
SmartPM: An Adaptive Process Management System
for Executing Processes in Cyber-Physical Domains?

Andrea Marrella1, Pätris Halapuu2, Massimo Mecella1, and Sebastian Sardiña3

(1) Sapienza Università di Roma, (2) University of Tartu, (3) RMIT University, Australia

Demo Abstract. Nowadays, the automation of business processes not only spans clas-
sical business domains (e.g., banks and governmental agencies), but also new settings
such as healthcare, smart manufacturing, domotics and emergency management [2].
Such domains are characterized by the presence of a Cyber-Physical System (CPS) co-
ordinating heterogeneous ICT components with a large variety of architectures, sensors,
actuators, computing and communication capabilities, and involving real world entities
that perform complex tasks in the “physical” real world to achieve a common goal. In
this context, Process Management Systems (PMSs) are used to manage the life cycle of
the processes that coordinate the services offered by the CPS to the real world entities,
on the basis of the contextual information collected from the specific cyber-physical
domain of interest. The physical world, however, is not entirely predictable. CPSs do
not necessarily and always operate in a controlled environment, and their processes
must be robust to unexpected conditions and adaptable to exceptions and external ex-
ogenous events. In this paper, we tackle the above issue by introducing the SmartPM
System (http://www.dis.uniroma1.it/˜smartpm) an adaptive PMS which
combines process execution monitoring, unanticipated exception detection (without re-
quiring an explicit definition of exception handlers), and automated resolution strategies
on the basis of well-established Artificial Intelligence techniques, including the Situa-
tion Calculus and IndiGolog [1], and classical planning [3].

Significance to the BPM field. Exception handling is one of the most important tasks
that process designers undertake during process modelling and execution [5]. In cyber-
physical domains, the fact is that the number of possible anticipated exceptions is often
too large, and traditional manual implementation of exception handlers at design-time
is not feasible for the process designer, who has to anticipate all potential problems and
ways to overcome them in advance. Furthermore, in such domains many unanticipated
exceptional circumstances may arise during the process execution, requiring to adapt
running process instances in a situation- and context-dependent way. While most PMSs
of today shy away from dealing with the inherent dynamic nature of cyber-physical do-
mains by providing manual or semi-automated techniques to deal with unanticipated
exceptions, the management of processes enacted in such domains requires a PMS pro-
viding real-time monitoring and automated adaptation features during process execu-
tion. In this direction, SmartPM allows (i) the continuous screening of real-world ob-
jects performed by the physical sensors disseminated in the cyber-physical domain of
interest, by transforming the “continuous” knowledge extracted from the domain in its
digital counterpart; and (ii) the formalization of explicit mechanisms to model world
changes and responding to anomalous situations, exceptions, exogenous events in an

? Copyright c©2015 for this paper by its authors. Copying permitted for private and academic purposes.

http://www.dis.uniroma1.it/~smartpm


Fig. 1. A train derailment situation; area and context of the intervention

automated way, in order to achieve the overall objectives of the processes still preserv-
ing their structure without (or by minimising) any human intervention.
Demonstration Scenario. We consider the emergency management situation described
in Fig. 1(a), in which a train derailment is depicted in a grid-type map. A possible
concrete realization of an incident response plan for our scenario is shown in Fig. 1(c),
through a BPMN process composed of three parallel branches, with tasks instructing
first responders to act for evacuating people from train coaches, taking pictures of the
locomotive, and assessing the gravity of the accident. To execute the process, a response
team is sent to the derailment scene. The team is composed of four first responders,
called actors, and two robots, initially all located at location cell loc00. It is assumed
that actors are equipped with mobile devices for picking up and executing tasks, and
that each provide specific capabilities. For example, act1 is able to extinguish fire and
take pictures, while act2 and act3 can evacuate people from train coaches. The two
robots, in turn, are designed to remove debris from specific locations. When the battery
of a robot is discharged, act4 can charge it. In order to carry on the response plan,
all actors and robots ought to be continually inter-connected. The connection between
mobile devices is supported by a fixed antenna located at loc00, whose range is limited
to the dotted squares in Fig. 1(a). Such a coverage can be extended by robots rb1 and
rb2, which have their own independent (from antenna) connectivity to the network and
can act as wireless routers to provide network connection in all adjacent locations. Due
to the high dynamism of the environment, there is a wide range of exceptions that can
ensue. So, suppose for instance that actor act1 is sent to the locomotive’s location,
by assigning to it the task GO(loc00, loc33) in the first parallel branch. Unfortunately,
however, the actor happens to reach location loc03 instead. The actor is now located at
a different position than the desired one and is out of the network connectivity range
(cf. Fig. 1(a)). Therefore, the PMS initially has to find a recovery procedure to bring
back full connectivity, and then find a way to re-align the process. To that end, provided
robots have enough battery charge, the PMS may first instruct the first robot to move
to cell loc03 in order to re-establish network connection to actor act1, and then instruct
the second robot to reach location loc23 in order to extend the network range to cover
the locomotive’s location loc33. Finally, task GO(loc03, loc33) is reassigned to actor



