
Conceptual-Physical Bridging – From BPMN Models to
Physical Implementations on Kettle∗

Bruno Oliveira1, Vasco Santos1, Claudia Gomes1,
Ricardo Marques2, Orlando Belo1

1 ALGORITMI R&D Centre

Department of Informatics, School of Engineering, University of Minho
Campus de Gualtar, 4710-057 Braga, PORTUGAL

2 WeDo Technologies
Centro Empresarial de Braga

Ferreiros, 4705-319 Braga, PORTUGAL

Abstract. Developing and implementing data-oriented workflows for data
migration processes are complex tasks involving several problems related to the
integration of data coming from different schemas. Usually, they involve very
specific requirements - every process is almost unique. Having a way to
abstract their representation will help us to better understand and validate them
with business users, which is a crucial step for requirements validation. In this
demo we present an approach that provides a way to enrich incrementally
conceptual models in order to support an automatic way for producing their
correspondent physical implementation. In this demo we will show how B2K
(Business to Kettle) system works transforming BPMN 2.0 conceptual models
into Kettle data-integration executable processes, approaching the most relevant
aspects related to model design and enrichment, model to system
transformation, and system execution.

Keywords: Data Migration Processes Modeling, BPMN 2.0 Conceptual
Modeling, Domain Specific Languages, Metadata-driven Approaches, Kettle
executable packages.

1 Introduction

Today, companies need to analyze large amounts of data that increases often
exponentially day-after-day. Such tendency is revealed mainly due to the need that
companies have to control the dimensions of analysis involved with their business
contexts. Understanding such dimensions (an correlated variables) provides business
monitoring and control, as well as ensures some real business advantages relatively to
their most direct competitors. However, processing large amounts of data, frequently
appearing in very disparate formats, it is a difficult task. The costs and the risks are
higher and the success to do this appropriately is difficult to achieve. Thus, it is
essential that stakeholders stay perfectly tuned, namely business users, which will
interpret the results, and technical users, which will develop such data migration

∗ Copyright ©2015 for this paper by its authors. Copying permitted for private and academic

purposes.

processes, ensuring the adequacy of the system to business requirements. The use of
business process models is a common practice in many organizations, particularly
using Business Process Model and Notation (BPMN) [1]. The BPMN notation was
created to simplify modeling business processes and set a standard for the area. It has
become a widely used notation on modeling business processes mainly because of its
simplicity, expressiveness, and application scenarios. Moreover, BPMN presents a
well-defined semantic structure, and provides an easy working platform.

A data migration processes can be considered as a specific business process, i.e. a
data oriented workflow composed by several tasks logically related to transform and
adapt raw data to a specific format. Current data migration tools provide strong
constructs covering already several common transformations used on data migration
processes. However, they are very specific tools, requiring very specialized staff to
understand its specificities. To attenuate this advantage, we designed and
implemented a tool with the ability to instantiate traditional BPMN models to specific
Kettle [2] transformation models, providing an automatic mapping of the specification
of conceptual models to some physical instances, which have the possibility to be
executed directly in a commercial tool. To make this possible, we developed a
Domain Specific Language (DSL) that allows for enriching conceptual BPMN
conceptual models with the description of transformation tasks. Thus, the BPMN
language provides the coordination of tasks in a workflow environment, while each
task represents a transformation component specially configured using the DSL we
developed. This way, task behavior can be generalized, simplifying processes
development and facilitating communication between non-technical users without
compromising its mapping to execution primitives. With this demo we demonstrate
how this tool works transforming a BPMN conceptual model directly into an
executable data migration system interpreted by Kettle.

Fig. 1. A CSV file data source structure (left) and a target repository schema (right)

2 System architecture
Let us consider a simple data migration process. This process was built to read data in
a CSV (Comma-Separated Values) file, containing phone calls activity data, into a
relational table structured to receive some aggregated data (Fig. 1). The first to do is
to model the process using BPMN in a workflow, which logic describes process
execution constraints. The BPMN gateways and events allow for the description of
specific rules in the coordination of all BPMN tasks represented. These tasks
represent typical standard procedures or routines, which are composed by atomic
clustered tasks representing a composite set of transformations configured based on a
specific skeleton. For this demonstration we used BizAgi [3] to model the data
migration process. Observing the BPMN model (Fig. 2), we see that the process starts
with a data extraction task over a CSV file using a regular activity. All activities’

names follow a convention using the # character, identifying activities as containers
of tasks configured using the DSL proposed. The second task (#DQE (Data Quality
Enhancement)# - Normalize rows) decomposes original data in order to homogenize
the grain of the source file. Each row of the CSV file will generate two distinct
records, representing the caller and the called client in a phone call record. Next, four
BPMN tasks (#Aggregate#) are triggered to perform data aggregation operations. For
that, two BPMN parallel gateways are used: the first one, a divergent gateway that
determines the parallel execution of the aggregate tasks; and a convergent gateway to
force the completion of all the parallel tasks in order to proceed with the remaining
process activities.

