Applications of Preferences using Answer Set
Programming

Claudia Zepeda? ,Mauricio Osorid, Juan Carlos Niev8sChristine Solnof, and
David Sot

I Universidad de las Américas, CENTIA, Sta. Catarina Ma@&holula, Puebla, 72820 México
{j osori o0, sc098382, sol }@mi | . udl ap. nx,
2 Universitat Politecnica de Catalunya, Departament deudeges i Sistemes Informatics,
c/Jordi Girona 1-3, E08034, Barcelona, Spain
j cni eves@ si . upc. edu,
3 LIRIS UMR 5205 CNRS, Université Lyon 1 and INSA de Lyon, 43dd11 novembre,
69622 Villeurbanne cedex, France
{cl audi a. zepeda, chri stine.sol non}@iris.cnrs.fr

Abstract. Preferences are useful when the space of feasible solwfangiven
problem is dense but not all these solutions are equivalarit 8ome additional
requirements. In this case, the goal is to find feasible mwistthat most satisfy
these additional requirements. In order to represent gnedes, in this paper we
use an extension of ordered disjunction programs. Orddspahdtion is an ap-
proach based on answer sets that allows us to representdier ranked options
for a problem. Moreover, we give a brief overview of two rephcations of ex-
tended ordered programs in two different domains. The finstie in planning:
evacuation planning. The second one is in argumentatig¬ransplantation.
In particular, we show the role of negated negative literalextended ordered
programs to obtain the preferred solution of each appboati

Key words: Preferences, Answer Set Programming, Ordered Disjun®ion
grams, Planning.

1 Introduction

Preferences are useful when the space of feasible soluf@ngiven problem is dense
but not all these solutions are equivalent w.r.t. some addit requirements. In this
case, the goal is to find feasible solutions that most satisfge additional require-
ments. In [3] Brewka introducetbgic programs with ordered disjunction (LPODSs)
where the connective, calledordered disjunctionallows a natural and simple rep-
resentation of preferences. However, if we only want to gpecpreference ordering
among the answer sets of a program with respect to an ordstretldtoms then ordered
disjunction as defined by Brewka does not work since it cpoads to a disjunction
where an ordering is defined. For instance, the answer s#ts pfogramP defined as
{a+. b c+-b d+ -a [+ c—a e+ b-a }are{a,b}
and{a, c}. Then, if we consider the prograi together with the ordered disjunction
rule {f x c} that stands for “iff is possible therf otherwisec” (see [3]), we obtain
two answer set$a, b, f} and{a,c, f}. Thinking in a preference sense, wiflf x ¢}

Applications of Preferences using Answer Set Programming 19 3

we would like to express the fact that we are more interestesh$wer sets containing
f than answer sets containingThen, we would expect to obtain onfy, c}.

In order to specify a preference ordering among the answeio$@ program with
respect to an ordered list of atoms, we propose to use dogglation in each atom
of the ordered rule that represents the mentioned list shaté-ormally, an atom with
double negation corresponds toegated negative literalhere the only negation used
is default negatioras we shall define in Section 2. Then, in this paper we aredadn
vantage of the extension of ordered disjunction prograrfisettin [10]. For instance,
if we consider again the prograf and the ordered list of atomsf, ¢}, then the ex-
tended ordered disjunction programisU {——f x ——c} and we obtain the desired
answer sefa, c}. It is worth mentioning that currently runnirigsmodeld5] we can
obtain the different inclusion preferred answer sets foomtered program as defined
by Brewka, however we cannot obtain the inclusion prefearesiver sets for extended
ordered programs. In particular, in this paper we show hovcareeasily translate an
extended ordered disjunction program witbgated negative literalt®o a standard or-
dered disjunction program as defined by Brewka. Then usiisgtthnslation we can
run Psmodelgo obtain the preferred answer sets of an extended ordesgthdiion
program.

Additionally, we can also useegated negative literal® obtain the maximal an-
swer sets of a program w.r.t. a set of atoms. In [8] there idlad&scription of a real
application using ASP to perform decision making based oargnment framework
(AF) in the domain of organ transplantation. Then, we pregosisenegated negative
literals to obtain the maximal answer sets of a program charactgrainAF such that
these maximal answer sets correspond to the preferredsiomasrof the AF.

In this paper, we also give a brief overview of an example e application where
negated negative literala extended ordered programs are useful to express prefsen
in planning domain: evacuation planning. The idea is to pan ordering among the
feasible plans of a planning evacuation problem using ele¢dmrdered programs.

The rest of the paper is structured as follows. In Section & introduce some
fundamental definitions of Answer Sets and Logic Progranik &iktended Ordered
Disjunction. In Section 3, we present the role of defaultatem in extended ordered
disjunction programs. In section 4, we show how extendeerexdl disjunction pro-
grams may be translated to standard ordered programs sorthatan use existing
solvers to compute answer sets. In Sections 5 we introduegample of a real appli-
cation in planning domain where negated negative litereéxtended ordered programs
are useful to express preferences: evacuation plannirfedtion 6 we present related
work about how to use extended ordered programs to obtaiméxémal answer sets
of a particular program such that these maximal answer satsapond to the preferred
extensions of an argument framework. Finally in Section& prnesent conclusions and
future work.

