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Abstract
In belief revision, the result of a contraction should
be a logically closed set (closure) such that the in-
put is not inferred (success). Traditionally, these
two postulates depend on the same consequence
operator.
The present work investigates the consequences of
using two different consequence operators for each
of these desiderata: the classic Cn to compute suc-
cess and a second weaker operator to compute the
closure. We prove a representation theorem and
some other properties for the new contraction.

1 Introduction
Belief revision is the branch of knowledge representation that
deals with the dynamics of epistemic states. In their semi-
nal paper [Alchourrón et al., 1985], Alchourrón, Gärdenfors
and Makinson proposed to represent the epistemic state of an
agent as a logically closed set of propositions called belief
sets. The authors focus on three main epistemic operations
over belief sets: expansion, contraction and revision. Expan-
sion is the simple addition of a proposition to the epistemic
state, contraction is the removal of a proposition and revision
is the consistent addition of a proposition. Each of this oper-
ations is characterized by a set of rationality postulates.

Consider, for example, the following postulates for con-
traction:

(closure) K − α = Cn(K − α)

(success) If α /∈ Cn(∅), then α /∈ Cn(K − α)

Closure guarantees the resulting epistemic state to be rep-
resented as a logically closed set of propositions, i.e., the re-
sult of contracting a belief set is also a belief set. Success
guarantees that the removed proposition α is no longer im-
plied by the new belief set, unless it is a tautology.

Hansson in [Hansson, 1992a] suggests a generalization of
the AGM framework where the epistemic state is not nec-
essarily closed under logical consequences. Although in his
work epistemic states are represented as arbitrary sets of sen-
tences called belief bases (i.e. closure is not necessarily sat-
isfied), the removal of a sentence in contraction is still eval-
uated against the closure of the belief base (i.e. success is

satisfied). Hence, in belief base contraction there is a dis-
tinction between the sentences in the base and the sentences
inferred from the base. Especially in computer science, be-
lief base revision is very useful since computing the logical
closure of a set may be hard if possible at all.

Operations in belief bases, however, have some undesirable
properties due to the fact that equivalent sentences may be
treated differently. In the present work we explore the conse-
quences of keeping both closure and success where the conse-
quence operations in these two postulates do not necessarily
coincide. More precisely, we assume that closure is guaran-
teed only for a weaker consequence operation. This weaker
notion of consequence may be easy to compute and at the
same time useful to avoid some undesirable consequences of
belief base operations.

Throughout this paper, we consider the language of classi-
cal propositional logic, closed under the usual boolean con-
nectives.

We call consequence operator a function that takes sets of
formulas into sets of formulas. A consequence operator C is
Tarskian if and only if it satisfies:

(inclusion) A ⊆ C(A)

(idempotence) C(A) = C(C(A))

(monotonicity) If A ⊆ B then C(A) ⊆ C(B)

Cn denotes the classical consequence operator and ` de-
notes the associated relation: A ` α stands for α ∈ Cn(A).

Lowercase Latin letters (p, q, r) stand for atoms, lower-
case Greek letters (α, β) stand for formulas, uppercase Latin
letters (A, B, K) stand for sets of formulas.

The rest of the paper is structured as follows. A brief
overview of classical belief revision is given in Section 2.
Section 3 presents pseudo-contractions, the kind of operation
we are exploring in this paper. In Section 4, we describe our
proposal, depicting it with examples in Section 5. Section 6
highlights some previous works that are related to ours. We
delineate our conclusions in Section 7. Proofs for theorems
and propositions are found in the Appendix.

2 AGM Paradigm
In the AGM paradigm [Alchourrón et al., 1985], belief states
are typically represented by sets of sentences closed under



logical consequence, the so-called belief sets. Three change
operations were initially defined: expansion, contraction and
revision. Expansion is the simple addition of a new sentence,
followed by logically closing the resulting set, i.e, K + α =
Cn(K ∪ {α}). In the case of contraction, we have a class
of operations, all delimited by rationality postulates that they
should satisfy. LetK be a belief set and α and β be formulas.
The original AGM basic postulates for contraction are:

(closure) K − α = Cn(K − α)

(success) If α 6∈ Cn(∅), then α 6∈ K − α

(inclusion) K − α ⊆ K

(vacuity) If α 6∈ K, then K − α = K

(recovery) K ⊆ (K − α) + α

(extensionality) If Cn(α) = Cn(β), thenK−α = K−β

Note that in the presence of closure, we can use α 6∈ K−α
or α 6∈ Cn(K − α) interchangeably in the success postulate.

