A New Algorithm for Answer Set Computation

Giuliano Grossi and Massimo Marchi

Dipartimento di Scienze dell'Informazione
Universita degli Studi di Milano
Via Comelico 39, 1-20135 Milano, Italy

Abstract. A new exact algorithm for computing answer sets of logic progs
is presented and analyzed. The algorithm takes a logic @nogn Kernel nor-
mal form as an input and computes its answer sets by reducgroblem to
a suitable version of graph colorability. Even though waase complexity is
exponential, thanks to a straightforward formulation we peove that the algo-
rithm works in timeO*(1.6181™), which is asymptotically better than the trivial
boundO*(2"™) of the brute force algorithms. We argue that this new alpaorit
represents a significant progress in terms of worst-casedomplexity over tra-
ditional branch-and-bound algorithms.

1 Introduction

This article introduces a new algorithm for computing thesévar Sets of a Logic Pro-
gram (henceforth program) and studies its asymptoticgbgntees. Our approach is
based on two main concepts, which have been recently deactlop Costantini et al.
[1,2] in the context of checking existence of answer sets:

— the kernelnormal form [2], by which logic programs are phrased as anly
negative conditions, no undefined atoms and all atoms, ieness are defined
throughout negative cycles;

— the representation of programs as directed graphs witlEktended Dependency
Graph Encodind3], and of their answer sets in terms admissiblecolorings of
the EDG.

Focusing on Kernel programs and adopting the EDG encodmggposed to the
traditional Dependency Graph) Costantini et al. were ablehtaracterize the answer
sets of a kernel program in terms of a class of 2-coloringsdadmissibleA coloring
is admissible, in short, when i) no two adjacent nodes arke a@ssigned to colagreen
(interpreted as true) and ii) if a node is assigned to the drdatolor then not all its
in-neighbors are assigned to red as well. Admissible cofprirepresent answer sets
modulo the mapping from nodes to the atoms they represent.

Those results make possible for us to consider Answer Sepgtation as an ab-
stract graph-coloring problem and to attack it with tramtifil algorithms means. Our
main result, therefore, is an algorithm that finds the adivlisscolorings of kernel
graphs, i.e., graphs that are suitable to represent a Kegielprogram. Our algorithm
takes advantage of the admissibility conditions i) and ipze to find total colorings
that are admissible by construction.

156 Giuliano Grossi and Massimo Marchi

In particular, this algorithm is not so much based on the wfgaropagatingcolor-
ing assignments through some sort of color alternation.Heropposite, the key point
here is to come up with a suitable assignment of the greem,¢@qg one that satisfies
condition i) above, and only after that proceed to verifydition ii) on the red nodes.
Promising assignments of the green color are obtained hyctieh to the (equally
complex) problem of finding maximal independent sets on #meesgraphs.

2 Preliminaries

We cannot here satisfactorily introduce the reader to AnsSet Programming, for
which we invite the reader to refer to the excellent survejdinHowever, as they are
not standard we will now reproduce the definitions of Kermelgpam and of Extended
Dependency Graph to which what follows will often refer.

Definition 1 (from [2]). A logic programi] is in kernel normal form (or, equivalently,
11 is a kernel program) if and only if the following conditionsld.

1. IT is WFS-irreducible, i.e W FS(II) = (@, @);
2. every rule has its body composed of negative literals;only
3. every atom il occurs in the body of some rule.

It is easy to see that, in kernel programs, every atom ocaitheahead of some
rule. Of course, there are no facts. Moreover, one can obskat all atoms are either
part of a cyclic definition or defined using atoms that are pbatcycle. In other words,
all atomssomewhadepend on cycles. This notion is made precise and develapbd i
work of [1].

Every kernel program, and in general every logic program jearewritten in terms
of directed finite labeled graph callétktended Dependency GrafEDG). This rep-
resentation captures in a plain form the essence of depeiegeamong rulés A con-
structive definition of these graphs for the general cladsPotan be found in [3]. Due
to the properties explained above, we will use for the kepmegram a more simple
definition for EDG, calledKernel EDG Under this definition, every kernel program
can be expressed in terms of directedabeledfinite graph which has the interesting
property that each vertex has at least a incoming edge ardsitdn outgoing edge.