2 Background

In this section we introduce some fundamental definitionAmdwer Sets and Logic
Programs with Extended Ordered Disjunction.

320 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

2.1 Answer Set Programming

Using Answer Set Programming (ASP) makes it possible tordesa computational
problem as a logic program whose answer sets correspond smlitions of the given
problem. Currently, there are several answer set solvech, as: DL\ and SMOD-
ELS.

In this paper, logic programs are understood as propositidreories. We shall
use the language of propositional logic in the usual waygipropositional symbols:
D,q, ..., propositional connectives, vV, —, 1 and auxiliary symbols,). An atomis a
propositional symbol. Aiteral is either an atoma (a positive literal) or the negation of
an atom-a (a negative literal) where denoteslefault negatiorand it is the only type
of negation considered in this papern&gated literalis the negation sign followed
by any literal, i.ea or ——a. We assume that for any well formed propositional formula
f, —f is just an abbreviation of — 1 and T is an abbreviation oft — L. In
particular,f — L is calledconstraintand it is also denoted as- f. Given a set of
formulasF, we define-F = {—f | f € F'}. Sometimes we may uset instead of-
anda, b instead ofa A b, following the traditional notation of logic programming/e
shall define as alauseany well formed formul&'. A regular theoryor logic program
is just a finite set of clauses, it can be called jhsoryor programwhere no ambiguity
arises. We want to stress the fact that in our approach, aarogs interpreted as a
propositional theory. For readers not familiar with thigoegach, we recommend [12,
9] for further reading. We will restrict our discussion tooppsitional programs. As
usual in answer set programming, we take for granted thagraros with predicate
symbols are only an abbreviation of the ground program. Téneasure of a program
P, denoted a<Lp, is the set of atoms that occur . In some definitions we use
Heyting'sintuitionistic logic, which will be denoted by the subscriptFor a given set
of atomsM and a progran® we will write P 1 M to abbreviate® Fy aforalla € M
andP IF; M to denote the fact thd? ; M andP is consistent w.r.t. logit (i.e. there
is no formulaA such thatP -y A andP +; - A).

We shall define answer sets (or stable models) of logic prograhe stable model
semantics was first defined in terms of the so caBetfond-Lifschitz reductiof6] and
itis usually studied in the context of syntax dependentti@mmations on programs. We
follow an alternative approach started by Pearce [12] asd studied by Osorio et.al.
[9]. This approach characterizes the answer sets for a pitigral theory in terms of
intuitionistic logic and it is presented in the followingetbrem. The notation is based
on [9].

Theorem 1. Let P be any theory and/ a set of atoms)M is an answer set foP iff
PU‘!(L‘,p\M)U—\—!M Iy M.

2.2 Logic Programs with Extended Ordered Disjunction

In [3] Brewka introduced the connective, calledordered disjunctionto allow an easy
and natural representation of preferences and desirese Wikidisjunctive clauseV b

! http://www.dbai.tuwien.ac.at/proj/div/
2 http://www.tcs.hut.fi/Software/smodels/

Applications of Preferences using Answer Set Programming 21 3

is satisfied equally by either or b, to satisfy the ordered disjunctive clausex b, a
will be preferred tob, i.e. a model containing will have a bettesatisfaction degree
than a model that contairbsbut does not contain. For example, the natural language
statement’| prefer coffee to tea’tan be expressed asf fee x tea. The definition
presented here is that of [10], where ordered disjunctisrexiended to wider classes
of logic programs.

Definition 1 (Ordered Logic Programs). An extended ordered disjunction rugeei-
ther a clause as defined in section 2.1, or a formula of the fofimx ... x f, + ¢
where fy,. .., fn, g are (well formed) propositional formulas. Arxtended ordered

disjunction progranis a finite set of extended ordered disjunction rules.

The formulasf; . .. f,, are usually called the choices of a rule and their intuiteading
is as follows: if the body is true anfl is possible, therf;; if fi is not possible, then
f2;...;ifnoneoffy, ..., fn_1 is possible therf,. The particular case where gl are
literals andy is a conjunction of literals corresponds to the original I&a&as presented
by Brewka in [3], and we shall call thestandard ordered disjunction prografdf
additionallyn = 0 the clause is a constraint (equiv.<— g). If n = 1 itis an extended
clause and ify = T the clause is a fact and can be writtenfas . . . x f,,. An extended
ordered disjunction prograrand astandard ordered disjunction prograas defined by
Brewka can be called juseéxtended ordered prograand standard ordered program
respectively where no ambiguity arises.

Now, we present the semantics of programs with extendedexdldisjunction. Most
of the definitions presented here are taken from [3, 5]. THe @levant difference is
the satisfaction degree. The reader may see that the stibsfalegree as defined here
is just a straightforward generalization of Brewka'’s deifim, according to our notation
and Definition 1 (see [10]).

