
A New Algorithm for Answer Set Computation

Giuliano Grossi and Massimo Marchi

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

Via Comelico 39, I-20135 Milano, Italy

Abstract. A new exact algorithm for computing answer sets of logic programs
is presented and analyzed. The algorithm takes a logic program in Kernel nor-
mal form as an input and computes its answer sets by reducing the problem to
a suitable version of graph colorability. Even though worst-case complexity is
exponential, thanks to a straightforward formulation we can prove that the algo-
rithm works in timeO∗(1.6181n), which is asymptotically better than the trivial
boundO∗(2n) of the brute force algorithms. We argue that this new algorithm
represents a significant progress in terms of worst-case time complexity over tra-
ditional branch-and-bound algorithms.

1 Introduction

This article introduces a new algorithm for computing the Answer Sets of a Logic Pro-
gram (henceforth program) and studies its asymptotical properties. Our approach is
based on two main concepts, which have been recently developed by Costantini et al.
[1,2] in the context of checking existence of answer sets:

– the kernelnormal form [2], by which logic programs are phrased as having only
negative conditions, no undefined atoms and all atoms, in essence, are defined
throughout negative cycles;

– the representation of programs as directed graphs with theExtended Dependency
Graph Encoding[3], and of their answer sets in terms ofadmissiblecolorings of
the EDG.

Focusing on Kernel programs and adopting the EDG encoding (as opposed to the
traditional Dependency Graph) Costantini et al. were able to characterize the answer
sets of a kernel program in terms of a class of 2-colorings calledadmissible.A coloring
is admissible, in short, when i) no two adjacent nodes are both assigned to colorgreen
(interpreted as true) and ii) if a node is assigned to the dualred color then not all its
in-neighbors are assigned to red as well. Admissible colorings represent answer sets
modulo the mapping from nodes to the atoms they represent.

Those results make possible for us to consider Answer Set computation as an ab-
stract graph-coloring problem and to attack it with traditional algorithms means. Our
main result, therefore, is an algorithm that finds the admissible colorings of kernel
graphs, i.e., graphs that are suitable to represent a kernellogic program. Our algorithm
takes advantage of the admissibility conditions i) and ii) above to find total colorings
that are admissible by construction.

156 Giuliano Grossi and Massimo Marchi

In particular, this algorithm is not so much based on the ideaof propagatingcolor-
ing assignments through some sort of color alternation. On the opposite, the key point
here is to come up with a suitable assignment of the green color, i.e., one that satisfies
condition i) above, and only after that proceed to verify condition ii) on the red nodes.
Promising assignments of the green color are obtained by reduction to the (equally
complex) problem of finding maximal independent sets on the same graphs.

2 Preliminaries

We cannot here satisfactorily introduce the reader to Answer Set Programming, for
which we invite the reader to refer to the excellent survey in[4]. However, as they are
not standard we will now reproduce the definitions of Kernel program and of Extended
Dependency Graph to which what follows will often refer.

Definition 1 (from [2]). A logic programΠ is in kernel normal form (or, equivalently,
Π is a kernel program) if and only if the following conditions hold.

1. Π is WFS-irreducible, i.e.,WFS(Π) = 〈∅, ∅〉;
2. every rule has its body composed of negative literals only;
3. every atom inΠ occurs in the body of some rule.

It is easy to see that, in kernel programs, every atom occurs as the head of some
rule. Of course, there are no facts. Moreover, one can observe that all atoms are either
part of a cyclic definition or defined using atoms that are partof a cycle. In other words,
all atomssomewhatdepend on cycles. This notion is made precise and developed in the
work of [1].

Every kernel program, and in general every logic program, can be rewritten in terms
of directed finite labeled graph calledExtended Dependency Graph(EDG). This rep-
resentation captures in a plain form the essence of dependencies among rules1. A con-
structive definition of these graphs for the general class ofLP can be found in [3]. Due
to the properties explained above, we will use for the kernelprogram a more simple
definition for EDG, calledKernel EDG. Under this definition, every kernel program
can be expressed in terms of directedunlabeledfinite graph which has the interesting
property that each vertex has at least a incoming edge and at least an outgoing edge.

3 Graph-theory Preliminaries

A directed graph (digraph) is a pairG = 〈V, E〉made up the vertex setV = {1, . . . , n}
and an edge setE ⊆ V 2. If not otherwise stated,n will always refer to the number of
vertexes in a graph andm will refer to the number of edges. For an edgee = (i, j), the
vertexi is calledinitial endpointand the vertexj is calledterminal endpoint.

