
Finding a Lattice of Needles in a Haystack: Forming a

Query from a Set of Items of Interest

Boris A.Galitsky

 Knowledge-Trail Inc San Jose CA USA

bgalitsky@hotmail.com

Abstract. We introduce a new type of query, a lattice query, which is intended

to assist a user of a search engine in query formulation. An associated methodol-

ogy of search is proposed, where instead of submitting an exact query, the user

provides a set of text samples which are the basis of generalization. The lattice

query system automatically forms a search query from this generalization and

verifies the relevancy of search results to the provided set of samples. Lattice

queries are also designed to assist in building templates for information extrac-

tion tasks: instead of specifying certain keywords or linguistic patterns, a devel-

oper can give a list of samples and leave generalization task to the system. Lattice

queries are formed from individual sentences and from paragraphs of text as well.

An open source contribution of lattice query search component as a part of

OpenNLP is described.

Keywords: search engine query, generalizing from samples, interactive search

1 Introduction

Today, the significant portion of information is obtained via search engines. Horizon-

tal web search engines and well as specialized vertical search engines such as product

search and health recommendations are the essential sources of information in the

respective domains. Modern open source big data search and exploration systems like

Solr and Elasticsearch are broadly used for access and analysis of big data. However,

intelligence features such as search relevance and adequate analysis, retrieval and

exploration of large quantities of natural language texts are still lacking. It is still had

to find information in a horizontal or vertical domain unless precise search keywords

are known to the user [1,2,3].

Frequently, novice users of search engines experience difficulties formulating their

queries, especially when these queries are long. It is often hard for user who is new to

a domain to pick proper keywords. Even for advanced users exploring data via query-

ing, including web queries, it is frequently difficult to estimate proper generali-

ty/specificity of a query being formulated. Lattice querying makes it easier for a broad

range of user and data exploration tasks to formulate the query: given a few examples,

it formulates the query automatically.

In this work we intend to merge the efficiency of distributed computing framework

with the intelligence features of data exploration provided by NLP technologies. We

mailto:bgalitsky@hotmail.com

introduce the technique of lattice querying which automatically forms the query from

the set of text samples provided by a user by generalizing them in the level of parse

trees. Also the system produces search results by matching parse trees of this query

with that of candidate answers. Lattice queries allow increase in big data exploration

efficiency since they form multiple “hypotheses” concerning user intent and explore

data from multiple angles (generalizations).

 Exploring data, mostly keyword query and phrase query are popular, as well as

natural language-like ones. Users of search engines appreciate more and more ‘fuzzy

match’ queries, which help to explore new areas where the knowledge of exact key-

words is lacking. Using synonyms, taxonomies, ontologies and query expansions helps

to substitute user keywords with the domain-specific ones to find what the system

believes users are looking for [7].

Nowadays, search engines ranging from open source to enterprise offer a broad

range of queries with string character-based similarity. They include Boolean queries,

span queries which restrict the distances between keywords in a document, regular

expressions queries which allow a range of characters at certain positions, fuzzy match

queries and more-like-this which allow substitution of certain characters based on

string distances. Other kinds of queries allow expressing constraints in a particular

dimension, such as geo-shape query.

Fig. 1: The idea of lattice query

The idea of lattice query is illustrated in Fig. 1. Instead of a user formulating a query

exploring a dataset, he or she proves a few samples (expressions of interest) so that the

system builds the lattice of all generalizations for these samples. The system then

formulates a query for each lattice node.

 Proceeding from a keyword query to regexp or fuzzy one allows mak-

ing search more general, flexible, assists in exploration of a new domain, as set of

Current version of search

query

Data

Expression

of interest 1

Expression

of interest 3

Expression

of interest 2

Lattice

query

Expression

of interest 4

document with unknown vocabulary. What can be a further step in this direction? We

introduce lattice queries, based on natural language expressions which are generalized

into an actual query. A lattice query contains rich linguistic information, which is

derived by generalization of sample expressions (phrases or sentences) specified by

the user. Instead of getting search results similar to a given expression (done by ‘more

like this' query), we first build the commonality expression between all or subsets of

the given sample expressions, and then use it as a query. A lattice query includes

words as well as attributes such as entity types and verb attributes.