Definition 2. [3] Let r := f; x ... X f < g be an ordered rule. Fok < n thek-th
option of ris defined as follows:* := f, < g, not fi,...not fr_,. Let P be an
extended ordered progran®! is a split program ofP if it is obtained by replacing each
ruler := f; x ... x f, + gin P by one of its options',...,r". Let M be a set of
atoms.M is an answer set aP iff it is an answer sétof a split programP’ of P. Let
M be an answer set d? and letr := f; x ... x f, < g be arule ofP. We define the

satisfaction degree of denoted bylegas(r), as follows:

—ifMU—(Lp \ M)t/ g, thendegp(r) = 1.
—ifMU=(Lp \ M) b1 gthendegpy(r) =min{i | MU—~(Lp \ M) F1 fi}.

For instance, the answer sets of the standard ordered pndgra= {a x b} are{a}
and{b} while the extended ordered progrdtn = {——a x —=—b} has no answer set.

3 Moreover, while the extension introduced in [10] is in theiExt of Answer Sets, the extension
introduced in [4] for the operatox is in a different context.

4 Brewka’s LPODs use the strong negation connective. Here illeamsider only one type of
negation but this does not affect the results given in [3].

5 Note that since we are not considering strong negatiore teeto possibility of having incon-
sistent answer sets.

322 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

Theorem 2. [3] Let P be an extended ordered program.Mif is an answer set oP
thenM satisfies all the rules i to some degree.

Definition 3 (Preferred Answer Set).[5] Let P be an extended ordered program and
L a set of atoms. We defié (P) = {r € P | degr,(r) = i}. LetM and N be answer
sets of an extended ordered progrdm M is inclusion preferredo N, denoted as
M >; N, iff there is ani such thatS4 (P) c Si,(P) and for allj < i, S5,(P) =

S (P). M is cardinality preferredo N, denoted as\/ >, N, iff there is ani such
that |Si,(P)| > |S§ (P)| and for all j < i, ‘S&(P)‘ = ‘S{V(P)‘. S is a k-preferred
answer sefwherek € {inclusion, cardinality}) of P if S is an answer set aP and
there is naS’ answer set of, S # S’, such thatS’ >, S.

For instance, the only inclusion preferred answer set oktahedard ordered pro-
gramP; = {a x b. b+ —a.} is {a} while the only inclusion preferred answer set of
the extended ordered prografa = {——a x =—=b. b < —a.} is {b}. As we will see
in Section 4, when a program has extended ordered rules msgajed negative literals
we can easily translate it to a standard ordered programhemdisé®>smodel$o obtain
the preferred answer sets. Then, the translation of progtanill be r*UAU{b + —a}
wherer® = {a® x b*} and
A ={ na,a®. a® + —a®. a® + —a. < a,a®. b, b%. b* + —b°.b° —b.

+ b,b°. } such that*,b*,a°, b° are atoms that do not occur iy. Then, by running
Psmodelsve obtain the inclusion-preferred answer set of the stahoiatered program

r* U AU {b+ -a}: {b,b°}. Finally, we can see that the intersection of the inclusion-
preferred answer set withp, corresponds to the inclusion-preferred answer sets of the
original extended ordered prografy: {b}.

3 The role of default negation in extended ordered disjunctn
programs

In this section, we remark on the role of negated negatieeali$ (for instance—a)
in an extended ordered program with respect to the defindfdBrewka, that can be
foundin [3].

3.1 Specifying a preference ordering among the answer set§ @ program with
respect to an ordered list of atoms

Since——a is equivalent to the restriction- —a, the intuition behind-—a is to indicate
thata must be in the answer set of a program. Moreover, the inauigading of the ex-
tended ordered rute—a x ——b is as follows: if there is an answer set containinpen
this answer set is preferred; if there is no answer sets itongea, then it is preferred
an answer set containirdgif there is no answer sets containia@r b then none of the
answer sets are preferred. Then, while the preferred arsaterf the standard ordered
program{a x b} is {a}, the extended ordered progrgm—a x ——b} has no answer
set. Hence, the intuition behind an extended ordered rimg uegated negative literals
is to indicate that we want to specify a preference ordermgrag the answer sets of

Applications of Preferences using Answer Set Programming 23 3

a program with respect to an ordered list of atoms. An exampthis is in Section 1
where the progran? and the ordered list of ator{s, ¢} are considered.

However, thinking in a preference sense and in case thatrtbwea sets of the
program do not contain any of the atoms in the given ordestdfi atoms, then the
extended ordered rule must allow to obtain all the answerafghe program. In order
to obtain all the answer sets of the program we propose to addan at the end of
the extended ordered rule, this atom must be an atom thanddescur in the original
program. For example, let us consider again progfaaf Section 1 and let us suppose
that we are more interested in answer sets contaimthgn answer sets containitfg
but in case no answer set contains either f, we are interested in all answer sets of
P. This may be expressed by adding the following extendedredd®ile to progran®:
—=e X =~ f x all_pref whereall_pref is an atom that does not occurih Therefore,
we obtain two answer sef&, b, all_pref} and{a, ¢, all_pref} since answer sets @t
do not contain neithet nor f. These answer sets correspond to answer sefsmft
including the atonull_pref. Note that the answer sets Bftogether with the standard
ordered rulee x f x all_pref are{a,b,e} and{a,c,e}.

