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Abstract. ID-logic uses ideas from the field of logic programming to extend sec-
ond order logic with non-monotone inductive defintions. In this work, we refor-
mulate the semantics of this logic in terms of approximation theory, an algebraic
theory which generalizes the semantics of several non-monotonic reasoning for-
malisms. This allows us to apply certain abstract modularity theorems, developed
within the framework of approximation theory, to ID-logic. As such, we are able
to offer elegant and simple proofs of generalizations of known theorems, as well
as some new results.

1 Introduction

Inductive definitions are common in mathematical practice. For instance, the non-monotone
inductive definition of the satisfaction relati¢a (see Definition 1 in Section 2.2) can

be found in most textbooks on first-order logic. This prevalence of inductive definitions
indicates that these offer a natural and well-understood way of representing knowledge.
At the same time, inductive definitions cannot easily be expressed in classical logic. For
instance, the transitive closure of a graph is one of the simplest concepts typically de-
fined by induction—such a definition might consist of the following two ruleétjfy)

is an edge of the graplir, y) belongs to the transitive closure andiif such that both

(z,z) and(z,y) belong to the transitive closure, thén, y) belongs to the transitive
closure—yet it can be shown that this concept cannot be defined in first-order logic.
While second-order logic does allow the representation of such simple definitions, the
resulting formula might not always be very natural and the use of second-order logic it-
self may be undesirable, e.g., due to computational considerations. Moreover, even this
methodology breaks down when faced with hon-monotone inductive definitions, such
as that of the satisfaction relation.

It turns out, however, that certain knowledge representation logics do allow even
non-monotone inductive definitions to be correctly formalized in an intuitive way. Par-
ticularly suited for this are logic programs under the well-founded model semantics.
In fact, one could even go so far as to explain the semantical foundations of this logic
themselves as precisely a formalization of the principle of inductive definition [Den01].
The language ofD-logic uses the well-founded semantics to extend classical logic
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with a new “inductive definition” primitive. In the resulting formalism, all kinds of
definitions regularly found in mathematical practice—e.g., monotone inductive defini-
tions, non-monotone inductive definitions over a well-ordered set, and iterated inductive
definitions—can be represented in a uniform way. Moreover, this representation neatly
corresponds to the form such a definitions would take in a mathematical text. For in-
stance, in ID-logic the transitive closure of a graph can be defined as:

Va,y TransCl(z,y) «— Edge(z,y).
Va,y TransCl(z,y) «— (3z TransCl(x, z) A TransCl(z,y)).

However, ID-logic is able to handle more than only mathematical concepts. In-
deed, inductive definitions are also useful in common-sense reasoning. For instance, in
[DTO4a], it was shown that situation calculus can be given a natural representation as
an iterated inductive definition. The resulting theory is able to correctly handle tricky
issues such as recursive ramifications, and is in fact, to the best of our knowledge, the
most general representation of this calculus to date. In general, definitions are a distinc-
tive and important form of human expert knowledge; as a uniform and natural way of
representing this kind of knowledge, ID-logic provides a useful contribution to the field
of knowledge representation.

The goal of this paper is to study modularity properties for ID-logic. Modularity
properties deal with the relation between a theory and its components. Typical examples
are so-called splitting results, which allow large theories to be rewritten as equivalent
sets of sub-theories. Such properties are of interest, because they may offer additional
insight into the semantics of a formalism, can be used to guarantee that certain trans-
formations are equivalence preserving, or may lead allow more efficient computations.

Modularity properties have been studied for a large number of different formalisms.
Recently, an algebraic theory of modularity [VGD04b,VGDO04a] was developed within
the framework ofapproximation theorya general fixpoint theory for arbitrary opera-
tors, which naturally captures the semantics of logic programs, auto-epistemic logic,
and default logic [DMT03,DMTO00]. These abstract results have since been used to
unify several concrete splitting theorems: [VGDO04a] generalizes results concerning au-
toepistemic logic [GP92], and [VGDO04b] (partially) generalizes results for logic pro-
gramming [LT94].

Here, we apply this algebraic modularity theory to ID-logic. First, we show how the
semantics of this logic can be reformulated in terms of approximation theory. By doing
so, we are able to apply the aforementioned splitting theorems (and a small extension
thereof) to ID-logic and obtain a generalization of results from [DT04b], as well as
some new results.