AGM revision is usually defined from contraction and ex-
pansion by means of the Levi identity:

K ∗ α = (K − ¬α) + α

Therefore, in this paper we will focus on contraction.
Besides defining rationality postulates for contraction, Al-

chourrón et al.[1985] have also proposed a construction for
a contraction operation. Partial meet contraction is based on
the notion of a remainder set, the set of all maximal subsets
that do not imply the element that is to be contracted. For-
mally:

Definition 1 Let B be a set and α a formula. The remainder
set B⊥α is such that X ∈ B⊥α if and only if:

• X ⊆ B
• X 0 α
• For all sets Y , if X ⊂ Y ⊆ B, then Y ` α

Definition 2 A function γ is a selection function for the set
B if and only if:

• If B⊥α 6= ∅ then ∅ 6= γ(B⊥α) ⊆ B⊥α
• Otherwise, γ(B⊥α) = {B}

Definition 3 Let γ be a selection function for a set of sen-
tences B. The partial meet contraction of B by a sentence α
is given by B − α =

⋂
γ(B⊥α).

The partial meet operation previously defined can be ap-
plied directly over belief bases, in such a way that it satisfies
the following postulates:

(success) If α /∈ Cn(∅), then α /∈ Cn(B − α)

(inclusion) B − α ⊆ B

(relevance) If β ∈ B \ (B − α), then there is a B′ such
that B−α ⊆ B′ ⊆ B, α /∈ Cn(B′), but α ∈ Cn(B′ ∪{β})

(uniformity) If for all B′ ⊆ B, α ∈ Cn(B′) if and only if
β ∈ Cn(B′), then B − α = B − β

Furthermore, we have the following representation theo-
rem:

Theorem 4 [Hansson, 1992b] An operation is a partial meet
contraction over belief bases if and only if it satisfies the pos-
tulates of success, inclusion, relevance and uniformity.

For logically closed sets, both characterizations are equiv-
alent (this is true for classical logics, for other cases, cf.
[Ribeiro et al., 2013]) in the sense that all initial AGM pos-
tulates are consequence of the postulates for bases [Hansson,
1999].

3 Pseudo-Contractions
Contraction operators on belief sets can be generated from
operations on belief bases. As an example, one can define a
contraction operator for belief sets as K ÷ α = Cn(B − α),
where K = Cn(B) and − is a base contraction operator. If
− is a partial meet base contraction, ÷ satisfies five of the six
AGM postulates, but not recovery.

In [Hansson, 1989] a weakening of the inclusion postulate
was proposed, called logical inclusion.

(logical inclusion) Cn(B − α) ⊆ Cn(B)

Hansson has suggested to call operations that satisfy suc-
cess and logical inclusion pseudo-contractions.

Nebel has proposed a pseudo-contraction for bases that
generates a contraction that satisfies all the six AGM postu-
lates [Nebel, 1989].

Definition 5 Let
∧
B be the conjunction of all elements of

B. Nebel’s pseudo-contraction for the set B is the operator
− such that for all sentences α:

B − α =

{
B if α ∈ Cn(∅)⋂
γ(B⊥α) ∪ {α→

∧
B} otherwise

Although the belief set operation generated from Nebel’s
pseudo-contraction satisfies all the AGM postulates, it adds
unnecessary information to the base. As shown in [Ribeiro
and Wassermann, 2008], it suffices to add {α →

∧
B′},

whereB′ = B\
⋂
γ(B⊥α). As already noted in [Ribeiro and

Wassermann, 2008], there is no other intuition behind Nebel’s
operation than maintaining recovery, a postulate which has
been deemed as polemic already since the 80’s [Makinson,
1987].

In this work we want to further explore the possibility of
working with belief bases with logical inclusion, allowing for
some syntax independence without having to resort to belief
sets.