Definition 4 (Translation of a program w.r.t. an ordered list of atoms).Let P be a
program andC = {¢i,¢a,...,c, } be an ordered list of atoms such thatC £p. We
define a translation of w.r.t. C, denoted asrd, ;. (P, C), into an extended ordered
program as followsord,.,e (P, C) := P Ur¢ such thatrg := —=—a; X =—as X ... X
--a, X all_pref is an extended ordered rule defined fréhwhereall _pref is an atom
that does not occur iP.

The following Lemma formalizes the previous discussiontaliioe specification of
an ordering among the answer sets of an extended orderedhpragth respect to an
ordered list of atoms.

Lemma 1. LetP be aprogramandlef = {¢,¢ca,. .., ¢, } be anordered list of atoms
such that” C Lp. Letre be the extended ordered rule defined frémThenM is an
inclusion-preferred answer set of-d,..;. (P, C) iff there does not exist an inclusion
preferred answer seV of ord,... (P, C') such thatlegn (r¢) < degps(rc).

3.2 Obtaining the maximal answer sets of a program with respet to a set of
atoms

We can also use negated negative literals in an extendetedrgeogram to obtain the
maximal answer sets of a program w.r.t. a set of atemBor instance, if the answer
sets of a progran® are{b, c,e}, {b,c,d} {f,e} and{e,a, c} then{b,c,d} and{f, e}
are the maximal answer sets with respect to the set of atbras{b, d, f}. The for-
mal definition of a maximal answer set with respect to a setara is based on the
definition of maximal set with respect to a set.

Definition 5 (Maximal set w.r.t. a set A).[8] Let {S; : i € I} be a collection of
subsets ot/ such thatUz.eI S; = U and A C U. We say thatS; is a maximal set
w.r.t. A among the collectiodS; : i € I} iff there is noS; with j # ¢ such that
(Sz N A) C (S] N A)

324 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

Definition 6 (Maximal answer set w.r.t. a set A).[8] Let P be a consistent program
and{M; : i € I} be the collection of answer setsBf Let A C Lp. We say thaf\/;
is a maximal answer set w.rAl iff A/; is an answer set aP such that}/; is a maximal
set w.r.t.A among the collection of answer setsrfof

In order to obtain the maximal answer sets with respect tbef s¢oms, the original
programP is extended with a set of extended ordered rules using re:getgative
literals. Each extended ordered rule is defined from an atdhei given set of atom4.
For instance, in the previous example whdre= {b,d, f} the set of extended ordered
rules is the following{—-b x b*. =—d x d*. ——f x f*.} whereb®, d* and f* are
atoms that do not occur in the original program. Then theraded ordered program is
the following: P U {——b x b*. ——d x d*. ——f x f*.}

The following Lemma formalizes our previous discussionughibe use of negated
negative literals in an extended ordered program to oblteimtaximal answer sets of a
program w.r.t. a set of atoms.

Definition 7. Let P be a program andS C Lp. We define a translation aP w.r.t.
S into an ordered program, denoted lyd,.; (P, S): First, we define a set of or-
derd clauses w.r.tS as follows:Cs = {-—a x a® | a € S and a®* ¢ Lp}. Then,
ordset (P, S) = PUCs.

Lemma 2. Let P be a program and/ be an answer set d. LetS C Lp. ThenM is
an inclusion-preferred answer setafd;.; (P, S) iff M N Lp is a maximal answer set
of Pw.rt. S.

4 Computing preferred answer sets for extended ordered
programs

It is worth mentioning that neither runnirfgsmodeld5] nor following the definition
given by Brewka [3] for ordered disjunction we can obtain itdusion preferred an-
swer sets for extended ordered programs. The reason ishihatefinition given by
Brewka for ordered disjunction has syntactical restritsiddowever, in particular when
this program has extended ordered rules using negatediveetjgrals we can easily
translate it to a standard ordered program and thefPas®del$o obtain the preferred
answer sets. In the following definition and lemma the ataMm°, are atoms that do
not occur in the original prograrf.

Definition 8. Let ——a be a negated negative literal. We define the associated set of
rules of ——a as follows:
R(=—a) :={ + -a,a®. a®+ —a®. a®+ -a. <« a,a®. }.

Lemma 3. Let P be a program and le€ = {c;,ca,...,c,} be a set of atoms such
thatC C Lp. Letrg := —=e¢p X ==ee X ... X ==e, X all_pref be an extended
ordered rule defined fromd' whereall_pref is an atom that does not occur . Let
A =A{R(——¢;)|=¢c; e rcandl < i <n}andry = {c} xc§ x...xc} xall_pref}
where ¢}, 1 < i < n are atoms that occur iMd. ThenM is an inclusion-preferred
answer set oP U rg, U A iff M N Lp is an inclusion-preferred answer setBfU r¢.

Applications of Preferences using Answer Set Programming 25 3

For instance, if we consider the progrdfmof Section 1 and the set of atoros=

{f,c}thenr¢c = == f x =—¢ x all_pref,
A={ f,f*. [+« ~f°. fo« =f. « f,f°.