The structure of this paper is as follows. Section 2 introduces approximation theory
and ID-logic. Section 3 summarizes the algebraic modularity results which will be used.
In Section 4, we then apply those results to ID-logic.
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2 Preliminaries

2.1 Approximation theory

Approximation theory is a general fixpoint theory for arbitrary operators. Our presen-
tation of this theory is based on [DMT00,DMTO3].

Let (L, <) be a lattice. An elemeritz, y) of the squard.? of the domain of such
a lattice, can be seen as denoting an intepvad] = {z € L | + < z < y}. Using
this intuition, we can derive precisionorder<,, on the set.? from the order< on L:
for eachz,y, 2.y’ € L, (z,y) <, («/,y) iff x <z’ andy’ <y. Indeed, if(x,y) <,
(z',y'), then[z,y] 2 [2/,y]. It can easily be shown thdf.?, <,) is also a lattice,
which is called thebilattice corresponding td.. Moreover, if L is complete, then so is
L2. As aninterva[z, 2] contains precisely one element, namelyself, elementsz, x)
of L? are calledexact The set of all exact elements 6f forms a natural embedding
of L in L. A pair (x,y) only corresponds to a non-empty intervati< y. Such pairs
are callectonsistent

Approximation theory is based on the study of operators on bilatfiéaghich are
monotone w.r.t. the precision ordet,. Such operators are callegproximationsFor
an approximationd andxz,y € L, we denote byA'(x,y) and A%(z,y) the unique
elements ofL, for which A(z,y) = (A(z,y),A?(x,y)). An approximatiorapproxi-
matesan operato© on L if for eachx € L, A(z, ) containsO(x), i.e. Al(z,z) <
O(z) < A?(x,z). An approximation issymmetricif for each pair(x,y) € L2, if
Az, y) = («/,y') thenA(y, z) = (¢, 2').

For an approximationt on L2, the following two operators oh can be defined: the
function A1 (-, y) maps an element € L to Al(z,y), i.e. A}(-,y) = Az.A'(z,y), and
the functionA?(z, -) maps an element € L to A%(z,y), i.e. A%(x,-) = \y.A%(z,y).
As all such operators are monotone, they all have a unique least fixpoint. We define
an operatoer on L, which maps eacly € L to [fp(A*(-,y)) and, similarly, an
operatorCT , which maps each € L tolfp(A%(x,-)). Cix is called thelower stable
operatorof A, while C’L is theupper stable operatasf A. Both these operators are anti-
monotone. Combining these two operators, the ope€at@n L? maps each paitr, v)
to (Ci‘(y) Cl,(x)). This operator is called thegartial stable operatorof A. Because
the lower and upper partial stable operaﬁﬁ’@ andCL are anti-monotone, the partial
stable operato€ 4 is monotone. If an approximatiod is symmetric, its lower and
upper partial stable operators will always be equalﬂ.jg.: CL.

An approximationA defines a number of different fixpoints: the least fixpoint of
an approximatiord is called itsKripke-Kleene fixpointfixpoints of its partial stable
operatorC 4 arestable fixpointand the least fixpoint af 4 is called thewell-founded
fixpoint of A. As shown in [DMTO00,DMTO03], these fixpoints correspond to various
semantics of logic programming, auto-epistemic logic and default logic.

Finally, it should also be noted that the concept of an approximation as defined in
[DMTO00] corresponds to our definition ofsymmetricapproximation.
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2.2 ID-Logic

ID-logic [DT04b,DT04a] extends second-order logic with non-monotone inductive def-
initions. Before defining this logic in its entirity, we first introduce basic second order
logic. Following [DT04a], we do this in a slightly non-standard way. In particular, no
distinction is made between constant symbols and variables.

We assume an infinite supply object symbols, y, . . ., function symbolg /n, g/n, . ..
of every arityn, andpredicate symbol®/n, Q/n, ... of every arityn. A vocabulary
X is a set of symbols. We denote By, the object symbols i, by X', the function
symbols, and by.p the predicate symbol§ermsandatomsof X' are defined in the
usual way. Aformula of X' is inductively defined as:

aX-atomP(ty,...,t,)Iis aX-formula;

if ¢ is aX-formula, then so is¢;

if $1 andg, are X-formulas, then so i&p; V ¢2);

if ¢ isa(X U {c})-formula ands an (object, function or predicate) symbol, then
(3o ¢) is aX-formula.

