
Search for Structure in Audiovisual Recordings of Lectures and Conferences

Michal Kopp1, Petr Pulc1, and Martin Holeňa2

1 Faculty of Information Technology, Czech Technical University in Prague
Thákurova 9, 160 00 Prague

koppmic2@fit.cvut.cz, petrpulc@gmail.com
2 Institute of Computer Science, Czech Academy of Sciences

Pod Vodárenskou věží 2, 182 07 Prague
martin@cs.cas.cz

Abstract: With the quickly rising popularity of multime-
dia, especially of the audiovisual data, the need to under-
stand the inner structure of such data is increasing. In
this case study, we propose a method for structure discov-
ery in recorded lectures. The method consists in integrat-
ing a self-organizing map (SOM) and hierarchical clus-
tering to find a suitable cluster structure of the lectures.
The output of every SOM is evaluated by various levels
of hierarchical clustering with different number of clus-
ters mapped to the SOM. Within these mapped levels we
search for the one with the lowest average within-cluster
distance, which we consider the most appropriate number
of clusters for the map. In experiments, we applied the
proposed approach, with SOMs of four different sizes, to
nearly 16 000 slides extracted from the recorded lectures.

1 Introduction

In the past few decades, the amount of audiovisual data has
grown rapidly. Every day, modern technology is accessi-
ble to more and more people. With these modern devices,
such as smartphones or cameras, people are able to create
large amounts of audiovisual data. Growing popularity of
audiovisual data is the main reason why many new sites
containing such data are created. From the consumer’s
point of view, the main purpose of such a site is to find
a video concerning the topic they are interested in.

Usually, any video file that is being uploaded to some
video sharing site is annotated with some keywords by the
uploader. Beside that, it also contains some metadata such
as resolution, frame rate or length of the video. Conse-
quently, any search in the site is restricted to the keywords
provided by the uploader and/or some technical data about
the video. It does not rely on any relationship between the
contents of the videos themselves. This would need to first
discover some structure in the data available at the site.

We investigated the use of a self-organizing map
(SOM) [1], which is a kind of artificial neural network, for
clustering the videos with respect to their content. First,
some features are extracted from the videos and then the
map is built as a two-dimensional grid of neurons, so it can
be easily visualized. According to the training principle of
SOMs, the videos which are similar in their features are
placed close to each other in the map. Consequently, the

closer the videos represented by their respective vectors in
the map are, the more similar they should be.

The most simple clustering of the original data would
be based on individual neurons, i.e., all feature vectors
mapped to the same neuron would form one cluster. How-
ever, there is more information involved in the SOM than
could be represented by such a simple clustering. To have
a clue what SOM-based clustering would be most suitable,
we complement SOM with hierarchical clustering.

2 Related Work

Studies for utilizing SOM as a tool for clustering multime-
dia data were proposed in [3, 4]. In the PocketSOM [3],
the SOM is utilized for a creation of the map of songs.
The songs are characterized by their acoustic attributes us-
ing Rhythm Patterns [5]. These attributes are used for the
creation of a high dimensional vector of features which
represents the original song. The PocketSOM utilization
of the song’s acoustic attributes leads to the extraction of
many of these features. In [3], the extraction of the acous-
tic attributes generated more than thousand features. This
is quite similar to our approach to the multimedia cluster-
ing proposed in this paper. However, we included even
more features describing the content of multimedia files
because we were able to use more than one kind of fea-
tures due to the multimodality of our audiovisual data.

There are also some other differences, in particular be-
tween the main purpose of the PocketSOM and our clus-
tering method. The main purpose of the PocketSOM is
to provide the user with an ability to build his or her own
playlists. The user can choose the songs by virtually draw-
ing a path in the map. The songs which are mapped to the
nodes (neurons) on the path, are selected to be included
in the playlist and the user has to decide which of them
will be selected for the final playlist creation. It is quite
obvious that the user is involved a lot in the generation of
the playlists. However, our structure discovery method is
user-independent.

