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Abstract. Dynamic Time Warping (DTW) is considered as a robust
measure to compare numerical time series when some time elasticity is
required. Even though its initial formulation can be slow, extensive re-
search has been conducted to speed up the calculations. However, those
optimizations are not always available for multidimensional time series.
In this paper, we focus on time series describing gesture movement, all of
which are multidimensional. Our approch propose to speed up the pro-
cessing by 1. adaptively downsampling the time series into sparse time
series and 2. generalizing DTW into a version exploiting sparsity. Fur-
thermore, the downsampling algorithm doesn’t need to know the whole
timeseries to function, making it a good candidate for streaming appli-
cations such as real-time gesture recognition.

1 Introduction

Among other measures, Dynamic Time Warping (DTW) has been widely popu-
larized during the seventies with the advent of speech recognition systems [18],
[14]. However, one of the main drawbacks of such a time-elastic measure is its
quadratic computational complexity which, as is, prevents processing a very large
amount of lengthy temporal data. Recent research has thus mainly focused on
circumventing this complexity barrier. The original approach proposed in this
paper is to cope directly and explicitly with the potential sparsity of the time
series during their time-elastic alignment.

2 Previous work

DTW has seen speed enhancements in several forms; [14] and [5] reduce the
search space by using a band or parallelogram; [1] introduced the concept of a
sparse alignment matrix to dynamically reduce the search space without opti-
mality loss. The dimensionality of the data can be reduced, such as in [21] and
[7] who propose Piecewise Aggregate Approximation (PAA) to downsample the
time series into segments of constant size, then handled by a DTW modification,
PDTW [9]; further compressing can be obtained with Adaptive Piecewise Con-
stant Approximation (APCA) [2]; or compression via symbolic representation
of scalar points can be obtained with SAX [13]. Early abandoning strategies
avoid useless calculation by computing cheap lower bounds: such as [20], [8]
and [10], but the most powerful [8] is not readily available in a form available
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for multidimensional time series. ID-DTW (Iterative Deepening DTW) [4] and
FastDTW [16] use multi-resolution approximations, possibly with an early aban-
doning strategy; [15] and [17] have also proposed approaches mixing APCA with
a lower bounding strategy. Additionally, some alternative elastic distance vari-
ants have been proposed, such as ERP [3] or TWED [12] with some gain in
classification accuracy, but with no speed-up strategy designed so far.

Our method differs from the previous work as follows: first, it gives a novel
way of producing a piecewise constant time series, especially interesting because
of its simplicity and its potential use in streaming scenarios (the downsampled
time series is produced as fast as the original one arrives); second, DTW is
enhanced with a new weighting strategy to accept such downsampled time series
and achieve the desired speed enhancement.

3 Presentation of Coarse-DTW

3.1 Sparse time series

The usual notion of a time series will be called here a dense time series. It
represents a sequence (vi) of points in Rd, where d is the dimension. Such a time
series is usually sampled at a regular interval.

By contrast, let a sparse time series be a pair of sequences (si) and (vi) with
the same length n:

s : {1, . . . , n} → R+

v : {1, . . . , n} → Rd
(1)

Each vi represents a multidimensional point (of dimension d) and each si is a
number describing how long the value vi lasts. We call this number si the stay of
vi. In the following, we will also denote a sparse time series as {(s1, v1), . . . , (sn, vn)}.

For example, the 2D dense time series {(0.5, 1.2), (0.5, 1.2), (0.3, 1.5)} is equiv-
alent to the 2D sparse time series {(2, (0.5, 1.2)) , (1, (0.3, 1.5))}. As another ex-
ample, a dense time series (vi), is exactly represented by the sparse time series
with the same values vi and all stays si = 1.

3.2 Coarse-DTW

The Coarse-DTW algorithm accepts two sparse time series: (si, vi) of length n,
and (tj , wj) of length m.
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Algorithm 1 Coarse-DTW

1: procedure Coarse-DTW((s, v), (t, w))
2: A = new matrix [0..n, 0..m]
3: A[0, .] = A[., 0] =∞ and A[0, 0] = 0
4: for i = 1 to n do
5: for j = 1 to m do
6: A[i, j] = min( si.δ(vi, wj) +A[i−1, j],
7: tj .δ(vi, wj) +A[i, j−1],
8: max(si, tj).δ(vi, wj) +A[i−1, j−1] )

9: return A[n,m]

The symbol δ represents any distance on Rd. A common choice is δ(x, y) =

‖x− y‖22 =
∑d

k=1(xk − yk)2.

