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Abstract

Attention, in particular visual attention, has been a sub-
ject of studies in various disciplines, including cognitive
science, experimental psychology, and computer vision.
In cognitive science and experimental psychology the
objective is to develop theories that can explain the at-
tention phenomenon of cognition. In computer vision,
the objective is to inform image understanding systems
by hypotheses on the human visual attention. There is,
however, very little influence of studies across these two
disciplines. In a departure from this state of affairs, this
study seeks to develop an algorithmic approach to visual
attention as part of an image understanding system, by
starting with a theory of visual attention put forward in
experimental psychology. In the process, it will become
useful to revise some of the concepts of this theory, in
particular by adopting fuzzy set based representations
and the necessary calculus for them.

1 Introduction
As subject of human cognition, attention has attracted a
great interest from the fields of cognitive science and ex-
perimental psychology.

Visual attention is a wide field, largely addressed in the
literature covering different aspects. Some works related
to the present paper are briefly reviewed, without seeking
at exhaustivity. One approach relies on Gestalt theory, and
Gestalt and computer vision models are compared by (Des-
olneux, Moisan, and Morel 2003). Two sets of experiments
for Gestalt detection methods are carried out and compared
to computationally predicted results. Object size and noise
are the two parameters taken into account in these experi-
ments. The authors indicate that the qualitative thresholds
predicted by the proposed computational approach of gestalt
detection fit the human perception.

Another approach is purely computational and based on
image information. An important review on visual atten-
tion modeling is presented by (Borji and Itti 2013). The
important aspect of saliency-based attention is specifically
addressed in this review. Nearly 65 models are reviewed
and classified in a didactical taxonomy that helps clarify-
ing the field. Visual saliency refers to a bottom-up phe-
nomenon where some scene regions are detected as more
prominent than others due to some visual features. There are

different biological and computational approaches to model
such phenomena. For instance, the center-surround hypothe-
sis (a common issue for the analysis of receptive fields in the
retina) is a classical model for bottom-up saliency (Gao, Ma-
hadevan, and Vasconcelos 2008). In such settings, Gao and
co-authors (Gao, Mahadevan, and Vasconcelos 2008) incor-
porate discriminant features and decision-theoretic model
for saliency characterization. Saliency detection is important
in many different imaging and vision applications (Yan et al.
2013; Yang et al. 2013). For instance, in medical imaging,
saliency maps are useful to guide model-based image seg-
mentation (Fouquier, Atif, and Bloch 2012), thus merging
top-down and bottom-up approaches.

The mechanism of attention has been studied intensively
in the field of psychology and cognitive science, (Kahne-
man 1973), (Treisman and Gelade 1980), (Treisman 1988),
(Treisman 2014), (Humphreys 2014), (Bundesen, Habekost,
and Kyllingsbæk 2005) (Bundesen, Vangkilde, and Petersen
2014). In this paper we focus on the theory of visual atten-
tion introduced in (Bundesen 1990), where visual recogni-
tion and attentional selection are considered as the task of
perceptual categorization, basically deciding to which cate-
gory an object or element of the visual field belongs.

Following the notation of (Bundesen 1990), throughout
this paper, x is an input item, e.g. image or image region, or
more generally an item to be categorized of recognized. The
collection of all items x is denoted by S. A category is de-
noted by i and the collection of all categories is denoted by
R. A category can stand for an ontological category (e.g., an
object, or a scene), or for subsets in the range of a particular
attribute (e.g., red for the attribute color). Regardless of the
situation the conceptual treatment of categories and/or items
is the same. E(x, i) denotes the event/statement ”x is in cat-
egory i”. When viewed as an event, one can talk about its
probability; when viewed as a statement, one can talk about
its truth or its possibility.

From this point on this paper is organized as follows:
Section 2 contains a brief review of TVA concepts and
mechanisms - filtering and pigeonholing. Section 3 presents
the motivation for the introduction of fuzzy sets; the fuzzy
mechanisms of filtering and pigeonholing. Conclusions and
future research are in Section 4.



2 TVA concepts and mechanisms of attention
In this section, we review and comment the main concepts
and modeling steps of the Theory of Visual Attention (TVA)
by (Bundesen 1990).