4 Between Belief Sets and Belief Bases
As stated earlier, the direct application of partial meet con-
traction over closed belief sets and over belief bases creates
problems of practical (computational infeasibility) and the-
oretical (syntax dependence) nature, respectively. One of
the aims of this study is to assess the effects of doing the



traditional partial meet contraction on belief bases closed
by a consequence operation that is between the classical
consequence operator and the identity (i.e., the base itself).
Hence, we will assume that this operator (here called Cn∗) is
Tarskian.

We will study the properties of the application of the par-
tial meet contraction over a set closed under Cn∗, i.e., the
operator defined as:

Definition 6 LetB be a set of sentences,Cn∗ a function from
sets of sentences to sets of sentences and γ a selection func-
tion for Cn∗(B). The operator −∗ is such that, for all sen-
tences α:

B −∗ α =
⋂
γ(Cn∗(B)⊥α)

Notice that B−∗ α =
⋂
γ(Cn∗(B)⊥α) = Cn∗(B)−γ α,

where −γ is the partial meet contraction. Since −γ satisfies
the postulates of success, inclusion, relevance and unifor-
mity, it follows directly (details in the Appendix) that−∗ sat-
isfies success and:

(inclusion∗) B − α ⊆ Cn∗(B)

(relevance∗) If β ∈ Cn∗(B) \ (B − α), then there is a
B′ such that B − α ⊆ B′ ⊆ Cn∗(B), α /∈ Cn(B′), but
α ∈ Cn(B′ ∪ {β})

(uniformity∗) If for allB′ ⊆ Cn∗(B), α ∈ Cn(B′) if and
only if β ∈ Cn(B′), then B − α = B − β

For several applications it is important that the construction
satisfies the original success postulate, and not only a starred
version of it:

(success∗) If α /∈ Cn(∅), then α /∈ Cn∗(B − α)

We want that the sentence to be contracted ceases to be
logically (classically) implied by the resulting set after the
contraction. In this case, the role of the logic Cn∗ is just to
give a degree of syntactic independence to the operation.

As our purpose here is to make the contraction on a set
closed by aCn∗ that does not generate as many consequences
as the classic Cn, the following property is desirable:

(subclassicality) Cn∗(A) ⊆ Cn(A)

Clearly, if Cn∗(A) = A (identity), we have that −∗ is the
usual operation of partial meet contraction on bases. Simi-
larly, for all Tarskian Cn∗ that also satisfies subclassicality,
applying −∗ to belief sets (i.e., K = Cn∗(K) = Cn(K))
yields the usual AGM partial meet contraction on belief sets.

Following the same idea as logical inclusion, in [Ribeiro
and Wassermann, 2008] we have a weakening of relevance:

(logical relevance) If β ∈ B \ (B − α), then there is a
B′ such that B − α ⊆ B′ ⊆ Cn(B), α /∈ Cn(B′), but
α ∈ Cn(B′ ∪ {β})

The next corollary follows:

Corollary 7 If Cn∗ is Tarskian and satisfies subclassical-
ity, then an operation that satisfies success, inclusion∗,
relevance∗ and uniformity∗ also satisfies logical inclusion,
logical relevance and uniformity.

With a proof that is very similar to that of the representa-
tion theorem for partial meet contraction on bases (which can
be found in [Hansson, 1999]), we can prove the following
representation theorem:

Theorem 8 Provided that Cn∗ is Tarskian, subclassical and
compact, an operation is a −∗ operator if and only if it satis-
fies success, inclusion∗, relevance∗ and uniformity∗.

From this theorem and the previous corollary, it also fol-
lows:

Corollary 9 If Cn∗ is Tarskian and satisfies subclassicality,
then −∗ satisfies success, logical inclusion, logical relevance
and uniformity.

It is interesting that we have here a set of postulates that
are independent from Cn∗. Nonetheless, these postulates do
not characterize the operation, and are in general weaker than
the postulates with ∗. Hansson’s logical inclusion postulate
is quite reasonable for base operations, as it brings syntactic
independence, although with inclusion∗ we already have a
degree of independence, and with better preservation of the
original set (since Cn∗ is subclassical), and, depending on
the chosen Cn∗, we avoid the complexity problem we have
with the closure of Cn.

Another desirable property in rational contraction opera-
tions is relative closure [Hansson, 1991].

