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Abstract: Minimizing the number of function evaluations
became a very challenging problem in the field of black-
box optimization, when one evaluation of the objective
function may be very expensive or time-consuming. Gaus-
sian processes (GPs) are one of the approaches suggested
to this end, already nearly 20 years ago, in the area of gen-
eral global optimization. So far, however, they received
only little attention in the area of evolutionary black-box
optimization.

This work investigates the performance of GPs in the
context of black-box continuous optimization, using mul-
timodal functions from the CEC 2013 competition. It
shows the performance of two methods based on GPs,
Model Guided Sampling Optimization (MGSO) and GPs
as a surrogate model for CMA-ES. The paper compares
the speed-up of both methods with respect to the number
of function evaluations using different settings to CMA-
ES with no surrogate model.

1 Introduction

Evolutionary computation became very successful during
the past few decades in continuous black-box optimiza-
tion. In such optimization, we have no mathematical def-
inition of the optimized function available, thus we can
calculate analytically neither that function itself, nor its
derivatives. In such cases, there is no option but to em-
pirically evaluate the objective function through measure-
ments, tests or simulations.

In various real-world optimization problems, the eval-
uation of the objective function is very expensive or
time-consuming, e.g., protein’s folding stability optimiza-
tion [6], computer-assisted design [1] and job allocations
in a computational grid [13]. In such cases, we need to
keep the number of function evaluations as low as possi-
ble, without impairing the quality of expected results.

In this paper, we employ two approaches addressing that
task. The first, called Model Guided Sampling Optimiza-
tion (MGSO) [2], is one of the recent implementations of
GPs. The second employed approach is surrogate model-
ing, recalled in Subsection 2.2, which we will use in con-
junction with CMA-ES.

This work investigates the performance of both methods
on the set of niching functions from the CEC 2013 compe-
tition [10], characterized by a high number of local optima,

which makes evolutionary search for the global optimum
difficult because evolutionary algorithms (EAs) tend to get
trapped in one of the local optima.

The following section describes the theoretical funda-
mentals of GPs and introduces the MGSO method. It also
explains surrogate modeling and using GPs as a surrogate
model for CMA-ES. Section 3 presents results of exper-
imental evaluation of the considered methods. Section 5
summarizes the results and concludes the paper.

2 Gaussian Processes in Optimization

GP is a random process such that any finite sequence
X1, . . . ,Xk of the involved random variables has a multi-
variate Gaussian distribution. GP is defined by its mean
value and covariance matrix described by a function with
relatively small number of hyper-parameters, which are
usually fitted by the maximum likelihood method. Firstly,
GP is trained with N data points from the input space X,

XN = {xi|xi ∈ RD}N
i=1

with known input-output values (xN ,yN), then it is used
for predicting the (N + 1)-st point. The conditional den-
sity of the extended vector yN+1 = (y1, . . . ,yN ,yN+1), con-
ditioned on XN+1 = XN ∪{xN+1} is

p(yN+1|XN+1) =
exp(− 1

2 yT
N+1C−1

N+1yN+1)√
(2π)N+1det(CN+1)

,

where CN+1 is the covariance matrix of a (N + 1)-
dimensional Gaussian distribution. The covariance matrix
can be expressed as

CN+1 =

(
CN k
kT κ

)
,

where κ is the variance of the new point itself, k is is the
vector of covariances between the new point and training
data and CN is the covariance of the Gaussian distribution
corresponding to the N training data points [5].

Covariance functions provide prior information about
the objective function and express the covariance be-
tween the function values of each two data points xi,
x j as cov( f (xi), f (x j)) = k(xi,x j). Because the matrix
x1, . . . ,xN serves as a covariance matrix, it has to positive
semidefinite.
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2.1 Model Guided Sampling Optimization

MGSO has the ability to use a regression model for pre-
diction and error estimation in order to get the probabil-
ity of obtaining a better solution. It was inspired by two
previously proposed methods in the field of black-box op-
timization. The first method, Estimation of Distribution
Algorithms [9], creates a new set of solutions for the next
generation using estimated probability distribution from
previously selected candidate solutions. The second ap-
proach is surrogate modeling, described in Section 2.2.

