
SELP - A System for Studying Strong Equivalence
between Logic Programs

Yin Chen1,2, Fangzhen Lin3 and Lei Li2

1 Department of Computer Science, South China Normal University, China
2 Software Institute, Sun Yat-sen University, China

3 Department of Computer Science, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong

Abstract. This paper describes a system calledSELP for studying strong equiv-
alence in answer set logic programming. The basic function of the system is to
check if two given ground disjunctive logic programs are equivalent, and if not,
return a counter-example. This allows us to investigate some interesting proper-
ties of strong equivalence, such as a complete characterization for a rule to be
strongly equivalent to another one, and checking whether a given set of rules is
strongly equivalent to another, perhaps simpler set of rules.

1 Introduction

The notion of strongly equivalent logic programs was proposed by [5]. It has been found
useful for tasks such as program simplification (e.g. [2]). In this paper, we describe
a system calledSELP that can help us answer questions regarding this notion, from
simple ones such as “are P and Q strongly equivalent” to more involved ones such as
“exactly what kind of rules are strongly equivalent to the empty set”.

The core of the system is checking whether two disjunctive logic programs are
strongly equivalent. This is based on [6], which provides a simple mapping from logic
programs to propositional theories that reduces strong equivalence to entailment in
classical propositional logic. Thus, the problem of strong equivalence checking can
be translated into a satisfiability problem in propositional logic, and solved using SAT
solvers like zChaff [10].

In addition, when two programs are not strongly equivalent, we may want to find
some witnesses. For example,P1 = {(a1 ← a2), (a1 ← not a2)} andP2 = {a1 ←}
are not strongly equivalent, andP = {a2 ← a1} is a witness (counter-example): it is
easy to see that{a1, a2} is an answer set ofP2 ∪ P , but not ofP1 ∪ P . It is often hard
to find a witness manually, butSELP can do this automatically: when two programs
P1 andP2 are found not to be strongly equivalent, it will return a programP , such that
P1 ∪ P andP2 ∪ P have different answer sets.

The most interesting part ofSELP is that it allows us to study some properties of the
notion of strong equivalence. In [7], we described some results on classes of strongly
equivalent logic programs discovered using the system. In this paper, we shall show
how the system can help us answer questions of the following form: Given a setP of
rules, is there another set of rules of certain property that is strongly equivalent toP?

SELP - A System for Studying Strong Equivalence between Logic Programs 131

In [4], a system called LPEQ was developed that can check if two normal programs
are strongly equivalent, and was implemented using the answer set logic programming
systemsmodels. Besides being implemented using a different technique, our system
can deal with normal as well as disjunctive logic programs. Furthermore, our system
can construct a counter-example when two programs are not strongly equivalent.

The remainder of this paper is organized as follows. In the next section, we review
some key concepts and notations in answer set logic programming. In section 3, we de-
scribe the core of the system, i.e. how to check if two programs are strongly equivalent.
In section 4, we describe how to discover classes of strongly equivalent programs using
SELP. In section 5, we show how to find all programs that are strongly equivalent to a
given one. Finally, we conclude the paper in section 6.

2 Preliminaries

Let L be a propositional language, i.e. a set of atoms. In this paper we shall consider
logic programs with rules of the following form:

h1; · · · ;hk ← p1, · · · , pm, not pm+1, · · · , not pn (1)

wherehi’s andpi’s are atoms inL. So a logic program here can have default negation
(not), constraints (whenk = 0), and disjunctions in the head of its rules. In the follow-
ing, if r is a rule of the above form, we writeHdr to denote the set{h1, ..., hk}, Psr

the set{p1, ..., pm}, andNgr the set{pm+1, ..., pn}. Thus a ruler can also be written
asHdr ← Psr, not Ngr.