(relative closure) B ∩ Cn(B − α) ⊆ B − α

This property is a consequence of the postulate of rele-
vance, which −∗ does not satisfy. Nevertheless, relative clo-
sure is satisfied, given the condition that Cn∗ is Tarskian.

Proposition 10 If Cn∗ is Tarskian, the −∗ operator satisfies
relative closure.

Kernel contraction [Hansson, 1994] is an alternative con-
struction for contraction, which instead of considering maxi-
mal sets not implying a given formula as in partial meet con-
traction, considers minimal sets implying it. It works by find-
ing the minimal sets (called α-kernels) that imply the element
α being contracted and then selecting at least one element of
each α-kernel to remove from the belief base. The operation
is characterized by the same postulates as partial meet con-
traction on bases, except for relevance, which is weakened to
core-retainment:

(core-retainment) If β ∈ B \ (B − α), then there is a B′
such that B′ ⊆ B, α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β})

Kernel contraction may have erratic behaviour due to its
non-satisfaction of relevance [Hansson, 1999]. For instance,
consider the logically independent sentences p and q, and let
A = {p, p∨ q, p↔ q}. The kernel contraction A− (p∧ q) =
{p} is possible, whereas partial meet contraction cannot have
this outcome. As observed by Hansson, it is not sensible to
give up p ∨ q, since p was kept.

Would the weakening of relevance to relevance∗ or logi-
cal relevance be enough so as to make these behaviours show
up in the −∗ operator? Kernel contraction does not satisfy
any of these last two postulates. Furthermore, Hansson had



already noticed that the lack of relative closure also con-
tributes to these unnecessary removals in contraction. The
operator −∗, as shown above, satisfies relative closure.

A property of our pseudo-contraction is enforced closure∗.

(enforced closure∗) B − α = Cn∗(B − α)

Proposition 11 IfCn∗ is Tarskian and satisfies subclassical-
ity, an operator that satisfies inclusion∗ and relevance∗ also
satisfies enforced closure∗.

Whenever A ⊂ Cn∗(A), this postulate will imply that
vacuity is not satisfied, which is an essential postulate in the
point of view of rational contractions (that respect the princi-
ple of minimal change). It has as effect that the belief base
will always end up closed by Cn∗ after the contraction, even
though the original base was not closed.

(vacuity) If α /∈ Cn(B), then B − α = B

Nevertheless, our construction does satisfy a weaker form
of vacuity:

(vacuity∗) If α /∈ Cn(B), then B − α = Cn∗(B)

Proposition 12 IfCn∗ is Tarskian and satisfies subclassical-
ity, an operator that satisfies inclusion∗ and relevance∗ also
satisfies vacuity∗.

Corollary 13 IfCn∗ is Tarskian and satisfies subclassicality,
then the operator−∗ satisfies enforced closure∗ and vacuity∗.

A simple way to restore vacuity is to redefine the −∗ op-
erator in the following manner:

Definition 14 Let B be a set of sentences, Cn∗ a function
from sets of sentences to sets of sentences and γ a selection
function for Cn∗(B). The operator −′∗ is such that, for all
sentence α:

B −′∗ α =

{
B if α /∈ Cn(B)⋂
γ(Cn∗(B)⊥α) otherwise

Observation 15 The −′∗ operator satisfies success,
inclusion∗, uniformity∗ and vacuity. If Cn∗ is Tarskian
and subclassical, −′∗ also satisfies logical inclusion,
uniformity and relative closure.

The proof of the observation above is not given, but can be
trivially obtained from theorem 8, corollary 7 and proposition
10. Note that relevance∗ and logical relevance were lost.

Although we have attained vacuity, we have only partly
gotten rid of enforced closure∗ (just when α /∈ Cn(B)).

If on one hand logical inclusion seems to make more sense
than inclusion for base contractions, by allowing some syn-
tactic independence, effects such as enforced closure∗ illus-
trate the need to refrain from careless additions of sentences
in the contraction. Here we should mention the postulate of
core-addition [Ribeiro and Wassermann, 2008]:

(core-addition) If β ∈ (B − α) \ B, then there is a β′ ∈
B \ (B − α) and a B′ ⊆ B − α such that α→ β′ /∈ Cn(B′)
but α→ β′ ∈ Cn(B′ ∪ {β}).