Till the SOM has been trained, PocketSOM and our ap-
plication of SOM proceed in a similar way. However, after
the map has been trained, PocketSOM starts involving the
user, whereas our application integrates the SOM with hi-
erarchical clustering.

J. Yaghob (Ed.): ITAT 2015 pp. 150–158
Charles University in Prague, Prague, 2015



Our method has also some similarities with the Music
Map [4], which also utilizes SOM for the music playlist
generation. Both, the Music Map and our application uti-
lize SOM to create a two dimensional map of similarities
in the input data. However, the purpose of each of both
applications is rather different. The Music Map is used
for playlist generation from a collection of songs. The
user’s preferences for the songs that should be included
in the playlist are transformed to an optimization criterion
for the path planing. Then the algorithm that traverses the
map and optimizes the criterion is executed, and the re-
sulting optimal path determines the generated playlist. Al-
though the user is not involved in the Music Map playlist
generation as much as in the PocketSOM playlist genera-
tion, the main idea remains the same – to provide the user
a possibility to create a playlist that corresponds to his or
her demands. In the Music Map, the trained SOM is used
as a background layer which is able to discover and pre-
serve some structure in the data, although the main pur-
pose is to traverse the map and generate the final product
– the playlist. Differently to the Music Map and Pocket-
SOM, our application does not primarily focus on any final
product generated from the map. It rather tries to discover
structure in the employed data.

There is also another difference between the Music Map
and our method – the dimensionality of the feature vector.
In the Music Map, every song is described by nine fea-
tures. However, in our application we use more than five
thousands features. This also means that the training of the
map takes much more time.

Studies utilizing SOM as a clustering tool were also pro-
posed in [6, 7]. In [6], a SOM is used as a one of the
clustering tools for the analysis of embryonic stem cells
gene expression data. The important difference compared
to our approach is that each neuron represents one cluster
with a strict boundaries, so there are as many clusters as
neurons in the SOM. Then it is easy to measure the within
cluster distance and between cluster distance to provide an
information about the overall clusters’ quality.

The study[7] deals with cluster quality evaluation. Sim-
ilarly as in [6], a SOM is used as a clustering tool where
every neuron corresponds to a one cluster and it is treated
this way when quality of a clustering solution is being
measured. Thus, the overall number of clusters is deter-
mined by the size of the 2-D map.

Our approach, on the other hand, relies on combining
the information from SOM with information from hierar-
chical clustering.

3 Case Study Audiovisual Data

The data in which we would like to search structure has
been created over the period of several years during the
Weeks of Science and Technology, a two-week science
festivals organized by the Czech Academy of Sciences.
Altogether, the data includes more than 100 hours of mul-
timedia content. For the purposes of further preprocessing

and data consistency, only lectures and their related con-
tent in the Czech language have been chosen.

All lectures were recorded with Mediasite recorder,
a platform maintained by Sonic Foundry, Inc. The idea be-
hind the Mediasite platform is to enable streaming of lec-
tures as easy as possible. The main element of the system
is Mediasite server which stores the lectures and streams
them to the internet. On the side of the lecturer, only audio
and video sources are connected to the device.

The data consist of three main modalities – synchro-
nized video with sound and slides from lecturer’s pre-
sentation. The slides are captured directly from the lec-
turer’s presentation through the VGA/DVI card of Media-
site, which is supplied with the same signal as the projec-
tor.

The signal input for the slides is continuously monitored
and any change to it above given threshold is considered as
a new slide. Mediasite stores the image alongside with the
timestamps of slide transition used for the synchronization
during playback.

Audio is recorded through Mediasite just as lecturer
speaks. It is synchronized with the video and slides by
the use of timestamps of slide transitions.

The Mediasite platform only provides a video signal in
the resolution up to 240 rows and the bitrate of 350Kbps.
However, for purpose of the lectures the high-definition
video is not necessary, because we have the slides in
a good resolution synchronized with the videos. Also, dur-
ing the lecture, there are usually not many changes hap-
pening on the scene, since only the lecturer is supposed to
move significantly.

