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Abstract: The paper compares several non-linear regres-
sion methods on synthetic data sets generated using stan-
dard benchmarks for continuous black-box optimization.
For that comparison, we have chosen regression methods
that have been used as surrogate models in such optimiza-
tion: radial basis function networks, Gaussian processes,
and random forests. Because the purpose of black-box
optimization is frequently some kind of design of exper-
iments, and because a role similar to surrogate models
is in the traditional design of experiments played by re-
sponse surface models, we also include standard response
surface models, i.e., polynomial regression. The methods
are evaluated based on their mean-squared error and on
the Kendall’s rank correlation coefficient between the or-
dering of function values according to the model and ac-
cording to the function used to generate the data.

1 Introduction

In this paper, we compare non-linear regression meth-
ods that could be used as surrogate models for optimiza-
tion tasks. The methods are compared on synthetic data
sets generated using standard benchmarks for continuous
black-box optimization, for which we used implementa-
tions based on definitions from Real-Parameter Black-Box
Optimization Benchmarking 2009 [8].

A continuous black-box optimization is a task where we
try to minimize a continuous objective function f : X ⊆
Rn → R for which we do not have an analytical expres-
sion. Such problems arise, for example, if the values of
the objective function are results of experimental measure-
ments.

For that comparison, we have chosen regression meth-
ods that have been used as surrogate models in such op-
timization: radial basis function networks [3] [18], Gaus-
sian processes [6] [11], and random forests [4].

We measure the accuracy of each methods based on
mean square error and Kendall’s rank coefficient and based
on the results we suggest which methods work better as
surrogate models. We are interested in properties of each
method to be used as a surrogate model, though our exper-
iments do not replace a direct evaluation in optimization or

in evolutionary algorithms. This is a subject of two other
papers included in this proceedings.

Other comparisons of non-linear models have been pre-
sented. A numerical comparison of neural networks and
polynomial regression has been performed in [2] and
in [16], in the latter one also classification and regression
tree (CART) model has been compared. An evaluation
of Gaussian processes with other non-linear methods has
been done in [15] and in [10]. These studies compared
accuracy of each model for prediction and have not paid
attention to surrogate models for optimization. Example
of such works can be found in [7], where they have com-
pared quadratic polynomial regression with other methods
based on prediction accuracy and mean-squared error, and
in [13], where is polynomial regression compared with ra-
dial basis function networks based on accuracy and also on
optimization results. In this paper, we compare the meth-
ods by means of mean-squared error and also Kendall’s
rank coefficient.

We briefly describe the theoretical background for each
of these methods: how the corresponding models are be-
ing induced and how they are used to predict new values.
For the synthetic data, we added an overview of how the
functions look like in a 3-dimensional space (Figure 1).

The paper is organised as follows. In Section 2, we re-
call the theoretical fundamentals of the employed regres-
sion methods. In Section 3, we describe the setup of our
experiments and summarise the results, before the paper
concludes in Section 4.

2 Regression Methods in Data Mining

With a continuously increasing amount of gathered data,
data mining techniques allow us to search for patterns in
the data sets and model the underlying reality. Various
models have been introduced in the past, starting from a
linear regression to complex nonlinear methods such as
neural networks, or Gaussian processes. These models are
used to approximate a function that describes the relation-
ship between target and input values.

We now introduce the methods compared in this paper.
Each of these methods has its strengths and weaknesses
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Parameters Hyper-parameters Strengths Weaknesses Complexity

Polynomial
regression

order of
the polynom × fast and simple too simple Θ(M2N)

Gaussian
processes

covariance function,
mean function

(usually constantly zero)

depends on cov. fun.
length-scale (l)
noise-level (SN)

robust,
generalising well

time complexity,
black box Θ(N3)

Random
forests

# of trees (NT),
min. data in leaves (ML),

# of randomly selected variables
×

interpretability,
allows parallel
computations

slower to compute
predictions Θ(MKÑ log2 Ñ) [12]

Radial basis
functions network

spread constant (CS)
maximum of neurons (MAX)

error goal (EG)
× robust black box

polynomial
time [17]

Table 1: Summary of regression methods. N = # of samples, Ñ = 0.632N, M = # of variables, K = # of variables
randomly drawn at each node (in random forests)

which we point out in Table 2 and later we will discuss
them in the context of results of our experiments.