2.1 Attentional Weight
One of the main concepts introduced in TVA is that of atten-
tional weight defined as follows:

w(x) =
∑
i∈R

η(x, i)π(i) (1)

What are the possible interpretations of the quantities in
Equation (1)? If η(x, i) is interpreted as the salience of x for
category i, then w(x) could be interpreted as the salience of
x across the family of categories R, averaged with respect
to category pertinence. From the point of view of computer
vision, η(x, i) is simply the output of an operator designed
to provide information for category i.

Note that pertinence of a category is (or must be) consid-
ered with respect to a task, which could be a categorization
at a higher semantic/ontological level. Adopting this point of
view, the product η(x, i)π(i) can then be interpreted as the
pertinence of item x to the task with respect to which cate-
gory i had pertinence π(i). More precisely, one can define

π(x, Ti) = η(x, i)π(i)

as the pertinence of x to Ti where Ti is the task to which
category i has pertinence value π(i).

For example, suppose that i is the color category “red” of
the attribute color. Furthermore, suppose that the color cat-
egory “red” has pertinence π(red) to the task of identifying
visually an object such as, for instance, the “flag of some
country”. Let now x be a region in an image, and η(x, red)
the output of evaluating it with respect to the color “red”.
Then η(x, Tred) = η(x, red)π(red) is the pertinence of x
to the task Tred.

Taking max/min with respect to x obtains:
xmax,red = argmax

x∈S
η(x, Tred),

the region in the input which is most pertinent to Tred, and
xmin,red = argmin

x∈S
η(x, Tred),

the region in the input which is least pertinent to Tred.
Similarly, taking max /min over categories, yields
imax = argmax

i∈R
π(i); imin = arg min

i∈R,π(i)>0
π(i)

the most/least pertinent categories respectively. The condi-
tion π(i) > 0 ensures that categories which are not pertinent
at all, i.e. with π(i) = 0, are not taken into account, so the
trivial case π(imin) = 0 is never obtained. Then, for fixed
x, η(x, imax), η(x, imin) are the strengths of evidence for x
to be in the highest/lowest pertinence category, and

π(x, Tmax) = η(x, imax)π(imax)

π(x, imin) = η(x, Tmin)π(imin)

are the importance of x to the task corresponding to the cate-
gory of highest/lowest pertinence value. Versions of the fol-
lowing “flag example” will be used in this paper to illustrate
various points.

Example 1 Let T stand for the task to determine if an ob-
ject identified in an image corresponds to a “flag of some
country”. The decision is to be based on color information
only. Assume several color categories and their respective
pertinences as shown in Table 1.

Table 1: Color categories and their respective pertinence val-
ues to the task “Identify flag of a country”.

Color category: i Category pertinence: π(i)
red 0.8

yellow 0.3
black 0.1
green 0.2

(maxπ(i), imax) (0.8, red)
(minπ(i), imin) (0.1, black)

In this example

η(x, Tred) = 0.8η(x, red); η(x, Tblack) = 0.1η(x, black).

In Equation (1) only those categories i with π(i) > 0 con-
tribute to w(x). This means that categories which are not
pertinent (i.e., π(i) = 0) are never considered for x, even
when η(x, i) is very large.

To summarize, with the interpretation of η(x, i)π(i) as de-
scribed above, the attentional weight w(x) defined by Equa-
tion (1) is the cumulative pertinence of x to a task T , ob-
tained from strength of the sensory evidence given by x to
all categories, in proportion to their pertinence to the task
T .

2.2 Hazard Function
In (Bundesen 1990) the notion of a hazard function ν(x, i) is
introduced as ν(x, i) = Prob(E(x, i)), that is, the probabil-
ity that item x is in category i (e.g., image region x is red).
It is assumed (see 2nd assumption in (Bundesen 1990)) that
ν is computed as:

ν(x, i) = η(x, i)β(i)w(x) (2)

where η(x, i) and w(x) are as described above1, and β(i) is
introduced to indicate a bias for category i. Since ν is in-
terpreted as a probability, ν(x, i) ∈ [0, 1], which is ensured
when η(x, i), β(i), w(x) ∈ [0, 1], without additional con-
straints on these values. Moreover, when R is an exhaustive
set of exclusive (non-overlapping) categories, then ν should
be normalized so that

