
KR2RML: An Alternative Interpretation of
R2RML for Heterogeneous Sources?

Jason Slepicka, Chengye Yin, Pedro Szekely, and Craig A. Knoblock

University of Southern California
Information Sciences Institute and Department of Computer Science, USA

{knoblock,pszekely,slepicka}@isi.edu

{chengyey}@usc.edu

Abstract. Data sets are generated today at an ever increasing rate in
a host of new formats and vocabularies, each with its own data qual-
ity issues and limited, if any, semantic annotations. Without semantic
annotation and cleanup, integrating across these data sets is difficult.
Approaches exist for integration by semantically mapping such data
using R2RML and its extension for heterogeneous sources, RML, into
RDF, but they are not easily extendable or scalable, nor do they pro-
vide facilities for cleaning. We present an alternative interpretation of
R2RML paired with a source-agnostic R2RML processor that supports
data cleaning and transformation. With this approach, it is easy to add
new input and output formats without modifying the language or the
processor, while supporting the efficient cleaning, transformation, and
generation of billion triple datasets.

1 Introduction

Over the past decade, many strides have been made towards enabling content
creators to publish Linked Open Data by building on what they’re familiar
with: RDFa, HTML5 Microdata, JSON-LD [11], and schema.org. There still
exist countless messy data sets, both legacy and novel, that lack the semantic
annotation necessary to be Linked Open Data. Numerous ETL suites attack the
messy part of the problem, i.e. data cleaning, data transformation, and scale,
but lack robust support for semantically mapping the data into RDF using
ontologies. Other approaches provide support for semantically mapping data
but cannot address messy data nor easily extend to support new formats. Our
proposed interpretation of R2RML [12] and processor, implemented in the open
source tool, Karma [6], addresses these concerns as captured by the following
requirements.

Multiple inputs and Output Formats A language for semantically mapping
data should extend beyond just mapping relational databases to RDF. Solutions

? A KR2RML processor implementation is available for evaluation at
https://github.com/usc-isi-i2/Web-Karma.

2 Slepicka et al.

for relational databases can cleanly apply to tabular formats like CSV but break
down or cannot fully capture the semantic relationships present in the data
when applied to hierarchical sources like JSON and XML. A mapping should
be able to capture these relationships. In terms of mapping output, there are
many ways for a processor to serialize an RDF graph: RDF/XML, Turtle, N-
Quads, RDF-HDT [4], and JSON-LD. A processor that can output nested JSON-
LD is particularly valuable to developers and data scientists, because the same
techniques required to serialize the graph as a collection of trees in JSON can
be extended to any other hierarchical serialization format.

Extensibility As serialization formats propagate and evolve to fulfill new niches,
it’s important to be able to quickly support new ones. Consider JSON’s offspring:
BSON [9] and HOCON [13], or Interface Description Languages like Google Pro-
tocol Buffers [5] and Apache Avro [1]. Each format is JSON-like but requires
its own libraries and query language, if one exists. A mapping language and its
processor should reuse commonality between hierarchical formats and require
few, if any, changes to be able to support them on ingestion and output.

Transformations Integrating structured data without consideration for clean-
ing and transformation as languages (both natural and artificial), vocabularies,
standards, schemas, and formats proliferate is difficult. As such, design decisions
for semantic modeling should not be made independently of data transformation.
R2RML templates are insufficient for overcoming the complexities and messiness
of hierarchical data. Instead, R2RML users rely on custom SQL queries or views
to present a clean dataset for mapping. A better solution wouldn’t require the
user to know anything about the idiosyncrasies or domain-specific language of
the source at all, e.g. DOM vs SAX parsing and XSLT for XML.

Scalability As the academic and commercial world regularly works with ter-
abytes and even petabytes of data, any language’s processor must carefully weigh
the implications of its algorithms and feature sets in regards to scalability. While
an extensive feature set may be attractive in terms of offering a comprehensive
working environment, some features may be better supported by external so-
lutions. Other features may not even be representative of those needed by the
most common workloads and serve only as distractions.