We assume to have a pair ((X),Y ), where X is p-
dimensional data set with n points, i.e. X is a matrix
p× n, or it is a vector X = (x1,x2, ...,xn), where xi is
a column vector of size p, i.e. xi = (xi1,xi2, ...,xip), and
Y = (Y1,Y2, ...,Yn) is a vector of size n of target values to
corresponding rows in matrix X. We use ||x|| as the Eu-
clidean norm of vector x. In the paper, we use following
notation:

• X ,Y,β are vectors with elements Xi,Yi,βi, respec-
tively, also β j,k is a scalar denoting a parameter in
polynomial regression for interaction x jxk,

• f is a function and f (x) is an output of the functions
corresponding to input x, for multivariate function f ,
we have either matrix notation Y = f (X), or vector
notation Yi = f (xi),

• f̄ (X) is an average output over f (xi),∀i ∈ {1, ...,N}.

2.1 Polynomial Regression

The most simple form of polynomial regression (PR) is
linear regression in which the model is described by p+1
parameters β0,β1, ...,βp,

f (Xi) = β0 +

pX
j=1

x jβ j

which can be computed by [9]

β = (β0, . . . ,βp) = (XT X)−1XT y (1)

Polynomial regression is still part of the linear regres-
sion family, because the dependence on the model param-
eters is linear. However, we consider also higher powers
of input variables. For example, in the quadratic case we

add both x2
i form for i ∈ {1, ..., p}, and also as an interac-

tion xix j for i, j ∈ {1, ..., p}, i 6= j. Consequently we have
(p2 + p)/2 new variables.

For our experiments, we will restrict attention to
quadratic regression,

f (Xi) = β0 +

pX
j=1

x jβ j +

pX
j=1

x2
jβp+ j +

pX
j=1

pX
k=1
k< j

x jxkβi,k

This is also the standard restriction in response surface
modeling [14].

2.2 Random Forests

Random Forests (RF) is a model proposed by Breiman [5],
and it is based on ensembles of decision trees. Due to
our interest in surrogate models for continuous black-box
optimization, we are interested in ensembles of regression
trees.

A regression tree is a function defined by means of a bi-
nary tree with inner nodes representing predicates, and
edges from a node to its children representing whether
the predicate is or is not fulfilled. The leaf nodes give
the predicted target value. The tree is built recursively
starting with a root node and searching for an optimal bi-
nary predicate over the input variables. Regression trees
can be applied to data sets with both categorical/discrete
variables, and real-valued variables. Since we focus on
surrogate models for continuous black-box optimization,
we only consider real-valued predicates. For a real-valued
variable, the data set is split into two parts through mini-
mizing following formulaX

xi∈R1( j,s)

(yi− c1)
2 +

X
xi∈R2( j,s)

(yi− c2)
2

where R1,R2 are the two linearly bounded regions with
axes-perpendicular borders into which the data set is split
using a j-th variable x j and its splitting point s, and c1,c2
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are the averages of function values of points belonging
to R1,R2, respectively. After finding the optimal splitting
point we recursively apply this process to both regions R1
and R2, and for each of them, only the data points in the
region are considered. This process continues until a stop-
ping criterion is met. This can be either the minimum num-
ber of data points in leaves or inner nodes, or the depth of
the tree.

If the regression tree finally splits the input space into
the regions R1, . . . ,Rm, we can compute the prediction for
a new data point using the following formula:

f (x) =
MX

m=1

cmI(x ∈ Rm)

where cm is an average target value of data points in region
Rm.

An ensemble of regression trees averages the predic-
tions when presented with a new data point.

There are several options how to induce a number of
trees over the same data set that will lead to low corre-
lation. In traditional bagging, independent subsets of the
original data used for individual trees are obtained by sam-
pling from the data set uniformly and with replacement. In
addition, random subsets of input variables can be used. In
Matlab implementation of random forests, a square root of
number of input variables are selected by default, which is
also a setting we have used for our experiments.

The model parameters are number of trees (NT) which
are added to the ensemble and the minimum number of
data in leaves (ML).