∑
i∈R ν(x, i) = 1, in order to really

satisfy its interpretation from (Bundesen 1990) as a proba-
bility. More recently, in (Bundesen, Vangkilde, and Petersen
2014) β(i) is decomposed as

β(i) = Ap(i)u(i) (3)

where A ∈ [0, 1] is the level of alertness, and p(i) and u(i)
are respectively, the prior probability and utility of category
i. One can imagine that A also varies with the category, in

1Note that the expression of (Bundesen 1990) involves a nor-
malized version of w, i.e. w(x)/

∑
x∈S

w(x). Here we implicitly
assume that w is normalized, in order to simplify equations.



which case A in Equation (3) is replaced by an Ai. This is
justified by the fact that one may be more alert to a cate-
gory than to others. In an image processing system,A, orAi
could be tied to the performance of the image processing op-
erators used. The components p(i), u(i) of β(i), and hence
β(i), must also be tied up to a (higher level) task T . While
p(i) may be obtained from past data and experiments on the
task T , u(i) seems to be purely subjective, and to a large
extent, its role seems to overlap with that is π(i). Plugging
w(x) and β(i) in (2) results in

ν(x, i) = Aη(x, i)p(i)u(i)
∑
j∈R η(x, j)π(j)

= Ap(i)u(i)[η(x, i)2π(i)+
+η(x, i)

∑
j 6=i η(x, j)π(j)]

(4)

which suggests that the most important role in computing
ν(x, i) is played by the sensory evidence. In particular, ν’s
largest value is obtained when A = p(i) = u(i) = 1, (i.e.
under maximum alertness, maximum prior probability, and
maximum utility), and in that case ν(x, i) is a function only
of the sensory evidence. Stated differently, this means that
A, p(i) and u(i) can only decrease the value of ν(x, i). How-
ever, they may provide a mechanism to account for different
types of subjective information, and of ranking the values of
ν(x, i) when they enter its definition as shown in Equations
(2) - (4). The justification in (Bundesen, Vangkilde, and Pe-
tersen 2014) of Equation (3) is based on the fact that when
either one of A, p(i), or u(i) is null, then β(i) = 0. How-
ever, the same result holds when these quantities enter the
definition of β not through a product, but through other op-
erations, such as the min, or more generally, t-norms.

The fact that the value of ν(x, i) decreases when
Ap(i)u(i) 6= 1 (i.e. at least one of these three values is less
than 1, u(i) for instance) can be interpreted as follows: xwill
be less probably categorized in i if, for instance, the utility
for i is low, which means that we do not really care for this
category. This also goes with the interpretation as a rate of
encoding information in the memory, according to (Bunde-
sen 1990), even without considering time information.

The two mechanisms for visual attention proposed in
(Bundesen 1990), filtering and pigeonholing, are described
next.

2.3 Filtering

Filtering (Bundesen 1990) refers to the mechanism of se-
lecting an item x ∈ S (given a higher level task), for a target
category i. This mechanism seeks to

(F1) increase ν(x, i) for some category i, while

(F2) not changing the conditional probability of E(x, i)
given that x is categorized.

Filtering can be achieved by increasing w(x) as follows:
For category j ∈ R assume π′(j) = aπ(j), where

a > 1. Then w(x) of equation (1) becomes w′(x) =∑
i∈R,i 6=j η(x, i)πi + η(x, j)π′

j =
∑
i∈R,i 6=j η(x, i)πi +

η(x, j)aπj > w(x). Therefore, ν(x, i) becomes ν′(x, i) =
η(x, i)β(i)w′(x) > ν(x, i), which satisfies condition (F1)

above. Computing now P (x is i |x is categorized) yields:

P (x is i |x is categorized) = ν(x,i)∑
k∈R

ν(x,k)

= η(x,i)β(i)w(x)

w(x)
∑

k∈R
ν(x,k)

= η(x,i)β(i)∑
k∈R

ν(x,k)

(5)

which does not depend on w, hence satifies condition (F2).
In Equation (5) the numerator is ν(x, i) since

{x is i} ⊂ {x is categorized}

and therefore
P (x is i, x is categorized) = P (x is i), while the denom-

inator uses an assumption on non-overlapping categories to
write P (x is categorized) as

∑
k∈R ν(x, k). Dropping the

constraint of non-overlapping categories is discussed later
in this study.