Any operator satisfying inclusion will satisfy this postulate
trivially. If we break {α →

∧
B} into the set of sentences

{α → β |β ∈ B}, Nebel’s pseudo-contraction will not sat-
isfy core-addition. Clearly the −∗ operator does not satisfy
it also (neither does −′∗), and it does not satisfy vacuity as
well. In the effort to fix these two problems, the operations of
general partial-meet pseudo-contraction and ∆-partial-meet
pseudo-contraction, proposed in [Ribeiro and Wassermann,
2008], seem to be viable solutions.

5 Examples
In this section we are going to show some concrete examples
of Cn∗ functions that can be useful in the solution of practi-
cal problems. The first example we mention is the Cleopatra
example, adapted from [Ribeiro and Wassermann, 2008].

Example 1 Consider a language with three propositional
letters, p, q and r and a belief base B = {p ∧ q}, where p
stands for Cleopatra had a son and q, Cleopatra had a daugh-
ter. If we want to contract by p, applying a partial meet con-
traction produces B− p = ∅. This is not always the expected
result, because the loss of faith in the belief that Cleopatra
had a son also made us lose faith in the belief that she had a
daughter.

With the classic partial meet construction for bases we
would have B⊥p = {∅}, so the selection function needs to
choose {∅}, causing the overall contraction process to pro-
duce ∅ as final result.

On the other hand, if we take B to represent the belief set
K = Cn(B), thenK contains both p and q and the belief that
Cleopatra had a daughter (q) may survive the contraction, i.e.,
we may have q ∈ K − p. But then we would also have q ∨ r,
r → q and many other irrelevant formulas in the resulting set,
since it is closed under Cn.

Let us consider an intermediate consequence operator:

Cn∗1(A) = {α |α ∈ A or for any formulas β, δ,
α∧ β ∈ A or β ∧α ∈ A or β ∧α∧ δ ∈ A}

We can use Cn∗1 with the−∗ operator to solve the problem
of the preceding example. In this case, we have Cn∗1(B) =
{p ∧ q, p, q} and Cn∗1(B)⊥p = {{q}}, hence the selection
function would choose the whole remainder set, {{q}}, and,
accordingly, B −∗ p = {q}.

Although the usefulness of this consequence operation is
dubious, its use already brings better results than the typical
base contraction in some cases, as in the former example.

Example 2 Suppose I believe that the town of Juazeiro do
Norte is located in the state of Pernambuco (j → p) and that
the state of Pernambuco is located in Brazil (p → b). Speak-
ing with a colleague, I found that this town is not located in
his state (Pernambuco), that is, I contract j → p from my
base. The outcome is B − (j → p) = {p → b}. So, I no
longer know whether Juazeiro do Norte is located in Brazil.

In this example, as well as in the previous one, one can
blame the poor codification of the belief base for the prob-
lems. The knowledge that Juazeiro do Norte is located in
Brazil, if obvious, perhaps would be individually justified,
and so it would deserve to be explicitly in the base. At this



point the syntactic independence dilemma reappears. In some
cases we want to have it, but without having to generate in-
finitely many derivative sentences with little utility.

However, when working with ontologies, for instance, it is
possible that the user does not want to make explicit every
possible relationship, trusting the transitivity of some proper-
ties (i.e., he would be more concerned with his ontology on
the knowledge level than on the syntactic level). One may
also want a knowledge base with little redundancy.

Again, neither the belief base nor the belief set approach
would give us the desired result.

Returning to the foregoing example, we could use a Cn∗2
that adds to the base the transitive closure of→:

Cn∗2(A) = A ∪ {α1 → α2| for some β,
α1 → β, β → α2 ∈ A}.

In that case, we would have Cn∗2(B) = B ∪ {j → b},
what results in Cn∗2(B)⊥(j → p) = {{p → b, j → b}}.
As in the last example, the selection function must choose the
only member of the remainder set, therefore B−∗ (j → p) =
{p → b, j → b}. It is interesting to note that we could also
use here Cn∗2′(B) to be the set of all Horn consequences of
B.

The following example was adapted from [Hansson, 1993].