2.3 Gaussian Processes

A Gaussian process (GP) is a random process such
that its restriction to any finite number of points has a
Gaussian probability distribution. A Gaussian process
GP(µ(x),κ(x,x′)) is defined by its mean function µ(x)
and a covariance function κ(x,x′).

f (x)∼GP(µ(x),κ(x,x′)) (2)

These functions determine the mean and covariance of the
process because

E[ f (x)] = µ(x),
Cov[ f (x), f (x′)] = E[( f (x)−µ(x))( f (x′)−µ(x′))]

= κ(x,x′)
(3)

The important part of modelling functions with Gaus-
sian processes is choosing the covariance function. An
important feature of covariance functions is that they can
be combined together using addition and multiplication,
i.e. for κ,κ ′ covariance functions, κ ×κ ′ and κ +κ ′ are
again covariance functions. Frequently used covariance
functions are: linear, periodic, squared-exponential, and
rational quadratic.

• Linear:
κlin(x,x′) = xx′

• Periodic:

κper(r) = exp(− 2
l2 sin2(π

r
p
))

• Squared-exponential:

κSE(r) = exp(− r2

2l2 )

• Rational Quadratic:

κRQ(r) = (1+
r2

2αl2 )
−α

where r = |x− x′| and c, l, p,α are parameters of the co-
variance function (because the covariance function itself
is a parameter of the Gaussian process, they are called
hyper-parameters of the process). l is a length-scale, p de-
fines period, and α changes the smoothness of rational
quadratic function. An additional parameter in the model
is the noise level (SN) which is an additive Gaussian noise
in the model.

When working with multivariate data sets, the covari-
ance functions which have the length-scale as a parame-
ter, can either apply the same length-scale l to all dimen-
sions, or i-th dimension has its length-scale li. In the first
case, the covariance functions have isotropic distance mea-
sure, the latter case uses automatic relevance determina-
tion (ARD).

2.4 Radial Basis Network Functions

Radial basis network functions (RBF) is a feed-forward
neural network with one hidden layer in which the nodes
have radial transfer function ρ . The output of the network
is given by

ϕ(x) =
NX

i=1

aiρ(||x− ci||) (4)

or its normalized version:

ϕ(x) =
PN

i=1 aiρ(||x− ci||)PN
i=1 ρ(||x− ci||)

(5)

where ρ(||x− ci||) is usually in form of gaussian:

ρ(||x− ci||) = exp
� ||x− ci||2

2σ2
i

�
,

ci is a center vector of the respective neuron, ai is a weight
of the neuron, and ||x− ci|| is a norm, typically the Eu-
clidean norm. The model parameters are the spread con-
stant σ2

i (SC), the maximum of neurons (MAX) that can be
added to network during iterative learning process, and the
error goal (EG) which is a mean-squared error on training
set. The maximum neurons or the error goal are stopping
criteria for the network induction.
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2.5 Model Selection and Evaluation

The parameters for regression models were selected by
10-fold cross validation based on the mean-squared er-
ror (MSE)

err = MSE =
1
N

NX
i=1

(Yi− f̄ (X))2

The cross validation is suited for limited data samples,
but it is also justified method for synthetic data.

3 Experiments with Synthetic Data

As we are interested primarily in the suitability of the
considered regression methods for surrogate models in
black-box optimization, we compared them on synthetic
data generated using standard benchmarks for continuous
black-box optimization [8].

All performed experiments were implemented in Mat-
lab. For each function, we have sampled 5000
p-dimensional data points where p ∈ {5,10,20,40} and
used it for a 10-fold cross-validation to compare the con-
sidered models. The result of cross validation is MSE for
training set, MSE for testing set and the Kendall’s rank
correlation coefficient. The significance of the difference
between results obtained for two models m,m′ was tested
using independent sample t-test

t =
resm− resm′È

1
k (σ2

m +σ2
m′)

(6)

which we compare for a significance level α ∈ (0,1)
against the (1− α

2 )-quantile of the Student distribution
with 2(k-1) degrees of freedom, where k is the number of
cross-validation folds, degrees of freedom, and resm,σm
are computed as follows:

resm =
1
k

kX
i=1

resm,i

σm =

Ì
1

(k−1)

kX
i=1

(resi− res)2

For a comparison of two models, it would have been
better to use paired t-test, which provide better estimates,
but since we have decided to use unpaired t-test at the be-
ginning of our experiment, we haven’t had necessary sub-
results to perform it.

We have used MSE together with Kendall’s rank cor-
relation coefficient [1] between the ordering of function
values according to the model (y1, . . . ,yn) and according
to the function used to generate the data (t1, . . . , tn)

τm =
(# of concordant pairs)− (# of discordant pairs)

1
2 n(n−1)

(7)

where for (t j,y j) and (tk,yk) different pairs of target value
t and predicted value y, (t j,y j) and (tk,yk) are concordant
if t j < tk and y j < yk, or t j > tk and y j > yk, and discordant
otherwise.