2.4 Pigeonholing
For fixed item x ∈ S, pigeonholing (Bundesen 1990) refers
to the mechanism of selecting a category i ∈ R (given a
higher level task), across a set of items S. It seeks to:

(P1) increase
∑
x∈S ν(x, i) for category i pertinent to the

task, such that
(P2) for all j ∈ R, j 6= i,

∑
x∈S ν(x, j) does not change

Pigeonholing can be done by increasing β(i) for some i ∈ R
as follows: For category i ∈ R, let β′

i = aβi, with a > 1.
Then

ν′(x, i) = η(x, i)β′
iwx = η(x, i)aβiwx

> η(x, i)βiwx = ν(x, i).

Summing up over x ∈ S obtains

P ′(i is selected) =
∑
x∈R

η(x, i)β′
iwx > P (i is selected),

(6)
which achieves (P1). At the same time, it is clear that for any
other category j 6= i, P (j is selected) does not change, and
hence (P2) is satisfied too.

Equation (6) uses the assumption that items x are non-
overlapping, for example that they form a partition of the
image. However, this partition need not be crisp, i.e. may
allow overlapping x’s, as for example these are stated in
qualitative terms. In such cases, Equation (6) does not hold.
Dropping the constraint of non-overlapping items, discussed
later, leads to a different interpretation of ν(x, i).

3 Fuzzy Mechanisms for Visual Attention
We consider in this section the situations when the values
of the attentional weight and/or category pertinence are not
exact. In such situations these values may be represented as
fuzzy sets, and therefore, the computation of the categoriza-
tion of an item must resort to calculus with fuzzy sets. First,
let us see why indeed such situations may arise.

Recall that in its original definition, for a given input x
and category i, the strength of sensory evidence for E(x, i),
η(x, i) ∈ [0, 1]. Assuming that η(x, i) is the output of an
operator/test for category i on item x, this output may be
inexact because of the inexact nature of the category i. For



example, if the category i = red of the attribute color, then
for a given input pixel value x this category holds ”more or
less” and it may not be useful to commit to an exact 0/1
value.

Likewise, in its original definition, the pertinence of a
category, π(i) conveys its importance. Obviously, given a
collection of visual categories, and task, they may be dis-
tinguished along their pertinence values. Moreover, several
categories may have the same, maximum importance for the
given task. As an example, consider the pertinence of color
categories for the detection of an object which is known to
have one of two possible color categories, white or yellow,
from the collection of all possible color categories. In this
case, it is useful to be able to encode

π(white) = π(yellow) = 1,

which would be possible when π is considered as a pos-
sibility distribution on the color categories, regardless of
the number of color categories allowed. By contrast, us-
ing a probability based approach, the cardinality of R, the
collection of categories, restricts the values assigned to
these equally possible categories, to at most 0.5. That is,
π(white) = π(yellow) ≤ 0.5 with equality when R =
{yellow,white}.

3.1 A new definition for w(x)
The departure point for the new definition for w(x) is the
interpretation of a special case of Equation (1). Let Ra =
{i ∈ R |π(i) = a} and consider the special case R = R0 ∪
R1, that is, all categories in R are either ”fully” pertinent,
π(i) = 1 (i ∈ R1), or not pertinent π(i) = 0 (i ∈ R0). Then
(1) becomes

w(x) =
∑
i∈R1

η(x, i)

Next let ηmax = maxi∈R1 , and recall that η(x, i) ≤ 1. Then

w(x) ≤
∑

i:π(i)=1

ηmax = ηmax
∑
i∈R1

1 = ηmax|R1| ≤ |R1|,

where |R1| denotes the cardinality of the set R1. That is,
w(x) is bounded by the number of categories i with perti-
nence π(i) = 1. If η(x, i) = 1 for all i ∈ R1 then w(x) is
exactly the number of such categories.