MGSO was proposed as an alternative method for
Jones’ Efficient Global Optimization (EGO) [8]. Unlike
EGO, MGSO produces not a single solution, but a whole
population of solutions. The selection of candidate solu-
tions is performed by sampling the probability of improve-
ment (PoI) of the GP model, which serves as a measure of
how promising the chosen point is for locating the opti-
mum. PoI is determined by means of a chosen threshold T
and the estimation of the objective function shape by the
current GP model.

The crucial step in the MGSO algorithm is the sampling
of PoI, which is determined by the predicted mean f̂ (x) =
ŷ and the standard deviation ŝ(x) = sy of the GP model f̂
in any point x of the input space

PoIT (x) = Φ
(

T − f̂ (x)
ŝ(x)

)
= P( f̂ (x≤ T )),

which corresponds to the value of cumulative distribution
function of the Gaussian for the value of threshold T . Al-
though all the variables are sampled from Gaussian distri-
bution, PoI(x) is not Gaussian-shaped as it depends on the
threshold T and the modelled function f .

2.2 GP as Surrogate Model for CMA-ES

Surrogate modeling is a technique used in optimization in
order to decrease the number of expensive function eval-
uations. A surrogate model, which is a regression model
of suitable kind (in our case a GP), is constructed by train-
ing with known values of the objective function for some
inputs first, and then it is used by the employed evolution-
ary optimization algorithm instead of the original objective
function (in evolutionary optimization usually called fit-
ness) during the search for the global optimum. Although,
creating and training a model increases time complexity
of the optimization algorithm, using a model instead of
the original fitness function decreases the number of its
evaluations, which is a crucial objective in expensive opti-
mization.

Every regression model approximates the original fit-
ness function with some error. To prevent the optimiza-
tion from being mislead from such an erroneous approxi-
mation, it is necessary to use the original fitness function
for some subset of evaluations. That subset is determined
by the evolution control (EC) strategy [5].

An individual-based EC strategy consists in determin-
ing the subset of individuals evaluated by the original fit-
ness function in each generation. The following descrip-
tion is illustrated by Figure 1. Denote λ to be the size
of the population provided by CMA-ES. First, λ ′′ = αλ
points are sampled from N(m,σ2C), where α ∈ [0,1], m is
the mean, σ is the step-size and C stands for the covariance
matrix (1). These λ ′′ points are evaluated by the original
fitness function and included in training the model. Then,
the extended population λ ′= β (λ−λ ′′), where β ∈ [1,∞),
is sampled by a model using the same distribution (2). The
extended population is required by the model for choosing
promising points for re-evaluation by the original fitness
function. Subsequently, γ(λ−λ ′′) points, where γ ∈ [0,1],
are chosen according to some criterion from among the ex-
tended population, e.g. fitness value, and used in the evalu-
ation by the original fitness function (3). The complement
to λ points is gathered from the rest of the extended popu-
lation by dividing it into k = (1− γ)(λ −λ ′′) clusters and
selecting the best point from each cluster, which are also
evaluated by the original fitness function and added to the
final population (4) [3].

(1)
λ

λ ′′ = αλ λ −λ ′′

(2)

λ −λ ′′

β (λ −λ ′′)

(3)

β (λ −λ ′′)

λ ′′ γ(λ −λ ′′)

(4)

k

λ ′′ γ(λ −λ ′′) (1− γ)(λ −λ ′′)

λ

pre-sampled points
extended population
best points from the extended population
best points from each cluster

Figure 1: Individual-based EC

A generation-based EC strategy determines the num-
ber of model-evaluated generations between two genera-
tions evaluated by the original function. After a generation
is evaluated by the original fitness function, the model is
trained using the obtained values. The number of consec-
utive model-evaluated generations can be determined also
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dynamically, as introduced in so-called adaptive EC stra-
tegy [11], when the deviation between the original and the
model fitness function is assessed and then it is decided
whether to evaluate using the original fitness or the model.