3.1 Selection of Model Parameters

For each dataset, we have searched for optimal model pa-
rameters (in the case of a Gaussian process, these are its
hyper-parameters) minimizing the MSE. With regression
trees, we have considered different settings for the num-
ber of trees and minimum number of data points in leaves.
With Gaussian processes, we have tried rational quadratic
and squared exponential in their isomorphic form, and also
the ARD version of squared exponential. With radial basis
function networks, as a radial function, we have consid-
ered different settings of the parameters: spread constant,
MSE goal, maximum of neurons. As to polynomial re-
gression, we have used quadratic regression. See Table 3
for overview of selected parameters for each model.

3.2 Results

We will now present the results of our experiments. First,
we have included a detailed Table 3 with measured values
of the MSE and the Kendall’s coefficient for each dataset
and each model. We can see how optimal combinations of
values of parameters for each model change with higher
dimensions. Random forests have lower number of trees
(NT) and higher minimum number of data in leaves (ML).
The comparison of the performance of each method across
different dimensions of the data sets follows.

Table 4 shows the results of our experiments where we
have compared four different models across 40 different
data sets. For each model, we entered the number of times
the model was better than the other model and we also
added how many times the result was significantly better
on the significance level 0.05.

A summary of the results can be seen in Table 2 and ad-
ditional comments on the results follow. With 10 dimen-
sions, the radial basis functions started performing better,
although not significantly. With 20 dimensions, there are
even less methods that outperforms polynomial regression
significantly according to MSE and random forests were
the weakest model from the triple of models RBF, GP and
RT. With 40 dimensions, there is a surprising result since
MSE values are much lower comparing to lower dimen-
sions and we would expect the MSE to be growing with
higher dimensions. This may be an artifact of the func-
tion definitions which suppress higher dimensions and that
may lower the MSE values.

In summary, when comparing the MSE over all dimen-
sions, the Gaussian processes were the best model for our
data followed by radial basis functions and random forests
before polynomial regression at the last position. With
Kendall’s coefficient, the results are not that clear. Even
though the Gaussian processes have the most wins, they do
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5

0

f15

-5-5

0

0

20

180

160

140

120

100

80

60

40

5

(a) f15 Rastrigin Function

5

0

f16

-5-5

0

0

100

200

300

700

600

500

400

5

(b) f16 Weierstrass Function

5

0

f17

-5-5

0

90

80

70

60

50

40

30

20

10

0

5

(c) f17 Schaffers F7 Function

5

0

f18

-5-5

0

0

1000

900

800

700

600

500

400

300

200

100

5

(d) f18 Schaffers F7 Function,
moderately ill-conditioned

5

0

f19

-5-5

0

0

50

100

400

350

300

250

200

150

5

(e) f19 Composite Griewank-
Rosenbrock Function F8F2

5

0

f20

-5-5

0

6

5

4

3

2

1

0

5

(f) f20 Schwefel Function

5

0

f21

-5-5

0

10

20

30

40

80

70

60

50

5

(g) f21 Gallagher’s Gaussian
101-me Peaks Function

5

0

f22

-5-5

0

10

110

100

90

80

70

60

50

40

30

20

5

(h) f22 Gallagher’s Gaussian 21-
hi Peaks Function

5

0

f23

-5-5

0

0

100

90

80

70

60

50

40

30

20

10

5

(i) f23 Katsuura Function

5

0

f24

-5-5

0

120

100

80

60

40

20

5

(j) f24 Lunacek bi-Rastrigin
Function

Figure 1: Benchmark functions for continuous black-box optimization. The graphs has been created in accordance
with [8]. Since we has been focused on multimodal functions, we chose functions 15 to 24.