3 Graph-theory Preliminaries

A directed graphdigraph) is a pairG = (V, E) made up the vertexsét = {1,...,n}
and an edge st C V2. If not otherwise stated; will always refer to the number of
vertexes in a graph and will refer to the number of edges. For an edge (i, j), the
vertex: is calledinitial endpointand the vertey is calledterminal endpoint

We denote byV* (i) the set ofin-neighborsi.e., the vertexes that are initial end-
points in all arcs in whicli is terminal endpoint. Similarly, we denote by~ (:) the set

! Another way to formalize the class of EDG is the Rule Depengéraph (RDG), introduced
in [5].

A New Algorithm for Answer Set Computation 157

of out-neighborsi.e., the vertexes that are terminal endpoints in all arashichi is
initial endpoint. The set of atieighborsof the vertexi denoted byV (:) end defined as
N@G@) =NTE) UN(4).

TheunderlyinggraphG = (V, E) associated to a digrapghi = (V, E) is an undi-
rected graph that has the same set of vertéxasd the set of edges = {{i,j} : i #

Jj €V A3, J) € EV(j,i) € E}. Subsets of vertexes corresponditducedsubgraphs
of G, in which we include all edges between vertexes in the suldéetvritedeg(i, S)
to denote the degree of vertéin the subgraph induced Lsy.

An independent sefor an undirected graphy is a subsetS C V that does not
induce any edges. It has been shown in [6] that a graphwartexes contains at most
35 ~ 1.4422™ maximal(with respect to the inclusion) independent set (MIS).

If S andT are setsS\ T denotes theet-theoretidifference, consisting of elements
of S that are not contained if.

Throughout this paper, we will measure the running timedgdrithms using the
so calledbig-Oh-starnotation that suppresses polynomially bounded terms. \ite wr
O*(T'(n)) for a time complexity of the fornO (T (n)poly(n)), for some polynomial
poly(n). This modification is justified by the exponential grodvtf 7'(n).

The algorithm will be presented using a C-style pseudo-ayu¢ax. We assume
the usual RAM model of computation, in which a single cell @apable of storing an
integer large enough to index the memory requirements optbgram, and in which
arithmetic and array indexing operations on these valuesissumed to take constant
time.

4 From Answer Set Computation to Graph Coloring

In this Section we recall a reduction from ASP to a partictyge of coloring of the
relative EDGs [3], and we show that an admissible colorirayli$lS for that graph.

What is important in the definition of EDG is the careful distion between rules
that have the same heads. This is done by introducing indexesles defining the
same atom, e.g.,

p < nota.
p < notb.

will be denoted

pt «— nota.
p? «— notb.

To focus on this essential aspect of the EDG representat@mwill reformulate the
EDG representation for kernel programs.

2 For instance, for graphs with vertexes andn edges, the running time.7344"n?m? is

sandwiched between the running times344™ and1.7345™.

158 Giuliano Grossi and Massimo Marchi

Definition 2 (Kernel Extended Dependency Graph)For a kernel programiiy, its
Extended Dependency Graph EQiG¢) (or simply EDG) is the digrapkV, E') defined
as follows:
1. for each rule inli, a§k> € V, whereaq; is the name of the head aridis the
progressive index of the rules definiag
(k)

i

2. for eacha; € V, (aj,a
rule defininga.

) € E if and only ifa; appears in the body of thie-th

It is easy to check that EDGs are isomorphic to programs [3Jutmthe mapping
between nodes and vertexes. Since kernel programs haveveeganditions only, in
the rest of the article we will use the simplified notatidn £') to denote an EDG.

Let us now introduce admissible 2-colorings of EDG and wensit® interpretation in
terms of answer sets df.

Definition 3 (RED-GREEN coloring). A R-G coloring for the graph EDG is a total
functionp : V' — {R,G}. Moreover, it isadmissibleif the following two conditions
hold:

1. if 3i such thap(i) = G, thenVj € N(i) p(j) = R;
2. if 3i such thatp(i) = R, then3j € N (i) such thatp(j) = G.

In other words, the two conditions given in the previous dgfin mean:

1. no two green vertexes are adjacemblkation of typec-G);
2. no red vertex has all its in-neighbors retb{ation of typer-Rr).

The main result that makes EDG an appealing representdtidsi® programs is the
isomorphism between admissible EDG colorings and ansvier Ber any interpreta-
tion S C of II, anassociate coloringeols is a function that satisfies the condition:

a; € Sifand only ifﬂk.cols(a(k)) = G. Clearly, more than one coloring can be asso-

7
ciated toS, but for the moment we won’t discuss this issue.

Theorem 1 (from [3]). An interpretationS is an answer set off if and only if there is
an associated coloringols which is admissible for EDG.