The semantics of these programs are given by answer sets as defined in [3]. As
conventional in logic programming, we identify interpretations ofL with sets of atoms
in L. Let I be a set of atoms, andP a logic program. We say thatI is closed underP if
for any ruler in P , we have thatHdr ∩ I 6= ∅ wheneverPsr ⊆ I andNgr ∩ I = ∅.
Now if P is a program without negation, a setI of atoms is an answer set ofP iff I is
a minimal set of atoms that is closed underP . Generally,I is an answer set ofP iff I
is an answer set ofP I , whereP I , the reduct ofP on I, is obtained fromP as follows:
for any rule of form (1), if there is an atompi, m + 1 ≤ i ≤ n, such thatpi ∈ I, then
delete this rule; otherwise, delete all the literals of the formnot qi from this rule.

Two logic programsP1 andP2 in L are said to beequivalentif they have the same
answer sets, andstrongly equivalent[5] (in the languageL) if for any logic programP
in L, P ∪P1 andP ∪P2 are equivalent. For instance,{p← q} and{(p← q), (q ← p)}
are equivalent but not strongly equivalent: they both have the unique answer set∅, but
when we add the rulep← to them, the first one will have the answer set{p}, while the
latter{p, q}.

The notion of strongly equivalent logic programs is interesting for a variety of rea-
sons. For instance, as Lifschitzet al. [5] noted, if two sets of rules are strongly equiv-
alent, then one can be replaced by the other in any logic program regardless of the
context. Thus knowing whether two sets of rules are strongly equivalent is a useful
exercise that may have applications in program simplification.

In the following, for convenience, when we say a rule is strongly equivalent to the
empty set, we mean the set that contains exactly this rule is strongly equivalent to the

132 Yin Chen, Fangzhen Lin and Lei Li

empty set. Similarly, when we say two rules are strongly equivalent, we mean that the
two sets of rules, each consisting of exactly one of the rules, are strongly equivalent.

3 Checking strong equivalence between two logic programs

Lifschitz, Pearce, and Valverde [5] showed that checking for strong equivalence be-
tween two logic programs can be done in the logic of here-and-there, a three-valued
non-classical logic somewhere between classical logic and intuitionistic logic. Turner
[11] provided a model-theoretic characterization of strong equivalence in terms of pairs
of sets of atoms. Lin [6] provided a mapping from logic programs to propositional theo-
ries and showed that two logic programs are strongly equivalent iff their corresponding
theories in propositional logic are equivalent. This result will be the basis that we are
using in this paper for checking if two logic programs are strongly equivalent, and we
repeat it here.

Let P1 andP2 be two finite logic programs, andL the set of atoms in them.

Theorem 1. [6] P1 and P2 are strongly equivalent iff in the propositional logic, the
following two entailments hold:

{p ⊃ p′|p ∈ L} ∪∆(P1) |= ∆(P2), (2)

{p ⊃ p′|p ∈ L} ∪∆(P2) |= ∆(P1). (3)

where for eachp ∈ L, p′ is a new atom, and for each programP , ∆(P) = {∆(r) | r ∈
P}, where for each ruler of the form (1),∆(r) is the conjunction of the following two
sentences:

p1 ∧ · · · ∧ pm ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h1 ∨ · · · ∨ hk, (4)

p′1 ∧ · · · ∧ p′m ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h′1 ∨ · · · ∨ h′k. (5)

Notice that ifm = n = 0, then the left sides of the implications in (4) and (5) are
considered to betrue, and ifk = 0, then the right sides of the implications in (4) and
(5) are considered to befalse.

Theorem 1 makes it possible to check the strong equivalence between two logic
programs using a SAT solver. For instance, to verify (2), it is sufficient to check that
both of the following two formulas are satisfied for allr ∈ P2:

{p ⊃ p′ | p ∈ L} ∪∆(P1) ∪ {p | p ∈ Psr} ∪ {¬p′ | p ∈ Ngr} ∪ {¬p | p ∈ Hdr},
{p ⊃ p′ | p ∈ L} ∪∆(P1) ∪ {p′ | p ∈ Psr} ∪ {¬p′ | p ∈ Ngr ∪Hdr}.