Determining the most suitable EC parameters, however,
is an open problem, which depends on the properties of
the fitness function and the current performance of the
surrogate model. Moreover, the most suitable parameters
change during the optimization process.

3 Experimental Evaluation

Previous investigations compared the performance of
MGSO [2] and CMA-ES with GP surrogate model [4]
(denoted hereafter S-CMA-ES) with CMA-ES without
a model, using the standard black-box optimization bench-
marks [7]. In this work, we compare those methods using
an additional set of 12 multimodal fitness functions from
the CEC 2013 competition on niching methods for multi-
modal function optimization [10]:

• f1: Five-Uneven-Peak Trap (1D),
• f2: Equal Maxima (1D),
• f3: Uneven Decreasing Maxima (1D),
• f4: Himmelblau (2D),
• f5: Six-Hump Camel Back (2D),
• f6: Shubert (2D, 3D),
• f7: Vincent (2D, 3D),
• f8: Modified Rastrigin - All Global Optima (2D),
• f9: Composition Function 1 (2D),
• f10: Composition Function 2 (2D),
• f11: Composition Function 3 (2D, 3D, 5D, 10D),
• f12: Composition Function 4 (3D, 5D, 10D, 20D).

3.1 MGSO Performance

MGSO performance was examined using two covari-
ance functions, isotropic squared exponential (Kiso

SE) and
squared exponential with automatic relevance determina-
tion (Kard

SE ), with parameters shown in Table 1. The results
in Tables 2 and 3 show the speed-up of MGSO with respect
to CMA-ES. As can be seen, the Kiso

SE covariance function
performed better among these two in more than the half of
cases. Table 1 shows used parameter settings in our evalu-
ations.

3.2 S-CMA-ES Performance

The speed-up results are shown in Tables 2 and 3. In per-
formed evaluations, four covariance functions in the GP
surrogate model were used, two types of the squared ex-
ponential covariance function, the isotropic version

Kiso
SE(xi,x j) = σ2

f exp
(
− 1

2`2 (xi−x j)
>(xi−x j)

)
, (1)

S-CMA-ES
covariance
functions

cov ∈
{Kν= 5

2
Matérn,Kexp,Kiso

SE,K
ard
SE}

starting values
of (σ2

f , `)

(0.1,10) for Kiso
SE

(0.05×J1,D,0.1) for Kard
SE

(0.5,2) otherwise
starting values of σ2

n 0.01
MGSO

covariance
functions cov ∈ {Kiso

SE,K
ard
SE}

starting values
of (σ2

f , `)

(0.1,10) for Kiso
SE

(0.05× (J1,D),0.1) for Kard
SE

starting values of σ2
n 0.01

Table 1: Model parameter settings for S-CMA-ES and
MGSO performance testing. The symbols Kiso

SE, Kard
SE ,

Kexp, Kν= 5
2

Matérn, denote, respectively, the isotropic squared
exponential, squared exponential with automatic relevance
determination, exponential and Matérn with parameter
ν = 5

2 covariance functions. J1,D denotes the vector of
ones of length equal to the dimension D of the input space.

and the version using automatic relevance determination

Kard
SE (xi,x j) = σ2

f exp
(
−1

2
(xi−x j)

>λ−2(xi−x j)

)
,

(2)
where λ stands for the characteristic length scale which
measures the distance for being uncorrelated along xi. The
covariance matrices 1 and 2 differ only when λ is a diag-
onal matrix instead of a scalar. Two types of the Matérn
covariance function were used,

Kν= 1
2

Matérn(r) = exp
(
− r
`

)
, (3)

which is better known as exponential covariance function
(Kexp), and

Kν= 5
2

Matérn(r) = σ2
f

(
1+

√
5r
`

+
5r2

3`2

)
exp

(
−
√

5r
`

)
, (4)

where r = (xi−x j) and the parameter ` is the characteris-
tic length-scale with which the distance of two considered
data points is compared and σ2

f is the signal variance. The
description of the listed covariance functions can be found
in [12]. The considered covariance functions parameters
are shown in Table 1.