Example 1 (Logic program-EDG associatiohgt us consider the following logic pro-
gramlil:

p < nota.
p < notb.
a < notb.
b < nota.

Clearly, there are two stable modefs, = {p, a} andS; = {p, b}.

The EDG associated ti (see Fig.1) has four vertexels, p’, a, b} and four arcs
{(a,p), (b,p), (b,a), (a,b)}. There are two admissible colorings, i,gp) = p(b) = G
andp(p’) = p(b) = G (everything else being mapped ajhassociated t&; and.Ss,
respectively.

A New Algorithm for Answer Set Computation 159

C—=)
)

Fig. 1. The EDG associated t&

An important property of the coloring defined above and udefderive the recur-
sive algorithm presented in the next section is given in tfleving

Proposition 1. Letp : V — {R,G} be anr-G coloring for EDG = (V, E), and
Ve C V be the subset of green vertexesiobG. If p is admissible therl; is a
maximal independent set for the underlying graplof £DG.

Proof. First of all, we show that ip is an admissibl&-G coloring thenl; is an inde-
pendent set for the underlying graphof EDG.

The fact that the vertexes iV, are pairwise independent is given directly by the
definition of admissibler-G coloring, for which two green adjacent vertexes are not
allowed.

To show that it is also maximal, let us suppose, by absurdl Jthas not maximal,
i.e., there exist a vertexin V' \ Vi (red colored) that is not adjacent to all vertexes of
V. This implies thai has not a green vertex between its in-neighbors, leadingta a
violation and then a contradiction for the admissible colgr a

5 The Algorithm for EDG Coloring

We now introduce our algorithm. Even though it has expoméwbrst-case complexity,
we believe that it is promising to become significantly fagken traditionalO* (2™)
exhaustive search.

The idea is essentially based on a branch-and-bound taeghtjeach step a partial
solution is adjusted by selecting a vertex not yet coloretitaring both the colorseb
endGREEN) into two different branches of execution. This naturalefides a search
tree: every branching propagates the search into subtteesieely. Each subtree can
be associated to a partial coloring of the vertexes.

Sometimes, it can be seen that a particular subtree leadsitdeamsible solution
because the associated partial coloring rise a violatiothis case the subtree can be
safely abandoned thus cutting off the search for this bra@élrcourse, pruning the
search tree speeds-up the entire process.

A nice consequence of our pruning method is the mathemaiickdrstanding of the
evolution of the search tree in terms of subtree pruned amdaimaining subtree. This

160 Giuliano Grossi and Massimo Marchi

approach permits to easily compute the worst case time eitybf the algorithm at
hand.

Given a digraphG = (V, E), we are ready to describe an algorithm essentially
built on a recursive procedure on subgraphs induced by @pestoring, as explained
above. In fact, its search direction has two aims:

1. to guide toward all MIS contained in the underlying gra&phepresenting admissi-
ble R-G coloring, as motivated in Proposition 1;
2. to prune the subtree when a violatiedr is encountered.

The idea is to branch on a proper vertex (for instance thobégbfdegree): If the
vertexes contained in the subgraph induced by the not yeremblvertexes have all
degree zero, then they can be@HEENcolored because all neighbors (yet colored) are
RED, and then to check whether the coloring is admissible. @tiser, if G contains at
least a vertex of degree at least one, then every admissible coloring ifattsone of
the following classes:

1. i isRED colored;
2. i is GREENcolored, then all of its neighbors must ReD colored.

We now branch the computation into two subtrees. The firstrsalteals with the
graph that results frorReED coloring the vertex in G. The second subtree deals with
the graph that results fromREEN coloringi together with all neighboreeb colored
in G. We recursively compute the MIS in both subtrees, and uptitdea solution for
the original graplG.

Let us observe that in this way&aaG violation will never occur, since when a vertex
is green colored all neighbors are automatically red cdloaed thus preserving the
independence of the green vertexes.

A more detailed pseudo-code description of the algorithgivsn in Listing 1.1. In
particular, it is detailed the recursive procedure ERGLORING, while the procedure
FINAL _CHECK is only mentioned and not explained because it has a trigik:tto
assign all vertexes not yet colored to the MIS and check forissible coloring.

It is easy to see that the proced#rsAL _CHECK has polynomial time complexity,
since it is running at the end of the recursive procedure vetidhe remaining vertexes
have degree zero in the subgraph induced by the not yet coleréexes.