Algorithm 1 makes precise this idea, and was implemented using the SAT solver zChaff
[10].

If P1 andP2 are not strongly equivalent, then zChaff will return an assignment that
is a counter-example to either (2) or (3), and from this assignment, we can construct a
programP such thatP ∪ P1 andP ∪ P2 are not equivalent, i.e.P is a witness of the
fact thatP1 andP2 are not strongly equivalent.

SELP - A System for Studying Strong Equivalence between Logic Programs 133

1: procedure SELP(LPP1, LP P2)
2: F = ∅ . the formula to be checked
3: for all atomp in L do
4: F = F ∪ {¬p ∨ p′}
5: end for

6: ∆(P1) = ∅
7: for all ruler : h1; . . . ; hk ← p1, . . . , pm, pm+1 . . . , pn in P1 do
8: ∆(P1) = ∆(P1)∪{h1 ∨ · · · ∨hk ∨¬p1 ∨ · · · ∨¬pm ∨ p′

m+1 ∨ · · · ∨ p′
n}∪ {h′

1 ∨
· · · ∨ h′

k ∨ ¬p′
1 ∨ · · · ∨ ¬p′

m ∨ p′
m+1 ∨ · · · ∨ p′

n}
9: end for

10: for all ruler : h1; . . . ; hk ← p1, . . . , pm, pm+1 . . . , pn in P2 do
11: G = F ∪∆(P1) ∪ {¬h1, . . . ,¬hk, p1, . . . , pm,¬p′

m+1, . . . ,¬p′
n}

12: if G is satisfiablethen . this is implemented inSELP by calling zChaff
13: return FALSE
14: end if
15: G = F ∪∆(P1) ∪ {¬h′

1, . . . ,¬h′
k, p′

1, . . . , p
′
m,¬p′

m+1, . . . ,¬p′
n}

16: if G is satisfiablethen
17: return FALSE
18: end if
19: end for

20: ExchangeP1 andP2 do step 6 to step 19

21: return TRUE
22: end procedure

134 Yin Chen, Fangzhen Lin and Lei Li

Theorem 2. LetP1 andP2 be two programs,M a model of{p ⊃ p′|p ∈ L} ∪∆(P1),
and not∆(P2). LetML andML′ be the two sets of atoms defined as follows:

ML = {p | p ∈ L andM |= p}, (6)

ML′ = {p | p ∈ L andM |= p′}. (7)

Then we have

(1) If ML′ is not closed underP2, thenP1 ∪ P andP2 ∪ P is not equivalent, where
P = {p← | p ∈ML′}.

(2) If ML′ is closed underP2, thenP1 ∪ P andP2 ∪ P is not equivalent, whereP =
{p← | p ∈ML} ∪ {p← q | p, q ∈ML′ \ML, p 6= q}.

Proof. Follows from the proofs of Theorem 1 in [5] and Theorem 1 in [6].

For example, givenP1 = {(a ← not b), (b ← not a)} andP2 = {a; b ←}, the
answer ofSELP will return the counter-exampleP = {(a ← b), (b ← a)}. However,
SELP will confirm thatP1 ∪ {← a, b} andP2 ∪ {← a, b} are strongly equivalent. As
another example, considerP3 = {(a← b, c), (a← b, not c)} andP4 = {a← b}. They
are not strongly equivalent, and{(a ← c), (c ← a), (b ←)} is the counter-example
returned bySELP.

While the basic function of our systemSELP is to check whether two given logic
programs are strongly equivalent, and if not provides a witness, we do not envision its
use this way. Rather, we consider it a tool to systematically study the notion of strong
equivalence. In the following, we discuss its use in discovering classes of strongly
equivalent logic programs [7], and in searching for simpler sets of rules that are strongly
equivalent to a given one.

4 Discovering general theorems

As we have mentioned, one possible use of strongly equivalent logic program is in
program simplification. For instance, if a rule is strongly equivalent to an empty set, then
we can delete this rule in any program without changing the answer sets of the program.
It is well-known that a ruler is strongly equivalent to empty set ifHdr ∩Ngr 6= ∅. But
is this the only case, i.e. is this both a sufficient and necessary condition for a rule to be
strongly equivalent to the empty set?