In the performed experiments, different variants of the
chosen EC strategies, described in Section 2.2, were exam-
ined, generation-based and individual-based. The result
are discussed in the following sections.

3.3 Generation-Based EC Strategy

Apart from covariance function selection, generation-
based EC strategy was determined by two other param-
eters, the number of model-evaluated generations and the
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multiplication factor of CMA-ES’ step size σ , which is
used in the original-evaluated generations in order to pro-
vide points for model training from a broader region of the
input space. In the implementation, the first parameter was
varied among the values 1, 2, 4 and 8 consecutive model-
evaluated generations and the second parameter was varied
among the values 1 and 2.

3.4 Individual-Based EC Strategy

Apart from covariance function selection, three other pa-
rameters, described in Section 2.2, were examined in the
case of individual-based EC strategy. The first parameter
α ∈ [0,1] determines the proportion of the original popula-
tion to be pre-sampled and evaluated by the original fitness
function. The second parameter β ∈ [1,∞) is a multiplica-
tor determining the size of extended population. The third
parameter γ ∈ [0,1] determines the amount of points with
the best model-fitness chosen from the extended popula-
tion to be re-evaluated by the original fitness function to
become a part of the final population. This parameter also
determines the number of clusters, where the best point is
chosen from each cluster and added to the final population.

In performed evaluations, the parameter α was varied
among the values 0, 0.0625, 0.125, and 0.25, the parameter
β was varied among the values 5 and 10 and γ was varied
among the values 0, 0.1 and 0.2.

4 Results and Their Assessment

4.1 Result Tables

Tables 2 and 3 show the speed-up of S-CMA-ES and
MGSO, compared to CMA-ES without a surrogate model.
For the respective targets (distances to the true optimum
∆ fopt), the speed-up of the expected running time (ERT) is
shown. ERT is the number of function evaluations needed
to reach the target divided by the ratio of the successful
runs, which reached the target. Stopping criteria: the dis-
tance 10−8 to the true optimum and 100D original fitness
function evaluations.

The first column in each box corresponds to the over-
all best settings (described in Section 4.2), the covari-
ance function and EC settings of S-CMA-ES using the
generation-based EC strategy in terms of the average
speed-up. The second column corresponds to the best co-
variance function and generation-based EC settings for
the respective function-dimension combination, if there
was any better than the overall best observed settings.
Analogously, the third and fourth columns show results
for S-CMA-ES using individual-based EC strategy. Simi-
larly, the last two columns in each box show the speed-up
of the MGSO.

Signs “-” instead of the speed-up values mean that, un-
like the CMA-ES, no run of the considered method (S-
CMA-ES or MGSO) was able to reach that target. Signs

“+” mean that, unlike the employed method, no CMA-
ES run was able to reach the target. Signs “*” mean that
neither the considered method nor CMA-ES were able to
reach the target. Speed-ups written in bold mark cases
where the S-CMA-ES’ or MGSO’s median of the ERT is
significantly lower than the median of the CMA-ES ac-
cording to the one-sided Wilcoxon’s test on the signifi-
cance level α = 0.05.

4.2 Observations

The MGSO method brought the highest speed-up in the
case of f 2, f 4, 3D version of f 7, 2D version of f 11 and
5D version of f 12. The worst results were observed in the
case of f 1, 2D version of f 10 and 3D and 10D versions of
f 12. The best results were achieved using Kiso

SE covariance
function, however, in the case of f 4 and 2D version of f 7
Kard

SE covariance function brought much better results.
In the case of the generation-based EC, the overall best

settings with respect to the median values are (Kiso
SE,8,1)

– 8 consecutive model-evaluated generations with un-
modified step size in combination with Kiso

SE covariance
function. The overall best generation-based EC settings
showed to be also the best generation-based EC settings
of the respective functions, except for 3D version of f 12,
where S-CMA-ES performed better using larger step size.
Using different covariance functions didn’t bring much
better results than the overall best covariance function.

