
Production Case Management: A Prototypical Process
Engine to Execute Flexible Business Processes

Stephan Haarmann, Nikolai J. Podlesny, Marcin Hewelt,
Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{Marcin.Hewelt,Andreas.Meyer,Mathias.Weske}@hpi.de

Abstract. In Business Process Management (BPM) recently several approaches
have been proposed to handle flexible process execution, counter the strict ad-
herence to process models at run-time, and allow for adaptations unforeseen at
design-time. One of those approaches is Production Case Management (PCM)
that aims at combining the strengths of structured process modeling and dynamic
adaptation during run-time. PCM is an approach to model and execute flexible,
data-driven, and user-centric business processes. Complementing the conceptual
framework, we introduce a modeler and an engine for PCM in this paper.

1 Introduction

Business Process Management (BPM) is an approach to systematically structure, sup-
port, and optimize the business operations of organizations. Usually, they are described
by means of process models containing partially ordered control and data flow nodes
and can be executed automatically by business process management systems [8]. In
practice, process execution may deviate from process models due to unexpected hap-
penings or because some employee found a more suitable way achieving the same goal.
Targeting such situations, flexible process approaches have been introduced; one of
them is Production Case Management (PCM) [4]. PCM builds upon the industry stan-
dard BPMN, the Business Process Model and Notation, and introduces design- and
run-time flexibility. Thereby, PCM aims at combining the structure and guidance pro-
vided by traditional activity-centric BPM approaches, e.g., BPMN, with the flexibility
of object-centric approaches like Adaptive Case Management (ACM) [7] and case han-
dling [1]. While a conceptual framework for PCM has been initially described in [4], a
concrete implementation of these concepts was left open.

In this paper, we present our prototypical implementation for PCM allowing mod-
eling and execution of business processes represented as PCM scenarios. Therefore,
we first summarize the PCM approach in Section 2. Afterwards, Section 3 presents the
architecture of our tool, which is complemented by the information flow described in
Section 4. Finally, Section 5 concludes the paper.

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.

mailto:Andreas.Meyer@hpi.de;Marcin.Hewelt@hpi.de;Mathias.Weske@hpi.uni-potsdam.de


2 Production Case Management

Production Case Management (PCM) utilizes BPMN as process modeling language.
But instead of using one large diagram for a single process model, PCM distributes the
process logic over multiple smaller process fragments collectively defining the process
model. Fragments may be added to a PCM scenario at any time, even during run-time,
thus increasing the degree of freedom. At run-time, they are combined dynamically
based on data dependencies. In fact, PCM distinguishes between control flow enable-
ment and data enablement. An activity is control flow enabled, when the control flow
reaches it; an activity is data flow enabled, when one specified input data set is com-
pletely available. An activity is enabled, if it is control-flow enabled and data-flow
enabled. Additionally, the set of process fragments is accompanied by a data model to-
gether specifying a PCM scenario. Figure 1 shows four process fragments for an offer
creation process adapted from a real-world process in [4], where fragments A and C
show alternative ways of creating the offer and fragments B and D allow termination of
the process model by either sending out or canceling the offer. In PCM, the termination
event visualizes the termination condition, i.e. when a business process is completed;
here: an offer object in state canceled or sent. Activities with a bold border are consid-
ered link activities meaning they are executed together in specific cases.

Create 

offer

Validate 

offer

Offer

[created]

Offer

[init]

Offer

[change

request]

Offer

[approved]

(a) Fragment “A”.

Send 

offer

Offer

[sent]

Offer

[approved]

(b) Fragment “B”.

Create 

offer

Enter 

offer re-

strictions

Validate 

offer

Offer

[created]

Offer

[init]

Offer

[change

request]

Offer

[approved]

Offer

[extended]

(c) Fragment “C”.

Cancel 

case

Offer

[canceled]

Offer

[*]

(d) Fragment “D”.

Fig. 1. Process fragments for “offer creation” example adapted from [4].

When a PCM scenario is instantiated, the start event of all process fragments occurs
and the first control flow nodes, here four activities, get control flow enabled. Addition-
ally, the data objects are initialized – usually in state init. However, since data objects
may be used across process model boundaries, some objects may also be in some other
state. In this paper, we assume an initialization in state init. Based on these data states,
data availability is computed. In the given example, activities Create offer and Cancel
offer are data flow enabled (the star * in the data node means that any state matches the



condition). Consequently, these activities may be executed since they are enabled from
both control and data flow perspective.

Fragments are executed concurrently and repeatedly, i.e., once a fragment termi-
nates a new instance of this fragment is created except if the termination condition is
fullfilled. Then, all fragment instances terminate. Details on the operational semantics
are provided in [4] and thus omitted here.

3 Architecture and Implementation

Modeler

JEngine

PCM database JAnalytics

JCore

JComparser REST

R

Process 
editor

JFrontend

Admin User

Fig. 2. JEngine Architecture as FMC block diagram [3].

Figure 2 shows the implemented architecture of our process engine in FMC no-
tation1 [3]. The architecture consists of two major modules communicating through
a REST interface [2, 5]. The JEngine provides the functionality to execute PCM sce-
narios and allows to analyze the execution behavior through the extendable JAnalytics
framework, based on which execution recommendations might be provided to the pro-
cess participants. The JFrontend, the second main component, implements the REST
calls and visualizes the enactment of the scenario in a dashboard. Targeting the mod-
eling side of PCM, we adapted the open source editor2 developed by inubit AG (now:
Bosch Software Innovations GmbH) providing domain-model-compatible PCM scenar-
ios. It contains a rich client and a server-sided part, which stores the created models in
a repository that is accessible via a REST API. PCM scenarios from this repository can
be imported into the JEngine via the JComparser. The editor can be easily replaced, as
long as the XML serialization of PCM scenarios adheres to our domain model format.3

Next, we briefly introduce the two main components.

