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Abstract: In this paper we propose a clustering process
which uses a multi-objective evolution to select a set of
diverse clusterings. The selected clusterings are then com-
bined using a consensus method. This approach is com-
pared to a clustering process where no selection is applied.
We show that careful selection of input ensemble members
can improve the overall quality of the final clustering. Our
algorithm provides more stable clustering results and in
many cases overcomes the limitations of base algorithms.

1 Introduction

Clustering is a popular technique that can be used to reveal
patterns in data or as a preprocessing step in data analysis.
Clustering tends to group similar objects into groups that
are called clusters and to place dissimilar objects into dif-
ferent clusters. Its application domains include data min-
ing, information retrieval, bioinformatics, image process-
ing and many others.

Many clustering algorithms have been introduced so
far, an extensive overview of clustering techniques can be
found in [1]. Since we have the No Free Lunch Theo-
rem [36], which states that there is no single, supreme al-
gorithm that would optimally run on all datasets, it is com-
plicated for a user to decide which algorithm to choose.

Ensemble methods have been successfully applied in
supervised learning [25] and similar attempts appeared in
the unsupervised learning area [32], [14], [34]. Cluster
ensemble methods should eliminate the drawbacks of indi-
vidual methods by combining multiple solutions into one
final clustering.

2 Cluster Ensembles

The main objective of clustering ensembles is to combine
multiple clusterings into one, preferably high-quality so-
lution.

Let X = {x1,x2, . . . ,xn} be a set of n data points, where
each xi ∈ X is represented by a vector of d attributes. A
cluster ensemble is defined as Π = {π1,π2, . . . ,πm} with
m clusterings. Each base clustering πi consists of a set
of clusters πi = {Ci

1,C
i
2, . . . ,C

i
ki
}, such that ∪ki

j=1Ci
j = X ,

where ki is the number of clusters in a given ensemble
member (it does not have to be the same for all members).

The problem is how to obtain a final clustering π∗ =
{C∗1 ,C∗2 , . . . ,C∗K}, where K is the number of clusters in the
result and π∗ summarizes the information from ensem-
ble Π.

The process consists of two major steps. Firstly, we
need to generate a set of clustering solutions and secondly
we need ti combine the information from these solutions.
A typical result of the ensemble process is a single clus-
tering. It has been shown in supervised ensembles that the
best results are achieved when using a set of predictors
whose errors are dissimilar [25]. Thus it is desirable to
introduce diversity between ensemble members.

2.1 Ensemble Generation Strategies

Several approaches have been used to initialize clustering
solutions in order to create an ensemble.

• Homogeneous ensembles: Base clusterings are cre-
ated using repeated runs of a single clustering algo-
rithm. This is quite a popular approach, repeated runs
of k-means with random center initialization have
been used in [14]. When using k-means the number
of clusters is typically fixed to d√ne, where n is the
size of the dataset [22].

• Varying k: Repeated runs of k-means with random
initialization and k [15], a golden standard is using k
in the range from 2 to

√
n.

• Random subspacing An ensemble is created from
base clusterings that use different initial data. This
could be achieved by projecting data onto differ-
ent subspaces [13], [16] choosing different subsets
of features [32], [37], or using data sampling tech-
niques [10].

• Heterogeneous ensembles: Diversity of solutions is
introduced by applying different algorithms on the
same dataset.

2.2 Consensus Functions

Having multiple clusterings in an ensemble, many func-
tions have been proposed to derive a final clustering.
When only one solution is considered as the result, it is
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usually referred as a consensus function, unlike meta clus-
tering where the output is a set of multiple clusterings [6].

There are several approaches as to how to represent in-
formation contained in base clusterings, some use matrices
while others use graph representation.

• Pairwise similarities: A pairwise similarity matrix
is created and afterwards a clustering algorithm (e.g.
hierarchical agglomerative clustering) is applied to
group together items that were most frequently to-
gether in the same cluster in all the base cluster-
ings [14]. the Cluster-based Similarity Partitioning
Algorithm (CSPA) from Strehl and Ghosh [32] uses
METIS [24] for partitioning a similarity matrix into k
components.

• Feature-based approach: The ensemble problem is
formulated as categorical data clustering. For each
data point an m-dimensional vector containing labels
in base clusterings is created. The goal is to find a
partition π∗ which summarizes the information gath-
ered from the partitions Π [28], [33], [4].