The individual-based EC strategy achieved the best re-
sults with the overall settings (Kard

SE ,0,5,0.1) – squared ex-
ponential covariance matrix with automatic relevance de-
termination, no pre-sampling before training the model, 5
as the multiplicator determining the size of extended pop-
ulation and 0.1 as a multiplicator determining the amount
of best points chosen from the extended population. The
best results using described parameters were achieved in
the case of functions f 3 and 2D and 3D version of f 6.
However, the overall performance of the individual-based
EC strategy lags far behind the generation-based EC stra-
tegy, MGSO and even CMA-ES itself.

4.3 Best-Fitness Progress Diagrams

Figure 2 shows examples of the best-fitness progress with
the best observed settings (see Table 2 for details). Me-
dians and the first and third quartiles of the best fitness
reached are shown; medians and quartiles measured for
MGSO and S-CMA-ES on 15 and 10 independent runs
(for both EC strategies), respectively.

The optimization progress of the individual-based EC
strategy showed to be the slowest in comparison to other
methods. MGSO outperformed CMA-ES in most cases
and the highest speed-up was achieved in the later phase of
the optimization process. The generation-based EC stra-
tegy achieved the highest speed-up in the middle phase of
the optimization process. However, the generation-based
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f1 (1–D) f2 (1–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e1 00.90 01.00 01.00 00.17 00.14 1e-1 01.00 01.44 00.76 00.13 01.30
1e0 00.90 01.00 01.00 00.06 00.14 1e-2 01.41 02.54 00.30 00.10 03.30
1e-1 00.90 01.00 01.00 00.06 00.08 1e-3 01.85 02.54 00.12 00.86 01.08
1e-2 00.90 01.00 01.00 - 00.05 1e-4 03.11 03.75 - 01.73 01.73
1e-3 00.90 01.00 01.00 - 00.05 1e-5 04.04 04.49 - - 02.25
1e-4 00.90 01.00 01.00 - - 1e-6 04.34 04.83 - - 02.37
1e-5 00.90 01.00 01.00 - - 1e-7 12.95 13.57 - - 08.05
1e-6 00.90 01.00 01.00 - - 1e-8 12.21 15.23 - - 16.78
1e-7 00.90 01.00 01.00 - -
1e-8 00.90 01.00 01.00 - -

param: (Kiso
SE, 8, 1) (Kard

SE , 8, 1) (Kard
SE , 0, 5, 0.1) Kiso

SE Kard
SE param: (Kiso

SE, 8, 1) (Kard
SE , 8, 1) (Kard

SE , 0, 5, 0.1) (Kv=5
2

Matérn, 2−2, 10, 0.2) Kiso
SE

f3 (1–D) f4 (2–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e-1 02.44 00.52 00.45 01.83 1e2 00.54 01.00 00.16 00.11 00.35 00.35
1e-2 05.71 01.44 01.51 02.13 1e1 01.24 01.63 00.17 00.44 01.55 01.55
1e-3 21.36 07.12 17.80 09.49 1e0 02.59 03.52 - 01.26 02.20 04.00
1e-4 18.41 07.12 - 08.63 1e-1 02.74 03.47 - - 01.97 02.62
1e-5 20.07 07.76 - 09.41 1e-2 02.99 03.66 - - 02.44 03.25
1e-6 20.07 07.76 - 09.41 1e-3 03.91 05.00 - - 03.58 04.57
1e-7 * * * * 1e-4 04.45 05.22 - - 04.52 04.68
1e-8 * * * * 1e-5 13.44 14.83 - - 00.67 13.23