If in all quantificationsdo of a formulag, o is an object symbol is calledfirst order.
Given a certain domaify, a symbolr can be assignedwaluein D:

— if 0 € X, avalue foro in D is an element oD;
— if o/n € Xy, avalue foro in D is a function of arityn in D;
— if o/n € Yp, avalue foro in D is a relation of arityn in D.

A structure S for vocabularyX’, or X-structure.S, consists of a domain, denoted
Sp, and a mapping from each symhoin X to a values® in Sp, for o. A vocubalary
X is asub-vocabulanof X iff X C X’. Therestriction S’| s of a X’-structureS’ to
a sub-vocabulary, is the X-structureS for which Sp = S, and, for each symbat
of ¥, 5 = 5. Under the same conditions! is called arextensiorof S to X’. The
set of all structures extendin§jto X’ is denoted byS%, . For each value in Sp, for a
symbolo, we denote bys[o/a] the extensiors’ of S to Y U{s}, such that" = a.We
also extend this notation to tuplgsanda, and to pairg X, Y) of X-structures sharing
the same domain, i.6.X,Y)[x/a] = (X[x/al],Y[x/a]).

Thevalueof a X-term¢ in a X-structureS, also denoted®, is inductively defined
as:(f(ty,...,tn))% = f35(t7,...,t3), for a function symbolf and termsy, ..., ¢,.
We now define a satisfaction relation between structures and formulas:

Definition 1. For a X-structureS and X'-formula ¢, the relation “S satisfiesp”, de-
notedS = ¢, is inductively defined as:

- S = P(t)iff t5 € P,

— S|:(¢1v¢2)iffS’:¢1orS):¢2;

- S| oiff S | ¢;

— S |= (Jo ¢) iff there exists a value for o in the domainSp, such thatS{o /a] = ¢;
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A pre-interpretationH for X' is a structure for the languagg, U X, i.e., one
which interprets only the object and function symbols*dfA structureS extending
H to X is called anH -interpretation Clearly, H-interpretations can only differ in their
assignment of relations (over the common dom#jy) to predicate symbols. Given a
domainD, adomain atonis a pair(P, a), with P/n a predicate o’ anda € D".

We also write such a pair aB(a). The functionAty is defined as mapping aH-
interpretations to the set of all domain atomB(a) in Hp, for whicha € P°. Aty is

a one-to-one correspondence betwékinterpretations and sets of domain atoms for
Hp. The set of allH-interpretations is a complete lattice w.r.t. to the truth order
defined assS <; S’ iff Atg(S) C Aty (S’) (or, equivalently, for each predicafe,

PS C pPS).

Next, we explain how this logic can be extended with inductive definitions. We do
this using concepts from approximation theory. In this, our presentation differs from the
more direct approach taken in [DT04a].

As a first step, we extend the notion of satisfation to pak¥sY’) of structures.

Definition 2. Let H be a pre-interpretation fot’, X andY H-interpretations, and)
a Y-formula. The relation {X,Y") satisfies¢”, denoted (X,Y") | ¢ is inductively
defined by:

- (X,Y) E P(t) iff t? € PX;

- (X,Y) (91 V) iff (X,Y) = g1 or (X,Y) |= ¢o;

- (X)Y) | —oiff (Y, X) £ ¢;

— (X,Y) | (3o ¢) iff there exists a value for o in Hp, suchthal{ X,Y')[c/a] = ¢;

Observe that in the rule forg, the roles ofX andY are switched. This causes
all positively occurring atoms ip to be evaluated itX', while all negatively occurring
atoms in¢ are evaluated ify’. To motivate this definition, let us consider a structfire
approximated by X,Y), i.e. such tha¥X <, S <; Y. In the evaluation o in (X,Y),
all positively occurring atoms are evaluated with respect to the underestiates,
and all negatively occurring atoms are evaluated with respect to the overeslimate
of S. Therefore, the truth value af in (X,Y) is an underestimate of the value of
in S. Vice versa, in the evaluation @f in (Y, X), all positively occurring atoms are
evaluated in the overestimaté while all negatively occurring atoms are evaluated in
the underestimat&, and hence, the truth value ¢fin (Y, X)) is an overestimate of the
value ofg in S.