Fig. 2. The SmartPM architecture (a) and a screenshot of the Task Handler (b)

act1 (cf. Fig. 1(b)). The corresponding updated process is shown in Fig. 1(d), with the
encircled section being the recovery procedure. We note that the execution of a process
can be also jeopardized by the occurrence of exogenous events (e.g., a fire burnt up into
a coach) that could asynchronously change some contextual properties of the scenario,
by possibly requiring the process to be adapted accordingly.

The SmartPM Approach and System. The SmartPM approach builds on the dualism
between an expected reality, the (idealized) model of reality that is used by the PMS
to reason, and a physical reality, the real world with the actual values of conditions
and outcomes. Process execution steps and exogenous events have an impact on the
physical reality and any deviation from the expected reality results in a mismatch to be
removed to allow process progression. At this point, an external state-of-the-art planner
is invoked to synthesise a recovery procedure that adapts the faulty process instance by
removing the gap between the two realities. The formal model underlying the SmartPM
approach is described in [4], and its implementation covers the modeling, execution and
monitoring stages of the process life-cycle. To that end (cf. Fig. 2(a)), the architecture
of the SmartPM System relies on five architectural layers.

The Presentation Layer provides a GUI-based tool called SmartPM Definition Tool
(developed with the JGraphX graphical library), which assists the process designer in
the definition of the process model at design-time. Process knowledge is represented as
a domain theory that includes all the contextual information of the domain of concern,
such as the people/services that may be involved in performing the process, the tasks,
the data and so forth. Data are represented through some atomic terms that range over
a set of data objects, which depict entities of interest (e.g., locations, capabilities, etc.),
while atomic terms are used to express properties of domain objects (and relations over
objects). For example, the term At[act : Actor] = (loc : Location type) is used for
recording the position of each actor in the area. In addition, the designer can define



complex terms. They are declared as basic atomic terms, with the additional specifica-
tion of a well-formed first-order formula that determines the truth value for the complex
term. For example, the complex term Connected[act : Actor] can be defined to express
that an actor is connected to the network if s/he is in a covered location or if s/he is in a
location adjacent to a location where a robot is located. Tasks are collected in a specific
repository and are described in terms of preconditions - defined over atomic and com-
plex terms - and effects, which establish their expected outcomes. Finally, a process
designer can specify which exogenous events may be catched at run-time and which
terms will be modified after their occurrence. Once a valid domain theory is ready, the
process designer uses the BPMN editor provided by the SmartPM Definition Tool to
define the process control flow among a set of tasks selected from the tasks repository.

The Execution and Service Layers are in charge of managing the process enact-
ment. SmartPM adopts a “service-based” approach to process execution, that is, tasks
are executed by services (that could be software applications, human actors, robots,
etc.). First of all, the domain theory specification and the BPMN process are trans-
lated into situation calculus and IndiGolog readable formats. The situation calculus is
a logical language designed for representing and reasoning about dynamic domains.
On top of that, we use the IndiGolog high-level agent programming language for the
specification of the process control flow. Hence, an executable model is obtained in the
form of an IndiGolog program to be executed through an IndiGolog engine. To that end,
we customized an existing IndiGolog engine1 to (i) build a physical/expected reality by
taking the initial context from the external environment; (ii) manage the appropriate
process routing; (iii) collect exogenous events from the external environment; (iv) mon-
itor contextual data to identify changes or events which may affect process execution.
Process participants interact with the engine through a Task Handler (realized for An-
droid devices from version 4.0 and up) (cf. Fig. 2(b)), an interactive GUI-based software
application that supports the visualization/execution of assigned tasks by selecting an
appropriate outcome. For example, if we consider our demonstration scenario, when
the task GO(loc00, loc33) completes, the output value for At(act1) (generated as an ef-
fect of the task GO) is ’loc03’, that is different from the task’s expected outcome, that
is ’loc33’. Therefore, the two realities are misaligned and the running process instance
δ needs to be adapted. The communication between the IndiGolog engine and the task
handlers is mediated by the Communicator Manager component (which is a web server)
and established using the Google Cloud Messaging service.2