Fig. 2. The BPMN Conceptual model to support data migration for the scenario presented

Finally the process ends with the execution of a #Loader# container configured to
load data into the relational table. For each activity we used a specific loop marker to
mean that it should be executed iteratively based on a specific criteria – e.g. we can
enforce incoming records to be processed individually or in groups in each iteration.
We can also enrich tasks with additional BPMN elements to describe process
execution at conceptual level. Data objects such as ‘Data Input/Output’, ‘Data
Storage’ or ‘Annotations’ can be used to refine the process interpretation. After the
enrichment process, it is necessary to configure tasks using the DSL proposed. Based
on traditional migration processes architectures, we defined three categories of
components, namely: 1) gathers, which are used in extraction operations – e.g. index
access readings, change data captures, or log file data extractions; 2) transformers,
which are used for data transformations – e.g. cleaning, conciliation or aggregation
operations; and 3) loaders, which are used to load data into a target repository – e.g.
bulk operations, slowing changing dimensions, or quarantine operations. These
categories allow for grouping frequent tasks that can occur in all operational stages. In
Fig. 2 we can see three typical composite tasks: a Gather task for extracting data from
a CSV source; some Transformers tasks, DQE and Aggregate tasks to conform and
summarize data; and a Loader task to put data into a data repository. Each one of
these components has the ability to receive behavior specifications wrote in the DSL
we developed using Xtext framework [4] and validated by its correspondent parser.
Fig. 3 shows an excerpt of the DSL grammar. The task enrichment was defined to be
compatible with several modeling tools. For the case of BizAgi, the DSL can be
written using the documentation box available on the task properties panel or using a
text annotation object. To demonstrate the application of the DSL grammar we
prepared a small example (Fig. 4) to describe the internal behavior of the task
#Gather# represented in Fig. 2. The block ‘sources’ is used to describe the metadata

stored in the CSV file and the ‘target’ statement is a simple attribution, referencing
that task output will be passed on-the-fly to the next workflow task.
Etl:
‘use’ (elements+=Pattern)+ ‘on sources{‘ (source+=Data)+ ‘}’
(‘and target{‘ target=Data ‘}’)?
(‘with mapping source{‘ (map+=Data)+’}’)? //keep it or not? Keep.
(‘options{‘opt = Option ‘}’)?;
//The existing pattern categories
Pattern:
Gather | Transform | Load;
//Gather parameters. It includes the data source and the configuration properties
to read the data from the sources.
Gather:
‘Gather’(‘sort by’ sort = STRING ‘,’)?(gatherFields+=Fields)*;
Data:
‘BEGIN’(Path | Source)’,’‘type=’ type=STRING ‘END’;
(…)
//Fields used to configure data source fields
Path:
‘data=’ src=STRING;
Source:
‘name=’ n=STRING ‘,’ ‘server=’ s=STRING ‘,’ ‘database=’ db=STRING ‘,’
(…)
Fields:
(‘source’ | ‘target’)?’fields{‘ (fd+=Field)+’}’;
(…)

Fig. 3. An excerpt of the DSL

The BPMN diagram and the DSL are both serialized in a single document that will be
analyzed by the system parser that serializes them in a XPDL (XML Process
Definition Language) file [5]. This file contains information about all the existing
connections in the BPMN model and in the configuration of each task. To guarantee
system flexibility and avoid the proprietary formats of data migration tools, we used
Acceleo to build Ecore models, under the MDA (Model-Driven Architecture)
provided by Eclipse implementation, for describing each component skeleton we
used, identifying all the metadata needed for process instantiation. Next, we built a
specific and standard transformation template to encapsulate the conversion logic and
convert the tasks internal structure to a XML serialization format supported by Kettle.
Finally, the parser groups each construct in layers.

use Gather
on sources{
 BEGIN
 data=CDR_Calls.csv,
 type=CSV
 END}
and target:ON-THE-FLY

(…)

Fig. 4. Example of the DSL instantiation for a Gather task

The main DSL components: Gather, Transformer and Loader will be grouped
together in a single Kettle job. If inner transformations associated to each component
have only one composite task (such as Gather), then a Kettle transformation task will
be generated. However, if several tasks were used (as it happens in the transform
phase), a Kettle job is generated (Fig. 5). The loop marker that was used in all the
tasks of the model represent a record-by-record processing that was configured for
each transformation; the parallel execution of Aggregation tasks is performed using a

job, and the Launch Next Entries in Parallel property. For each aggregation task data
is copied to enable task parallelization, being its output stored in a temporary
structure. The Loader task is responsible to accomplish load data from the temporary
structure to the target table. The current version of the tool supports several common
used data migration tasks, such as: gathers that support data extraction from CSV,
XML and relational databases sources, transformers that support several cleaning,
integration, surrogate key generation, and slowly changing dimensions procedures,
and loaders that support several data loading strategies. Additionally, the tool supports
log files management, error handling and data dictionary maintenance tasks. The
development of conceptual models was tested with BizAgi and Eclipse BPMN
modeler, both of them support different input schemas for BPMN representation.

Fig. 5. An excerpt of the Kettle package generated

Acknowledgement
This work was developed under the project RAID B2K - RAID Enterprise Platform /
NUP: FCOMP-01-0202-FEDER-038584, a project financed by the Incentive System
for Research and Technological Development from the Thematic Operational
Program Competitiveness Factors.

References
[1] OMG, O.M.G., Parida, R., Mahapatra, S.: Business Process Model and Notation (BPMN)

Version 2.0. 2011.
[2] Kettle, Pentaho Data Integration, 2015. Available at

[http://community.pentaho.com/projects/data-integration/]. Accessed on [12 June 2015].
[3] BizAgi, Business Process Management Software Platform, 2015. Available at

[http://www.bizagi.com]. Accessed on [12 June 2015].
[4] Xtext, Language Development made easy, 2015. Available at

[http://www.eclipse.org/Xtext/]. Accessed on [12 June 2015].
[5] Shapiro, R.M.: XPDL 2.1 - Integrating Process Interchange & BPMN, 2008.
[6] Acceleo, An implementation of the Object Management Group (OMG) MOF Model to

Text Language (MTL) standard, 2015. Available at [http://www.eclipse.org/acceleo/].
Accessed on [12 June 2015].