We denote byN+(i) the set ofin-neighbors, i.e., the vertexes that are initial end-
points in all arcs in whichi is terminal endpoint. Similarly, we denote byN−(i) the set

1 Another way to formalize the class of EDG is the Rule Dependency Graph (RDG), introduced
in [5].

A New Algorithm for Answer Set Computation 157

of out-neighbors, i.e., the vertexes that are terminal endpoints in all arcs in which i is
initial endpoint. The set of allneighborsof the vertexi denoted byN (i) end defined as
N (i) = N+(i) ∪ N−(i).

TheunderlyinggraphĜ = 〈V, Ê〉 associated to a digraphG = 〈V, E〉 is an undi-
rected graph that has the same set of vertexesV and the set of edgeŝE = {{i, j} : i 6=
j ∈ V ∧ (i, j) ∈ E ∨ (j, i) ∈ E}. Subsets of vertexes correspond toinducedsubgraphs
of G, in which we include all edges between vertexes in the subset. We writedeg(i, S)
to denote the degree of vertexi in the subgraph induced byS.

An independent setfor an undirected grapĥG is a subsetS ⊆ V that does not
induce any edges. It has been shown in [6] that a graph ofn vertexes contains at most
3

n

3 ≈ 1.4422n maximal(with respect to the inclusion) independent set (MIS).
If S andT are sets,S\T denotes theset-theoreticdifference, consisting of elements

of S that are not contained inT .

Throughout this paper, we will measure the running times of algorithms using the
so calledbig-Oh-starnotation that suppresses polynomially bounded terms. We write
O∗(T (n)) for a time complexity of the formO(T (n)poly(n)), for some polynomial
poly(n). This modification is justified by the exponential growth2 of T (n).

The algorithm will be presented using a C-style pseudo-codesyntax. We assume
the usual RAM model of computation, in which a single cell is capable of storing an
integer large enough to index the memory requirements of theprogram, and in which
arithmetic and array indexing operations on these values are assumed to take constant
time.

4 From Answer Set Computation to Graph Coloring

In this Section we recall a reduction from ASP to a particulartype of coloring of the
relative EDGs [3], and we show that an admissible coloring isa MIS for that graph.

What is important in the definition of EDG is the careful distinction between rules
that have the same heads. This is done by introducing indexesfor rules defining the
same atom, e.g.,

p← nota.

p← notb.
. . .

will be denoted

p1 ← nota.

p2 ← notb.
. . .

To focus on this essential aspect of the EDG representation we will reformulate the
EDG representation for kernel programs.

2 For instance, for graphs withn vertexes andm edges, the running time1.7344n

n
2
m

5 is
sandwiched between the running times1.7344n and1.7345n .

158 Giuliano Grossi and Massimo Marchi

Definition 2 (Kernel Extended Dependency Graph).For a kernel programΠK, its
Extended Dependency Graph EDG(ΠK) (or simply EDG) is the digraph〈V, E〉 defined
as follows:

1. for each rule inΠK, a
(k)
i ∈ V , whereai is the name of the head andk is the

progressive index of the rules definingai;

2. for eachaj ∈ V , (aj , a
(k)
i) ∈ E if and only ifaj appears in the body of thek-th

rule definingai.

It is easy to check that EDGs are isomorphic to programs [3] modulo the mapping
between nodes and vertexes. Since kernel programs have negative conditions only, in
the rest of the article we will use the simplified notation〈V, E〉 to denote an EDG.

Let us now introduce admissible 2-colorings of EDG and we show its interpretation in
terms of answer sets ofΠ .

Definition 3 (RED-GREEN coloring). A R-G coloring for the graph EDG is a total
functionρ : V → {R, G}. Moreover, it isadmissibleif the following two conditions
hold:

1. if ∃i such thatρ(i) = G, then∀j ∈ N (i) ρ(j) = R;
2. if ∃i such thatρ(i) = R, then∃j ∈ N+(i) such thatρ(j) = G.

In other words, the two conditions given in the previous definition mean:

1. no two green vertexes are adjacent (violation of typeG-G);
2. no red vertex has all its in-neighbors red (violation of typeR-R).

The main result that makes EDG an appealing representation of ASP programs is the
isomorphism between admissible EDG colorings and answer sets. For any interpreta-
tion S ⊆ of Π , an associate coloringcolS is a function that satisfies the condition:
ai ∈ S if and only if ∃k.colS(a

(k)
i) = G. Clearly, more than one coloring can be asso-

ciated toS, but for the moment we won’t discuss this issue.

Theorem 1 (from [3]). An interpretationS is an answer set ofΠ if and only if there is
an associated coloringcolS which is admissible for EDG.

Example 1 (Logic program-EDG association).Let us consider the following logic pro-
gramΠ :

p← nota.

p← notb.
a← notb.
b← nota.