• Graph based: Many methods use graph represen-
tation for capturing relationships between base clus-
terings. Strehl and Ghosh [32] also proposed the
HyperGraph-Partitioning Algorithm (HGPA), where
vertices correspond to data points and a hyperedge
represents clusters. Another approach chooses CO-
MUSA [27] which increases the weight of the edge
for each occurrence of data pairs in the same clus-
ter. Afterwards the nodes are sorted by the attach-
ment score, which is defined as the ratio between the
sum of the node’s weights and its number of inci-
dent edges. The nodes with the highest attachment
score are then used as a foundation for new clusters.
This approach is relatively fast to compute, however
it might fail to capture complex relationships between
very diverse clusterings.

3 Multi-Objective Clustering

Multi-objective clustering usually optimizes two objective
functions. Using more than a few objectives is not usual
because the whole process of optimization becomes less
effective.

The first multi-objective evolutionary clustering algo-
rithm was introduced in 2004 by Handl and Knowles [18]
and is called VIENNA (the Voronoi Initialized Evolution-
ary Nearest-Neighbour Algorithm).

Subsequently, in 2007 Handl and Knowles published a
Pareto-based multi-objective evolutionary clustering algo-
rithm called MOCK [19] (Multi-Objective Clustering with
automatic K-determination). Each individual in MOCK is
represented as a directed graph which is then translated
into a clustering. The genotype is encoded as an array of
integers whose length is same as the number of instances

in the dataset. Each number is a pointer to another instance
(an edge in the graph), since it is connected to the instance
at a given index. This easily enables the application of
mutation and crossover operations.

As a Multi-Objective Evolutionary Algorithm (MOEA),
MOCK employs the Pareto Envelope-based Selection Al-
gorithm version 2 (PESA-II) [7], which keeps two popula-
tions, an internal population of fixed size and a larger ex-
ternal population which is exploited to explore good solu-
tions. Two complementary objectives, deviation and con-
nectivity, are used as objectives in the evolutionary pro-
cess.

A clear disadvantage of MOCK is its computation com-
plexity, which is a typical characteristic of evolutionary
algorithms. Nevertheless, the computation time spent on
MOCK should result in high-quality solutions. Faceli et
al. [12] reported that for some high-dimensional data it is
not guaranteed that the algorithm will complete, unless the
control front distribution has been adjusted for the given
data set.

Faceli et al. [12] combined a multi-objective approach
to clustering with ensemble methods and the resulting al-
gorithm is called MOCLE (Muli-Objective Clustering En-
semble Algorithm). The objectives used in the MOCLE
algorithm are the same as those used in MOCK [19]: de-
viation and connectivity. Unlike MOCK, in this case the
evolutionary algorithm used is NSGA-II [9].

4 Our Approach

There are many ways to produce a final consensus,
nonetheless in this work we focus on the selection of high-
quality and diverse clusterings.

In order to optimize ensemble member selection, we
apply a multi-objective optimization. The whole process
is shown in Fig. 1. In our previous work [3] we have
shown that introducing multiple objectives into the cluster-
ing process can improve the quality of clustering, specifi-
cally using the Akaike information criterion (AIC) [2] (or
BIC [31]) with another criterion leads to better results. The
second criterion is typically based on computing a ratio
between cluster compactness and the sum of distances be-
tween cluster centres.

AIC is typically used in supervised learning when trying
to estimate model error. Essentially it attempts to estimate
the optimism of the model and then add it to the error [20]:

fAIC =−2 · log(Ln(k))
n

+2 · k
n

(1)

where Ln(k) is the maximum likelihood of a model
with k parameters based on a sample of size n.

The SD index was introduced in 2000 by Halkidi
et al. [17] and it is based on concepts of average cluster
scattering and total separation of clusters which were pre-
viously used by Rezaee et al. [29] for evaluation of fuzzy
clusterings.
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Figure 1: Cluster Ensemble Process: Firstly using the
same input dataset we generate multiple clusterings, then
select m best clusterings for the ensemble and combine
them into a single solution.

The average scattering is defined as:

Scatt(k) =
1
k

k

∑
i=1

‖σ(c̄i)‖
‖ σ(X)‖ (2)

where ‖x‖ is the norm of a vector,
c̄i is the centroid of the i-th cluster,
σ(X) is the variance of the input dataset.

σ(X) ∈ Rm with m being the number of dataset dimen-
sions. Variance for a dimension d is defined as:

σd =
1
n

n

∑
i=1

(
xd

i − x̄d
)2

‖σ(X)‖=
√

m

∑
i=1

(σd)2

The total separation is given by:

Dis(k) =
Dmax

Dmin

k

∑
i=1

(
k

∑
j=1

∥∥c̄i− c̄ j
∥∥
)−1

(3)

where Dmax is the maximum distance and Dmin is the min-
imum distance between cluster centers (c̄i) and k is the
number of clusters.