To enable the automated synthesis of a recovery procedure, the Adaptation Layer
of SmartPM relies on the capabilities provided by a PDDL-based planner component
(the LPG-td planner [3]), which assumes the availability of a planning problem, i.e., an
initial state and a goal to be achieved, and of a planning domain definition that includes
the actions to be composed to achieve the goal, the domain predicates and data types.
Specifically, if process adaptation is required, we translate (i) the domain theory defined
at design-time into a planning domain, (ii) the physical reality into the initial state of
the planning problem and (iii) the expected reality into the goal state of the planning
problem. The planning domain and problem are the input for the planner component. If

1 https://bitbucket.org/ssardina/indigolog/
2 https://developer.android.com/google/gcm/index.html



the planner is able to synthesize a recovery procedure δa, the Synchronization compo-
nent combines δ′ (which is the remaining part of the faulty process instance δ still to be
executed), with the recovery plan δa, builds an adapted process δ′′ = (δa; δ

′) and con-
verts it into an executable IndiGolog program so that it can be enacted by the IndiGolog
engine. Otherwise, if no plan exists for the current planning problem, the control passes
back to the process designer, who can try to manually adapt the process instance.

The Cyber-Physical Layer is tightly coupled with the physical components available
in the domain of interest. For automating the data collection from the environment by
using the sensors that are built in the mobile devices, several plugins have been created
for the Task Handler. However, since the IndiGolog engine can only work with defined
discrete values, while data gathered from physical sensors have naturally continuous
values, a mapping of such continuous values into their discrete counterparts is required.
To tackle this issue, we enhanced the SmartPM Definition Tool by providing several
web tools that allow process designers to associate some of the data objects defined
in the domain theory with the continuous data values collected from the environment.
For example, in the case of the GPS sensor, we developed a web tool (as a Google
Maps plugin) that allows a process designer to mark areas of interest from a real map
(by selecting latidude/longitude values) and associate them to the discrete locations
(e.g., loc00, loc01, etc.) defined during the design stage of a process. Similarly, we
developed further web tools for the other developed sensors (temperature, noise level,
etc.). The mapping rules generated are then encoded in a XML file that is saved into
the Communication Manager and retrieved at run-time to allow the matching of the
continuous data values collected by the specific sensor into discrete data objects (cf. the
matching between ’loc03’ and concrete latitude/longitude values in Fig. 2(b)).
Maturity. The SmartPM System was validated through empirical experiments based on
3600 different process models having control flows with different structures and domain
theories associated to them. On the one hand, the experiments confirm the feasibility
of the planning-based approach of SmartPM for adapting processes in medium-sized
cyber-physical domains from the timing performance perspective. On the other hand,
SmartPM was able to complete 2537 process instances without any domain expert in-
tervention, corresponding to an effectiveness of about 70,5% (cf. also [4]).
Acknowledgements. This work has been supported by the Sapienza award SPIR-
ITLETS, the grants TESTMED and SUPER and Italian projects NEPTIS and RoMA.

References
1. De Giacomo, G., Lespérance, Y., Levesque, H., Sardina, S.: Indigolog: A high-level program-

ming language for embedded reasoning agents. In: Multi-Agent Prog. Springer US (2009)
2. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-Intensive Processes: Characteristics, Re-

quirements and Analysis of Contemporary Approaches. Journal on Data Semantics (2014)
3. Gerevini, A., Saetti, A., Serina, I., Toninelli, P.: LPG-TD: a Fully Automated Planner for

PDDL2.2 Domains. In: ICAPS-04 (2004)
4. Marrella, A., Mecella, M., Sardina, S.: SmartPM: An Adaptive Process Management System

through Situation Calculus, IndiGolog, and Classical Planning. In: KR’14 (2014)
5. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Chal-

lenges, Methods, Technologies. Springer (2012)


	SmartPM: An Adaptive Process Management System for Executing Processes in Cyber-Physical Domains