2 Approach

To meet these requirements, we rely on the Nested Relational Model (NRM)[7]
as an intermediate form to represent data. The NRM allows us to abstract
away the idiosyncrasies of the formats we support, so that once we translate the
input data into this intermediate form, every downstream step, e.g. cleaning,
transformation, RDF generation, is reusable. Adding a new source format is as
simple as defining how to parse and translate it to this model. This frees us

KR2RML 3

from having to include references to input format specific considerations like
XPath or XSLT in the language. Once the data is in the NRM, we can support
and implement a set of common data transformations in the processor once,
instead of for each input format. These transformations, e.g. split, fold/unfold,
are common in the literature, but we extend their definitions as found in the
Potter’s Wheel interactive data cleaning system [10] from a tabular data model
to support the NRM. Our processor also provides an API for cleaning by example
and transformations using User Defined Functions (UDFs) written in Python.
After translating data to the NRM, cleaning it, and transforming it, we extend
the R2RML column references to map to the NRM. This model allows us to
uniformly apply our new interpretation of R2RML mapping for hierarchical data
sources to generate RDF. Finally, for scalability, our processor does not supports
joins across logical tables, which precludes using KR2RML as a virtual SPARQL
endpoint for relational databases. Instead we support materializing the RDF
by processing in massively parallel frameworks in both batch via Hadoop and
incrementally in a streaming manner like Storm.

3 Nested Relational Model

We map data into the Nested Relational Model by translating it into tables and
rows where a column in a table can be either a scalar value or a nested table.
Mapping tabular data like CSV, Excel, and relational databases is straightfor-
ward. The model will have a one to one mapping of tables, rows, and columns,
unless we perform a transformation like split on a column, which will create a
new column that contains a nested table. To illustrate how we map hierarchical
data, we will describe our approach to JSON first and introduce an example1.
The example describes an organization, its employees and its locations.

1 {
2 "companyName": "Information Sciences Institute",

3 "tags": ["artificial intelligence","nlp", "semantic web"]

4 "employees": [

5 {
6 "name": "Knoblock, Craig",

7 "title": "Director, Research Professor"

8 },
9 {

10 "name": "Slepicka, Jason",

11 "title": "Graduate Student, Research Assistant"

12 }
13],

14 "locationTable":{
15 "locationAddress" :[

1 The example worked in this paper is available at https://github.com/usc-isi-i2/iswc-
2015-cold-example

4 Slepicka et al.

16 "4676 Admiralty Way Suite 1001,Marina Del Rey, CA 90292",

17 "3811 North Fairfax Drive Suite 200,Arlington, VA 22203"

18], "locationName" :["ISI - West", "ISI - East"]

19 }
20 }

This document contains an object, which maps to a single row table in NRM
with four columns for its four fields: companyName, tags, employees and loca-
tionTable. Each column is populated with the value of the appropriate field.
Fields with scalar values, like companyName, need no translation, but fields like
tags, employees and locationTable, which have array values, do.

The array values of tags, employees and locationTables are now mapped to
their own nested tables. If the array contains scalar or object values, each array
element becomes a row in the nested table. If the elements are scalar values like
strings as in the tags field, a default column name “values” is provided, otherwise
the objects in employees and locationTable and arrays in locationAddress and
locationName are interpreted recursively using the rules just described. If a
JSON document contains a JSON array at the top level, each element is treated
like a row in a database table.

Once the data has been mapped to the NRM, we can refer to nested ele-
ments by creating a path to the appropriate column from the top level table.
For example, the field referred to by the JSONPath $.employees.name in the
source document is now the column [“employees”, “names”] in the NRM. An
illustration of the NRM as displayed by the Karma GUI can be seen in Figure
1Other hierarchical formats follow from this approach, sometimes directly; we
use existing tools for translating XML and Avro to JSON and then import the
sources as JSON. XML elements are treated like JSON objects, its attributes are
modeled as a single row nested table where each attribute is a column. Repeated
child elements become a nested table as well.

Fig. 1: Nested Relational Model example displayed in Karma GUI

KR2RML 5

4 KR2RML vs. R2RML

We propose the following modifications on how to interpret R2RML language
elements to support large, hierarchical data sets.

rr:logicalTable The R2RML specification allows the processor to access the
input database referenced by the rr:logicalTable through an actual database
or some materialization. For legacy reasons, we support the former for rela-
tional databases with rr:tableName and rr:sqlQuery, but only the latter for non-
relational database sources.