Dmax = max
i, j∈{1,...,k}

i6= j

(
∥∥c̄i− c̄ j

∥∥) (4)

Dmin = min
i, j∈{1,...,k}

i6= j

(
∥∥c̄i− c̄ j

∥∥) (5)

Then we can define the SD validity index as follows:

fSD = α ·Scat(k)+Dis(k) (6)

where α should be a weighting factor equal to Dis(cmax)
with cmax being the maximum number of clusters [17].
This makes perfect sense for fuzzy clustering (as was pro-
posed in [29]), however it is rather unclear how to compute
cmax in the case of crisp clustering, when cmax � k with-
out running another clustering with cmax as the requested
number of clusters. Nonetheless, [17] mentions that “SD
proposes an optimal number of clusters almost irrespec-
tive of cmax, the maximum number of clusters”, thus we
consider the special case where cmax = k:

fSD = Dis(k) ·Scat(k)+Dis(k) (7)
= Dis(k) · (Scat(k)+1) (8)

The idea of minimizing inner cluster distances and max-
imizing distances between cluster centres it not really
new. In fact most of the clustering objective functions
use this idea. Instead of the SD index we could have
used C-index [21], Calinski-Harabasz Index [5], Davies-
Bouldin [8] or Dunn’s index [11], just to name a few. Each
of these indexes might perform better on some dataset,
however it is out of scope of this paper to compare which
combination would be better. We considered

As an evolutionary algorithm we use NSGA-II [9] while
using only the mutation operator and a relatively small
population (see Table 2). Each individual in the popula-
tion contains a configuration of a clustering algorithm. For
this experiment we used only the basic k-means [26] algo-
rithm with random initialization. The number of clusters k
is the only parameter that we change during the evolution-
ary process. For k we used a constraint in order to keep
the number of clusters within reasonable boundaries. For
all test datasets we used the interval 〈2,√n〉.

In order to evaluate the effect of Pareto optimal solu-
tions selection for the ensemble bagging process, we com-
pare two strategies for generating base clusterings. The
first one generates 10 k-means clusterings with random
initialization with k within the interval 〈2,√n〉. The sec-
ond method uses multi-objective evolution of clusterings
where each individual represents a k-means clustering.

As a consensus function we use either a graph based
COMUSA algorithm or a hierarchical agglomerative clus-
tering of the co-association matrix. Both approaches have
their drawbacks, the COMUSA algorithm is locally con-
sistent, however fails to integrate the information con-
tained in different base clusterings, thus final clustering
does not overcome limitations of base clustering algo-
rithms. The latter could be very slow on larger datasets
(complexity O(n3)) and might produce noisy clustering in
case of very diverse base clusterings.
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Dataset d n classes source
aggregation 2 788 7 [15]
atom 3 800 2 [35]
chainlink 3 1000 2 [35]
complex8 2 2551 8 [30]
complex9 2 3031 9 [30]
diamond9 2 3000 9 [30]
jain 2 373 2 [23]
long1 2 1000 2 [18]
longsquare 2 900 6 [18]
lsun 2 400 3 [35]
target 2 770 6 [35]
tetra 3 400 4 [35]
triangle1 2 1000 4 [18]

Table 1: Datasets used for experiments.

Parameter Setting
Number of generations 5
Population size 10
Mutation probability 30%
Mutation Polynomial mutation

Table 2: Parameter settings for NSGA-II evolution

To evaluate clustering quality we use NMI1 (Normal-
ized Mutual Information) [32]. NMI has proved to be
a better criterion than the Adjusted Rand Index (ARI) for
the evaluation of datasets with apriori known labels. How-
ever it does not capture noise in clusters (which does not
occur in the case of traditional k-means), which might be
introduced by some consensus methods. Another limita-
tion of these evaluation metrics is apparent from Figure 6,
where clustering with obvious 50% assignment error gets
lowest possible score. Both indexes do not penalize cor-
rectly higher number of clusters, thus algorithms produc-
ing many small clusters will be preferred by these objec-
tives.

5 Results

Most of the datasets used in these experiments come from
the Fundamental Clustering Problems Suite [35]. We have
intentionally chosen low dimensional data in order to be
able to visually evaluate the results. An overview of the
datasets used can be found in Table 1.