Considering satisfaction in pairs of structures rather than single structures, corre-
sponds to switching to a four-valued logitis trueaccordingtq X, Y) if (X,Y) E ¢
and(Y, X) | ¢, falseif (X,Y) £~ ¢ and(Y, X) ~ ¢, unkownif (X,Y) = ¢ and
(Y, X) = ¢, andinconsistentf (X,Y) E¢and(Y,X) £ ¢.

We now define the ID-logic syntax used for inductive definitions. Eelbe a vo-
cabulary. Adefinitional ruler of X' is a formulavx A «— ¢, with A a X-atom and
¢ a first-order(X U x)-formula. The atomA is called thehead,head(r), of r and¢
is called thebody,body(r), of r. Note that the symbol<-” in such a rule should not
be read as material implication, but rather as a new language primitivdefimtional
implication A rule r is said to be alefining ruleof a predicateP if P is the predicate
of head(r). A X-definition A is a set of definitional rules. A predicate symbol having



62 Vennekens and Denecker

at least one defining rukein A, is called adefined predicate of\. The set of all such
predicates is denoted B3 . Predicates of2» which are not defined byA areopen in
A and the set of all such predicates is denotedfly The notationsy9 and X4 are
used to denote the vocabularies U X'y U P4 andX, U Xy U Pg, respectively.

Using this syntax, the well-known simultaneous inductive definition of the even
and odd numbers (i.€),is an even number, each successor of an even number is an odd
number, and vice versa) can be written as:

Example 1.
Even(0).
Acven = { YV BEven(s(x)) «— Odd(x).
Vo Odd(s(x)) «— Even(x).

Intuitively, such an inductive definition describes a process by which, given some
fixed interpretation of the open predicates, new elements of the defined relations can be
derived from a set of already known elements. The formal definition of the semantics
of ID-logic captures this intuition, by associating a class of operators to a defiualtion
More precisely, for each interpretatiéhof the open predicates af, an operatof {
is defined, which maps an estimdt&, Y') of the defined relations to a more precise
estimate7{(X,Y) = (X’,Y”’). The new lower bound’ is constructed by underes-
timating the truth of the bodies of the rules ih i.e., by evaluating these ifiX,Y").

When constructing the new upper bourigl on the other hand, the truth of the bodies
of these rules is overestimated, i.e., evaluate@dinX).

Definition 3. Let A be aX-definition andO a X9 -structure. We define a functidn®
from the bilattice(SY)? to SQ asUSR (X, Y) = S, with for eachP € X4: a € P° iff
there exists a rulévx P(t) < ¢) in A and a valuec for x, such that( X, Y)[x/c] = ¢
anda = t5%/<l. The operator7{ on (S9)? is defined as, for all, Y € S¢:

If an estimatg X, Y') is more precise than an estimat€’, Y”'), i.e., X’ <; X and
Y <; Y/, thenZf(X,Y) will also be more precise thah{ (X', Y”). In other words,
each operato? { is an approximation. As such, ea@l{’ has a well-founded fixpoint.
We now use this to define the semantics of the logic.

Definition 4. Let X' be a vocabulary. AnD-logic formulais inductively defined by
extending the definition of a formula with the additional base case:

— A definitionA is an ID-logic formula.
The corresponding base case for the satisfaction relation is:
- S Aiff X|pa = S|pa = Y][za, with (X,Y) the well-founded fixpoint arg,
with O = S|E°A'

Note that, even though this definition uses the oper@tpron pairs of structures,
the eventual models of a definition are always single structtirde intuition here is
that a definition should completely define its defined predicates, i.e., there should be no
tuples for which it is “unknown” whether they belong to the defined relations or not.
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Definition 5. Let X’ be a vocabulary. AU-definition A is totalin a X' -structureO iff
X =Y, with (X,Y) the well-founded fixpoint af .