— e e c® — c®.c® +— —e +— e,c®. }and
ré = {f* x c®* xall_pref}.

Then, by runnind®smodelsve obtain the following inclusion-preferred answer set
of the standard ordered progrdiJrg, U A: {a, ¢, c®, f°}. Finally, we can see that the
intersection of the answer set withr corresponds to the inclusion-preferred answer
set of the original extended ordered progr&m r¢ as it was described in Section 1,
i.e.,{a,c}.

5 Application to a real planning problem

In this section, we give a brief overview of a real applicatishere negated negative
literals in extended ordered programs are useful: evamuptanning. We start giving a
short description of planning problems and we introduce vavzan express plan pref-
erences as an extended ordered program. Then we give a iwiew of a language
for planning preference specification calle@® and we remark on the appropriateness
of PP for expressing evacuation planning. Finally, we brieflyaldz the solution to
the real problem of finding alternative evacuation routegicano Popocatepetl using
extended ordered programs.

5.1 Defining planning problems with preferences

A planning problem(D, I, G) is defined by three components: the domain description
D, the initial conditionsl, and the goali. A planning problem can be formally rep-
resented using action languages [7]. One of these actiguéges is language The
alphabet of the languag®consists of two nonempty disjoint sets of symbbland A.

F'is called the set of fluents antlis called the set of actions. A fluent represents the
property of an object in a world. A state of the woetds a collection of fluents. Lan-
guages is based on the concept of a transition relaffo@ P(F) x Ax P (F') such that
(0i,a;,01) € T means that actiom; allows one to go from staig; to states;. The so-

lution of a planning problem corresponds to a plan or a segpiehactionsy, .. ., a,
to achieve its goaf7, i.e., the solution is a sequence of actiens. . ., a,, such that
D &1 G after ay,...,a,. The sequencey, a, o1 ..., an, 0, Whereoy,. .., o, are

states ando;_1,a;,0;) € T, 1 < i < nis called ahistory of the transition systerf.

A full description about language can be found in [7]. Given a planning problem ex-
pressed in languags it is possible to define an answer set encoding of it [2], desho
asll(D,I,G). Then, it is possible to obtain the solution of the planningigem (the
plan) from the answer sets &f(D, I, G) [2].

Given a planning problem, we may obtain a high number of gmigt In this case,
we need to specify an ordered list of criteria of preferefge. .., c,) to select the
“best” of those plans. To specify such preferences amongjifleaplans, [13] intro-
duced a new language nam®®. We consider this languadgeP because it allows
us to express temporal preferences over plans: the prefsémP P are based on the

326 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

occurrence of an action in a plan, on the fluents that definata Bt the plan, on the
moment when an action occurs or a fluent holds in a state orrae sombination of all
them. The preferences representing time are expresseglthsinemporal connectives
next, always, untiandeventually The combination of them can be defined using three
different classes of preferences:

—A basic desiredenoted ag, is aPP formula expressing a preference about a
trajectory with respect to the execution of some specifimaabr with respect to the
states that the trajectory gets when an action is executed.

—An atomic preferencedenoted ag = 1 <2 <... < gy, is a formula that gives
the order in which a set of basic desires formulas should tisfied.

—A general preferencis a formula based on atomic preferences.

5.2 Computing answer sets of planning problems with prefeneces

In order to compute the preferred trajectories of a planpieplem(D, I, G) w.r.t.¢) a
preference of any of the three classes, [13] defines the assivencodind!l (D, I, G, ¢)
aslI(D,I,G)U Il U II,,; wherell (D, I, G) is the answer set encoding of the plan-
ning problem as defined in [2]/, is the encoding of the preference formulaand
11, are the set of rules for checking of basic desire formula&atiion. Moreover, if
M is an answer set dff (D, I, G), thena, denotes the trajectory achieving the goal
G represented by/.

It is worth mentioning that in particular [13] shows how wenaabtain the most
preferred trajectory with respect to a basic desire or amigtpreference. It is assigned
a weight to each component of the preference formula, thewsight of each tra-
jectory is obtained based on the weight of each componefiteopteference formula
satisfied by the trajectory. Finally, in order to obtain thestnpreferred trajectory, i.e.,
the answer set with maximal weight it is used thaximize construct in SMODELS.
In [13] it is recommended to ugemodelssince SMODELS has some restrictions on
using themaximize construct. Moreover, in [13] it is showed how an atomic prefee
of PP can be mapped to a collection of standard ordered rules asdddiy Brewka in
order to obtain the most preferred trajectory. However,ube of weights or the map-
ping results in a complicated encoding. We now show thatneled ordered rules with
negated negative literals allows a simpler and easier eéngotihis encoding is based
on Corollary 1 of Lemma 1.

Corollary 1. LetP = II(D,I,G) be an answer set encoding of a planning problem
(D,I,G). LetC = {cy,¢a,...,c,} be an ordered list of atoms such thatC Lp. Let

A be the set of actions such thatC Lp.ThenM N A is a preferred plan w.r.tC' iff

M is an inclusion-preferred answer set@fd,. ;. (P, C).