4 Proposed Structuring Approach

4.1 Data Preprocessing

The multimedia data described in the previous section is
saved by the Mediasite system as audio, video and slides
files in their respective formats. However, for the purposes
of knowledge discovery in that data, including the discov-
ery of its inner structure, we need all the data to be prepro-
cessed to a suitable form. Because we have three modali-
ties in the data, we treated each one separately, so we can
apply appropriate feature extraction tools.

First, we used Optical Character Recognition (OCR)
system for the slides. The slides usually contain some text
related to the topic or the subtopic of the lecture, so an
OCR can give us a good insight into the content of the
slides. The downside of this approach are slides, which
contains, for example, just an image. For these slides OCR
often returns nothing. However, we still have the other
modalities we can rely on.

To this end, we used the OCR system Tesseract, which
is an open-source software made publicly available by
Google. The problem of the OCR output is that it some-
times contains a lot of unrecognized characters and mis-
spelled words, so a basic text processing was applied. All

Search for Structure in Audiovisual Recordings of Lectures and Conferences 151



punctuation is removed. To reduce the dimensionality of
the data before further processing, only the words found in
the spellchecking dictionary are considered. Also, a stem-
mer is applied.

Second, a speech recognition tool was used for the audio
files. Because we consider only lectures in the Czech lan-
guage, Google’s API for speech recognition, which sup-
ports this language, was used. The result of the API call
is a recognized speech converted to a text. To reduce mis-
spelled words and the dimensionality of the data, the same
methods as for OCR are applied, resulting in a text doc-
ument for every slide, aggregated from the OCR and the
speech recognition.

The text data returned from the speech and slide recog-
nition have to be transformed into term-by-document ma-
trices. For term weighting on cleaned text data, a tf-idf
(term frequency – inverse document frequency) scheme
has been used [9]:

Wt,d = (nt,d/maxt(nt,d)) · log2(nD/nD,t) (1)

where nt,d is the count of term t in document d, nD de-
notes the number of documents in the employed corpus
and nD,t is count of documents from the corpus that con-
tain at least one occurrence of term t. Logarithmic weight-
ing in idf part is used to not penalize relatively frequent
terms as much.

As the resulting matrices had tens of thousands of
columns and we would like to minimize the impact of the
curse of dimensionality, the Latent Semantic Analysis [8]
has been used. To this end, the k largest eigenvalues of
the term-by-document matrix of weights (1), correspond-
ing to the most significant concepts, and their associated
eigenvectors are found first. Let Uk, Σk and Vk be the ma-
trices resulting from the singular value decomposition of
the term-by-document matrix, and k denotes the number
of the largest eigenvalues.

To obtain dense matrices of significantly lower dimen-
sions, a concept-by-document matrix [10] is then com-
puted as:

Ck = ΣkV>k (2)

Third, the video is used by two different extraction
methods – Speeded Up Robust Features (SURF) and color
histogram. Both methods work with an image, so just one
frame from the center of the video’s time span related to
a slide is taken. SURF is used to find visual descriptors
in the image. We have almost 16 000 slides, therefore the
same number of images taken from the videos, and each of
these images produced nearly a hundred SURF descriptors
– summing up to over a million descriptors in total. To re-
duce the dimensionality, a dictionary of SURF descriptors
concepts was created by k-means clustering of the origi-
nal SURF descriptors with k empirically set to 400. Be-
cause the matrix of these 400 descriptor concepts was still
very sparse, we decided to cluster it even further, by hi-

erarchical clustering. This resulted in 32 final descriptor
concepts.

The histogram describes each image (taken from the
video) by count of pixels with certain color value in each
color channel. We use the RGB coding with 1 byte depth.
Each color count is relatively scaled to the size of the im-
age.

All three kinds of features are combined into feature
vectors, their resulting dimension is 5800 features.

4.2 Hierarchical Clustering

General purpose of clustering is grouping objects that are
similar into same group. There are 2 main kinds of clus-
tering – the number of clusters is a priori known or it is
unknown, in which case the clusters are formed hierarchi-
cally. Hierarchical clustering can also capture all levels of
similarities, with respect to how the similarity is defined.