Clearly, there are two stable models,S1 = {p, a} andS2 = {p, b}.
The EDG associated toΠ (see Fig.1) has four vertexes,{p, p′, a, b} and four arcs

{(a, p), (b, p′), (b, a), (a, b)}. There are two admissible colorings, i.e.,ρ(p) = ρ(b) = G

andρ(p′) = ρ(b) = G (everything else being mapped onR) associated toS1 andS2,
respectively.

A New Algorithm for Answer Set Computation 159

p

p'

a

b

Fig. 1. The EDG associated toΠ

An important property of the coloring defined above and useful to derive the recur-
sive algorithm presented in the next section is given in the following

Proposition 1. Let ρ : V → {R, G} be anR-G coloring for EDG = 〈V, E〉, and
VG ⊆ V be the subset of green vertexes ofEDG. If ρ is admissible thenVG is a
maximal independent set for the underlying graphÛ of EDG.

Proof. First of all, we show that ifρ is an admissibleR-G coloring thenVG is an inde-
pendent set for the underlying graphÛ of EDG.

The fact that the vertexes inVG are pairwise independent is given directly by the
definition of admissibleR-G coloring, for which two green adjacent vertexes are not
allowed.

To show that it is also maximal, let us suppose, by absurd, that VG is not maximal,
i.e., there exist a vertexi in V \ VG (red colored) that is not adjacent to all vertexes of
VG. This implies thati has not a green vertex between its in-neighbors, leading to aR-R

violation and then a contradiction for the admissible coloring. ⊓⊔

5 The Algorithm for EDG Coloring

We now introduce our algorithm. Even though it has exponential worst-case complexity,
we believe that it is promising to become significantly faster than traditionalO∗(2n)
exhaustive search.

The idea is essentially based on a branch-and-bound technique. At each step a partial
solution is adjusted by selecting a vertex not yet colored and trying both the colors (RED

endGREEN) into two different branches of execution. This naturally defines a search
tree: every branching propagates the search into subtree recursively. Each subtree can
be associated to a partial coloring of the vertexes.

Sometimes, it can be seen that a particular subtree leads to an infeasible solution
because the associated partial coloring rise a violation. In this case the subtree can be
safely abandoned thus cutting off the search for this branch. Of course, pruning the
search tree speeds-up the entire process.

A nice consequence of our pruning method is the mathematicalunderstanding of the
evolution of the search tree in terms of subtree pruned and the remaining subtree. This

160 Giuliano Grossi and Massimo Marchi

approach permits to easily compute the worst case time complexity of the algorithm at
hand.

Given a digraphG = 〈V, E〉, we are ready to describe an algorithm essentially
built on a recursive procedure on subgraphs induced by a partial coloring, as explained
above. In fact, its search direction has two aims:

1. to guide toward all MIS contained in the underlying graphĜ representing admissi-
ble R-G coloring, as motivated in Proposition 1;

2. to prune the subtree when a violationR-R is encountered.

The idea is to branch on a proper vertex (for instance those ofhigh degree): If the
vertexes contained in the subgraph induced by the not yet colored vertexes have all
degree zero, then they can be allGREENcolored because all neighbors (yet colored) are
RED, and then to check whether the coloring is admissible. Otherwise, if G contains at
least a vertexi of degree at least one, then every admissible coloring fallsinto one of
the following classes:

1. i is RED colored;
2. i is GREENcolored, then all of its neighbors must beRED colored.

We now branch the computation into two subtrees. The first subtree deals with the
graph that results fromRED coloring the vertexi in G. The second subtree deals with
the graph that results fromGREEN coloringi together with all neighborsRED colored
in G. We recursively compute the MIS in both subtrees, and updateit to a solution for
the original graphG.

Let us observe that in this way aG-G violation will never occur, since when a vertex
is green colored all neighbors are automatically red colored, and thus preserving the
independence of the green vertexes.

A more detailed pseudo-code description of the algorithm isgiven in Listing 1.1. In
particular, it is detailed the recursive procedure EDGCOLORING, while the procedure
FINAL CHECK is only mentioned and not explained because it has a trivial task: to
assign all vertexes not yet colored to the MIS and check for admissible coloring.

It is easy to see that the procedureFINAL CHECK has polynomial time complexity,
since it is running at the end of the recursive procedure whenall the remaining vertexes
have degree zero in the subgraph induced by the not yet colored vertexes.

As far as the worst case time complexity of the entire algorithm is concerned, we
can conclude that

Theorem 2. We can compute allR-G colorings ofEDG in timeO∗(1.6181n).

Proof. Denote byT (n) the worst case time that this algorithm needs on a graph withn

vertexes. Then,
T (n) ≤ T (n− 2) + T (n− 1) +O(n + m)

because the procedure applies recursively a search on two subgraphs which are reduced
by of at least 2 and exactly 1 vertex respectively.