In [7], we described a methodology and proved some general theorems for discov-
ering theorems like this. More precisely, we were interested in the following so-called
k-m-n theorem-discovery problem: Find some computationally effective conditions un-
der which a set{r1, ..., rk, u1, ..., um} of k + m rules is strongly equivalent to a set
{r1, ..., rk, v1, ..., vn} of k + n rules. Notice that these two sets sharek rules. This is
to capture the so-called conditional strong equivalence. For instance, as we mentioned
above, ifr is strongly equivalent to∅, then we can deleter from any logic program.
However, if we want to deleter in a logic program only under the condition that an-
other ruler′ is in the program, then what we need is to check that{r′, r} and{r′} are
strongly equivalent.

SELP - A System for Studying Strong Equivalence between Logic Programs 135

We will not go into details of how we addressed thek-m-n problems (see [7]).
The basic idea is to first find a condition that captures the strong equivalence between
{r1, ..., rk, u1, ..., um} and{r1, ..., rk, v1, ..., vn} when all the rules are from a small
language, say with only three atoms. To do this, we generate all possible triples of the
form (S1, S2, S3), whereS1,S2 andS3 are sets ofk number,m number andn number,
respectively, of rules, and runSELP to check whetherS1 ∪ S2 is strongly equivalent
to S1 ∪ S3. The following are some of the experimental results that we obtained using
SELP.

Lemma 1. If r mentions at most three distinct atoms, thenr is s.e. to∅ iff (Hdr ∪
Ngr) ∩ Psr 6= ∅.

Lemma 2. For any two rulesr1 andr2 that mentions at most four atoms,{r1, r2} and
{r1} are strongly equivalent iff one of the following two conditions is true:

1. {r2} is strongly equivalent to∅.
2. Psr1 ⊆ Psr2 , Ngr1 ⊆ Ngr2 , Hdr1 ⊆ Hdr2 ∪Ngr2 .

Lemma 3. For any three rulesr1, r2 andr3 that mentions at most six atoms,{r1, r2, r3}
and{r1, r2} are strongly equivalent iff one of the following four conditions is true:

1. {r3} is strongly equivalent to∅.
2. Psr1 ⊆ Psr3 , Ngr1 ⊆ Ngr3 , Hdr1 ⊆ Hdr3 ∪Ngr3 .
3. Psr2 ⊆ Psr3 , Ngr2 ⊆ Ngr3 , Hdr2 ⊆ Hdr3 ∪Ngr3 .
4. there is an atomp such that:

4.1 p ∈ (Psr1 ∪ Psr2) ∩ (Hdr1 ∪Hdr2 ∪Ngr1 ∪Ngr2)
4.2 Hdri \ {p} ⊆ Hdr3 ∪Ngr3 andPsri \ {p} ⊆ Psr3 andNgri \ {p} ⊆ Ngr3 ,

wherei = 1, 2
4.3 If p ∈ Psr1 ∩Ngr2 , thenHdr1 ∩Hdr3 = ∅
4.4 If p ∈ Psr2 ∩Ngr1 , thenHdr2 ∩Hdr3 = ∅

Some general theorems are proved in [7] that help us verifying that Lemmas 1-3 in
fact hold in the general case.

Theorem 3. Lemma 1-3 hold in the general case, without any restriction on the number
of atoms.

An important consequence of this theorem is the following theorem that solves the
0-1-1 problem:

Theorem 4 (0-1-1).For any two rulesr1 andr2, {r1} and{r2} are strongly equivalent
iff one of the following two conditions is true:

1. {r1} and{r2} are both strongly equivalent to∅.
2. Psr1 = Psr2 , Ngr1 = Ngr2 , andHdr1 ∪Ngr1 = Hdr2 ∪Ngr2 .