Fig. 1. A warping path in Coarse-DTW. We superimposed the sparse timeseries (bigger
points) on top of their equivalent dense timeseries (smaller points). The coarse, thick
grid is the Coarse-DTW matrix, whereas the underlying thin grid is the classical DTW
cost matrix.

Coarse-DTW takes advantage of the sparsity in the time series to calculate
costs efficiently. However, because the points last for different amount of time,
we must adapt the classical DTW formulation in order to account for the stays
si and tj of each point into the aggregate cost calculation.

Obviously, when a point lasts for a long time, it should cost more than a point
which lasts for a brief amount of time. For this reason, the pure cost δ(vi, wj)
is multiplied by some quantity, called weight, linked to how long the points last,
as in lines 6–8 of the algorithm. The goal of this subsection is to explain why we
set those weights to si, tj , and max(si, tj) respectively.

The choice of weights si and tj in lines 6 and 7 is motivated as follows: when
we advance one time series without advancing the other, we want a lengthy point
to cost more than a brief point. In the DTW constant-cost sub-rectangle, advanc-
ing the first time series is like following an horizontal subpath, whose aggregated
cost would be δ(vi, wj) on each of its si cells. This sums up to si.δ(vi, wj), which
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is why the weight is chosen to be si in line 6. An analog interpretation holds for
a vertical subpath of tj cells.

In a constant-cost sub-rectangle (of size si × tj), minimizing the aggregated
cost of a path is equivalent with minimizing its number of cells, because all
cells have the same cost. Furthermore, the minimal number of cells is exactly
max(si, tj). This would be the path followed by classical DTW. Hence, the weight
is set to max(si, tj) in line 8.

4 Downsampling

In this section, we seek to transform a dense time series (ui) into a sparse time
series (si, vi); the goal is to detect when series “move a lot” and “are rather
static”, adjusting the number of emitted points accordingly.

Bubble downsampling can be described in a simple form as follows:

Algorithm 2 Bubble Downsampling

1: procedure bubble(v, ρ) . ρ ≥ 0
2: icenter = 1 . initialize bubble center
3: vcenter = v1
4: vmean = v1
5: for i = 2 to n do
6: ∆v = δ(vi, vcenter) . distance to center
7: ∆i = i− icenter . find the stay
8: if ∆v ≥ ρ then . does the bubble “burst”?
9: yield (∆i, vmean) . emit stay + point

10: icenter = i . update bubble center
11: vcenter = vi
12: vmean = vi
13: else
14: vmean = (∆i× vmean + vi)/(∆i+ 1) . update mean

15: ∆i = n− icenter + 1 . force bursting last bubble
16: yield (∆i, vmean)

The idea behind Bubble downsampling is based on the following approxima-
tion: consecutive values can be considered equal as long as they stay within a
given radius ρ for the distance δ. We can picture a curve which makes bubbles
along its path (see Fig. 3), hence the name. Concretely, the algorithm emits a
sparse time series, where each stay is the number of consecutive points contained
in a given bubble, and each value is the mean of the points in this bubble.

The parameter ρ represents the tradeoff between information loss and den-
sity. A large ρ emits few points, thus yielding a very sparse time series, but
less accurate; a smaller ρ preserves more information at the expense of a lower
downsampling ratio. The degenerate case ρ = 0 will output a clone of the origi-
nal time series with no downsampling (all stays equal to 1). Because speed is a
direct consequence of sparsity in Coarse-DTW, a good middle value for ρ must
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Fig. 2. Bubble downsampling applied on a 1D time series (blue, solid) with
ρ = 0.5. The 1-bubbles are represented by their 1-centers (red crosses)
and their 1-boundaries (red, dashed lines). The sparse time series emitted is
{(9,−0.03), (1, 1.2), (11, 2.96), (1, 1.2), (10,−0.04)}.

be found, so that time series are as sparse as possible while retaining just the
right amount of information.
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Fig. 3. Bubble downsampling progressively applied on a 2D time series (outer blue
line with dots) with ρ = 2.0, along with the sparse time series emitted (inner green
line with squares). Again, the 2-bubbles are represented by their 2-centers and their
2-boundaries (red crosses and dashed circles). Numbers indicate the stays. Notice how
stays take into account the slowness at the beginning of the signal.

