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Abstract 
The relationship between emotions elicited by film clips and 
spontaneous dynamic facial expressions was investigated. 
Participants (n = 10) watched 13 emotional film clips, and 
their facial responses were recorded using a motion capture 
system. We extracted 3-sec length intervals in which facial 
events occurred from motion sequences. The participants 
were asked to self-assess their felt emotional arousal and 
positive and negative affect for each interval. To find the 
spatiotemporal components of dynamic facial expressions, we 
employed the multiway decomposition method, PARAFAC, 
on a time sequence of facial landmark coordinates 
standardized via methodologies of geometric morphometrics. 
The second component was related to facial movement that 
appears slowly and then maintains a stable state over a long 
term. Finally, the third component was linked to movement 
that appears and rapidly returns to the initial state. Local 
regression analysis was performed to obtain the distribution 
of the component scores on a two-dimensional plane: 
pleasure–displeasure and arousal–sleepiness. The third 
component was negatively correlated with arousal level.  

Keywords: Dynamic Facial Expressions; Spontaneous 
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Introduction 
Many studies have investigated morphological features of 
facial expressions. Most researches on facial expressions 
have relied on the use of photographed images or “static” 
information. However, affective facial expressions are 
dynamic in nature. Several researchers have claimed that 
dynamically changing facial configuration plays an 
important role in the perception of facial patterns and 
attribution of emotional category labels (Krumhuber, 
Kappas, & Manstead, 2013). Particularly when either 
morphological information is limited or intensity of 
expressions is lower, the presence of facial motion signals 
helps perceivers to identify emotion (Cunningham & 
Wallraven, 2009; Bould & Morris, 2008; Krumhuber & 
Manstead, 2009).  

Although the presence of a motion signal is important for 
emotion recognition, the benefit of dynamic display does 
not seem to be solely attributed to an increase in the amount 
of static information. Natural facial events would not occur 
at a constant speed as in morphing animations; however, 
they occur in a nonlinear manner. Such nonlinear facial 
motion leads to more accurate emotion recognition 
compared to linear motion animation (Wallraven, Breidt, 
Cunningham, & Bülthoff, 2008). Therefore, for elucidating 
dynamic facial expressions, complex spatiotemporal 

information embedded in facial motion is also considered to 
be at least as important as “static” facial information. 

In many studies of facial expressions, portraits of actors’ 
stereotypical emotion expressions or facial actions of 
specific predefined patterns (e.g., FACS (Ekman & Friesen, 
1978)) have been employed. However, it is difficult to 
capture temporal facial changes using posed expressions. 
Thus, in the present study, we investigated dynamic facial 
expressions based on spontaneous facial expressions elicited 
by emotional film clips. Although some conventional facial 
action coding techniques based on human observations are 
designed to code temporal changes in facial expressions, it 
is difficult to quantitatively describe facial dynamic changes 
with such coding systems. To obtain dynamic facial 
configurations, we employed a facial motion capture system. 

Facial motion capture systems have been widely used in 
the film industry. Recently, such landmark-based 
approaches have been applied to research on spontaneous 
dynamic facial expressions (Valstar, Gunes, & Pantic, 2007; 
Zhang, Yin, Cohn, Canavan, Reale, Horowitz, & Girard, 
2014). The present study aims at extracting the components 
of dynamic facial expressions using a combination of the 
methodologies of geometric morphometrics and the 
multiway decomposition method PARAFAC (Kroonenberg, 
1983), being a type of modified principal component 
analysis based on three dimensional landmark coordinate 
data. Furthermore, we investigated the relationship between 
the extracted facial-expression components and the self-
reported emotion of the owners of the faces. 

 

Method 

Participants 
Japanese undergraduate and graduate students (n = 10: 8 
men and 2 women; age: 18 to 24 years, mean age = 21.4, 
SD = 1.96) participated on a voluntary basis. The 
participants gave written consent to participate in the study, 
and Osaka Electro-Communication University ethics 
committee approved the study. 

Procedure 
The participants watched thirteen clips intended to elicit 
differentiated emotional states, such as positive/negative 
mood, anger, sadness, fear, or disgust. The clips were taken 
from a database of emotion-eliciting films (Schaefer, Nils, 
Sanchez, & Philippot, 2010) (Table 1). Each of the clips was 
shown in a Japanese-dubbed version and was approximately 
2 min in length.  
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Table 1: Sources of film clips used 

 
 

 
Participants were instructed to watch all the clips 

attentively, without diverting their attention from the 
monitor. When participants were ready to begin the 
experiment, lighting in the room was dimmed. Each trial 
started with a countdown leader (3s). It was followed by a 
presentation of explanatory text of the outline of the 
narrative of the film (30s), and a presentation of the clip. 
This procedure was repeated for each film excerpt. The 
order of items within each set was randomized. Each session 
lasted approximately 40 min. The film clips were displayed 
on a 12-inch monitor placed about 1m in front of the 
participant. The audio of the films was played through 
speakers placed in front of the participant. 