3 Algebraic splitting results

In this section, we summarize and extend results from [VGDO04b]. First, we introduce
some basic definitions and notations. Ldte a set, which we call thadex setand for
eachi € I, let S; be a set. Theroduct sety),; S; is the following set of functions:

Q) Si={f1f:1—|]Sisuchthawic I: f(i) € S;}.

i€l iel

If, for instance,l is {1,...,n}, the productyk)
productSy x - -+ x S,.

If each.S; is partially ordered by some,, this induces theroduct order<s on
®ic1SiiVa,y € ®ic1Si,x <g yiff Vi € I : z(i) <; y(4). It can easily be shown that
if all (S;,<;) are (complete) lattices, the®;c;S;, <g) is also a (complete) lattice;
this is theproduct latticeof the latticessS;.

From now on, we only consider product lattices withvell-foundedndex set, i.e.,
index setsl with a partial order< such that each non-empty subset/ohas a=<-
minimal element. This allows us to use inductive arguments in dealing with elements
of product lattices.

The following notations are used. L&tbe a product latticed;<; L;. Forx € L and
i € I, we abbreviate the restrictior|; ;< ;<) by z|<;. We also use similar abbrevi-
ationsz|;, z|; andx|x;. If 4 is a minimal element of the well-founded setz|; is
defined as the empty function. For any subsef I, the sef{z|, | x € L}, ordered by
the appropriate restrictiod g | ; of the product order, is also a lattice. This sublattice of
L is of course equal to the product lattigge ;L. If J is of the form{j € I | j < i}
for somei, we simply writeL|<; for L| ;. Similarly, L| -; is written for®;; L;.

If f,g are functionsf : A — B, g : C — D and the domainsi andC are
disjoint, we denote by U g the function fromA U C' to BU D, such that for alk € A,
(fUg)(a) = f(a)andforallc € C, (f Ug)(c) = g(c). Furthermore, for any whose
domain is disjoint from the domain of, we call f LI g an extensionof f. For each
elementz of a product latticel and each index € I, the extension|<; Ll x|; of z|;
is clearly equal ta:| <;. To ease notation, we sometimes writg) instead ofz|; in such
expressions, i.e. we identify an elemenof the sth lattice L; with the function from
{i} to L, which maps to a. Similarly, z|-; U (i) U x|z, = .

Our goal is now to study operators on product lattices.{Lex) be a well-founded
index set and lef. = ®;;L; be a product lattice. Intuitively, an operatéron L
is stratifiable over<, if the value(O(x))(i) of O(z) in theith level only depends on
valuesz(j) for whichj < i.

ser Si Is (isomorphic to) the cartesian

Definition 6. An operatorO on a product latticel. is stratifiableiff Vo, y € L, Vi € I :
if z|<; = y[<i thenO(z)|<i = O(y)|<i-

It is possible to characterize stratifiablity in a more constructive manner. The fol-
lowing proposition shows that stratifiablity of an operafdion a product latticd. is
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equivalent to the existence of a family of operators on each laftjcéone for each
partial element: of L|;), which mimics the behaviour @ on this lattice.

Proposition 1. LetO be an operator on a product lattice. O is stratifiable iff for each
i € I andu € L|; there exists a unique operat@r? on L;, such that for alkc € L:

If x|<; = uthen(O(z))(i) = OF (z(1)).

The operator®} are called theeomponentsf O. The main results of [VGDO04b]
are the following correspondences between various kinds of fixpoints of the original
operatorO and those of its componenty':

Theorem 1. Let L be a product latticex;c; L;.

— If O is a stratifiable operator orl., then for eachv € L: z is a fixpoint ofO iff
Vi € I : z(i) is a fixpoint of07!~.

— If O is a monotone stratifiable operator di then for each: € L: z is the least
fixpoint ofO iff Vi € I : x(i) is the least fixpoint o@f'*"’.

— If O is a stratifiable approximation on the bilattice?, then for eachr € L2: z
is a stable (well-founded) fixpoint 61 iff Vi € I : x(4) is a stable (well-founded,
respectively) fixpoint aﬂf'“.

This theorem allows us to incrementally construct any kind of fixpoint of a strat-
ifiable operator, by constructing the corresponding fixpoints of its components in a
bottom-up manner w.r.t. the well-founded ordepn the index set.