The result of hierarchical clustering is a multilevel hier-
archy of clusters, where two clusters at one level are joined
as a cluster at the next level. At the bottom level every sin-
gle cluster corresponds to a single observation.

Decision, which clusters will be joined on the higher
level, is based on a similarity between these clusters,
which is measured in respect of a chosen distance met-
ric between observations / clusters at the previous level of
the cluster hierarchy and a linkage criterion. The distance
metric determines how similarity between two observation
is calculated, while the linkage criterion determines how
the distance metric is employed to calculate the similar-
ity between two clusters. The Euclidean distance and the
Ward’s criterion were chosen as the metric and the linkage
criterion in all our experiments. The Euclidean distance
was chosen because it the most common distance metric
being used. The Ward’s criterion (also called the minimum
variance criterion or the inner squared distance) was cho-
sen because it minimizes the total within-cluster variance
after a potential merge of the two clusters. This variance is
calculated as a weighted Euclidean distance between clus-
ters’ centers. The weight w is calculated as:

wr,s =

√
2nrns

(nr +ns)
(3)

where nr and ns are the number of elements in clusters r
and s.

4.3 SOM Clustering

Self-organizing map (or Self-organizing feature map)[1]
is a kind of an artificial neural network. The main idea
behind SOM is that it can preserve topological relations
of the input space, which is typically high-dimensional, in
a low dimensional map (typically 2-D). That means the
data which is similar in their original high-dimensional
input space is also similar in the map. Due to this char-
acteristics, the high-dimensional data whose relationships

152 M. Kopp, P. Pulc, M. Holeňa



are often very hard to visualize in the original high-
dimensional space can be relative easily visualized in the
low-dimensional map. SOM does not only learn the dis-
tribution of the input data, but it also learns a topology.

Since in all our experiments we used a 2-D map, which
is also the most common type of SOM, the following de-
scription will be restricted just to that specific case.

SOM consists of one layer of neurons which are orga-
nized in some regular topology according to a topology
function, which determines how the neurons in the map
are organized. Most common are the grid, hexagonal and
random topology. Also, a distance function, which mea-
sures some kind of distance between neurons needs to be
selected. Common distance functions are Euclidean dis-
tance, Manhattan distance or the length of the shortest path
between neurons.

Each neuron in the map is assigned a weight vector
which is of the same dimension as the input vectors. The
weight vectors are first initialized, most easily with sam-
ples from the input data or with small random values.

Training the SOM is an iterative process. In each itera-
tion, one sample vector X is selected and it is presented to
the map. A similarity between the selected feature vector
and all weight vectors in the map is calculated, usually as
Euclidean distance. The neuron that has the most similar
weight vector is selected as a winning neuron c.

When the winning neuron is found, the weight vectors
of the winning neuron and its neighbors are updated. They
are moved closer to the presented input vector, with de-
creasing magnitude of changes according to the growing
distance from the winning neuron. The update rule for
a neuron i with weight vector Wi(t) is:

Wi(t +1) =Wi(t)+α(t)θ(c, i, t)(X(t)−Wi(t)) (4)

where α(t) is learning rate, which is from the interval
(0,1) and it is decreasing with increasing iterations, and
θ(c, i, t) is the neighborhood function which depends on
the distance between the winning neuron c and the neu-
ron i, and may depend also on the iteration t.

Another possibilty for SOM training is the batch
algorithm[2]. In each epoch, this algorithm presents the
whole training data set to the network at once. The win-
ning neurons for all the input data are selected and each
weight vector is modified according to the position of all
the input vectors for which it is a winner or for which it is
in the neighborhood of a winner.

In our experiments with SOM, we used the MATLAB’s
Neural network toolbox implementation of SOM, which
uses the batch algorithm by default.

4.4 Integrating Hierarchical Clustering with SOM

During each epoch of the batch algorithm that is used in
the training process of the SOM, each vector of values of
input features is assigned to the neuron that is the win-
ner for that input feature vector. Thus, after the training

process is completed, each neuron in the map could be in-
terpreted as a cluster which is formed by a subset of the
input feature vectors, those for which it is a winner.