5 Optimizations on Coarse-DTW

DTW suffers from a slow computation time if not implemented wisely. For this
reason, several optimizations have been designed [8]. The next optimizations we
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considered are called lower bounds, designed to early-abandon computations in
a k-Nearest Neighbor scenario.

The first lower bound LBKim [20] is transposable to Coarse-DTW: as with
1D time series, the first and last pairs of points will always be matched together
as long as the timeseries have each at least two points. First, the cost of match-
ing the first points is: max(s1, t1).δ(v1, w1) because the first matching is done
diagonally (A[0,1] = A[1,0] =∞). Then, the cost of matching the last points is
min(sn, tm,max(sn, tm)) . δ(vn, wm). Hence, the lower bound is written:

Coarse-DTW(v, w) ≥ max(s1, t1).δ(v1, w1)+min(sn, tm,max(sn, tm)).δ(vn, wm)
(2)

The second lower bound can be evaluated several times as DTW progresses:
for any row i, the minimum of all cells A[i,.] is a lower bound to the DTW result.
Indeed, this result is the last cell of the last row, and the sequence mapping a row
i to minj A[i,j] is increasing, because the costs are positive. Hence, during each
outer loop iteration (i.e., on index i), we can store the minimum of the current
row and compare it to the best-so-far for possibly early abandoning. This can
be transposed directly to Coarse-DTW without additional modifications.

Finally, probably the most powerful lower bound for unidimensional time-
series, known as LBKeogh [8], is based upon the calculation of an envelope; how-
ever this calculation is not trivially transferable to the case of multidimensional
time series simply by generalizing the uni-dimensional equations. Thus, we will
unfortunately not consider it in our study.

6 Results

6.1 DTW vs. Coarse-DTW in 1-NN classification

We considered the classification accuracy and speed of three multidimensional
labeled time series datasets describing gesture movement. The classifier is 1-NN
and we enabled all optimizations described earlier that apply to multidimensional
time series, namely: LBKim and early abandoning on the minima of rows. We
report only the classification time; learning time is zero because no processing
is required. Each dataset is run once with DTW and several times with Coarse-
DTW, each time with a different value for the downsampling radius ρ.

MSRAction3D [11] time series have 60 dimensions (twenty 3D joints) which
we classified by cross-validating all 252 combinations of 5 actors in training and 5
in test. uWaveGestureLibrary [XYZ] comes from the UCR time series database
[6]; it can be considered as three independent uni-dimensional datasets, but we
rather used it here as a single set of 3-dimensional time series, which makes 1-NN
DTW classification fall from 1D errors of respectively 27.3 %, 36.6 % and 34.2 %
down to only 2.8 % as a 3D time series. Character Trajectories [19] comes from
the UCI database and describes trajectories of character handwriting; they were
first resampled to have all the same size (204 data points, size of the longest
sequence in the dataset).
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Fig. 4. 1-NN classification time and error rate of Coarse-DTW as ρ increases. For
comparison, DTW results are shown as horizontal bars (independent of ρ). Speedups
from 10x to 1000x are obtained without sensible accuracy degradation.

7 Conclusions

Not only have we transposed DTW into Coarse-DTW, a version accepting sparse
time series, but we have also developed Bubble, an extremely efficient algo-
rithm to generate such sparse time series from regular ones. By coupling those
two mechanisms, we found out that time series can be classified much faster in
nearest-neighbor classification; the user can reach the desired tradeoff between
speed and accuracy, by tuning the parameter ρ in the downsampling algorithm.
Gesture timeseries produce smooth time series which present a considerable abil-
ity to be downsampled, producing good results in classification speedup.

In order to learn ρ from the data, experiments above suggest a simple method:
first, set an acceptable threshold on the error (e.g. +2% w.r.t. regular DTW
error) ; then, select the ρ whose error is under this threshold and classification
speed is fastest.

Although we didn’t cover it in our test scenarios, it is worth highlighting
that Coarse-DTW and Bubble are directly applicable to a streaming scenario:
indeed, Bubble doesn’t need to know the whole timeseries before emitting sparse
points. As a consequence, it could be a great way to save CPU time and battery
life in an embedded gesture recognition setup.
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