1e-6 17.63 20.10 - - - 18.12
1e-7 + + * * * +
1e-8 + + * * * +

param: (Kiso
SE, 8, 1) (Kard

SE , 0, 5, 0.1) (Kexp, 0, 5, 0.2) Kiso
SE param: (Kiso

SE, 8, 1) (Kexp, 8, 1) (Kard
SE , 0, 5, 0.1) (Kexp, 2−2, 5, 0.1) Kiso

SE Kard
SE

f5 (2–D) f6 (2–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e0 01.00 00.12 00.09 00.65 00.65 1e2 01.18 01.18 - 01.74 03.04 02.03
1e-1 01.72 00.05 00.08 00.80 00.80 1e1 04.97 04.20 - - 00.36 02.21
1e-2 03.28 - 00.70 01.52 01.52 1e0 07.16 08.40 - - - 01.80
1e-3 02.95 - - 01.51 01.92 1e-1 + + * * * +
1e-4 03.27 - - 01.96 02.48 1e-2 + + * * * +
1e-5 03.74 - - 02.55 03.23 1e-3 + + * * * +
1e-6 * * * * * 1e-4 + + * * * +
1e-7 * * * * * 1e-5 * * * * * *
1e-8 * * * * * 1e-6 * * * * * *

1e-7 * * * * * *
1e-8 * * * * * *

param: (Kiso
SE, 8, 1) (Kard

SE , 0, 5, 0.1) (Kv=5
2

Matérn, 0, 10, 0.2) Kiso
SE Kard

SE param: (Kiso
SE, 8, 1) (Kard

SE , 4, 1) (Kard
SE , 0, 5, 0.1) (Kard

SE , 0, 10, 0) Kiso
SE Kard

SE
f6 (3–D) f7 (2–D)

∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e4 01.00 01.00 01.00 00.27 1e-2 03.28 02.93 00.05 00.43 00.14 01.02
1e3 17.55 - 07.42 04.53 1e-3 04.42 04.81 - - 00.27 00.54
1e2 07.72 - - 04.06 1e-4 05.63 06.09 - - - 00.52
1e1 05.96 - - - 1e-5 07.91 07.91 - - - 01.45
1e0 + * * * 1e-6 16.24 16.24 - - - 03.39
1e-1 + * * * 1e-7 65.25 68.62 - - - 11.29
1e-2 + * * * 1e-8 + + * * * +
1e-3 + * * *
1e-4 + * * *
1e-5 + * * *
1e-6 + * * *
1e-7 + * * *

param: (Kiso
SE, 8, 1) (Kard

SE , 0, 5, 0.1) (Kard
SE , 0, 10, 0.1) Kiso

SE param: (Kiso
SE, 8, 1) (Kexp, 8, 1) (Kard

SE , 0, 5, 0.1) (Kard
SE , 2−4, 10, 0) Kiso

SE Kard
SE

f7 (3–D) f8 (2–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e-1 03.15 00.03 01.28 01.14 1e0 02.68 02.68 - 00.96 01.68 01.68
1e-2 05.26 - - 01.56 1e-1 03.91 03.91 - - 02.22 02.22
1e-3 10.36 - - 03.16 1e-2 04.46 04.79 - - 03.20 03.20
1e-4 13.33 - - 04.95 1e-3 07.15 07.65 - - 03.29 03.29
1e-5 64.47 - - 22.83 1e-4 12.95 13.74 - - 05.61 06.73
1e-6 + * * + 1e-5 22.40 24.85 - - 11.39 13.53
1e-7 + * * + 1e-6 + + * * + +
1e-8 + * * + 1e-7 + + * * + +