Proof. By Theorem 1, it is easy to see that{r1} and{r2} are strongly equivalent iff
{r1, r2} and{r1} are strongly equivalent and{r1, r2} and{r2} are strongly equivalent.

136 Yin Chen, Fangzhen Lin and Lei Li

Notice that for a language with six atoms, there are in principle(26)3−1 = 262, 143
possible rules. So for Lemma 3, which is about the2-1-0 problem, there would be
262, 1433 cases to check, which would be impossible to do using currently available
computers. Fortunately, we can cut the numbers down significantly. First, by Theo-
rems 3 and 4, we only need to consider rules where each atom occurs at most once:
for any ruler, if there is an atomp that occurs more than once inr, then one of the
following two cases applies:

1. p ∈ Psr ∩ (Ngr ∪Hdr), in this case,r is strongly equivalent to the empty set;
2. p ∈ Ngr∩Hdr, in this case,r is strongly equivalent to(Hdr\Ngr)← Psr, not Ngr.

In the following, we call rules in which each atom occurs at most oncenon-redundant
rules. Second, we do not have to consider isomorphic rules: if there is a one-to-one onto
function fromL to L that maps{r1, . . .} to {r′1, . . .}, then these two sets of rules are
essentially the same except the names of atoms in them.

In general, we have the following theorem, which says that for checking a condi-
tion about thek-m-n problem in a language withN atoms, it is sufficient to consider(
4k+m+n+N−1

N

)
cases. For instance, for Lemma 3, there are

(
69
6

)
= 119, 877, 472 cases

to check, which took about 10 hours on a Solaris server consisting of 8 Sun UltraSPARC
III 900Mhz CPUs with 8GB RAM.

Theorem 5. Let L be a language withN atomsa1, . . . , aN . For anyn1, n2, n3 ≥ 0,

we can generate a setS of less than
(
4M+N−1

N

)
triples (R1, R2, R3), whereM =

n1 + n2 + n3 and for each1 ≤ i ≤ 3, Ri is a set of no more thanni number of
rules in L, such that for any setsW1,W2,W3 of n1, n2, n3 rules, respectively, inL,
there is a triple(R1, R2, R3) in S and an automorphismf of L such thatR1 ∪R2 and
f(W1)∪f(W2) are strongly equivalent, andR1∪R3 andf(W1)∪f(W3) are strongly
equivalent, where for any setW of rules,f(W) is the result of replacing each atoma
in every rule ofW byf(a).

The proof of this theorem is omitted, and we give some intuitive explanations here.
The problem is to generateM rules usingN atoms. As mentioned above, we consider
only non-redundant rules. For example, whenM = 1, the problem is to generate one
rule usingN atoms. There are4 cases of the occurrence of an atom in a non-redundant
rule:

(i) in head of the rule,
(ii) in the body of the rule positively,

(iii) in the body of the rule negatively,
(vi) none of above.

Let r andr′ be two rules, and, for both of them, there arex0 atoms of case (i),x1 atoms
of case (ii),x2 atoms of case (iii), andx3 atoms of case (vi), wherex0 +x1 +x2 +x3 =
N . We can easily define an automorphism ofL and mapr andr′ to the same rule. So
r andr′ are isomorphic rules. Thus, forM = 1, the triples inS is less than the non-
negative integer answers of equationx0 + x1 + x2 + x3 = N .

For M = 2, there are42 = 16 cases of the occurrence of an atom in two rules
r1, r2:

SELP - A System for Studying Strong Equivalence between Logic Programs 137

(i) in head ofr1 and in the head ofr2,
(ii) in head ofr1 and in the body ofr2 positively,

(iii) in head ofr1 and in the body ofr2 negatively,
(vi) in head ofr1 and not inr2,
(vi) in the body ofr1 positively and in head ofr2,

... ...
(xvi) not in r1 and not inr2

So, forM = 2, the triples inS is less than the non-negative integer answers of equation
x0 + x1 + x2 + · · ·+ x15 = N . In general, there are4M cases of the occurrence of an
atom inM rules, and the triples inS is less than the non-negative integer answers of

equationx0 + x1 + x2 + · · · + x4M−1 = N . Notice that there are exactly
(
4M+N−1

N

)
non-negative integer answers ofx0 + x1 + x2 + · · ·+ x4M−1 = N .