rr:column To support mapping nested columns in the NRM, we no longer limit
column-valued term maps to SQL identifiers. Instead, we allow a JSON array to
capture the column names that make up the path to a nested column from the
document root. As described previously, the $.employees.name field is mapped
in the NRM to [“employees”, “name”]. $.companyName is unchanged from how
R2RML would map tabular data, “companyName”, since it is not nested. We
chose to forgo languages like XPath or JSONPath for expressing complex paths
to nested columns, because supporting their full feature sets complicates the
processor implementation. A simple, format agnostic path preserves the ability
to apply a mapping to any format as long as the column names match.

rr:template Often, applications require URIs that cannot be generated by con-
catenating constants and column values for rr:templates without preprocessing
from rr:sqlQuery. Instead, we allow the template to include columns that do
not exist in the original input but are the result of the transformations applied
by the processor. For example, in Figure 2a, [“employees”, “employeeURI”] is
derived from “companyName” and [“employees”,“name”].

rr:joinCondition Joins are integral to how relational databases are structured,
so they play an important role when mapping data across tables using R2RML.
When dealing with either streaming data or data on the order of terabytes or
greater, these join conditions across sources are impractical at best and require
extensive planning and external support in the form of massively parallel pro-
cessing engines like Spark or Impala to achieve reasonable performance. This is
out of the scope of our processor, so we do not support them. We have rarely
found a need for them in practice.

km-dev:hasWorksheetHistory This is a tag introduced to capture the clean-
ing, transformation and modeling steps taken by a Karma user to generate a
KR2RML mapping. The steps are intended to be performed on the input be-
fore RDF generation, but its presence is optional. Without these steps, there
is nothing in a KR2RML mapping that a normal R2RML processor would not
understand, except for the nested field references.

6 Slepicka et al.

5 Input Transformations

One additional benefit of using the Nested Relational Model is that we can
use it to create a mathematical structure with transformation functions that
are closed on the universe of nested relational tables. Here, we can reuse the
transformations outlined in a system like Potter’s wheel, but, instead of forcing
operations like Split to create a cartesian product of rows, a transformation
function can create a new set of nested tables. Figure 2 shows the result of
applying the transformations to the example data shown in the Karma GUI. The
blue columns are present in the source data, while the brown columns contain
the transformation results.

(a) URI Template generated from
Python Transformation

(b) Split Transformation

(c) Glue Transformation (d) Python Transformations

Fig. 2: Karma Transformations

In Figure 2b, the split transformation breaks apart comma separated values
in a column to so the job role titles can be mapped into individual triples. The
NRM allows us to insert a new column with a nested table where each row has a
single column for the title. The other transformations, Unfold, Fold, and Group
By follow similarly.

One unique challenge faced by the Nested Relational Model is transforming
data from across nested tables. This can be accomplished in two ways. The first
is demonstrated in Figure 2c. The locationAddress and locationName fields are
mapped from the data as two nested tables but each row should be joined to
its pair with the same index in the other table. This is accomplished by a Glue
Transformation. Alternatively, it could be accomplished by executing a Python
Transformation.

Python Transformations allow the user to write Python functions to refer-
ence, combine, and transform any data in the model and add the result as a new

KR2RML 7

column in the NRM. This is akin to User Defined Functions (UDFs) in Cloudera
Morphlines, Pig, and Hive, in the sense that the processor can take as input
libraries of UDFs written in Python. In Figure 2d, the Python Transformations
are used to extract and format the components of the locationAddress field for
mapping. Python Transformations are most commonly used to augment tem-
plates in R2RML because templates have limited utility as illustrated in Figure
2a. Finally, the processor supports using these same Python APIs to select, or
filter, data from the model, by evaluating a UDF that returns a boolean for each
column value indicating whether to ignore it during RDF generation.

6 RDF Generation

The final step in this process is to apply the R2RML mapping to the Nested
Relational Model and generate RDF. Without careful consideration of how to
apply the mapping, the process could be computationally very expensive or be
artificially limited in the relationships its allowed to express in the hierarchy
as the order in which the input data is traversed to generate the RDF is very
important. We approach this in three steps: translate the TriplesMaps of an
R2RML mapping into an execution plan, evaluate the TriplesMaps by traversing
the NRM, and finally serializing the RDF.

An example R2RML mapping for this source is illustrated in Figure 3 and
available online. The JSON document has been semantically modeled according
to the schema.org ontology. The dark gray bubbles in Figure 3 correspond to
TriplesMaps. Their labels are their SubjectMap’s class. The arcs between the
gray bubbles are PredicateObjectMaps with RefObjectMaps, while the arcs from
the gray bubbles to the worksheet are PredicateObjectMaps with ObjectMaps
with column references. The light grey bubbles on the arcs are the Predicate.