In many scenarios, for example in studies [6] and [7],
the output of SOM is interpreted in that way. However,
this means that every neuron in the map is interpreted as a
single cluster.

In this case study, we use a different approach – an in-
tegration of SOM and hierarchical clustering. First, we
train SOM with all the input feature vectors. The result-
ing map serves as a reference for all clustering solutions
obtained by cutting the cluster hierarchy. These solutions
are mapped to that reference SOM and then evaluated. Al-
gorithm 1 and the following paragraphs describe how the
average withing cluster distance of a clustering solution is
calculated.

Algorithm 1 An average within-cluster distance
map← trained SOM
S← clustering solution obtained by cutting cluster hier-
archy
for all c ∈ S do

WCD[c]←WITHINCLUSTERDISTANCE(map,c)
end for
SolutionAvgWCD← avg(WCD) //over all clusters c

function WITHINCLUSTERDISTANCE(map,c)
for each pair p of input vectors u,v ∈ c do

Nu← FINDNEURON(u,map)
Nv← FINDNEURON(v,map)
Dist[p]← dist(Nu,Nv)

end for
return avg(Dist) between all pairs

end function

function FINDNEURON(v, map)
return Neuron N in the map map to which the input
vector v is mapped.

end function

After the reference SOM has been created, hierarchi-
cal clustering is performed. The cluster hierarchy is cut
at many different levels and the clusters at the respective
level are used as a starting point to calculate the distance
between their respective vectors positioned in the map.
When evaluating a solution, all feature vectors that form
a cluster by hierarchical clustering are taken, the positions
of their respective neurons in the map are found and the
distance between each pair of them is calculated accord-
ing to the distance function used in the map. From these
distances between all pairs, we calculate the average dis-
tance, which is interpreted as a within-cluster distance.

From those within-cluster distances, an average dis-
tance of the whole solution is calculated. That average
distance is used as a measure of quality of each clustering
solution obtained by cutting the cluster hierarchy. We also
interpret it as a measure of similarity between the map out-

Search for Structure in Audiovisual Recordings of Lectures and Conferences 153



put and the hierarchical clustering output – the smaller the
within-cluster distance is, the more similar the outputs of
SOM and hierarchical clustering are. We also consider that
the more similar they are (the smaller the within-cluster
distance is), the better the number of clusters produced
from cutting the tree suits the map.

5 Experimental Evaluation

5.1 Evaluation Methodology

For our experimental evaluation, we need to train several
differently sized SOMs first. Data from all available lec-
tures has been used for the training to make the SOMs as
precise as possible. However, with 5800 features, the data
dimensionality is quite high and so is the number of fea-
ture vectors – 15953. Due to the time complexity of SOM
training and also with respect to the size of our data, only
relatively small maps were used. Namely, we considered
only the squared maps with sizes of 8×8, 12×12, 16×16
and 20×20 neurons. The number of training epochs was
set empirically, taking into account the time taken by the
training process, to 200 for the three smaller maps and 150
for the largest one.

Even though we need outputs from many levels of
the hierarchical clustering, the cluster hierarchy was con-
structed only once. It is important to realize that the hi-
erarchy must be constructed from the same set of feature
vectors as the SOMs to make the comparison possible. In
all considered clustering solutions, the same cluster hier-
archy was considered, cut at an appropriate level to obtain
a solution with the desired number of clusters.

A different number of clustering solutions for different
sized SOMs was used. We started comparison with hierar-
chical clustering output containing just a few clusters and
ended with an output containing three or for times more
clusters than the number of neurons present in the respec-
tive map. We also introduced different steps for increasing
the number of clusters, depending on the map size.

In Table 1, the empirically chosen values for of our ex-
periments are shown. The number of clusters range is an
interval which determines, together with the step size, how
many clustering solutions produced by cutting the tree
were evaluated.