5 Finding strongly equivalent logic programs

Our second application ofSELP is about finding out whether there is another, prefer-
ably simpler logic program that is strongly equivalent to a given one. For instance, we
have seen that the self-loops (loops of length one) likep ← p, q are strongly equiv-
alent to∅. A natural follow-up question is then: what about loops of length two, like
{(a← b), (b← a)}?

Given a programP in the languageL, an obvious way to look for another program
in L that is strongly equivalent toP would be to generate all possible programs inL,
and callSELP on them one by one. This is clearly infeasible even for a program with
only three or four atoms. Fortunately, there is a much better way of doing it. Instead
of considering all possible sets of rules, we can first find all possible rules that are
redundant in the presence ofP , i.e. all rulesr such thatP ∪ {r} is strongly equivalent
to P , and consider sets of these rules only, as the following theorem says.

Theorem 6. LetP be a logic program inL, andS the set of rules defined as follows:

S = {r | r is in L, andP ∪ {r} andP are strongly equivalent}.

For any programQ in L, if P andQ are strongly equivalent, thenQ ⊆ S.

Proof. Follows from Theorem 1.

Notice that the setS in the theorem includes “trivial” rules likep ← p. As we
mentioned in Section 4, by Theorem 3 and Theorem 4, we need to consider only rules
where each atom occurs at most once, i.e. non-redundant rules.

Corollary 1. LetP be a logic program inL, andSP the set of rules defined as follows:

SP = {r | r is a non-redundant rule in L, andP ∪{r} andP are strongly equivalent}.

For any programQ in L, if P andQ are strongly equivalent, thenQ′ ⊆ SP , whereQ′

is obtained fromQ by deletion rules that are strongly equivalent to∅, and replace each
remaining ruler byHdr \Ngr ← Psr, not Ngr.

138 Yin Chen, Fangzhen Lin and Lei Li

Using this corollary, our systemSELP finds all programs that are strongly equiva-
lent to a given logic program in two steps:

– generate all possible non-redundant ruler, and check ifP is strongly equivalent to
P ∪ {r}, thus computing the setSP ,

– for each subset ofSP , check if it is strongly equivalent toP .

For our example loop with length two,P1 = {(a ← b), (b ← a)}, SP1 consists of
the following rules:

a← b b← a ← a, not b ← b, not a

As it turned out, there is no subset ofSP1 that is strongly equivalent toP1 yet does not
containP1, i.e.P1 cannot be simplified using strong equivalence.

As another example, consider

P2 = {(a1 ← not a2), (a2 ← not a3), (a3 ← not a1)}.

This is a program with an odd cycle [8, 9], i.e. there is a simple cycle in the dependency
graph of the program that has an odd number of negative edges. Odd cycles in a logic
program act as constraints [9]. For instance, we have already seen thata ← not a,
the odd cycle with length one, is strongly equivalent to the constraint← not a. The
hope is that odd cycles of greater lengths, likeP2, can be similarly reduced to a set of
constraints. Unfortunately, likeP1, P2 cannot be simplified using strong equivalence
either. This means that how rules inP2 act as a constraint depends on other rules, thus
cannot be determined locally.

The details of our experiment withP2 is as follows.SELP returnedSP2 as the set
of following rules:

← not a1, not a2 ← a3, not a1, not a2 ← not a1, not a3

← a2, not a1, not a3 ← not a2, not a3 ← a1, not a2, not a3

← not a1, not a2, not a3 a1 ← not a2 a1 ← a3, not a2

a1 ← not a2, not a3 a2 ← not a3 a2 ← a1, not a3

a2 ← not a1, not a3 a3 ← not a1 a3 ← a2, not a1

a3 ← not a1, not a2 a1; a2 ← not a3 a1; a3 ← not a2

a2; a3 ← not a1

The following are programs that consist of rules fromSP2 , do not containP2 as a subset,
and are strongly equivalent toP2.