We now extend this material from [VGDO04b] with some additional results. More
specifically, we not only want to split a stratifiable operators into its components, but
also into sets of “bigger” operators, i.e., operators which may encompass several levels.
For a subsey of I andx € Ll 7, we denote byD?’ the operator ori.|; which maps
eachy € L|; to O(z Uy)|s. Such operator®? are calledrecombinations 0©. Our
goal is now to show that, for each partitighof I, a stratifiable operatdap can be split
into the recombination®?, with J € 7. We do this, by showing that a recombination
0% is also stratifiable and can be split into the components i$elf.

Proposition 2. Let O be a stratifiable operator. For eachh C I andx € L|p s, OF is
stratifiable.

Proof. Let O% be as above; € J, andy,y’ € L|;, such thaty|<; = y'|<;. By defini-
tion, O%(y) = O(z Uy)|,s. Becausdx Uy)|<; = (x Uy')|<, we have that, by strati-

Proposition 3. LetO be a stratifiable operator. ForeachC I,z € L|p s, € J, and
u € L|{jesj<i}» the componertO%)¢ of O% equals the component*~ 1<) of 0.

Proof. Let (O%)¥ be as above and lgte L,. By definition, for anyz extendingu L y
t0 7, (05)(y) = Oz L 2)]; = (O (z],)l; = 07 <" (y).

These two propositions now imply the wanted result.
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Theorem 2. Let O be a stratifiable operator and lef be a partition of/. Then, for

eachz € L, x is a fixpoint (least fixpoint, stable fixpoint, or well-founded fixpoint) of
O (assuming thaO is monotone or an approximation, where appropriate) iff for each
J € J, z|; is a fixpoint (least fixpoint, stable fixpoint, or well-founded fixpoint) of

03|1\J_

Proof. We only show the correspondence between fixpoints; the proofs of the other
correspondences are similar. bebe a fixpoint ofO. By Theorem 1, this is equivalent

to: Vi € I, x|; is a fixpoint ofOf‘”. Because7 partitions I, this is equivalent to

vJ € J,Vi e J, xl|; is afixpoint ofOf'*i. By Proposition 3, such a compone(ﬂf'*i

x

is equal to(OJII\J)f‘“E"‘-"*”. By Proposition 2 and TheoremtJ € 7, Vi € J, z|;
is a fixpoint(0” ") T10/5=3 iff v.J € 7, x| is a fixpoint of O\ .

4 Modularity results for ID-logic

Now, we apply the algebraic results presented in Section 3 to ID-logic. We fix a vo-
cabulary X and a pre-interpretatio®/ for X'. Also, we restrict our attention té/-
interpretations, which can therefore be viewed as sets of domain atoms.

The basic notion needed to split an ID-logic theory, is that dépendence relation
between domain atoms. Roughly speaking, such a relation is supposed to express which
domain atomg)(c) can influence whether an opera®f will derive a certainP(a)
in a pair(X,Y). We require that dependence relations are well-founded.

Definition 7. A well-founded pre-ordeK on domain atoms is called dependence

relation We denote by’ S the set of all equivalence classB$a) = {Q(c) | P(a) <

Q(c) andQ(c) < P(a)}, together with the well-founded ordet, defined asP(a) <
Q(c) iff P(a) < Q(c).

Such a dependence relation now gives us a product lattice in which to study stratifi-
ability of the operatorg{’. Recall that we can only apply the algebraic splitting results,
if 75 can be seen as operating on the square of some product katigé;. It turns
out that the product of the powersets of all equivalence cla8se< S can give us such
a lattice. We denote b§< the lattice® < 2. Now, S is isomorphic to the pow-
erset of all domain atoms, which is in turn isomorpic to the set offalhterpretations.

An operator7{ can therefore be seen as operating on the square of tl&%wﬁt all
elements oSS which extendD (or, more precisely, whose image under the appropriate
isomorphism extend®).