The sequences of 30 facial landmark coordinates were 
recorded using a facial motion capture system 
(OptiTrackFLEX: V100R2) at 100Hz (Figure 1). The 
landmark locations for each participant were decided based 
on a front facial image that was photographed before the 
experiment. We also set up a video camera to capture the 
entire scene and speakers  for monitoring and as a reference 
for synchronization between facial motion sequence and 
stimuli.  

To extract intervals in which facial events occurred from 
the motion data, we applied principal component analysis 
(PCA) based on automatic motion segmentation technique 
to the facial motion sequences (Barbič, Safonova, Pan, 
Faloutsos, Hodgins, & Pollard, 2004). This technique is 
based on the observation that simple motions exhibit lower 
dimensionality than more complex motions. We set the 
segmentation parameters to k = 3s, τ = 0.85s，and l = 75s. 
As a result, all the facial motion sequences of 10 
participants were divided into 1325 sections. It is expected 
that some of the beginnings of the sections (hereafter 
referred to as segmentation points) correspond to the 
moments just after facial expressions began. Three 
observers determined visually whether each segmentation 
point neighbors the starting point of facial expressions 
according to the criteria; (1) the segmentation point must be 

included in the period of film presentation, (2) motion 
segmentation must be caused by facial movement changes 
but not by head movements, and (3) a segmentation point 
that was segmented by solely eye blinking is not the starting 
point of facial expressions. Consequently, 98 segmentation 
points were selected as analysis targets. For each selected 
segmentation point, we extracted a 3-sec length interval of 
facial motion sequence from 1s before to 2s after the 
segmentation point. 
 

 
Figure 1: Thirty facial landmark locations 

 
 

 
Figure 2: Landmarks of faces (a) before standardization and 
(b) standardized via the methodologies of geometric 
morphometrics 

Title Release Year Emotion
The Blair Witch Project 1999 fear
Schindler's List (1) 1993 arousal, negative
There's Something About Mary 1998 amusement
Life Is Beautiful 1997 tenderness, positive
Seven 1995 disgust
Dead Poets Society 1989 positive
The Professional 1994 sadness, tenderness
Trainspotting 1996 disgust
Schindler's List (2) 1993 anger
Misery 1990 arousal
The Dinner Game 1998 amusement, positive
Sleepers 1996 anger
Forrest Gump 1994 tenderness
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Facial Motion Analysis 
Each face in each frame differed in location, size, and 
orientation. To standardize them, we performed a 
Generalized Procrustes analysis (GPA) on the facial 
landmarks of all frames of all faces (Bookstein, 1997; 
Dryden & Mardia, 1998). A GPA is an analytical method 
used for multivariate statistical analysis of landmark 
locations expressed in Cartesian coordinates. This method 
preserves information on the relative spatial relationships of 
landmarks throughout the standardization. Using this 
method, we standardized the three dimensional sequential 
landmark coordinates of facial motion (Figure 2). Moreover, 
landmark coordinate values were standardized for each 
coordinate so that the mean equals 0 and the standard 
deviation equals 1. 

This motion data of the participants can be regarded as a 
three-mode data 𝐗 = 𝑥!"# 𝑖 = 1,2,… , 𝐼, 𝑗 = 1,2,… , 𝐽, 𝑘 =
1,2,… ,𝐾  (i corresponds to the time sequence, j 
corresponds to the landmark, and k corresponds to each 
extracted interval). To find the components of facial 
expressions from the motion data, we performed PARAFAC 
analysis on the three-mode data. PARAFAC is a 
generalization of PCA to higher order arrays, given by 

𝑥!"# = 𝑎!"

!

!!!

𝑏!"𝑐!" + 𝑒!"# 

In the above, 𝑎!", 𝑏!", 𝑐!" correspond to the mode of time 
sequence, and landmark and interval, respectively.  

We calculated the principal component scores and 
loadings up to the third factor with PARAFAC. Figure 3 
illustrates the changes of each factor loading concerning 
time sequence. The first component was found to be a 
“static” factor, indicating that it was not linked to any facial 
motion but to static morphological features that are a 
geometric arrangement of facial parts. However, the second 
and the third component were related to facial movement. In 
this study, we examined the second and third components 
that were linked to facial movement. 