SELP - A System for Studying Strong Equivalence between Logic Programs 139

a1 ← a3, not a2 a2 ← a1, not a3 a1 ← a3, not a2

a2 ← a1, not a3 a3 ← a2, not a1 a3 ← a2, not a1

a3 ← a2, not a1 a1; a2 ← not a3 a1; a3 ← not a2

a1; a2 ← not a3 a2; a3 ← not a1 a2; a3 ← not a1

a1; a3 ← not a2 a1 ← not a2 a2 ← not a3

a2; a3 ← not a1

a3 ← a2, not a1 a1 ← a3, not a2 a2 ← a1, not a3

a2; a3 ← not a1 a2 ← a1, not a3 a1; a2 ← not a3

a1 ← not a2 a1; a2 ← not a3 a1 ← not a2

a2 ← not a3 a1; a3 ← not a2 a3 ← not a1

a3 ← not a1

a1 ← a3, not a2

a1; a3 ← not a2

a2 ← not a3

a3 ← not a1

As one can see, none of them contain constraints. Actually, they can all be ex-
plained by the theorems in [7]. For example, considerQ = {(a1 ← not a2), (a2 ←
a1, not a3), (a1; a2 ← not a3), (a3 ← not a1)}. Q is strongly equivalent toP because
the first two rules are already inP , and the set of the last two rules is strongly equivalent
to the last rule inP .

6 Concluding remarks and future work

We develop a toolSELP for studying strong equivalence between logic programs. It
can check if two programs are strongly equivalent, as well as, it is helpful for us to find
some general theorems on strong equivalence. We will try to find some more theorems
by SELP. It is also an interesting works to find some general theorems on uniform
equivalence [1], and to find the difference between two kinds of equivalence.

References

1. Thomas Eiter and Michael Fink. Uniform equivalence of logic programs under the stable
model semantics. In Catuscia Palamidessi, editor,ICLP, volume 2916 ofLecture Notes in
Computer Science, pages 224–238. Springer, 2003.

2. Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran. Simplifying logic programs
under uniform and strong equivalence. In Vladimir Lifschitz and Ilkka Niemelä, editors,
LPNMR, volume 2923 ofLecture Notes in Computer Science, pages 87–99. Springer, 2004.

3. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases.New Generation Computing, 9:365–385, 1991.

4. Tomi Janhunen and Emilia Oikarinen. Lpeq and dlpeq - translators for automated equiva-
lence testing of logic programs. In Vladimir Lifschitz and Ilkka Niemelä, editors,LPNMR,
volume 2923 ofLecture Notes in Computer Science, pages 336–340. Springer, 2004.

140 Yin Chen, Fangzhen Lin and Lei Li

5. V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs.ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

6. Fangzhen Lin. Reducing strong equivalence of logic programs to entailment in classical
propositional logic. InProceedings of the Eighth International Conference on Principles of
Knowledge Representation and Reasoning (KR2002), pages 170–176, 2002.

7. Fangzhen Lin and Yin Chen. Discovering classes of strongly equivalent logic programs.
In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI–05), 2005. To appear.

8. Fangzhen Lin and Jia-Huai You. Abduction in logic programming: A new definition and an
abductive procedure based on rewriting.Artificial Intelligence, 140(1/2):175–205, 2002.

9. Fangzhen Lin and Xishun Zhao. On odd and even cycles in normal logic programs. In
Proceedings of the 19th National Conference on Artificial Intelligence (AAAI–2004), AAAI
Press, Menlo Park, CA., pages 80–85, 2004.

10. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. InDAC, pages 530–535. ACM, 2001.

11. Hudson Turner. Strong equivalence for logic programs and default theories (made easy). In
Proceedings of LPNMR’2001, pages 81–92, 2001.

