
GET Controller and UNICORN: Event-driven Process
Execution and Monitoring in Logistics

Anne Baumgrass1, Claudio Di Ciccio2, Remco Dijkman3,
Marcin Hewelt1, Jan Mendling2, Andreas Meyer1, Shaya Pourmirza3,

Mathias Weske1, and Tsun Yin Wong1

1 Hasso Plattner Institute, University of Potsdam, Germany
2 Institute for Information Business at WU Vienna, Austria
3 Eindhoven University of Technology, The Netherlands

Abstract Especially in logistics, process instances often interact with their real-
world environment during execution. This is challenging due to the fact that
events from this environment are often heterogeneous, lack process instance in-
formation, and their import and visualisation in traditional process engines is not
sufficiently supported. To address these challenges, we implemented GET Con-
troller and UNICORN, two systems that together enable event-driven process
execution and monitoring. Their application is shown for a logistics scenario.

1 Overview

Process instances often interact with a real-world environment during their execution.
This especially holds true in the context of logistics, where transportation activities
geographically move goods around the globe. Thus, the monitoring of such processes
should leverage on the observation of phenomena that happen outside the typical scope
of Business Process Management Systems (BPMS), in order to have a clear under-
standing of their evolvement. We refer to such events as external events. They not only
comprise information updates about passive resources [5] such as position and speed of
transport vehicles like trucks or aeroplanes, but also pertain to facts occurring outside of
process boundaries, yet affecting the process instance, such as alerts on strikes, traffic
congestions, or adverse weather. To date, traditional BPMSs are not able to correlate
those external events to the events of their execution logs [5].

This paper presents an implemented approach that is capable of connecting external
events from various heterogeneous sources with the transportation execution, promptly
notifying about disruptive conditions at run-time when dangerous situations occur. We
devised and implemented the presented software in the context of the GET Service
project,4 a European research project aiming at the realisation of a platform for green
transportation and smart logistics.

2 Implementation

Due to the separation of concerns principle [6], we implemented two interacting sys-
tems: (i) UNICORN, which is responsible for collecting, processing, and distributing

4 http://getservice-project.eu

Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic
purposes.

http://getservice-project.eu


events relevant for logistics from various heterogeneous sources, and (ii) GET Control-
ler, which executes and monitors logistics process instances thereby considering events
provided by UNICORN. The interaction between these components is event-based, and
their communication follows the publish-subscribe paradigm. To this extent, process
models are encoded in a dialect of BPMN [5], which contains ad-hoc annotations that
specify both the subscription and publishing mechanisms for events relevant to the pro-
cess. Our adapted BPMN modeling language is detailed in [3].

UNICORN5 is the system handling heterogeneous events in different formats. It is
implemented in Java 7 and can be accessed through a web service (SOAP) as well as
through a web-based user interface (UI) written using the Apache Wicket framework.
Events can be published to UNICORN in XML, Excel, CSV, and JSON formats. As a
prerequisite for handling events, the corresponding event types must be defined, either
via the UI or via the web service importing its XSD. In UNICORN, Esper [2] is used
for real-time processing of events, while MySQL is used to store events for histor-
ical analysis. UNICORN implements the publish-subscribe paradigm through the Java
Message Service (JMS) implementation of ActiveMQ. Furthermore, it offers a generic
interface to periodically request or receive events from different sources such as service
providers for traffic and weather information.

To address logistics-specific requirements, UNICORN stores routes and its way-
points (locations a vehicle has to pass), which are relevant in logistics-specific event
processing. In this way, we are able to determine the distances between the current po-
sition of vehicles or events and their waypoints, to estimate remaining travel times, and
to filter traffic incidents in the vicinity of routes. Thus, UNICORN provides high-level,
transportation-related event notifications, such as expired deadlines, delays, or missing
connections to its subscribers [1].

The logistics-specific process execution and monitoring is done in GET Controller6.
For the implementation, the Activiti7 engine has been adopted. Activiti is a BPMN-
based open-source process engine, encoded in Java. Given a BPMN process model as
input, it enacts the corresponding process instances. The embedded task handler (i) al-
lows granted users to execute tasks in the UI, and (ii) monitors the status of tasks in
execution (e.g., executing or completed). The task handler of GET Controller is illus-
trated in Figure 1. On the upper-left side, all running instances are shown in a list. In the
lower-left corner, the events relevant for the currently selected process instance (case
54) are shown: a diverted flight and a strike in Frankfurt. Both are also visualized on
the map in the middle of the screen. On the right hand side, we provide the tasks of
the process including their current status. Their execution may be triggered by external
events but can also be performed by the user, which is then done through the offered
buttons or forms in the lower-right corner.

Following the requirements identified in the GET Service project for integrating
process and event processing [7], we extended the core of Activiti with the capabil-
ity to read and interpret annotated BPMN models. Thereupon, we are able to guaran-
tee (i) event-driven execution and (ii) monitoring capabilities. For guaranteeing both

5 https://bpt.hpi.uni-potsdam.de/unicorn
6 http://is.ieis.tue.nl/research/getservice/
7 http://www.activiti.org/

https://bpt.hpi.uni-potsdam.de/unicorn
http://is.ieis.tue.nl/research/getservice/
http://www.activiti.org/


Figure 1. A screenshot of GET Controller

features, GET Controller receives process-execution-relevant events published by UNI-
CORN. They can be external events as well as events signalling the task execution from
process clients, e.g., a driver loading goods. Generally, the subscription to events is
derived from the annotations in the deployed process model. We distinguish between
event subscriptions for (i) a task, (ii) a group of tasks, or (iii) the whole process. Fur-
thermore, these annotations determine for how long subscriptions are valid, i.e. (i) from
the enabling to the completion of a specified task, (ii) as long as at least one task in the
given group is running, and (iii) along the whole process execution repectively.