Fig. 3: KR2RML Mapping Graph mapped to NRM in Karma

R2RML Execution Planning To create an execution plan, we first consider
the R2RML mapping as a directed, cyclic multigraph where TriplesMaps are
the vertices, V, and the PredicateObjectMaps with RefObjectMaps as edges, E.
From this directed, cyclic multigraph, we break cycles by flipping the direction
of the edges, until we can create a topological ordering over the TriplesMaps.
This ordering then become an execution plan, starting from the TriplesMaps
with no outgoing edges. The algorithm is presented as follows.

8 Slepicka et al.

Generate Topological Ordering GenerateTopologicalOrdering is applied to
each graph in the multigraph of the R2RML mapping. It returns a topologically
sorted list of TriplesMaps for processing, along with edges that were flipped to
break cycles or simplify processing. The resulting lists for a multigraph can be
processed independently and in parallel. The root will be the last TriplesMap pro-
cessed. Its selection has important implications for generating JSON-LD which
will be discussed later.

GenerateTopologicalOrdering(V,E, root)

(spilled, flipped, V, E) := spill(V,E, root, {},{})

if(|V| > 0)

flipped := DFSBreakCycles(V, E, root, {}, root, flipped)

(spilled, flipped, V, E) = spill(V,E, root, spilled, flipped)

return spilled, flipped

Spill TriplesMaps Spill iteratively removes TriplesMaps for processing from
the R2RML mapping until all nodes have outgoing edges or a cycle is found.
The earlier a TriplesMap is spilled, the earlier it is processed.

Spill(V, E, root, spilled, flipped)

modifications := true

while(|V| > 0 && modifications)

modifications := false

for(v in V)

//v has only one edge or all edges are incoming

if(deg(v) == 1 || outDeg(v) == 0)

if(v == root && deg(v) > 0)//don’t spill root

continue

//flip edges because spilled nodes

//are "lower" in hierarchy

for(e in edges(v))

if(source(e) == v && v != root)

flipped = flipped + e

E = E - e

if(e in edges(v) == 0)//remove edgeless vertexes

V = V - v

spilled = V + v

modifications := true

return spilled, flipped, V, E

Break Cycles DFSBreakCycles arbitrarily break cycles in the graph by per-
forming a Depth First Search of the TriplesMaps graph, starting at the root,
flipping incoming edges if the target node is visited before the source

DFSBreakCycles(V, E, root, visited, current, flipped)

toVisit := {}

KR2RML 9

visited := visited + current

//sort edges so edges so outgoing edges are first

sortedEdges := sort(edges(current))

for(e in sortedEdges)

if(source(e) = v)

toVisit := toVisit + target(e)

else

if(!visited(source(e)))

flipped := flipped + e

toVisit := toVisit + source(e)

for(v in toVisit)

if(!visited(v))

flipped, visited := DFSBreakCycles(V, E, root, visited, v,

flipped)

return flipped, visited

If we apply GenerateTopologicalOrdering to the mapping illustrated in Fig-
ure 3, it takes the following steps.

– Spill removes PostalAddress, then Place, then stops because of a cycle
– DFSBreakCycles starts at Organization, and sorts its edges, outgoing first
– Root is the source for schema:employee, so Person is added to toVisit set
– Root is not the source for schema:worksFor, so it is added to flipped set
– Person is the target for schema:worksFor, but it already a part of toVisit
– DFSBreakCycles visits the next node in the toVisit set, Person
– DFSBreakCycles halts since Person’s edges point to root, which is in visited
– The Spill algorithm is applied again and it removes Person
– This leaves the root, Organization, without any links, so Spill removes it

This results in a topological ordering of the TriplesMaps for the processor: Posta-
lAddress, Place, Person, Organization.

R2RML TriplesMap Evaluation After the transformations, the NRM is im-
mutable, so topologically sorted TriplesMaps can be evaluated according to their
partial order on massive data in parallel without interference. As the processor
evaluates each TriplesMap, it first populates the SubjectMap templates. The pro-
cessor populates templates by generating the n-tuple cartesian product of their
column values, which it derives by finding the table reachable by the shortest
common subpath from the root between the column paths and then navigating
the NRM to the columns from there. For a tabular format, the cardinality of the
n-tuple set is always 1, just like R2RML applied to a SQL table. For our JSON
example, we consider each JSON object in the employee array individually, so
the cardinality for the schema:Person in the first Organization is 2.