This meaning of w(x) is very natural and appealing. In-
deed, one would expect the item x to count to the extent that
it supports more categories. To generalize this notion, define
for fixed x ∈ S and fixed task T

µ(x,T )(i) = η(x, i)πT (i)

the degree to which category i, pertinent to task T , is sup-
ported by the (data) item x as shown by the strength of sen-
sory evidence, η(x, i). Therefore, µ(x,T ) : R → [0, 1] is the
membership of a fuzzy set on the set of categories. 2 Then
the weight of item x is now defined as the cardinality of this
fuzzy set. That is

w̃(x) = Card {(i, µx(i)) | i ∈ R} (7)
2In the following, assuming only one task, T , for ease of nota-

tion, the subscript T will be dropped, to write µx(i).

Several formulas for the cardinality of a fuzzy set have been
put forward. Here, for illustration purposes, the definition
from (Ralescu 1986) is used to obtain

Card ({µx(i) | i ∈ R}) (k) = µx,(k) ∧ (1− µx,(k+1)) (8)

where µx,(k) denotes, the kth largest value of µx(·), and
µx,(|R|+1) = 0. Thus, the cardinality defined in Equation
(7) is a fuzzy set on {0, ..., |R|}. For an exact value of w(x)
the 0.5-level set of w̃(x) (which is an interval), or its classic
cardinality can be used (Ralescu 1995).

3.2 A new definition for β(i)
Following the discussion from Section 2.4, define

β̃(i) = min{A, p(i), u(i)} (9)

As in the case of β defined in (3), β̃(i) = 0 wheneverA = 0,
or p(i) = 0, or u(i) = 0, and the discussion of (Bundesen
1990) holds: that is, category i biases the selection to the
extent that the system is alert, and category i is possible and
useful. Alternatively, (9) means that the bias for the selection
of i cannot be greater than the system alertness, the possibil-
ity of i or its utility. Furthermore, replacing the product by
min also eliminates the possibility of values for β̃ smaller
than each one of A, p(i), and u(i), which is the well-known
drowning effect of multiplication of positive values smaller
than 1. More importantly, it should be mentioned that the
min can handle ordinal or qualitative values, without need-
ing specifying precise numbers. Specifying such precise val-
ues might be difficult when subjective assessments are made.
By contrast, in the case of such assessments, ordinal or qual-
itative values are usually easily produced.

As already mentioned, in the fuzzy set framework, the
product and min are but two particular cases of a t-norm
(conjunction operator). A, p(i), and u(i) are interpreted re-
spectively, as degrees of alertness, possibility (rather than
probability) of i to be selected, and utility for the category i,
and the bias for i is defined as the conjunction of these. This
interpretation makes (9) meaningful beyond a mere compu-
tational artifice. Another choice for defining β̃ is to select
a more general, aggregation operator, H : [0, 1] × [0, 1] ×
[0, 1] → [0, 1], which would allow the contribution of more
than one of A, p(i), u(i) towards β̃.

3.3 A new definition for ν(x, i)
With the new definitions, w̃(x), and β̃ of w(x) and β respec-
tively, the meaning of ν(x, i) also changes from a probability
to a possibility, more precisely, Possibility(x is i):

Possibility(x is i) = H(η(x, i), β̃(i), w̃(x)) (10)

where H is again an aggregation operator, and hence the
definition of ν(x, i) from (Bundesen 1990) is a particular
case, when H is the product.

For defining H , one may rely on the huge literature on
information fusion, for which the fuzzy sets theory provides
a number of useful operators (see e.g. (Dubois and Prade
1985; Yager 1991; Bloch 1996) for reviews on fuzzy fu-
sion operators). The large choice offered by these operators



allows modeling different combination behaviors (conjunc-
tive, disjunctive, compromise, etc.), with different degrees
(e.g. the min is a less severe conjunction as the product).
Operators can also behave differently depending on whether
the values to be combined are small, large, of the same order
of magnitude, or having different priorities. The operators
H could also be set differently for the three values. For in-
stance η and w̃, which depend on x and i could be combined
using an operatorH1, and the result combined with β̃, which
depends on i only, using another operators H2.

4 Conclusions and Future Work
This paper discussed an attentional model developed in the
field of psychology and cognitive science set in a proba-
bilistic framework. The basic concepts of this model were
discussed and an alternative, fuzzy set based approach was
suggested. In the fuzzy set framework, modeling would be
easier, more natural (for instance replacing numbers by ordi-
nal or qualitative values), and it would allow for more flex-
ible ways of combining the different terms. This discussion
paves the way for a new attentional model, the complete de-
velopment of it being left for future work.
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