3 Execution and Monitoring in GET Controller

GET Controller interacts with UNICORN as shown in Figure 2. The communication
comprises five steps:

1. GET Controller deploys a process model which is then used for registering sub-
scriptions to UNICORN. A route can be provided in addition to localise events
relevant along this route for the user. For instance, to determine the routes of trucks
or to pick up airfreight at Frankfurt airport.

2. The execution of activities can be done via GET Controller (as shown in the panel
on the upper-right corner of the screenshot in Figure 1). However, in case of lo-
gistics scenarios, GET Controller often derives progress of activities from events
received by UNICORN. For instance, rules in UNICORN can be used to correlate
the movement of a truck via GPS position events and to evaluate whether it would
finally reach its destination as specified (based on information contained in the an-
notated process model or the corresponding route). The same rules can be defined
for flight events or any other movement and activity.

3. Each time an event is published to UNICORN (either by GET Controller or other
event sources), its match to a subscription is evaluated. For example, users can
subscribe to strike warnings at Frankfurt airport for their transportation process.



This has to be done using the annotation mechanism for process models described
in [3]. In the same way, users may subscribe to flight positions as well as diversions
that are aggregated by corresponding rules and extensions in UNICORN.

4. In case of a match, an event notification is sent to GET Controller. This notification
is then visualised for the affected process instance(s) to the user. The affectedness
is computed through the scope and the parameters of a subscription. For example,
all processes monitoring a flight will receive that information, while the movement
of a single truck will only be shown for the corresponding transportation task.

5. Finally, if the transportation process is completed, GET Controller may decline its
corresponding subscriptions and must unsubscribe from UNICORN.

Figure 2. Interaction between UNICORN and GET Controller.

4 Application

The application of both UNICORN and GET Controller is shown using a scenario stem-
ming from the EU-FP7 GET Service project. The scenario pertains to a multi-modal
transportation managed by a Logistics Service Provider (LSP), involving a first leg via
aircraft and a subsequent truck-based one. In particular, we envision a situation in which
the aeroplane lands in a different location than expected, thus requiring the LSP to can-
cel (or reroute) the reserved trucks, while reserving other vehicles to pick up the cargo
at the new airport. We refer to such a situation as freight shift. Occasionally, one shift
can cause re-planning and re-positioning of 20-100 trucks within 4 hours, with the clear
consequence of longer waiting times and empty miles run by the trucks. In order to in-
troduce corrective actions as soon as possible and avoid such situations, it is crucial
to constantly monitor freight execution activities, involved resources as well as all ex-
ternal events. Furthermore, mechanisms are required to correlate all this information,
and identify which events are currently relevant for the running process instances.



For our demonstration, we used data stemming from a real-world diversion of an
aeroplane on the route from Nice to Frankfurt, landing in Brussels. We extracted the
data out of a set of examined 6,495 European flight tracks (1,765,172 events) gathered
in July 2013. Flights diverted in 49 cases (0.7%). These diversions were automatic-
ally detected by the approach presented in [4], based on machine learning algorithms.
Specifically for the freight shift used in this paper, this algorithm was able to forecast
the diversion of the flight to Frankfurt 1 hour and 18 minutes ahead of the expected
landing. For the sake of the demonstration, a Java-based applications was implemen-
ted to replay the real-world flight events, along with the event announcing the strike
at Frankfurt airport, as reported by Streikradar8. This allowed us to better control the
occurrences of the right events at the right time as shown in the screencast https:
//www.youtube.com/watch?v=JE2Df7iaERk. The screencast shows how the
user is able to execute logistics-specific processes and at the same time get notified
about external events that influence its transportation at the time they happen or are
predicted automatically.

In summary, we are able to execute and monitor single-modal and multi-modal
transportations as sketched through the example above. The progress of the flight and
trucks as well as all happenings at the landing airport, such as an announced strike, are
monitored. Furthermore, once the prediction of a flight diversion is made, UNICORN
automatically forwards the corresponding event notification to GET Controller.

Acknowledgement. The research leading to these results is part of the GET Service pro-
ject and has received funding from the European Commission under the 7th Framework
Programme (FP7) for Research and Technological Development under grant agreement
2012-318275.

References

1. A. Baumgrass, M. Hewelt, A. Meyer, A. Raptopoulos, J. Selke, and T. Wong. Prototypical
implementation of the information aggregation engine. GET Service Deliverable report D6.3,
2014.

2. T. Bernhardt and A. Vasseur. Esper: Event stream processing and correlation, 2007.
3. M. Botezatu and H. Völzer. Language and meta-model for transport processes and snippets.

GET Service deliverable report D4.1, 2014.
4. C. Cabanillas, C. Di Ciccio, J. Mendling, and A. Baumgrass. Predictive task monitoring for

business processes. In BPM, pages 424–432. Springer, 2014.
5. M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business Process

Management. Springer, 2013.
6. D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-

tions of the ACM, 15(12):1053–1058, 1972.
7. S. Treitl, P. Rogetzer, M. Hrušovský, C. Burkart, et al. Use cases, success criteria and usage

scenarios. GET Service deliverable report D1.2, 2014.

8 http://streikradar.de

https://www.youtube.com/watch?v=JE2Df7iaERk
https://www.youtube.com/watch?v=JE2Df7iaERk
http://streikradar.de

	GET Controller and UNICORN: Event-driven Process Execution and Monitoring in Logistics

