivated by this approach and the first order one gave Precision: 0.135 (a 

constant multiple of F@5) and is uploaded as Participant “KTIML", as a main result 

of a methodology which can be used also in other similar tasks.  

 

Result Participant  Method  F@5 

1 SCS_CUNI “Spielberg” 0.10681 

2 KTIML Data mining combined with first order 0.10085 

3 KSI Pure first order logic with weighted average 0.05262 

Table 2. Result 1 is obtained by domain/data dependent method. Result 2 has to be considered 

as our challenge contribution. 

Although method “Spielberg” achieved better results – this method cannot be used 

in other application, simply because it is domain and dataset dependent and uses spe-

cifically properties of movie data. 

4 2GAP – a Rule System Equivalent to Simple SQL Queries 

In this chapter we describe the translation of results to a rule system. We use con-

nection between simple SQL queries and logical rules. A query 

SELECT attribute1, …, attributen 

FROM table1, …, tablem 

WHERE conditions 

(keeping in mind that conditions can contain bounds on variables and some fil-

tering conditions filter)  is semantically equivalent to the logical rule 

result(attribute1,…,attributen) table1,…,tablem, filter 

and bounds on variables were applied.  

We use (many valued) GAP – Generalized annotated Programs rules of Kifer and 

Subrahmanian [1]. We interpret truth values as preference degrees. Semantics of these 

rules is equivalent to database semantics.   

A 2GAP rule is a GAP rule in a language extended by atomic predicates corre-

sponding to tables resulting from database aggregations. These predicates are origi-

nally defined by second order logic condition equivalent to database aggregation, we 

assume we have facts in this new atomic predicate filled from database. This can be 

considered as an alternative approach to that in [2] and [4] (similarly as in [5]).  

Assume we generated a table Ordered_Prediction using expression from equation 

(1). Then SQL query   

SELECT UserID, MovieID, 5 FROM Ordered_Prediction WHERE OrdNr <= 5; 

corresponds to GAP rule  

SCS_CUNI_Movie(u,m):100*x1+50*x2+ x3   

 SPIELBERG(m): x1 & ORIGINAL(m): x2 & BAYESAVG(m):x3 

with top-5 semantics. Meaning of this rule is, that whenever (a two valued conjunc-

tion) 

SPIELBERG(m)≥x1 & ORIGINAL(m) ≥x2 & BAYESAVG(m) ≥x3 then  

SCS_CUNI_Movie(u,m) ≥100*x1+50*x2+ x3. 



The weighted average movie ranking from Table 2user KSI can be depicted by fol-

lowing GAP rule (after transformation of DBPedia attributes this is a first order log-

ic): 

KSI_Movie(u, m):(8000*x1+17000*x2+10000*x3+…)*x15  MAKEUP(m):x1 & VISUAL(m):x2 & 

SMIX(m):x3 … NOTRATED(u,m):x15 

Recommended movie by data mining can be described (with necessary tuning of 

weights) by following rule 

KTIML_Movie(u.m):(w1*x1+w2*x2+w3*x3)*x4  GENREMATCH(u,m):x1 & BAYESAVG(m):x2 & 

RULEPREFERENCE(u,m):x3 & NOTRATED(u,m):x4 

Here predicates GENREMATCH, BayesAvg and RulePreference from 

Table 1 are atomic 2GAP predicates representable by simple SQL query.  

5 Conclusions  

We found dataset and task formulation very specific. Unfortunately we have better 

results for domain specific methods like recommend to all users the same set of mov-

ies from Spielberg. Challenge result combine data aggregations, transformations of 

metadata (especially 5003 open data cloud attributes), selection of relevant attributes 

and general data mining method. We believe that our method of dramatic pruning can 

be re-used for other tasks aiming for top-k predictions. All recommendation pro-

cessing was done in a database engine resulting simple SQL queries were transformed 

to second order logic GAP rules.  
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