Standard calculations yield thatT (n) is within a polynomial factor ofαn where
1.6181 is the largest real root ofα2 = α+1. This yields the time complexityO∗(1.6181n).

⊓⊔

A New Algorithm for Answer Set Computation 161

Listing 1.1. Recursive procedure EDGCOLORING

/ ∗
− The p r o c e d u r e t a k e s an EDG g r a p hG = 〈V, E〉 a s i n p u t and

l i s t a l l i t s a d m i s s i b l e c o l o r i n g .
− A t e a c h s t e p V = C ∪ C̄ , w h e r e C and C̄ = V \ C r e p r e s e n t

t h e s e t o f a l r e a d y c o l o r e d v e r t e x e s and t h e s e t o f
v e r t e x e s t o be c o l o r e d , r e s p e c t i v e l y .

− iG and iR means t h a t v e r t e xi i s GREEN o r RED c o l o r e d ,
r e s p e c t i v e l y .

∗ /

void EDG COLORING(d igraph G = 〈C ∪ C̄, E〉) {

/ / c h e c k w h e t h e r t h e r e a r e v e r t e x e s n o t y e t c o l o r e d
i f (there e x i s t s i ∈ C̄ wi th deg(i, C̄) ≥ 1)

i = choose a ver tex to co lo r (C̄) ;
else

FINAL CHECK(G) ;

/ / c h e c k w h e t h e r GREEN c o l o r i n g v e r t e x i i n d u c e s
/ / an R−R v i o l a t i o n on t h e n e i g h b o r s o fi
i f (RED c o l o r i n g a l l j ∈ N (i) doesn ’ t induce R-R v i o l .)

EDG COLORING(〈C ∪ {iG} ∪ {jR : j ∈ N (i)} ∪ C̄, E〉);

/ / check i f RED c o l o r i n g the ver tex i causes a v i o l a t i o n
/ / otherwise c a l l s the procedure on ver tex i RED co lored
i f (RED c o l o r i n g i induces an R-R v i o l a t i o n)

r e t u r n ; / / remove from the stack
else

EDG COLORING(〈C ∪ {iR} ∪ C̄, E〉);
}

162 Giuliano Grossi and Massimo Marchi

6 Comparison with Literature

Perhaps the work in literature closest in spirit to ours is the excellent study in [7] over
the worst-case analysis of Answer Set computation. The mainresult there consists of an
algorithm for Answer set computation that works inO∗(m× 1.44225n) wherem is the
size of the input program andn the number of atoms thereof. Such result is given for
a class of syntax-restricted programs that are somewhat orthogonal to that we consider.
Therefore, we are not able at the moment to propose a completecomparison between
the two methods.

A similar graph coloring technique for solving LP is presented in [5] and used into
systemnoMoRe. Although slightly similar in the data structures, which imply a com-
parable space complexity, it differs from our approach in the way to realize the total
coloring. In [5] the expansion is based on a group of set-transformations which use the
concept of support graph. The work doesn’t threat the time-complexity so we cannot
make any comparison with it.

7 Conclusions

We have proposed an exact algorithm for Answer Set computation that shows promising
asymptotic worst-case complexity.

Our algorithm is designed to work on the EDG graph representation of programs.
Since the EDG is by design oriented to represent the rules of the program explicitly, an
issue that needs further study is the trade-off between the number of rules and the worst-
case complexity. So far, we have only anecdotal evidence that the number of rules of a
program depends only linearly on the number of its atoms. When this condition is the
case, a significant fact rises from the worst case analysis: to the best of our knowledge
our algorithm is the first exhaustive algorithm which provably breaks the complexity
O∗(2n) of the exhaustive search.

References

1. Costantini, S.: On the existence of stable models of non-stratified logic programs. Theory and
Practice of Logic Programming, accepted for publication (2005)

2. Costantini, S., Provetti, A.: Normal forms for answer setprogramming. Theory and Practice
of Logic Programming, accepted for publication (2005)

3. Costantini, S., D’Antona, O., Provetti, A.: On the equivalence and range of applicability of
graph-based representations of logic programs. Information Processing Letters 84(5) (2002)
241–249

4. Marek, W., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
The Logic Programming Paradigm: a 25-Year Perspective Springer-Verlag (1999) 375–398

5. Konczak, K., Schaub, T., Linke, T.: Graphs and colorings for answer set programming:
Abridged report. In: Answer Set Programming. (2003)

6. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3 (1965) 23–28
7. Lonc, Z., Truszczynski, M.: Computing stable models: Worst-case performance estimates. In:

ICLP ’02: Proceedings of the 18th International Conferenceon Logic Programming, Springer-
Verlag LNCS (2002) 347–362