This example lacks templates that cover multiple nested tables, but, for a
mapping that does, the shortest common subpath between columns is captured
by a concept called column affinity. Every column has an affinity with every other
column. The closest affinity is with columns in the same row, then columns

10 Slepicka et al.

descending from the same parent table row, then columns descending from a
common row in an ancestor table, then columns with no affinity.

The processor populates PredicateObjectMaps with ObjectMaps that have
column and template values by navigating the NRM in relation to the elements
that make up the SubjectMap templates, bound by the tightest affinity between
the columns of the SubjectMap Templates and the columns of the ObjectMap
templates. Values common to multiple subjects can be cached.

The processor evaluates PredicateObjectMaps with RefObjectMaps by popu-
lating the templates in a similar fashion to regular ObjectMaps. A predicateMap
with a template, however, requires calculating an affinity for the template pop-
ulation algorithm between the template and both of the Subject and Object
templates to ensure only the right cartesian product is considered. Edges that
have been flipped while generating the topological ordering are evaluated at the
TriplesMap indicated by the RefObjectMap. Populating the flipped Subject and
Object templates is the same as if the RefObjectMap’s TriplesMap was actually
the Subject. The subject and object are just swapped on output.

R2RML RDF Generation The processor supports RDF output in N-Triples
(or N-Quads) as a straightforward output of the TriplesMaps evaluation. What
is more interesting is that this evaluation order enables specifying a hierarchical
structure to the output. It is worth noting that JSON-LD is often serialized as
flat objects and requires a special framing algorithm to create nested JSON-LD.
Instead, Karma automatically generates a frame from the KR2RML Mapping
to output nested JSON-LD. It can also generate Avro schemas and data and is
easily extendable to any other hierarchical format like Protocol Buffers or Turtle.

Evaluating PredicateObjectMaps for each TriplesMap results in a JSON ob-
ject for each generated subject and a scalar or an array depending on the car-
dinality of the template evaluation of the ObjectMaps. Because of the output
order, when generating RDF for any TriplesMap with a RefObjectMap that has
not been flipped, the objects’ JSON objects will have already been outputted, so
they can be nested and denormalized into the new JSON object. This recursively
allows nesting all the way up until the root, which is shown in the output below.

In this example, the user indicates to the processor that the root is Orga-
nization. Any cycles are prevented by the flipped RefObjectMaps, so instead of
nesting JSON objects, the URI is added. To finish formatting, a JSON-LD con-
text can also be inferred from the R2RML mapping prefixes or can be provided.

1 {
2 "@context": "http://ex.com/contexts/iswc2015_json-context.json",

3 "location": [

4 {"address": {
5 "streetAddress": "4676 Admiralty Way Suite 1001",

6 "addressLocality": " Marina Del Rey", "postalCode": "90292",

7 "addressRegion": "CA","a": "PostalAddress"

8 },

KR2RML 11

9 "name": "ISI - West","a": "Place","uri":

"isi-location:ISI-West"},
10 {"address": {
11 "streetAddress": "3811 North Fairfax Drive Suite 200",

12 "addressLocality": " Arlington", "postalCode": "22203",

13 "addressRegion": "VA","a": "PostalAddress"

14 },
15 "name": "ISI - East", "a": "Place","uri":

"isi-location:/ISI-East"}
16],

17 "name": "Information Sciences Institute","a": "Organization",

18 "employee": [

19 {"name": "Knoblock, Craig","a": "Person",

20 "uri": "isi-employee:Knoblock/Craig",

21 "jobTitle": ["Research Professor","Director"],

22 "worksFor": "isi:company/InformationSciencesInstitute"},
23 {"name": "Slepicka, Jason","a": "Person",

24 "uri": "isi-employee:Slepicka/Jason",

25 "jobTitle": ["Graduate Student"," Research Assistant"],

26 "worksFor": "isi:company/InformationSciencesInstitute"}
27],

28 "uri": "isi:company/InformationSciencesInstitute"