Dimension Mean squared error Kendall’s rank correlation coefficient

5
GP outperformed other models in most of the cases,

all methods performs better most of the time
comparing to polynomial regression

less conclusive results,
the best performing model were RF

10 GP outperformed other models less conclusive results,
the best performing model were RF

20 GP outperformed other models RBF was the weakest model
outperformed even by PR

40
GP still outperformed others,
but with smaller difference

GP
outperformed others

Table 2: Results summary. For each dimension, we briefly describe the outcome.
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Dataset
Random forests Gaussian Processes Polynomial Radial basis functions

NT ML MSE Kendall CF SN MSE Kendall MSE Kendall SC EG MAX MSE Kendall

f15-05d 1000 1 2.1±0.2e2 7.1±0.1e-1 SEiso 1 2.6±0.1e2 6.6±0.2e-1 3.1±0.2e2 6.4±0.2e-1 8e1 1 500 2.5±0.1e2 6.7±0.2e-1
f15-10d 1600 1 6.9±0.5e2 6.4±0.2e-1 SEiso 1 5.8±0.5e2 6.7±0.2e-1 6.2±0.3e2 6.5±0.2e-1 5e1 1 250 5.7±0.4e2 6.6±0.1e-1
f15-20d 1200 1 1.9±0.2e3 5.7±0.2e-1 RQiso 5e-1 1.4±0.1e3 6.3±0.1e-1 1.31±0.07e3 6.4±0.2e-1 1e2 1 150 1.28±0.06e3 6.4±0.2e-1
f15-40d 800 2 5.1±0.2e3 4.9±0.2e-1 RQiso 5e-1 3±0.2e3 6.1±0.1e-1 3±0.2e3 6.1±0.2e-1 5e1 1 75 2.7±0.2e3 6.3±0.1e-1
f16-05d 1600 1 1.1±0.1e3 5.3±0.1e-1 SEiso 1 1.8±0.1e3 3.4±0.3e-1 1.9±0.1e3 2.7±0.3e-1 7.5e1 1 800 1.7±0.2e3 3.5±0.4e-1
f16-10d 800 1 7.1±0.5e2 4.3±0.3e-1 SEiso 1 9.4±0.08e2 2±1e-1 8.6±0.6e2 2.7±0.2e-1 1.8e1 1 40 9±1e2 2.5±0.3e-1
f16-20d 800 2 4.1±0.4e2 3.6±0.2e-1 SEiso 1e-2 7.8±0.2e3 -4±4e-2 4.6±0.3e2 2.3±0.2e-1 3.2e1 1 60 5±0.3e2 1.3±0.4e-1
f16-40d 400 5 2.3±0.2e2 2.9±0.4e-1 RQiso 5e-1 2.5±0.2e2 8±3e-2 2.7±0.2e2 1.7±0.2e-1 7.5 1 50 2.5±0.2e2 7±2e-2

f17-05d 1800 1 2.3±0.3e1 4.6±0.2e-1 SEiso 1.3 3.2±0.3e1 2.2±0.3e-1 3.3±0.2e1 2.1±0.2e-1 4.8 1 60 3.3±0.2e1 2.1±0.2e-1
f17-10d 800 1 1.35±0.07e1 3.2±0.3e-1 SEiso 1 1.5±0.1e1 2.2±0.2e-1 1.48±0.09e1 2.2±0.4e-1 4e1 1 50 1.4±0.1e1 2.4±0.3e-1
f17-20d 800 1 6.8±0.4 2.6±0.3e-1 SEiso 1e-2 6.5±0.2e1 -1.3±0.3e-1 6.9±0.5 2.2±0.3e-1 6.4e1 1 250 7.2±0.4 2±0.3e-1
f17-40d 400 1 3.4±0.2 2.2±0.3e-1 RQiso 5e-1 3.2±0.2 2±0.4e-1 4.1±0.3 1.3±0.2e-1 8e1 1e-3 40 3.3±0.2 2.3±0.3e-1
f18-05d 1200 1 5.2±0.3e2 4.9±0.3e-1 SEiso 2 8±1e2 2.4±0.2e-1 8.5±0.7e2 2.3±0.3e-1 5e1 1 500 9.2±0.08e2 2.3±0.2e-1
f18-10d 800 2 2.7±0.2e2 3±0.2e-1 SEiso 1 2.9±0.2e2 2.3±0.3e-1 2.9±0.3e2 2.3±0.2e-1 6e1 1 50 2.9±0.2e2 2.3±0.3e-1
f18-20d 1200 1 1.26±0.06e2 2.4±0.4e-1 SEiso 1e-2 1.06±0.03e3 -1.3±0.3e-1 1.41±0.05e2 2.2±0.2e-1 1e-3 1e-3 20 1.5±0.1e2 0±0
f18-40d 400 2 6.4±0.5e1 2.1±0.2e-1 RQiso 5e-1 6.5±0.4e1 1.9±0.2e-1 7.6±0.6e1 1.5±0.3e-1 8e1 1e-3 40 6.4±0.5e1 2±0.2e-1