The second component score started increasing at around 
60 msec and peaked at around 150 msec, after which the 
score becomes stable. Thus, the second component is 
considered to be related to a facial movement that appears 
slowly and maintains a stable state. The third component 
was linked to a movement that appears at around 50 msec, 
peaks at 100 msec, and then rapidly returns to the initial 
state.  

To visualize the facial changes along the second and third 
component, facial landmark movements were reconstructed 
based on the loadings of both time sequence and landmarks 
for each component (Figure 4). The results of the 
reconstruction indicated that a higher second component 
score of extracted interval was related to eyebrow raising 
and mouth opening, whereas a lower score was related to 
eyebrow lowering and mouth closing (Figure 4-A). A higher 
third component score was related to horizontal movement, 
including mouth opening in a horizontal direction, and a 

lower score was related to a movement of contracting lips 
into a rounded shape and knitting eyebrows (Figure 4-B). 

 
 

 
Figure 3: PARAFAC loadings for time-sequence 
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Figure 4: Facial movement along the second and third 
component 
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Assessment of Participants’ Affect 
Subjective emotional states during observation of emotional 
film clips were examined using the same film clips as used 
in the facial motion capture session. The participants were 
also the same as those in the facial motion capture session. 
For each participant, we presented each film clip and  
paused the clip at the moment the facial expression had 
occurred, which marked the segmentation point. Participants 
were asked to rate their mood using the Affect Grid 
technique (Russell, Weiss, & Mendelsohn, 1989) for each 
moment that their facial expressions had occurred. The 
Affect Grid is a mood scale that requires participants to 
place a mark to report their current mood on a 9 x 9 grid 
with the horizontal dimension representing affective valence 
(from unpleasantness to pleasantness) and the vertical 
dimension representing a degree of perceived activation 
(ranging from sleepiness to high arousal). Both the valence 
and arousal scores were standardized for each participant. 

The relationship between facial motion components and 
subjective emotional state was investigated. It was 
considered inappropriate to assume an a priori model 
regarding the relationship between facial expressions and 
emotion. Therefore, we adopted LOESS, a robust leveling 
technique based on local polynomial regression (Cleveland, 
Grosse, & Shyu, 1992), that can graphically demonstrate the 
relationship between emotion and facial motion components. 

The relationship between Affect Grid scores and smoothed 
component scores of both the second component and the 
third component is shown in Figure 5 (span, kernel function 
range was set as 3.0). Figure 5-A shows that both negative 
and low arousal affect lead to higher scores for the second 
component, suggesting that the component of facial 
movement that appears slowly is related to expressions both 
of emotional valence and arousal. For this component, both 
positive and high arousal expressions are similarly 
correlated to eyebrow raising and mouth opening. On the 
other hand, it can be seen from Figure 5-B that arousal level 
was basically linked to the third component that reflects 
short-term facial deformations, except for the cases of 
strong unpleasant affect. As for this component, a higher 
arousal level corresponds to the movement of contracting 
lips into a rounded shape and knitting eyebrows. 
 

Discussion 
This study suggests that dynamic facial expressions consist 
of plural components differing in spatiotemporal 
characteristics (i.e., long-term facial deformations and short-
term facial deformations). One component was found to be 
connected to facial deformations that appear slowly and 
maintains a stable state over a long term, and the other was 
connected to rapid appearance and disappearance of facial 
deformations. Each component corresponds to movements 
in different directions and of different facial parts. The 
findings of the present study indicate that dynamically 
changing facial expressions can be described by 

synthesizing a few components of facial movement that 
differ in spatiotemporal characteristics. 

Moreover, we show the connection between the 
components of expressions and emotional valence and 
arousal. The results suggested that long-term facial 
deformation was related both to valence and arousal 
whereas short-term deformation was related solely to 
arousal.  

The results of the study also suggest that the combination 
of motion segmentation technique, methodology of 
geometric morphometrics, and modified principal 
component analysis is a valid method for finding 
components of dynamic facial expressions. 
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Figure 5: Contour of component scores on the plane of 
pleasure–displeasure (horizontal) and arousal–sleepiness 
(vertical) 
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Because of the small number of participants in this study, 
it is difficult to consider the facial components found were 
stable. Future studies should examine the accuracy of 
PARAFAC-based expression model in detail with a larger 
number of participants. 
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