When dealing with the definitiod\.,., from Example 1, we will consider the ob-
vious pre-interpretatioi/yy with domainN. The set of domain atoms then consists of
{Even(n) | n € N}U{Odd(n) | n € N}. We will use the dependence relatigncon-
sisting of:0dd(n) < Even(n+1) andEven(n) < Odd(n+1), foralln € N. The fact
that< is well-founded follows from the fact thai is well-founded. The se&< consists
of the equivalence class¢&ven(n) | n € N} U{Odd(n) | n € N}, which are all
singletons, i.e., for alh € N, Even(n) = {Even(n)} andOdd(n) = {Odd(n)}. The
relation= consists of the pairEven(n) < Odd(n + 1) andOdd(n) < Even(n + 1)
withn € N,
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Definition 8. A dependence relatiod stratifiesa definitionA given anH -interpretation
O of ¢, iff the operator7{ is a stratifiable approximation on the product Iattisé.

In [DTO4b], a dependence relation that stratifies a definition, is callediaction
relation. In case of our example, the dependence relatiotefined above stratifies
Acven- NOw, the results presented in Section 3 can be used to show the equivalence of
a definitionA and certain partitions of\.

Definition 9. Let A be a definition and lek be a dependence relation. A partition
{A4,...,A,} of Ais a<-partition iff, for eachl < j < n, if A; contains a rule
defining a predicate”, then A; also contains all rules defining a predicatg, for
which there exist tuples, c of domain elements, such th@tc) € P(a).

In order to show the desired equivalence, we relate the conceptpatrtitions to
that of recombinations.

Proposition 4. Let A be a definition, leK be a dependence relation, afid,, ..., A, }
a <-partition. LetO be anH-interpretation ofEZ for somel < j < n. ThenTO

is equal to the recombinatio(Z{*)5?, with O1 = O|x., O2 = Ol(s \5%), and
J={P(a) | A, definesP}.

Proof. Let 7 O, and (7, 01)02 be as above. We first note that &hinterpretationX
extendsO iff it extends O, U O,. It now follows directly from the definitions of the
two operators, thaf{ = (75")9? iff for all X,Y extendingO, the following two
statements are equivélent:

— There exists arulex P(t) < ¢ in A;, for which there exists a € H}, such that

(X, Y)[x/c] = ¢.

— There exists a rulgx P(t) < ¢ in A, for which there exists a € H},, such that

(X, Y)[x/cl = ¢.

Because, for eack € ng, A; contains precisely all rules fromd defining P, this is
the case.

As a direct consequence of this proposition and Theorem 2, we now have the fol-
lowing equivalence between a definition anddigartitions:

Theorem 3. Let A be a definition< a dependence relation, aqd},, ..., A, } a <-
partition. Let O be a X-structure, such tha& stratifies A given O. Then for each
X-structureS, such that5‘|gz = O\ZZ:

SEAffSEAI A ANA,.

[DTO4b] contains a theorem which corresponds to the restriction of this theorem to
those cases where ead) is total givenO. Our result is strictly more general.
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We can now use this result to split the examglg,.,,. Recall that above we already
defined a dependence relatignwhich stratifiesA.,.,,. A corresponding<-partition
of Acypen iS:

A — Even(0).
YT v Even(s(x)) « Odd(x).
Ay ={Vz Odd(s(x)) — Even(z).}

Therefore, for every-interpretationS, S |= Agpen iff S |E A1 A As.

We now characterize the components of the operaf@fsin more detail. Recall
that a stratifiable operatdf{ has a componerT){"""” for each levelE € £< and
(U,V)in (S§|<E)2. Our goal is now to find a way of deriving some new definition
AY) from A, which characterizes such a component, i.e., such(tigh (""" =
(UA(EU,V), UA;:V,U)).

Intuitively, there are two main steps in constructing a component-defirm%fnv).
First, we need to groung w.r.t. to the set of domain atonfs. To do this, we need to
assume domain closure, i.e., that for each Hp, there exists some tertrof X, such
thatt* = a. Such a term is denoted for a tuplea = (ay, .. .,a,) € HY, we denote
(a1,...,a,) by a. Roughly speaking, in the grounding step, a nuthould be replaced
by all rules that can be obtained by replacing the universally quantified variables
of r by somea, such that the head of this new rule corresponds to a domain atom in
E. Additionally, existential quantifiers also need to be eliminated; this can be done by
replacing such a quantifier by a disjunction over all domain elements.