f19-05d 800 50 5±0.3e2 5.2±0.2e-1 RQiso 5e-1 4.4±0.3e2 5.4±0.2e-1 4.8±0.3e2 5±0.2e-1 1e-2 1 500 1.08±0.08e3 0±0
f19-10d 2000 1 4.5±0.3e2 3.8±0.3e-1 RQiso 5e-1 4.4±0.3e2 3.9±0.3e-1 4.4±0.3e2 3.8±0.3e-1 1e-2 1 500 6.8±0.4e2 0±0
f19-20d 800 50 4.6±0.2e2 2.3±0.2e-1 RQiso 5e-1 4.3±0.3e2 2.7±0.2e-1 4.4±0.3e2 2.7±0.3e-1 1e-1 1 1000 5.9±0.3e2 0±0
f19-40d 800 50 4.3±0.3e2 1.6±0.3e-1 RQiso 5e-1 4.2±0.1e2 1.8±0.2e-1 5.1±0.3e2 1.3±0.4e-1 5 1 50 4.5±0.2e2 -1.3±0.3e-1

f20-05d 2000 1 1.2±0.8e-2 9.23±0.04e-1 SEiso 1 1.1±0.8e-2 9.35±0.04e-1 7±3e-2 8.5±0.06e-1 4.5 1e-3 1000 1.1±0.6e-2 9.13±0.06e-1
f20-10d 1800 1 8±1e-3 8.3±0.1e-1 SEiso 1e-1 3.5±0.7e-3 9.18±0.03e-1 1.2±0.2e-2 8.98±0.05e-1 8.6 1e-4 1150 3.8±0.5e-3 8.92±0.07e-1
f20-20d 1800 1 8.6±0.6e-3 7±0.1e-1 RQiso 5e-1 1.5±0.2e-3 9.01±0.04e-1 2.4±0.3e-3 9.1±0.05e-1 1.5e1 1e-4 800 1.8±0.2e-3 8.84±0.06e-1
f20-40d 800 5 6.9±0.5e-3 5.99±0.07e-1 RQiso 5e-1 7.7±0.6e-4 9.03±0.05e-1 8.3±0.7e-4 9.03±0.06e-1 8e1 1e-4 700 8.1±0.6e-4 9.02±0.06e-1

f21-05d 1600 1 1.4±0.2e2 5.7±0.3e-1 RQiso 5e-1 6.7±0.6e1 6.9±0.2e-1 2.5±0.3e2 1.9±0.5e-1 2 1 1800 9.6±0.09e1 6.1±0.2e-1
f21-10d 800 5 3±0.6e1 4.1±0.3e-1 SEiso 1 2.4±0.4e1 5.1±0.2e-1 3.1±0.6e1 3.9±0.2e-1 8 1 600 2.5±0.3e1 4.9±0.2e-1
f21-20d 800 10 3±0.4 3.5±0.3e-1 SEiso 1e-2 7.187±0.009e3 -2.1±0.1e-1 2.6±0.4 4.6±0.3e-1 8 1 800 2.4±0.4 4.4±0.3e-1
f21-40d 200 20 2.5±0.9e-1 2.9±0.3e-1 RQiso 5e-1 1.8±0.7e-1 5.3±0.3e-1 2±0.6e-1 4.8±0.3e-1 1.5e1 1e-3 400 2±0.7e-1 4.6±0.3e-1

f22-05d 1800 1 5.1±0.7e1 7.1±0.1e-1 SEiso 1 3.5±0.5e1 7.4±0.2e-1 1.3±0.2e2 4.1±0.3e-1 3 1 700 3.8±0.5e1 7±0.2e-1
f22-10d 800 2 9±0.3 5.3±0.3e-1 SEiso 1e-1 8±3 5.9±0.1e-1 1.1±0.3e1 5.1±0.3e-1 1e1 1 500 9±3 5.2±0.1e-1
f22-20d 800 10 7±1e-1 4.5±0.1e-1 SEiso 1e-2 7.385±0.005e3 -2.1±0.2e-1 6±1e-1 6±0.2e-1 5.8 1e-2 1500 6±1e-1 5.9±0.1e-1
f22-40d 200 20 5±1e-2 3.5±0.2e-1 RQiso 5e-1 3±0.8e-2 6±0.2e-1 3.6±0.8e-2 5.5±0.2e-1 2e1 1e-3 400 3.7±0.9e-2 5.2±0.1e-1