29 }

7 Related Work

Approaches exist for semantically mapping relational databases like D2R [2] but
cannot address messy data nor easily extend to support new formats. RML [3]
was proposed as an extension to R2RML to support heterogeneous, and often
hierarchical, sources, e.g. XML and JSON, but its support for additional data
types requires a custom processor for extracting values from each data type.
RML tries to deal with the ambiguity that surrounds identifying subjects in
hierarchical sources by introducing an rml:iterator pattern. Iterators benefit from
their precision but are an additional step that can often be inferred by using
column affinities. When we cannot infer them, however, we either require a
transformation or end up generating a subject for each tuple in the cartesian
product of the corresponding TriplesMap’s PredicateObjectMaps that map to
columns. XR2RML [8] is an extension of both RML and R2RML that supports
NoSQL document stores. It agrees with our approach to leave format specific
query language specification out of the language but still adopts the iterator
pattern and also lacks supports for transformations. Mashroom [14], on the other
hand, takes a similar approach with the Nested Relational Model for integrating
and transforming hierarchical data, but it does have support for semantics nor
a standard for the mapping.

12 Slepicka et al.

8 Conclusions and Future Direction

Developing scalable solutions for data cleaning, transformation, and semantic
modeling becomes more important every day as the amount of data available
grows and its sources diversify. This alternative interpretation of R2RML and
its processor are available under the Apache 2.0 license and have been embedded
in Apache Hadoop and Apache Storm to generate billions of triples and billions
of JSON documents in both a batch and streaming fashion and can be extended
to consume any hierarchical format. It will soon be available for Spark and has
well defined interfaces for adding new input and output formats.

References

1. Apache Software Foundation. Avro. Version 1.7.6, 2014-01-22, https://avro.
apache.org.

2. Bizer, C., and Cyganiak, R. D2r server-publishing relational databases on the
semantic web. In Poster at the 5th International Semantic Web Conference (2006),
pp. 294–309.

3. Dimou, A., Sande, M. V., Colpaert, P., Mannens, E., and de Walle, R. V.
Extending r2rml to a source-independent mapping language for rdf. In Interna-
tional Semantic Web Conference (Posters) (2013), vol. 1035, pp. 237–240.

4. Fernández, J. D., Mart́ınez-Prieto, M. A., Gutiérrez, C., Polleres, A.,
and Arias, M. Binary rdf representation for publication and exchange (hdt).
Web Semantics: Science, Services and Agents on the World Wide Web 19 (2013),
22–41.

5. Google Inc. Protocol buffers. Version 2.6.1, 2014-10-20, https://developers.
google.com/protocol-buffers/.

6. Knoblock, C. A., Szekely, P., Ambite, J. L., Gupta, S., Goel, A., Muslea,
M., Lerman, K., Taheriyan, M., and Mallick, P. Semi-automatically mapping
structured sources into the semantic web. In Proceedings of the Extended Semantic
Web Conference (Crete, Greece, 2012).

7. Makinouchi, A. A consideration on normal form of not-necessarily-normalized
relation in the relational data model. In Proceedings of the 3rd VLDB Conference
(1977), Citeseer, pp. 445–453.

8. Michel, F., Djimenou, L., Faron-Zucker, C., and Montagnat, J. Transla-
tion of relational and non-relational databases into rdf with xr2rml. In 11th Web
Information Systems and Technologies (WEBIST) (2015).

9. MongoDB Inc. Bson. Version 1.0.0, 2014-11-18, http://bsonspec.org/.
10. Raman, V., and Hellerstein, J. M. Potter’s wheel: An interactive data cleaning

system. In VLDB (2001), vol. 1, pp. 381–390.
11. Sporny, M., Kellogg, G., Lanthaler, M., Group, W. R. W., et al. Json-ld

1.0 json-based serialization for linked data. W3C Working Draft (2014). http:

//www.w3.org/TR/json-ld/.
12. Sundara, S., Cyganiak, R., and Das, S. R2RML: RDB to RDF mapping

language. W3C recommendation, W3C, Sept. 2012.
13. Typesafe Inc. Hocon. Version 1.3.0, 2015-05-08, https://github.com/

typesafehub/config/blob/v1.3.0/HOCON.md.
14. Wang, G., Yang, S., and Han, Y. Mashroom: End-user mashup programming

using nested tables. In Proceedings of the 18th International Conference on World
Wide Web (New York, NY, USA, 2009), WWW ’09, ACM, pp. 861–870.