As far as the worst case time complexity of the entire albariis concerned, we
can conclude that

Theorem 2. We can compute ait-G colorings of EDG in time O* (1.6181™).

Proof. Denote byT'(n) the worst case time that this algorithm needs on a graphswith
vertexes. Then,
Tn)<Tn—-2)+T(n—-1)+0Mm+m)

because the procedure applies recursively a search on hgoaphs which are reduced
by of at least 2 and exactly 1 vertex respectively.
Standard calculations yield thd@t(n) is within a polynomial factor ohx™ where
1.6181is the largestreal root@f = a+1. This yields the time complexit* (1.6181™).
O

A New Algorithm for Answer Set Computation 161

Listing 1.1. Recursive procedure EDGOLORING

[*

— The procedure takes an EDG graphi=(V,E) as input and
list all its admissible coloring.

— At each stepV=CuUC, where C and C=V\C represent
the set of already colored vertexes and the set of
vertexes to be colored, respectively.

— 1 and 1g means that vertex: is GREEN or RED colored,
respectively .

x/

void EDG._coLorING(digraph G =(CUC,E)) {

I/l check whether there are vertexes not yet colored
if (there exists icC with deg(i,C) > 1)

i = choose_a_vertex_to_color (C);
else

FINAL_CHECK(G) ;

I/l check whetherGREEN coloring vertex: induces

// an R-R violation on the neighbors of

if (RED coloring all je N(i) doesn’t induce R-R viol.)
EDG_COLORING({C U {ig} U{jr:j € N(i)} UC,E));

/I check if RED coloring the vertex i causes a violation
/1 otherwise calls the procedure on vertex i RED colored
if (RED coloring 4 induces an R-R violation)

return; // remove from the stack
else

EDG_COLORING({C U {ir} UC, E));

162 Giuliano Grossi and Massimo Marchi

6 Comparison with Literature

Perhaps the work in literature closest in spirit to ours eseaRcellent study in [7] over
the worst-case analysis of Answer Set computation. The reairt there consists of an
algorithm for Answer set computation that workst¥i(m x 1.44225™) wheremis the
size of the input program andthe number of atoms thereof. Such result is given for
a class of syntax-restricted programs that are somewhaigwhal to that we consider.
Therefore, we are not able at the moment to propose a conguetparison between
the two methods.

A similar graph coloring technique for solving LP is preshin [5] and used into
systemnoMoRe Although slightly similar in the data structures, whichpiya com-
parable space complexity, it differs from our approach i Way to realize the total
coloring. In [5] the expansion is based on a group of setsfitamations which use the
concept of support graph. The work doesn’t threat the tioreglexity so we cannot
make any comparison with it.

7 Conclusions

We have proposed an exact algorithm for Answer Set computttat shows promising
asymptotic worst-case complexity.

Our algorithm is designed to work on the EDG graph represientaf programs.
Since the EDG is by design oriented to represent the ruldgegitogram explicitly, an
issue that needs further study is the trade-off betweenutheer of rules and the worst-
case complexity. So far, we have only anecdotal evidendghlieanumber of rules of a
program depends only linearly on the number of its atoms. Wthis condition is the
case, a significant fact rises from the worst case analystbet best of our knowledge
our algorithm is the first exhaustive algorithm which prdyareaks the complexity
O*(2™) of the exhaustive search.

References

1. Costantini, S.: On the existence of stable models of m@tif$ed logic programs. Theory and
Practice of Logic Programming, accepted for publicaticd0&)

2. Costantini, S., Provetti, A.: Normal forms for answerg&tgramming. Theory and Practice
of Logic Programming, accepted for publication (2005)

3. Costantini, S., D’Antona, O., Provetti, A.: On the eqlévece and range of applicability of
graph-based representations of logic programs. Infoom&rocessing Letters 84(5) (2002)
241-249

4. Marek, W., Truszczyhski, M.: Stable models and an adtiéva logic programming paradigm.
The Logic Programming Paradigm: a 25-Year Perspectiven§eriVerlag (1999) 375-398

5. Konczak, K., Schaub, T., Linke, T.: Graphs and colorings &nswer set programming:
Abridged report. In: Answer Set Programming. (2003)

6. Moon, J.W., Moser, L.: On cliques in graphs. Israel Jouohathematics 3 (1965) 23-28

7. Lonc, Z., Truszczynski, M.: Computing stable models: $t@ase performance estimates. In:
ICLP '02: Proceedings of the 18th International Conferemté&ogic Programming, Springer-
Verlag LNCS (2002) 347-362