In order to obtain the most preferred trajectory using Qargll, givenP =
(D, I,G) aplanning problem and) = p; <2 <...<p, an atomic preference formula
of P we do the following :

— First, we obtainC’;, the ordered list of atoms from): We define the transfor-
mation functionT of the basic desire;, 1 < i < n as follow: T (p;) := ¢; « ¢;
such that; € Lp. Then, we define the associated ordered list of rules/ads follow:

Applications of Preferences using Answer Set Programming 27 3

Sy = {T(pi)|p: € ¥,1 < i < n}. And we defineCy, the associated ordered list of
atoms w.r.tg as follow: {c1, ..., cplc; < ¢; € Sy and1 < i <n}.

— Finally, we apply Corollary 1 to obtain,; the most preferred trajectory w.nr.
from M aninclusion-preferred answer set@fd,.,. (P', Cy,) whereP' = II(D, I, G,v¢)U
Sy

An example where the most preferred trajectory with respeain atomic prefer-
ence is obtained using the Corollary 1 is presented in tHewiolg subsection. Obvi-
ously, the most preferred trajectory w.r.t. a basic desigparticular case of an atomic
preference. Hence, Corollary 1 works in order to obtain tlestpreferred trajectory
w.r.t. a basic desire.

5.3 Finding alternative routes in the risk zone of the Popoceepelt

In order to illustrate the use of Lemma 1, let us consider &z problem of finding
alternative evacuation routes in the risk zone of volcanpoeatepetl in Mexico. In
[15,16] we presented a detailed description of this proldewh we proposed a patrtial
solution to it using CR-Prolog [1], an extension of ASP witinsistency restoring rules
Another partial solution to this problem was presented it] fthere we showed how
CR-Prolog programs can be translated into standard ordésjeshction logic programs
as defined by Brewka [3].

In this paper we give an overview of a more complete solutfdh®@ problem about
finding alternative evacuation routes using langu®ge We considered to usg@P
because it allows us to express preferences over plans wesatisfaction of these
preferences depends on time and on their temporal rel&ijpnd/Ne think that in par-
ticular in evacuation planning it is very useful to expressf@rences in terms of time.
For instance, it imlwayspreferred to evacuate people from a place in risk followhey t
defined evacuation routes. However, ifeaty momenpart of the evacuation route be-
comes blocked then evacuees will travel by an alternatigewation routentil they ar-
rive to any place out of risk. Nowadays, “Plan Operativo Ratepet!” office in Mexico
(POP officg is responsible of assuring safety of the people living eribk zone of the
volcano in case of an eruption. For this purpose, POP offiselbfined ten evacuation
routes. However, some hazards that can accompany volcapticers (mud flows, flash
floods, landslides and rockfalls, etc.) can result on thelbig of the pre-established
routes. Thalternative evacuation route problecan be stated as follows:

There is a set of predefined evacuation routes for peoplediun the risk area.
Evacuees should travel by these routes. In case part of acuatian route becomes
inaccessible, then evacuees should search an alternaéitke phis alternative path
can belong or not to another evacuation route. If it does relbbg to an evacuation
route then it should arrive to some point belonging to an eation route, to some
refuge or to some place out of risk.

We represent the network of roads between towns in the rigke 23 a directed
graph. This representation was created from an extract o668 database and con-
tains real evacuation routes, towns (mostly in risk, butlme#owns not in direct risk
are also included) and some additional segments that doehmtdpto any evacuation
route, since these segments are necessary to obtain theatlte evacuation plans.
We define a directed graph where nodes represent towns andatia routes are

328 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

ETI NG —~.—
Town 1—Bus A
1 ~
—— No route Lt

(D) retose .
....... Route 1 R

o~

', 71 No refuge

_— Route 2 1

— - Route3 3 Risk level

Fig. 1. Three evacuation routes: A short example.

paths in the graph. Each segment is representedoad(P, Q whereP andQ are
nodes. Some segments belong to evacuation routes. An exagjaation which causes
road(P, Q to become blocked results in a fact of the fobinocked(P, Q . The
actiont r avel (P, Q allows to travel fronP to Qif there is an unblocked segment of
road fromP to Q We assumed that each action takes one unit of time.

Example 1 (Evacuation in volcano Popocatepetl).
We can defindI(D, I, G) as follows:

%initial and final conditions

initially(position(busA 1)).

initially(position(busB, 12)).

initially(position(busC, 14)).

finally(position(B,N)) :- bus(B), node(N).

% fluents

fluent(position(B, X)) :- bus(B), node(X).

fluent (bl ocked (P,Q) :- road(P, Q.

% actions travel by a segnent of road

action(travel (B,P,Q) :- bus(B),road(P, Q.

% Dynami ¢ causal | aws

caused(position(B,Q,travel (B,P,Q) :- bus(B),road(P, Q.
caused(neg(position(B,P)),travel (B,P,Q) :- bus(B),road(P, Q.
% Executability Conditions

noaction_if(travel (B, P, Q, neg(position(P))):- bus(B),road(P, Q.
noaction_if(travel (B, P,Q, blocked(P,Q) :- bus(B),road(P, Q.