f23-05d 1200 1 6.7±0.3e1 3.7±0.2e-1 SEiso 5e-1 8.5±0.5e1 0±0 8.4±0.4e1 -1±3e-2 1e-3 1e-3 200 8.4±0.5e1 0±0
f23-10d 1000 1 4.1±0.2e1 2±0.4e-1 SEiso 1.2 4.5±0.2e1 1±40e-2 4.4±0.1e1 1±30e-2 1.2 1e-3 100 4.4±0.3e1 0±300
f23-20d 200 2 2.7±0.2e1 1±0.3e-1 SEiso 1e-2 2.63±0.07e2 -1±30e-2 2.9±0.2e1 2±4e-2 1e-3 1e-3 5 2.7±0.2e1 0±0
f23-40d 800 10 1.49±0.09e1 6±2e-2 RQiso 5e-1 1.54±0.07e1 2±2e-2 1.8±0.1e1 3±3e-2 5 1 50 1.5±0.1e1 1±30e-2

f24-05d 1200 1 4.5±0.4e2 7.2±0.1e-1 SEiso 1.2 2.7±0.2e2 7.67±0.1e-1 4.1±0.4e2 7.2±0.1e-1 5.5e1 1e-3 400 2.8±0.2e2 7.6±0.1e-1
f24-10d 800 2 2.3±0.1e3 6.4±0.1e-1 SEiso 7.5e-1 9±5e2 7.8±0.4e-1 9±0.05e2 7.7±0.1e-1 1.2e1 1e-3 300 7±0.5e2 7.94±0.09e-1
f24-20d 800 2 8.9±0.7e3 5.9±0.2e-1 RQiso 5e-1 1.8±0.1e3 8±0.1e-1 1.8±0.1e3 8±0.1e-1 8e1 1 300 1.8±0.2e3 8±0.1e-1
f24-40d 400 5 2.8±0.2e4 5.2±0.3e-1 RQiso 1 4.6±0.3e3 7.9±0.1e-1 4.5±0.4e3 7.9±0.1e-1 8e1 1e-3 400 5.8±0.4e3 7.6±0.1e-1

Table 3: The values of MSE and Kendall’s rank correlation coefficient for each dataset and that combination of model
parameters used in each considered method that lead to the minimal test-data MSE for the performed crossvalidation
of the respective dataset. The best results are shown in bold, the worst results in italics. Random forests parameters:
NT = number of trees, ML = minimum of data in leaves. Gaussian Processes parameters: CF = covariance function,
SN = noise level (hyperparameter, additional hyperparameters for GP covariance functions were omitted). Radial basis
functions parameters: SC = spread constant, EG = error goal, MAX = maximum neurons.
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Figure 2: An overview how long does it take to compute 10-fold cross validation for each regression model and each
of the considered dimensions of data. (a) Polynomial regression (quadratic) (b) Random forests (number of trees: 800,
minimum number of data in leaves: 1) (c) Radial basis function networks (spread constant: 5.5, mean square error goal:
1, maximal number of neurons: 500) (d) Gaussian processes (covariance functions: rational quadratic (isomorphic), noise
level: sn = 0.5, length-scale: ell = log(1.1), signal variance s f 2 = log(1), shape parameter: α = log(1.1))
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Dimension Method
Mean squared error Kendall’s rank correlation coefficient

GP RBF RF Polynom GP RBF RF Polynom

5

GP × 9 (3) 5 (3) 10 (6) × 8 (5) 4 (4) 10 (6)
RBF 1 (0) × 5 (3) 8 (6) 2 (0) × 2 (2) 8 (6)

RF 5 (5) 5 (5) × 8 (8) 6 (5) 8 (6) × 9 (8)
Poly 0 (0) 2 (0) 2 (0) × 0 (0) 2 (0) 1 (0) ×

10

GP × 6 (2) 5 (4) 8 (4) × 7 (3) 5 (5) 9 (6)
RBF 4 (0) × 6 (4) 9 (4) 3 (0) × 5 (4) 10 (3)