As objectives during the multi-objective evolution we
used AIC and SD index in all cases. The advantage is com-
bination of two measures that are based on very different

1There are several versions of this evaluation method, sometimes it
is referred as NMIsqrt

Dataset C-RAND C-MO k-means
aggregation 0.75 0.84 0.84
atom 0.39 0.61 0.28
chainlink 0.07 0.50 0.07
complex8 0.59 0.64 0.59
complex9 0.64 0.66 0.65
diamond9 1.00 0.87 0.97
jain 0.36 0.51 0.37
long1 0.00 0.49 0.03
longsquare 0.83 0.86 0.80
lsun 0.54 0.69 0.54
target 0.67 0.57 0.69
tetra 1.00 0.86 0.99
triangle1 0.95 0.78 0.94

Table 3: NMIsqrt score from various artificial dataset clus-
terings. C-RAND uses bagging of 10 k-means runs with
a fixed value k that corresponds to the number of classes in
the given dataset. The same approach is used in the case of
k-means, but without bagging. C-MO is a NSGA-II based
algorithm with criteria AIC and SD index; the number of
clusters is randomized during evolution within the inter-
val 2 to

√
n. Both C-RAND and C-MO use the COMUSA

algorithm to form final (consensus) partitioning. The NMI
values are averages from 30 independent runs.

grounds. We tried using Deviation and Connectivity, as it
was proposed by Handl [19] (and later used by [12]), but
for all tested datasets, our approach was better or at least
comparable with these objectives.

In the case of the COMUSA approach, the multi-
objective selection either improved the final NMI score
or it was comparable with the random selection. There
were only a few exceptions, especially in case of compact
datasets like the 9 diamond dataset which contains a spe-
cific regular pattern that is unlikely to appear in any real-
world dataset (see Table 3). The number of clusters pro-
duces by COMUSA approach was usually higher than the
correct number of clusters and clustering contains many
nonsense clusters. Despite these facts the NMI score does
not penalize these properties appropriately.

Agglomerative clustering of the co-association matrix
despite its high computational requirement provide pretty
good results. Nonetheless in the case of the chainlink
dataset there is over 50% improvement in NMI. It is im-
portant to note, that for HAC-RAND and HAC-MO we
did not provide the information about the correct number
of clusters. Still these methods manages to estimate num-
ber of clusters or at least provide result that is very close
to the number of supervised classes.
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Dataset HAC-RAND HAC-MO
aggregation 0.74 0.71
atom 0.44 0.68
chainlink 0.47 0.99
complex8 0.72 0.71
complex9 0.71 0.70
diamond9 0.83 0.75
jain 0.61 0.60
long1 0.73 0.81
longsquare 0.73 0.89
lsun 0.66 0.71
target 0.40 0.40
tetra 0.75 0.99
triangle1 0.78 0.89

Table 4: NMIsqrt score from the clustering of various
artificial datasets. As a consensus method, hierarchical
agglomerative clustering (with complete linkage) of co-
association matrix is used. In the case of HAC-RAND
we run 10 independent k-means clusterings with a ran-
dom number of clusters (between 2 and

√
n), then form

a co-association matrix and finally run agglomerative clus-
tering of the matrix. HAC-RAND works in very similar
manner, but instead of the first step a multi-objective evo-
lution of k-means is performed. 10 dominating solutions
are selected and the rest of the algorithm is the same.

Figure 2: Typical clustering longsquare dataset using
k-means (k = 6). K-Means algorithm fails to reveal non-
spherical clusters (Ajusted Rand Index = 0.94, NMI =
0.85).

6 Conclusion

During our experiments we have shown that careful se-
lection of clusterings for the ensemble process can signif-
icantly improve overall clustering quality for non-trivial
datasets (measured by NMI).

It is interesting that non-spherical clusters could be dis-
covered by consensus function when agglomerative hier-
archical clustering is used (compare Fig. 2 and 3).

Using a multi-objective optimization for clustering se-

Figure 3: Consensus of 10 independent k-means runs on
the longsquare dataset using k = 6. The co-association
matrix obtained was clustered using hierarchical clustering
(average linkage). The resulting clustering is qualitatively
better than a single k-means run, however it contains noise
in all clusters (Ajusted Rand Index = 0.99, NMI = 0.95).

Figure 4: Consensus of 10 independent k-means runs on
the long1 dataset using k = 6. On many datasets setting
the correct k does not improve the quality of the resulting
clustering. The co-association matrix obtained was clus-
tered using hierarchical clustering (average linkage).

lection improved the overall quality of clustering results,
however ensemble methods might produce noisy cluster-
ing with a higher evaluation score. Noisy clusterings are
hard to measure with current evaluation metrics, therefore
it might be beneficial to include an unsupervised score in
the results. In further research we would like to exam-
ine the process of selecting optimal objectives for each
dataset.
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Figure 5: Consensus of 10 independent k-means runs on
the triangle1 dataset using k = 6. In this case the consen-
sus produces a nonsense cluster that mixes items from 3
other clusters together.

Figure 6: Single k-means runs on the long1 dataset using
k = 2. K-Means algorithm fails to reveal non-spherical
clusters. Both supervised indexes Ajusted Rand Index and
NMI assigns this clustering score 0.0, even though there is
50% assignment error.
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