We can use the following abbreviations of basic desires timel¢he associated atomic
preference of this planning problem: “travel by evacuatioate assigned by the gov-
ernment” astravelERass “travel by evacuation route not assigned by the governtnent
as travelER, “travel by a road out of an evacuation route until arriveng point of an

Applications of Preferences using Answer Set Programming 29 3

evacuation route” asirriveER, “travel by a road out of an evacuation route until arrive
to any refuge” asarriveRef, “travel by a road out of an evacuation route until arrive to
any place out of risk” asarriveOR. In particular, if we consider the directed graph in
Figure 1 we have the following definition tfavelERassbasic desire.

travelERass:= always(ocgtravel(busB,12,13)Y ocdtravel(busB,13,8))/
ocqtravel(busB,8,9)) ocqtravel(busB,9,11)Y (position(busB,11)) A
always(occ(travel(busC,14,16)Y (position(busC,16)) A
always (occ(travel(busA,1,2)\ ocqtravel(busA,2,3)V (position(busC,3)).

Let’s notice thatravelERassconsiders the three buses described in Figure 1. Due to
lack of space we do not define the other basic desires, hoviteigenot difficult to
define them in a similar way. Then, the atomic preferenceeésftfiowing: ¢ =
travel ERass < travel ER < arrive ER < arriveRef < arriveOR.

Then in order to obtain the most preferred trajectory of tla@ping problemP =
II(D, I,G,) with respect to the atomic preferengave follow the indications given
in Subsection 5.2:

1. We obtain the associated ordered list of ruleg of
Sy = {c1 < travel ERass. ¢y < travel ER. c¢3 + arriveER.

¢y « arriveRef. c¢5 « arriveOR.}

2. We obtain the associated ordered list of atoms wh:irtepresenting the ordered list
of criteria of preference: Cy = {c1,¢2,¢3, ¢4, ¢5}.

3. Then by Definition 4 the extended ordered rule defined fEgnis: r¢, = ——ci x
—mee X Tmeg X mmeg—-ey X no_pref, whereno_pref is an atom that does not
occur in P. Also by Definition 4 the translation aP w.r.t. Cy, is: ordyy.(P U
Sy, Cy) = PUSy Urc,.

4. Finally, we apply Corollary 1 to obtain,; a most preferred trajectory w.ri
from M an inclusion-preferred answer set ofd,. ;. (P U Sy, Cy). At this point,
it is worth describing how we can easily translate the extenordered program
ordrue(P U Sy, Cy) to a standard ordered program and then Bsmodelso
obtain the preferred answer sets. Then, using Definition @tain the setd of
associated rules for each—c; with 1 < ¢ < 5 we have,

A={ —ci,e}. ¢} « S, &+ -+ e,
— TC9, €3 €5 4= TCY. €5 4 TCa. 4 Ca,Cl.
— Tc3,C3. €5 & TC3. €3 +— 3. 4 c3, 5.
— T4, CY. €Y 4= TCy. Cf 4 TCh. 4 cq,cy.
— Tes, el e el ¢+ ey 4+ c5,c8.)

and the standard ordered rule i, = {c} x 3 x § x ¢ x ¢§ x all_pref}.

Hence thanks to Lemma 3, the intersection of an inclusi@fiepred answer set of
PUSy U rg, UAwith Lpis aninclusion-preferred answer setfot S, Urc, i.e.,
itis an inclusion-preferred answer set of the extendedredigrogranord,.,;. (PU

330 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

Sy, Cy). Therefore, we can ruRsmodelso obtain the inclusion-preferred answer
sets of the standard ordered progr&m Sy U rg, U A.

In particular, if we consider the set of segments of the dé@graph in Figure 1
with no blocked segments then the most preferred trajeetaryy « is:

time 1: travel(busB,12,13), travel(busC,14,16), tralbefA,1,2);
time 2: travel(busB,13,8), travel(busA,2,3);

time 3: travel(busB,8,9);

time 4: travel(busB,9,11).

We can see that this most preferred trajectory satisfiesdhelERassbasic desire
of the atomic preferenag since all the buses travel by the evacuation route assigned b
the government exactly #OP officandicates. Now, if we consider the set of segments
of the directed graph in Figure 1 with segment from node 1 wend blocked, i.e., if
we add the initial conditionnitially(blocked(1,2)) to the programP then the most
preferred trajectory w.r.t) is:

time 1: travel(busB,12,13), travel(busC,14,16), trabe¥A,1,14);
time 2: travel(busB,13,8), travel(busA,14,16);
time 3: travel(busB,8,9);
time 4: travel(busB,9,11).

Now, the most preferred trajectory satisfies ttaelER basic desire of the atomic
preference) sincebusA travels by a road out of the evacuation route assigned by the
government until it arrives to node 14 of evacuation route 1.