1e-8 + + * * + +

param: (Kiso
SE, 8, 1) (Kard

SE , 0, 5, 0.1) (Kv=5
2

Matérn, 0, 10, 0) Kiso
SE param: (Kiso

SE, 8, 1) (Kv=5
2

Matérn, 8, 1) (Kard
SE , 0, 5, 0.1) (Kexp, 2−4, 5, 0) Kiso

SE Kard
SE

Table 2: Speed-up of S-CMA-ES using individual- and generation-based strategies and MGSO, compared to CMA-ES
without a surrogate model – functions f 1− f 10 (see Section 4.1 for details). Empty columns signify that the best observed
settings for the respective function-dimension combination are identical with the overall best observed settings.
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f9 (2–D) f10 (2–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e1 03.40 02.74 - 00.10 01.06 1e2 01.98 01.76 00.03 00.26 00.39
1e0 03.38 03.11 - 00.07 01.15 1e1 02.29 02.62 - - 00.46
1e-1 03.82 03.82 - - 01.53 1e0 03.01 03.21 - - 00.07
1e-2 04.35 04.35 - - 01.52 1e-1 03.71 04.00 - - -
1e-3 07.80 07.80 - - 02.68 1e-2 06.15 07.02 - - -
1e-4 22.40 23.56 - - 08.54 1e-3 18.28 21.88 - - -
1e-5 + + * * + 1e-4 + + * * *
1e-6 + + * * + 1e-5 + + * * *
1e-7 + + * * + 1e-6 + + * * *
1e-8 + + * * * 1e-7 + + * * *

1e-8 + + * * *

param: (Kiso
SE, 8, 1) (Kard

SE , 8, 1) (Kard
SE , 0, 5, 0.1) (Kard

SE , 2−4, 5, 0) Kiso
SE param: (Kiso

SE, 8, 1) (Kv=5
2

Matérn, 8, 1) (Kard
SE , 0, 5, 0.1) (Kard

SE , 0, 10, 0) Kiso
SE

f11 (2–D) f11 (3–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e2 03.92 03.38 00.04 01.06 01.24 1e3 00.53 01.00 01.00 01.00 00.27
1e1 03.69 03.69 - - 01.43 1e2 02.51 03.04 - - 01.33
1e0 04.63 05.01 - - 02.32 1e1 03.04 03.38 - - 01.41
1e-1 05.19 05.19 - - 03.18 1e0 03.12 03.47 - - 01.85
1e-2 08.70 09.23 - - 02.51 1e-1 03.90 04.33 - - 01.71
1e-3 12.06 14.04 - - 03.72 1e-2 05.95 07.21 - - 02.19
1e-4 59.40 65.25 - - 18.46 1e-3 27.83 32.15 - - 11.06
1e-5 + + * * + 1e-4 + + * * +
1e-6 + + * * * 1e-5 + + * * +
1e-7 + + * * * 1e-6 + + * * +
1e-8 + + * * * 1e-7 + + * * *

1e-8 + + * * *
param: (Kiso

SE, 8, 1) (Kard
SE , 8, 1) (Kard

SE , 0, 5, 0.1) (Kiso
SE, 2−4, 10, 0) Kiso

SE param: (Kiso
SE, 8, 1) (Kexp, 8, 1) (Kard

SE , 0, 5, 0.1) (Kard
SE , 0, 5, 0) Kiso

SE
f12 (3–D) f11 (5–D)

∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e2 02.05 01.72 00.37 00.27 00.91 00.46 1e2 03.02 - 01.36
1e1 01.42 02.27 - 00.67 00.31 00.63 1e1 03.24 - 01.51
1e0 - 02.28 - - 00.48 00.65 1e0 04.37 - 01.96
1e-1 - 02.76 - - - - 1e-1 09.79 - 03.12
1e-2 - 03.78 - - - - 1e-2 27.12 - 07.51
1e-3 - 19.56 - - - - 1e-3 47.82 - 13.17
1e-4 * + * * * * 1e-4 + * +
1e-5 * + * * * * 1e-5 + * *
1e-6 * + * * * * 1e-6 + * *
1e-7 * + * * * * 1e-7 + * *
1e-8 * + * * * * 1e-8 + * *

param: (Kiso
SE, 8, 1) (Kard

SE , 8, 2) (Kard
SE , 0, 5, 0.1) (Kv=5

2
Matérn, 0, 10, 0.1) Kiso

SE Kard
SE param: (Kiso

SE, 8, 1) (Kard
SE , 0, 5, 0.1) Kiso

SE
f11 (10–D) f12 (5–D)

∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e3 00.89 01.14 00.17 00.64 00.27 1e2 01.64 01.70 - 00.04 00.78
1e2 03.65 04.11 - - 01.05 1e1 05.60 06.61 - - 04.73
1e1 08.51 09.35 - - 02.61 1e0 19.24 33.01 - - 28.86
1e0 09.78 10.59 - - 02.10 1e-1 + + * * +
1e-1 20.02 21.50 - - - 1e-2 + + * * +
1e-2 + + * * * 1e-3 + + * * +
1e-3 + + * * * 1e-4 + + * * *
1e-4 + + * * * 1e-5 + + * * *
1e-5 + + * * * 1e-6 + + * * *
1e-6 + + * * * 1e-7 + * * * *
1e-7 * + * * * 1e-8 * * * * *
1e-8 * * * * *

param: (Kiso
SE, 8, 1) (Kv=5

2
Matérn, 8, 1) (Kard

SE , 0, 5, 0.1) (Kiso
SE, 2−4, 5, 0) Kiso

SE param: (Kiso
SE, 8, 1) (Kard

SE , 4, 1) (Kard
SE , 0, 5, 0.1) (Kiso

SE, 2−2, 5, 0) Kiso
SE

f12 (10–D) f12 (20–D)
∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO ∆ fopt S-CMA-ES - generation EC S-CMA-ES - individual EC MGSO
1e2 08.98 - 01.88 02.02 1e3 01.39 00.05 00.18 00.42
1e1 06.83 - - 01.05 1e2 02.73 - - 00.03
1e0 17.61 - - - 1e1 07.24 - - -
1e-1 + * * * 1e0 59.06 - - -
1e-2 + * * * 1e-1 + * * *
1e-3 + * * * 1e-2 + * * *
1e-4 + * * * 1e-3 + * * *
1e-5 + * * * 1e-4 + * * *
1e-6 * * * * 1e-5 + * * *
1e-7 * * * * 1e-6 * * * *
1e-8 * * * * 1e-7 * * * *

1e-8 * * * *
param: (Kiso

SE, 8, 1) (Kard
SE , 0, 5, 0.1) Kiso

SE Kard
SE param: (Kiso

SE, 8, 1) (Kard
SE , 0, 5, 0.1) (Kiso

SE, 0, 10, 0) Kiso
SE

Table 3: Speed-up of S-CMA-ES using individual- and generation-based strategies and MGSO, compared to CMA-ES
without a surrogate model – functions f 11− f 20 (see Section 4.1 for details). Empty columns signify that the best
observed settings for the respective function-dimension combination are identical with the overall best observed settings.
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EC strategy generally brought the best results, it was out-
performed by MGSO in the case of 2D version of f 8 and
5D version of f 12 in the later phase of the optimization
process.

5 Conclusion

In this paper, two optimization approaches based on Gaus-
sian processes were tested on the set of multimodal fitness
functions from the CEC 2013 competition [10], and were
compared to the state-of-the-art evolutionary approach in
black-box optimization, CMA-ES. One of them is Model
Guided Sampling Optimization [2], the other approach, S-
CMA-ES [5], consists in using GP as a surrogate model
for CMA-ES. The performance of the methods was com-
pared with respect to the number of function evaluations.

In the case of S-CMA-ES, two evolution control strate-
gies were used, the individual- and generation-based. Al-
though S-CMA-ES using generation-based EC strategy
outperformed MGSO, both methods showed the perfor-
mance improvement in most cases. On the other hand,
the individual-based EC strategy brought the worst re-
sults of all considered methods. We also observed, that S-
CMA-ES performs better using generation-based EC set-
ting with more consecutive model-evaluated generations.
Isotropic squared exponential covariance function showed
to be the most suitable for the optimization from all tested
covariance functions.

This is a work in progress that is a part of a broader
ongoing research. Terefore, it would be premature to draw
deeper conclusions at this stage. We hope to be able to
draw such conclusions after further investigations will be
performed in the future.
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[3] Bajer, L., Holeňa, M.: Two gaussian approaches to black-
box optomization. CoRR, abs/1411.7806, 2014

[4] Bajer, L., Pitra, Z., Holeňa, M.: Benchmarking Gaus-
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