JEngine. The JEngine consists of multiple sub-components. The JComparser fetches
the process models, i.e., PCM scenarios, from the model repository of the process edi-
tor, deserializes the models following our domain model, and caches the information in

1 Fundamental Modeling Concepts, www.fmc-modeling.org/
2 http://frapu.de/code/processeditor/
3 Details are given in the tool documentation at https://bpt.hpi.uni-potsdam.de/
Public/JEngineDoc

www.fmc-modeling.org/
http://frapu.de/code/processeditor/
https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc
https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc


Plain Old Java Objects (POJOs). Afterwards, they are persisted in the engine-internal
PCM database, which is the only place where the models are referenced for the actual
execution. Adaptations to the process models are also stored in the database that sup-
ports revision control to allow execution on old data sets if required by some process
model. Generally, we migrate running process instances, the actual executions, to the
latest data set, if only new process fragments were added. Otherwise, we preserve the
old version with which the process instance was started.

This execution is handled by the JCore which encapsulates the corresponding logic
based on the operational semantics given in the implementation framework in [4]. For
the actual execution, scenarios, fragments, activities, and data objects are resources as
defined in the REST specification. They are accessible through a unique URI. With
regards to the CRUD schema [6], all resources can be used for interactions realized
through the HTTP methods POST, GET, PUT and DELETE referring to create, read,
update, and delete actions. Following the operational semantics, the JCore provides
all currently enabled activities to the process participant who then chooses one for ex-
ecution. Upon termination (or cancellation) of an activity, the JCore recomputes the
enabled activities. If the next enabled activity is a web service or an email task – the
two types of service tasks we currently support – it will be performed automatically by
the JCore.

The JAnalytics sub-component stores each state change of an activity and data ob-
ject including their attribute changes. Based thereon, we provide process monitoring
capabilities and build-up a large event log for later statistical computations. This sub-
component provides a dynamic model-controller pattern for simply adding new algo-
rithms and dynamic communication through REST for accessing the extended algo-
rithms.

Frontend. The JFrontend implements the web interface for our PCM engine, thus al-
lowing to monitor the process execution and to selectt the next activity to be executed.
Our frontend is based on the widely used JavaScript library AngularJS4. To fetch the in-
formation to be displayed to the process participant and for PCM scenario deployment,
execution, and configuration, the JFrontend utilizes the previously stated REST inter-
faces. The user interface provides two views: one for configuration and another one for
execution. In the former, for instance, the service tasks are configured by specifying the
web service to be accessed or the email specifics to be used for sending emails. The lat-
ter consists of fine-grained information-boxes that allow dynamic representation of the
process progress. A detailed view on the user interface is provided in our screencast at
https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc while the up-
coming section provides a walk-through of our tool.

4 Information Flow

Successful execution of process scenarios comprises five steps assuming that modeling
is already completed and the scenarios are available in the process model repository.

4 https://angularjs.org/

https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc
https://angularjs.org/


(1) The PCM scenarios are retrieved from the model repository and deployed through
a REST call from the JFrontend to the JComparser and further to the process editor
(chain of responsibility). Thereby, the process participant (user) selects the PCM sce-
narios to be fetched. Additionally, all corresponding process fragments are retrieved.
Upon retrieval, the JComparser parses all fragments into the domain-model-format and
enables persistence in the execution database. (2) Once imported, the JFrontend can ex-
ecute the scenario through the JCore. Requests from the user (manual task) or from the
JCore (service task) allow the start and termination of process instances and activities as
well as manipulation of data objects. (3) All changes are saved in the history (JAnalyt-
ics) and can be accessed through corresponding REST interface. (4) While analysis can
be performed based on historic and current data through our analysis framework, there
is no generic user interface for the JAnalytics framework such that new algorithms must
be integrated manually. (5) Finally, all information is returned to the JFrontend and
visualized to the process participant.

5 Conclusion

In this paper, we presented our prototypical implementation of a process engine to exe-
cute process models following the concept of Production Case Management (PCM).
PCM is a novel approach to allow design-time and run-time flexibility for BPMN
while benefiting from BPMN’s acceptance and preserving its idea of structural and
guidance-based model enactment. The publicly available source code, the documenta-
tion, and a screencast of our process engine are available at https://bpt.hpi.
uni-potsdam.de/Public/JEngineDoc.

Acknowledgements. We thank Jaspar Mang, Juliane Imme, Jan Selke, and Sven Ihde for their
continuous support towards implementation of this prototypical process engine for PCM. Additi-
nally, we thank Frank Puhlmann for many fruitful discussions and Bosch Software Innovations
GmbH for funding the connected research project.

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for Busi-
ness Process Support. Data & Knowledge Engineering 53(2), 129–162 (2005)

2. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. ACM Trans-
actions on Internet Technology (TOIT) 2(2), 115–150 (2002)

3. Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental Modeling Concepts. Wiley (2005)
4. Meyer, A., Herzberg, N., Puhlmann, F., Weske, M.: Implementation Framework for Produc-

tion Case Management: Modeling and Execution. In: EDOC. pp. 190–199 (2014)
5. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc. (2007)
6. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts. McGraw-Hill Book

Company (2010)
7. Swenson, K., Palmer, N., Pucher, M.: Case Management: Contrasting Production vs. Adap-

tive. In: How Knowledge Workers Get Things Done. pp. 109–118 (2012)
8. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Second Edi-

tion. Springer (2012)

https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc
https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc

	Production Case Management: A Prototypical Process Engine to Execute Flexible Business Processes
	Introduction
	Production Case Management
	Architecture and Implementation
	Information Flow
	Conclusion