SOM size # of clusters range step # of solutions
8×8 16 – 256 4 61

12×12 16 – 500 4 122
16×16 32 – 800 8 97
20×20 32 – 1000 8 122

Table 1: Settings used in the performed experiments

5.2 Evaluation Results

In this section we are going to use three types of figures to
illustrate the measured results. Because these figure types
are used repeatedly, their interpretation will be first shortly
described.

The first type shows the map topology (which is hexag-
onal in all our experiments) with a relative distribution of
the input feature vectors. Each neuron is represented as
a white hexagon with a blue patch. The bigger the blue
patch at each neuron is, the more feature vectors has been
mapped to that neuron. Also in smaller maps, the numbers
representing the total number of feature vectors mapped to
the neurons are shown in each hexagon.

The second type is a neighbor distances map. It shows
the distances between weight vectors of the neurons. The
small regular hexagons are the neurons and the lines con-
necting them represents their direct neighbor relations.
The colored patches between the neurons show how close
each neuron’s weight vector is to the weight vectors of its
neighbors. Color range varies from yellow to black, where
the darker color means the greater distance between the
weight vectors.

The third type is a figure showing an average within-
cluster distance depending on the number of clusters
produced from the hierarchical clustering, which were
mapped to the SOM as described in Section 4.4.

We started the evaluation with the smallest, 8× 8 map.
A relative distribution of the input feature vectors onto the
map is shown in Figure 1.

Figure 1: Relative distribution of the input feature vec-
tors alongside with the total numbers of vectors mapped to
each neuron in the 8×8 map.

From the distribution of feature vectors shown in Fig-
ure 1 we can see that from the total number of 15 953 fea-
ture vectors, there are 1854 feature vectors mapped to
a single neuron. That indicates that there are many quite
similar input vectors in the data. This is even more evident

154 M. Kopp, P. Pulc, M. Holeňa



when we look at the neurons in its neighborhood, which
are also quite a lot populated with the input vectors in con-
trast with the lower-left part of the map.

The neuron with the most mapped feature vectors has
them mapped more than twice as many as any other neuron
in this map. When we look at the input data, we find that
many different slides are mapped to this neuron.

Another reason for the large number of feature vectors
mapped to this neuron is that these feature vectors pro-
vide just one modality of the available input data. Namely,
nearly a half of input data mapped to this neuron seems
to be slides created from video playback or they are just
images without text. So, even though these slides look
different, the OCR produces little to no text, which can re-
sult in great similarity between them, depending on other
modalities.

These feature vectors also have in common that there
is little of recognized speech, thus they are very similar
in the speech-to-text modality. The only really important
difference in feature vectors is due to the SURFs and his-
tograms produced from one frame taken from the video,
but this difference can also be just a small one. In the case
of lectures, the majority of lecture halls seem very similar
– white walls and brown desks accompanied by projection
screen.

However, there are also some inputs mapped to this neu-
ron that seem to be typical examples of a lecture – a slide
with some text, video from lecture hall and an average
speech-recognized audio.

Quite interesting is that usually not the whole sequence
of similar input data from one lecture is mapped to this
neuron. However, the input data from the sequences,
which are not present in this neuron, are in the most cases
mapped to its direct neighbours. This behaviour supports
the idea of large clusters spread over more neighbouring
neurons.

In Figure 2, which shows the distances between neigh-
bors, we can see that the distances are the shortest be-
tween the neurons with the highest number of vectors.
Conversely, neurons in the lower-left corner are the most
distant from each other. When we look at the input data,
we find that the segments of video-recordings and associ-
ated slides projected during that segment indeed substan-
tially differ from the remaining segments of all recorded
lectures. First, the camcorder during the time span of re-
spective segment was set to shoot only the projected slide,
instead of the whole lecture hall. Second, the projected
slides in most cases were examples of web pages. More-
over, in 35 out of 42 slides mapped to the neuron in the
bottom-left corner, the examples of web pages were taken
from the Wikipedia, so they contain a lot of text and hy-
perlinks. The image taken from the video, containing just
a slide instead of the whole lecture hall, caused the visual
features and histogram to be very different. A lot of text
on a Wikipedia page instead of only few lines of text on
a typical slide caused the main difference in OCR.