In the following definition, the notation|x/y] is used to denote the result of sub-
stituting in ¢ every free occurence of a symhole x by the corresponding symbol

yey.

Definition 10. LetA be a definition® € £<. Forarule(vx A < ¢) € A and domain
tuplea, the ruler® is the ruleA’ — ¢', with A’ = A[x/a] and¢’ = v(¢[x/4a]), withy
defined as:

— for each atom4, y(A) = A4;
— V(P01 V ¢2) = 7(¢1) V (¢2) andy(—¢) = =y(¢);
=732 ¢) = Ve, v(0lz/a]);

Thegrounding|r | g of aruler = (Vx P(t) < ¢) € A, is the set of rules?, witha a
domain tuple, such that(t//2)) € E. Thegrounding|A| g of AisJ,c 4|7 k-

In a second step, we now replace ground atdd(s) for which P(t¥) < E, by
their truth-value according t@/, V); atoms such thaP(t) € F are left as they are.
We make the small technical assumption that two predicate synibalsd F' exist,
such thatl” holds andF' does not.

Definition 11. Let A be a definitionF € £<, and(U, V) € (S5|<z)?. For each rule
r = (A «— ¢) € |A|g, we definerV"V) as the ruled « §U:V)(¢), with §:V)
inductively defined as:
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— for each atomd = P(t), such thatP(t") ¢ E:
SWY)(A)isTif (U, V) = A andF otherwise;

— for each other atom, §(V"V) (A) = 4;

— sWv) (¢1 vV ¢2) _ 5(U,V)(¢1) v 5(U7V)(¢2);

— 5(U,V)(ﬁ¢) _ ﬂ(g(V,U)((ZS).

We defineAlY") as {r(UV) | r € | Al ).

The proof of the following theorem is omitted, as it follows easily from the various
definitions.

Theorem 4. Let A be adefinitionF € £S,U,V € S§\<E, andO an H-interpretation

of 9. Then(UQ)'T"V) = U and(UQ)VY) = U

Let us look again at definitiod..,..,, from Example 1, with the obvious pre-interpretation
Hy. If E = {Even(n+1)} for somen € N, then for alllU, V' € SS|< the component

(TA%M)EEU’V) is the constant functiofEven(n + 1)} if n € OddY and the constant

function {} otherwise. Similarly, for every levell = {Odd(n + 1)}, (TAMM)SEU’V) is
the constant functiofOdd(n + 1)} if n € Even? and the constant functiofy} other-
wise. The componenZa,,.,. ) {Even(0)} IS the constant functioiZven(0)}, while the
componentZa,,... ) todd(o)} IS the constant functiofi}. From this, it follows that there
exists a unique model af.,.,, extendingHy, namely that which interpretEven by
{n € N|nisever} andOdd by {n € N | nis odd}.

While space restrictions prevent us from discussing this here, this characterization
of the components of a stratifiable operator promises to be useful for the study of the
relation between ID-logic and known classes of mathematical inductive definitions. For
instance, we suspect that the classvefl-founded inductionsoincides precisely with
the class of ID-logic definitions who<E{ -operators can be split into constant compo-
nents, as witnessed by the above example.

5 Conclusions and related work

Our work extends that from [VGD04b,VGDO04a] about algebraic modularity results.
Firstly, we have extended these results to also allow operators to be split into recombi-
nations, rather than components. Secondly, our work is the first to apply these results
outside a propositional context.

Our work also extends previous work on modularity properties for ID-logic [DT04b],
by generalizing existing results in Theorem 3 and by the additional Theorem 4. It is in-
teresting to note that, although in the context of ID-logic we are only interested in the
well-founded fixpoints of the operators associated with definitions, our results also suf-
fice to show a similar correspondence between their Kripke-Kleene and stable fixpoints.
Indeed, this follows directly from the generality of the algebraic splitting theorem (The-
orem 1). As such, our work actually also generalizes the results from [VGDO04b], which
in turn generalized part of the splitting theorem for the stable model semantics from
[LT94].
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The work presented here demonstrates that approximation theory and algebraic
modularity results can be used to elegantly and easily derive useful results, even in
a complex setting. In our opinion, it therefore offers quite a convincing testimony to the
power of this approach.
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