Example 3 Suppose I believe, for good and independent rea-
sons, that Andy is son of the mayor (a) and Bob is son of the
mayor (b). Then I hear the mayor say: “I certainly have
nothing against our youth studying abroad. My only son did
it for three years”. I then have to retract a ∧ b from my base
B = {a, b}. But it is reasonable to retain a belief that ei-
ther Andy or Bob is the son of the mayor, i.e., the result of the
contraction should be {a ∨ b}.

The remainder set for the operation above is B⊥(a ∧ b) =
{{a}, {b}}. So, the resulting partial meet contraction is either
{a}, {b} or ∅, the first two being odd since we do not seem to
have reasons to prefer a over b or vice-versa.

In the same paper where he presented the example above,
Hansson has done an extensive study of partial meet contrac-
tion on disjunctively closed bases. If we define Cn∗3(A) as
the disjunctive closure of A, as defined by Hansson, that is,
Cn∗3(A) is the set of sentences that are either elements of A
or disjunctions of elements of A, we can manage to get the
desired result.

Cn∗3(A) = A ∪ {
∨
αi|αi ∈ A}

We have Cn∗3(B) = {a, b, a ∨ b}. Then, the remainder
set is Cn∗3(B)⊥(a ∧ b) = {{a, a ∨ b}, {b, a ∨ b}}, and so
the selection function may choose both sets, producing the
expected result in the lack of evidence for a or b: B −∗ (a ∧
b) = {a ∨ b}.

Consider now the case where the language has three propo-
sitional letters (a, b, and c). If we take the belief set K =
Cn(B), we have that K contains a ∨ c and b ∨ c. It is
not hard to see that there are two remainder sets containing
{a, a∨ b, a∨ c, b∨ c}, {b, a∨ b, a∨ c, b∨ c} and hence, these
two formulas may survive contraction, even if the original set
did not mention c.

6 Related Work
There have been several attempts in the literature to study
AGM-like contraction operations based on different conse-
quence operations.

Concerning belief bases, Hansson and Wassermann 2002
have shown that the original representation results for char-
acterizing partial meet contraction only depended on the un-
derlying logic being compact and monotonic. The main dif-
ference from what we are proposing in this paper is that the
underlying consequence operatorC is used for computing the
remainder sets and everywhere in the postulates. So, for ex-
ample, if we take as underlying logic one for approximate
reasoning, as suggested in [Chopra et al., 2001], the remain-
ders will be different than the ones we use for our −∗ opera-
tion. If the approximation is done from below (cf. [Schaerf
and Cadoli, 1995]), then each element of the approximate re-
mainder will contain an element of the classical remainder.
Success will also be computed in terms of the chosen under-
lying consequence operation, so the outcome of the contrac-
tion by α may still classically imply α.

More recently, there has been a series of papers consider-
ing Horn Contraction [Delgrande, 2008; Booth et al., 2011;
Delgrande and Wassermann, 2013], which again, replace all
classical reasoning by Horn reasoning. Contraction of belief
sets has also been studied for non-classical logics [Ribeiro et
al., 2013; Ribeiro, 2013] along the same lines of the work on
belief bases.

The approach of [Meyer, 2001] is similar to ours in the fact
that it “weakens” the formulas that must be removed from the
base, thus it is also a pseudo-contraction. However, their pur-
pose is different since they do not take computational costs
into account (they define base contraction from theory con-
traction, using logical closure), whereas it is one of our main
concerns in this paper.

The closest proposal to the one described in this paper
is the idea of disjunctively closed belief bases, proposed by
Hansson [1993], where a single closure is studied, the one we
used in Example 3.

To the best of our knowledge, [Ribeiro and Wassermann,
2008] was the first proposal where general alternative conse-
quence operations are used only to extend the set of formulas
being considered on contraction. The present work follows
the line of [Ribeiro and Wassermann, 2008] (even borrowing
the Cn∗ notation), but with a different focus. While the idea
there was to study forms of recovery, here we are interested
in characterizing partial meet operations where the initial be-
lief state is closed under some subclassical consequence op-
erator.

7 Conclusion
In this paper, we have proposed an operation of pseudo-
contraction, denoted by −∗. We have provided a character-
ization of this operation in terms of postulates which were
adapted from the classical ones to use subclassical operators
of consequence, which we denote by Cn∗.