Figure 3 shows that in the map of size 8× 8 neurons,

Figure 2: The neighbor distances in the 8×8 map.

Figure 3: A within-cluster distance, measured as the
length of the shortest path between neurons, dependent
on the number of clusters produced from the hierarchical
clustering, mapped to the 8×8 map.

an average within-cluster distance drops down to its local
minimal value when the cluster hierarchy is cut at an ap-
propriate level to form about a hundred clusters. It means
that the hierarchical clustering should produce more clus-
ters than the number of neurons in the map, which is
only 64.

Let us now pass to the 12× 12 and 16× 16 maps. In
Figures 4 and 7 we can see similar, one highly populated
neuron, like in the 8× 8 map. In bigger maps, the total
number of vectors mapped to that neuron is lower, but in
comparison to other neurons, the relative count is the same
or even higher.

Search for Structure in Audiovisual Recordings of Lectures and Conferences 155



Figure 4: Relative distribution of the input feature vec-
tors alongside with the total numbers of vectors mapped to
each neuron in the 12×12 map.

Figure 5: The neighbor distances in the 12×12 map.

In Figures 5 and 8, we can see that there are some
neurons, mostly on the left side of the map 5 and in the
top-center, lower-left and top-right corners in 8, that have
a large distance to their respective neighbors. The situation
is quite similar to that of the smaller map in Figure 2. The
darkest areas just moved around to another physical loca-
tion in each of those two maps, but the relationships seems
to be similar and those neurons tend to stay together.

It is also interesting, that in those larger maps a few neu-
rons are more distant from their respective neighbors than
others in their neighborhoods, which indicates that there
is some input data which is quite different from the rest in

Figure 6: A within-cluster distance, measured as the
length of the shortest path between neurons, dependent
on the number of clusters produced from the hierarchical
clustering, mapped to the 12×12 map.

Figure 7: Relative distribution of the input feature vec-
tors alongside with the total numbers of vectors mapped to
each neuron in the 16×16 map.

the most features. This can be seen in the map as a darker
“star” in a lighter neighborhood.

In Figures 6 and 9, which show the within-cluster dis-
tance dependence on the number of clusters formed by
cutting the cluster hierarchy, we can not find a clear lo-
cal minimum. The value of distance drops down quickly
with the increasing number of clusters, forming an elbow
in the figure, which is at just about a few less clusters than
is the number of neurons in the map.

Even though the most suitable number of clusters in the
map could not be define precisely this way when there is

156 M. Kopp, P. Pulc, M. Holeňa



Figure 8: The neighbor distances in the 16×16 map.

Figure 9: A within-cluster distance, measured as the
length of the shortest path between neurons, dependent
on the number of clusters produced from the hierarchical
clustering, mapped to the 16×16 map.

no distinct local minimum, locating an elbow on the curve
gives us a great possible candidate when we are searching
for a solution with a good average within-cluster distance
and the least number of clusters.

Finally, let us pass to the largest, 20×20 map. Figure 10
shows that there is still one neuron with significantly more
input vectors mapped to it than to any other neuron. A
great part of the map is low populated with feature vectors,
even though there are some neurons with small neighbor-
hoods which are populated a little more.

In Figure 11, we can see that the small area of neurons

Figure 10: Relative distribution of the input feature vec-
tors alongside with the total numbers of vectors mapped to
each neuron in the 20×20 map.

Figure 11: The neighbor distances in the 20×20 map.

distant from each other is still present, situated at the top
of the map, almost in the right corner. Alongside with
Figures 1, 4 and 7, we can also see that as the map grows,
there are more distant neurons and the whole map becomes
darker. This is due to the higher number of neurons which
allows more distinct input feature vectors to form their
own clusters.

The 20×20 map also has other interesting characteris-
tics. In Figure 12, there is once again a local minimum,
though in this case it can be found within the interval of
400 and 500 clusters. It seems that clustering solutions
produced by hierarchical clustering and clusters formed in

Search for Structure in Audiovisual Recordings of Lectures and Conferences 157



Figure 12: A within-cluster distance, measured as the
length of the shortest path between neurons, dependent
on the number of clusters produced from the hierarchical
clustering, mapped to the 20×20 map.

the map are very similar in that interval, because there is
exactly 400 neurons in this map.