6 Related work

Another possible real application of negated negativedisein extended ordered pro-
grams is in argumentation and in particular in the domain rgan transplantation.
CARREL [14] is an agent-based platform to mediate orgarspkamts. In [8] there is
a full description about CARREL-ASP, namely CARREL extethdéth ASP to per-
form decision making based on an argumentation framewotkéndomain of organ
transplantation. The idea is to use Lemma 2 to obtain theepesd extension of an ar-
gumentation framework by getting the inclusion preferresveer sets of the extended
ordered progranerd,.; (P, A) as defined in Definition 7 wher® corresponds to the
encoding of an argumentation framewotl’ and A corresponds to the translation of
the set of arguments KA F' to the programP. It is worth mentioning that in [8] ex-
tended ordered programs are not used to obtain the prefettedsions. For details see

(8].

7 Conclusions

In this paper we have shown how we can easily translate an@stieordered program
with negated negative literals to a standard ordered ditjpmprogram as defined by

Applications of Preferences using Answer Set Programming 31 3

Brewka thanks to the characterization of the answer sets foropositional theory
in terms of intuitionistic logic. It is worth mentioning thé is also possible to use
a different approach to represent preferences insteaddefed disjunction programs
like abductive logic programs, since the kind of preferenit@t we are using in this
paper is not very complex.

We are interested in expressing more sophisticated prefesdn evacuation plan-
ning. Then we will see if using general preferencesPd language is possible to
express them. For instance gifrepresents “arrive to a refuge (a place out of risk with
provisions and water)’h represents “arrive to a place in risk with water” ancepre-
sents “arrive to a place in risk with food” then we would likegxpress a preference to
indicate that we prefer the answer sets containitgthe answer sets containih@nd
¢, but neithem is preferred ta: norc is preferred td.

References

1. Marcello Balduccini and Michael Gelfond. Logic Programith Consistency-Restoring
Rules. In Patrick Doherty, John McCarthy, and Mary-Annel)fihs, editors)nternational
Symposium on Logical Formalization of Commonsense Reag@hAl 2003 Spring Sym-
posium Series, Mar 2003.

2. Chitta Baral. Knowledge Representation, reasoning and declarativelprotsolving with
Answer SetsCambridge University Press, Cambridge, 2003.

3. Gerhard Brewka. Logic Programming with Ordered Disjiorct In Proceedings of the 18th
National Conference on Artificial Intelligence, AAAI-20020rgan Kaufmann, 2002.

4. Gerhard Brewka, Salem Benferhat, and Daniel Le Berre. li@tige choice logic. Artif.
Intell., 157(1-2):203-237, 2004.

5. Gerhard Brewka, llkka Niemela, and Tommi Syrjanen. lengenting Ordered Disjunction
Using Answer Set Solvers for Normal ProgramsPhoceedings of the 8th European Work-
shop Logic in Artificial Inteligence JELIA 2003pringer, 2002.

6. Michael Gelfond and Vladimir Lifschitz. The Stable Mod&mantics for Logic Program-
ming. In R. Kowalski and K. Bowen, editorSth Conference on Logic Programmingages
1070-1080. MIT Press, 1988.

7. Michael Gelfond and Vladimir Lifschitz. Action languageElectron. Trans. Artif. Intell.
2:193-210, 1998.

8. Juan Carlos Nieves, Mauricio Osorio, Claudia Zepeda, Wiiges Cortés. Argumenta-
tion for decision making in CARREL using Answer Set Programgn In to appear
in Proceedings of Encuentro Internacional de Ciencias d&&mputacion (ENC 2005)
http://correo.udlap.mx/sc098382/dungsPaper/, 2005.

9. Mauricio Osorio, Juan Antonio Navarro, and José ArrazdApplications of Intuitionistic
Logic in Answer Set ProgrammingTheory and Practice of Logic Programming (TPL.P)
4:325-354, May 2004.

10. Mauricio Osorio, Magdalena Ortiz, and Matilde Hernande Generalized Or-
dered Disjunctions and its Applicatons. Unpublished. Heil.udlap. mxs
is103378/research/pubs/iclp/genOrdDisj.pdf, 2004.

11. Mauricio Osorio, Magdalena Ortiz, and Claudia Zepedasingy CR-rules for evacuation
planning. In Guillermo De Ita Luna, Olac Fuentes Chaves, Madricio Osorio Galindo,
editors,IX Ibero-american Workshops on Artificial Inteligengages 56-63, 1994.

12. David Pearce. Stable Inference as Intuitionistic \iglidLogic Programming 38:79-91,
1999.

332 Claudia Zepeda, Mauricio Osorio, Juan Carlos, ChasSialnon, et al.

13. Tran Cao Son and Enrico Pontelli. Planning with prefeesrusing logic programming. In
LPNMR pages 247-260, 2004.

14. J.Vazquez-Salceda, U. Cortés, J. Padget, A. Lopeadsd, and F. Caballero. Extending the
CARREL system to mediate in the organ and tissue allocationgsses: A first approach.
Artificial Intelligence in Medicing3:233-258, 2003.

15. Claudia Zepeda, Mauricio Osorio, and David Sol. Towé#ndaise of Cr-rules and Semantic
Contents in ASP for planning in GIS. Technical Report RR40Q0, Université Lyon I,
Mars 2004.

16. Claudia Zepeda, Christine Solnon, and David Sol. Planp@peration: An extension of a Ge-
ographical Information System. LtA-NMR 2004 CEUR Workshop proceedingslume 92,
2004.