One of the drawbacks of the construction of −∗ is that it
satisfies enforced closure∗, i.e., the result of contraction is
always closed under Cn∗, causing −∗ to violate vacuity.



We have found a way to partially circumvent the problem
by defining the−′∗ operator. We have also noted that it would
be worthwhile that the operator could satisfy the postulate
of core-addition, that avoid needless inclusions. Finally, we
conclude that these two flaws would be possibly amended by
the use of the pseudo-contractions proposed in [Ribeiro and
Wassermann, 2008].

Despite these problems, we have shown some practical ex-
amples of use of this operator in which it does better than the
direct application of partial meet contraction for bases. The
practical usefulness of this operator is limited on isolation,
but the importance of the study of its properties can be better
understood in the context of the pseudo-contraction operators
suggested in [Ribeiro and Wassermann, 2008].

Future work involves exploring the use of different Cn∗ to
model real problems encountered in reasoning with ontolo-
gies and with Horn theories.

Appendix
Proof of Theorem 8:

Construction-to-postulates: We know that A −∗ α =⋂
γ(Cn∗(A)⊥α) = Cn∗(A) −γ α, where −γ is the par-

tial meet contraction. We also know that−γ satisfies success,
inclusion, relevance and uniformity. So, we have:

• If α /∈ Cn(∅), then α /∈ Cn(Cn∗(A)−γ α)

• Cn∗(A)−γ α ⊆ Cn∗(A)

• If β ∈ Cn∗(A)\(Cn∗(A)−γ α), then there is aB′ such
that Cn∗(A) −γ α ⊆ B′ ⊆ Cn∗(A), α /∈ Cn(B′), but
α ∈ Cn(B′ ∪ {β}).

• If for all B′ ⊆ Cn∗(A), α ∈ Cn(B′) if and only if
β ∈ Cn(B′), then Cn∗(A)−γ α = Cn∗(A)−γ β.

Since Cn∗(A)−γ α = A−∗ α, we are done.
Postulates-to-construction: This part is is almost trivially

obtained from the proof of the representation theorem for par-
tial meet contraction for bases, which can be found in [Hans-
son, 1999].

Let −∗ be an operation for A that satisfies success,
inclusion∗, relevance∗ and uniformity∗. From the last proof
and corollary 7 we conclude that −∗ also satisfies logical rel-
evance and uniformity. Let γ be a function such that:

• If Cn∗(A)⊥α = ∅, then γ(Cn∗(A)⊥α) = {Cn∗(A)}.
• Otherwise γ(Cn∗(A)⊥α) = {X ∈ Cn∗(A)⊥α |A −∗
α ⊆ X}

We need to show that (1) γ is a well-defined function, (2)
γ is a selection function and (3)

⋂
γ(Cn∗(A)⊥α) = A−∗ α

for all α.
Part 1: For γ to be a well-defined function, for all

α and β, if Cn∗(A)⊥α = Cn∗(A)⊥β, we must have⋂
γ(Cn∗(A)⊥α) =

⋂
γ(Cn∗(A)⊥β). Suppose that

Cn∗(A)⊥α = Cn∗(A)⊥β. It follows from observation
1.39 in [Hansson, 1999] that any subset of Cn∗(A) implies
α if and only if it implies β. By uniformity, Cn∗(A) −∗
α = Cn∗(A) −∗ β. By the definition of γ we have
γ(Cn∗(Cn∗(A))⊥α) = γ(Cn∗(Cn∗(A))⊥β). Since Cn∗
is Tarskian, by idempotence, the result follows.

Part 2: For γ to be a selection function it remains to be
proven that if Cn∗(A)⊥α is not empty, then γ(Cn∗(A)⊥α)
is not empty as well. Then, assuming Cn∗(A)⊥α 6= ∅, we
know that there is at least one X ∈ Cn∗(A)⊥α, and we must
show that at least one of these X contains A −∗ α. Since
Cn∗(A)⊥α is not empty, α /∈ Cn(∅), and by success, α /∈
Cn(A −∗ α). By inclusion∗, A −∗ α ⊆ Cn∗(A), then, by
the upper bound property [Alchourrón and Makinson, 1981],
there is an A′ such that A−∗ α ⊆ A′ and A′ ∈ Cn∗(A)⊥α.
By the construction of γ, γ(Cn∗(A)⊥α) is non-empty.