6 Conclusion

The objective of this paper was to provide a proof of
concept for the possibility to improve structure discov-
ery in complex multimedia data through the integration of
two unsupervised approaches – hierarchical clustering and
self-organizing maps. For that proof of concept, we have
used a case study of more then 100 hours of audiovisual
recordings of lectures from several years of a Czech sci-
ence festival called Week of Science and Technology. The
approach we propose relies on the one hand on the flexibil-
ity and universality of hierarchical clustering, on the other
hand on the suitability of SOM for multimedia data, con-
vincingly documented by Pitoyo Hartono. Our approach
has been much inspired by his paper [4]. However, the
need to integrate SOM with hierarchical clustering is a
consequence of the fact that our data are much more com-
plex, both from the point of view of involved modalities,
and from the point of view of the number of attributes.

We have tested the proposed approach with 4 differently
sized self-organizing maps. Although space limitations
allowed us to present only two examples of the interpre-
taion of the obtained results in the context of the original
audio-visual data, even these examples indicate that SOMs
indeed help to recognize structure in that data. In the
first provided example, the SOM organized the most com-
mon data into a large cluster spread over few neighbour-
ing neurons and in the second example, the SOM discov-
ered a specific group among the nearly 16000 considered

segments of video-recordings and their associated slides,
which substantially differs from the others.

In the future, we want to further elaborate our approach,
taking into account the results obtained in the case study
presented here. We also intend to apply it to further com-
plex multimedia data sets, in particular to data nowadays
being collected within the project Open Narra at the Film
and TV School of the Academy of Performing Arts in
Prague.

Acknowledgement

The research reported in this paper has been supported by
the Czech Science Foundation (GAČR) grant 13-17187S.
Access to computing and storage facilities owned by par-
ties and projects contributing to the National Grid In-
frastructure MetaCentrum, provided under the programme
“Projects of Large Infrastructure for Research, Develop-
ment, and Innovations” (LM2010005), is greatly appreci-
ated.

References

[1] Kohonen, T.: Self-organized formation of topologically
correct feature maps. Biological Cybernetics 43 (1982),
59–69

[2] Kohonen, T.: Self-organizing maps. Springer Series in In-
formation Sciences, 1995, 2nd ed. 1997

[3] Neumayer, R., Dittenbach, M., Rauber, A.: PlaySOM and
PocketSOM player: alternative interfaces to large music
collections. In: Proceedings of the 6th International Con-
ference on Music Information Retrieval, 618–623, 2005

[4] Hartono, P., Yoshitake, R.: Automatic playlist generation
from self-organizing music map. Journal of Signal Process-
ing 17 (1) (2013), 11–19

[5] Rauber, A., Pampalk, E., Merkl, D.: Using psycho-acoustic
models and self-organizing maps to create a hierarchical
structuring of music by musical styles. In: Proceedings of
the 3rd International Symposium on Music Information Re-
trieval, 2002, 71–80,

[6] Chen, G., Jaradat, S. A., Banerjee, N., et al.: Evaluation and
comparison of clustering algorithms in analyzing ES cell
gene expression data. Statistica Sinica 12.1 (2002), 241–
262

[7] Lamirel, J. C., Cuxac, P., Mall, R., et al.: A new efficient
and unbiased approach for clustering quality evaluation.

[8] Deerwester, S. C., Dumais, S. T., Landauer, T. K., et al.: In-
dexing by latent semantic analysis. JASIS 41 (6) (1990),
391–407

[9] Ramos, J.: Using tf-idf to determine word relevance in doc-
ument queries. In: Proceedings of the First Instructional
Conference on Machine Learning, 2003

[10] Skopal, T., Moravec, P.: Modified LSI model for efficient
search by metric access methods. In: Advances in Informa-
tion Retrieval, 2005, 245–259

158 M. Kopp, P. Pulc, M. Holeňa