RF 5 (2) 4 (3) × 8 (5) 5 (4) 5 (4) × 7 (7)
Poly 2 (0) 1 (0) 2 (2) × 1 (0) 0 (0) 3 (2) ×

20

GP × 6 (2) 6 (5) 6 (3) × 8 (5) 5 (5) 5 (2)
RBF 4 (1) × 6 (4) 7 (1) 2 (1) × 5 (5) 2 (0)

RF 4 (3) 4 (3) × 5 (3) 5 (3) 5 (4) × 5 (4)
Poly 4 (1) 3 (2) 5 (3) × 5 (2) 8 (3) 5 (5) ×

40

GP × 7 (1) 7 (5) 8 (6) × 5 (3) 5 (5) 6 (4)
RBF 3 (1) × 7 (3) 8 (6) 5 (3) × 6 (5) 4 (3)

RF 3 (0) 3 (1) × 5 (5) 5 (4) 4 (2) × 5 (5)
Poly 2 (0) 2 (1) 5 (3) × 4 (1) 6 (2) 5 (5) ×

Summary

GP × 28 (8) 23 (17) 32 (19) × 28 (16) 19 (19) 30 (17)
RBF 12 (2) × 24 (14) 32 (17) 12 (4) × 18 (16) 24 (12)

RF 17 (10) 16 (12) × 26 (21) 21 (16) 22 (16) × 26 (24)
Poly 8 (1) 8 (3) 14 (8) × 10 (3) 16 (5) 14 (12) ×

Table 4: Results of experiments comparing 4 different models across 40 different data sets. For each model (in a row), we
entered the number of times the model was better than the other model (in a column) and we also added how many times
the result was significantly better on the significance level 0.05 (in the brackets).

not have the most significant wins. Based on the signifi-
cant wins, the best performing model were random forests.

With higher dimensions, when comparing the models
based on the MSE, we may notice that the results for
Gaussian processes and random forests are less significant.
Which is also the case with Kendall’s coefficient, where
the polynomial regression gets more wins with higher di-
mension.

Now we have a look at how long does it take to evaluate
10-fold cross validation for selected parameters settings
for each model (see Figure 2). With higher dimensions,
each method takes more time to evaluate. All the compu-
tations were performed on PC (x86-64) Intel Core i7 920
(4x 2.66 GHz + HyperThreading), 6 GB RAM.

4 Discussion and Conclusion

The figures and tables presented in Results compared four
different regression methods over 40 synthetic data sets
(10 functions × 4 different dimensions) generated using
standard benchmark functions for continuous black-box
optimization. We have shown how the performance of
these methods changes with increasing dimensionality and
how the time to cross-validate the models grows. We have
compared the methods based on the MSE and on Kendall’s
coefficient. We will now comment on each of them.

Gaussian process is probably the most complex method.
With its time complexity O(N3) it takes the longest time to
compute, some of the cross-validations, i.e. 10 construc-
tions of the model, took up to 24 hours. This model was

better then the others according to both MSE and Kendall’s
coefficient comparison.

Random forests ended up with poorer results for 40 di-
mensional data and overall they were slightly behind
Gaussian Processes based on the MSE. According to
Kendall’s coefficient results, they were comparable with
Gaussian processes and, according to the number of sig-
nificant wins, they even outperformed GP. With some data
sets (f19-10d, f20-05d), we have learnt 2000 trees out of
4500 samples. In these cases, we could have compare the
results with nearest neighbor method.

Radial basis functions network has the clearly poorer re-
sults compared to Gaussian processes and random forests
according to both the MSE and the Kendall’s coefficient.

Even though the polynomial regression was included
due to its importance as traditional response surface
model, the method was not always worse then all other
methods. For the dimensions 20 and 40, their MSE was
comparable to that of random forest. Also with higher di-
mensions, the results based on the Kendall’s coefficient
are comparable to both GP and RBF and it even outper-
formed RBF.

In this paper, we have compared a selection of non-
linear methods on synthetic data sets based on their mean-
squared error and on the Kendall’s rank correlation coeffi-
cient. We have chosen regression methods that have been
used as surrogate models in such optimization: radial ba-
sis function networks, Gaussian processes, random forests,
and polynomial regression. A better accuracy of the mod-
els suggests better applicability of the models as a surro-
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gate model for optimization. From the results we have
learnt that Gaussian processes had better results in most
cases, thus, would be better surrogate model compared to
the others, although random forests were only slightly be-
hind.
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