Part 3: Case 1, α ∈ Cn(∅). Then, by logical relevance,
since there is no A′ such that α /∈ Cn(A′), no element is in
A \A−∗ α, then, using inclusion∗, A ⊆ A−∗ α ⊆ Cn∗(A).
We know that Cn∗(A)⊥α = ∅, then

⋂
γ(Cn∗(A)⊥α) =

Cn∗(A). We need to show that Cn∗(A) ⊆ A −∗ α. By
relevance∗, we know that Cn∗(A) \ A −∗ α = ∅, then
Cn∗(A) ⊆ A−∗ α.

Case 2, α /∈ Cn(∅). Cn∗(A)⊥α is non-empty and
by part 2, γ(Cn∗(A)⊥α) is non-empty as well. Since
A −∗ α is a subset of all elements of γ(Cn∗(A)⊥α),
A −∗ α ⊆

⋂
γ(Cn∗(A)⊥α). We need to show that⋂

γ(Cn∗(A)⊥α) ⊆ A−∗ α.
Take ε /∈ A −∗ α. If ε /∈ Cn∗(A), obviously ε /∈⋂
γ(Cn∗(A)⊥α). If ε ∈ Cn∗(A) \ A −∗ α, then by

relevance∗ there is an A′ such that A−∗ α ⊆ A′ ⊆ Cn∗(A),
α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {ε}). It follows from the
upper bound property that there is an A′′ such that A ⊆ A′′

and A′′ ∈ Cn∗(A)⊥α. From A ⊆ A′′, α ∈ Cn(A′ ∪ ε)
and ε ∈ A′′ we conclude that α ∈ Cn(A′′), so we must have
ε /∈ A′′. By our definition of γ, A′′ ∈ γ(Cn∗(A)⊥α), and
since ε /∈ A′′, we conclude that ε /∈

⋂
γ(Cn∗(A)⊥α). �

Proof of Proposition 10: We know that A −∗ α =
Cn∗(A) −γ α, where −γ is the partial meet contraction.
Since partial meet satisfies relative closure [Hansson, 1999],
Cn∗(A)∩Cn(Cn∗(A)−γα) ⊆ Cn∗(A)−γα is valid. From
this we have Cn∗(A)∩Cn(A−∗α) ⊆ A−∗α. By the inclu-
sion property of Cn∗ (which is Tarskian) and set theory we
get A ∩ Cn(A−∗ α) ⊆ Cn∗(A) ∩ Cn(A−∗ α). �

Proof of Proposition 11: Since Cn∗ is Tarskian, by in-
clusion, A − α ⊆ Cn∗(A − α). We want to show that
Cn∗(A − α) ⊆ A − α. Suppose by contradiction that
β ∈ Cn∗(A− α) \ (A− α). From inclusion∗, monotonicity
and idempotence of Cn∗ we obtain β ∈ Cn∗(A) \ A − α.
Relevance∗ guarantees that there is an A′ such that A− α ⊆
A′ ⊆ Cn∗(A), α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).
By subclassicality of Cn∗ and β ∈ Cn∗(A − α) we have
β ∈ Cn(A−α). ByA−α ⊆ A′ and by the inclusion property
of Cn, β ∈ Cn(A′). So, we have Cn(A′) = Cn(A′ ∪ {β}),
which is a contradiction. �

Proof of Proposition 12: Assume α /∈ Cn(B).
By inclusion∗ we already haveB−α ⊆ Cn∗(B). To finish

the proof it is sufficient to prove that Cn∗(B) \ (B−α) = ∅.
By relevance∗, if β ∈ Cn∗(B)\(B−α), then there is aB′

such that B − α ⊆ B′ ⊆ Cn∗(B) and α ∈ Cn(B′ ∪ {β}).
From this and subclassicality of Cn∗ we get B′ ∪ {β} ⊆
Cn∗(B) ⊆ Cn(B) and then by monotony and idempotence
of Cn we have Cn(B′ ∪ {β}) ⊆ Cn(B). Since α /∈ Cn(B)
by assumption, we cannot have such α. �
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