2 Simple lattice queries

Let us start with an employee search example. Let us imagine a company looking

for the following individuals:

A junior sale engineer expert travels to customers on site.

A junior design expert goes to customer companies.

A junior software engineer rushes to customer sites.

Given the above set of samples, we need to form a job-search query which would

give us candidates somewhat similar to what we are looking for. A trivial approach

would be to just turn each sample into a query and attempt to find an exact match.

However most of times it would not work, so such queries need to release some con-

straints. How to determine which constraints need to be dropped and which keywords

are most important?

 To do that, we apply generalization to the set of these samples. For the entities

and attributes, we form the least general generalization. The seniority of the job (ad-

jective) 'junior' will stay. The job activity (noun phrase) varies, so we generalize them

into <job-activity>. The higher-level reference to the job is 'expert' and is common for

all three cases, so stays. The verb for job responsibility varies, so we use <action>,

which can be further specified as <moving_action>, using verb-focused ontologies

like VerbNet. To generalize the last noun phrase, we obtain the generalization <cus-

tomer, NP>.

junior <any job activity> expert <action> customer-NP.

This is a lattice query, which is expected to be run against job descriptions and find

the cases which are supposed to be most desired, according to the set of samples.

In terms of parse trees of the potential sentences to be matched with the lattice que-

ry, we rewrite it as

JJ-junior NP-* NN-expert VP-* NN-customer NP-*

The lattice query read as find me a junior something expert doing-something-with

customer of-something.

Now we show how this template can applied to accept/reject a candidate answer

Cisco junior sale representative expert flew to customers data centers.

We represent the lattice query as a conjunction of noun phrases (NP) and verb

phrases (VP) set:

 [[NP [DT-a JJ-junior NN-* NN-*], NP [NN*-customers]], [VP [VB-* TO-to

NN*-customers]]]

 The first NP covers the beginning of the lattice query above, and the second NP

covers the end. VP covers the second half of the lattice query starting from doing-

something...

The generalization between the lattice query and a candidate answer is

[[NP [JJ-junior NN-* NN-*], NP [NN*-customers]], [VP [VB-* TO-to NN*-

customers]]]

One can see that the NP part is partially satisfied (the article a does not occur in the

candidate answer) and VP part is fully satisfied.

Here are parse trees for three samples

Generalizing these three, we obtain the lattice query to run against a dataset:

 [[NP [DT-a JJ-junior NN-* NN-*], NP [NN*-customers]], [VP [VB-* TO-to

NN*-customers]]]

One can see that using lattice queries, one can be very sensitive in selecting search

results. Searching for a token followed by a word with certain POS instead of just a

single token gives a control over false-positive rate. Automated derivation of such

constraint allows user to focus on cases instead of making efforts to generate a query

which would keep expected search results in and unwanted out.

Definition: a lattice query Q is satisfied by a sentence S, if Q^S = S.

In practice a weak satisfaction is acceptable, where Q^S <= S, but there are con-

straints on the parts of the lattice query:

• A number of parts in in Q^S should be the same as in Q;

• All words (not POS-* placeholders) from Q should also be in Q^S.

3 More complex lattice queries

Text samples to form a lattice query can be typed, but also can be taken from text

already written by someone. To expand the dimensionality of content exploration,

samples can be paragraph-size texts.

Let us consider an example of a safety-related exploration task, where a researcher

attempts to find a potential reason for an accident. Let us have the following texts as

incidents descriptions. These descriptions should be generalized into a lattice query to

be run against a corpus of texts for the purpose of finding a root cause of a situation

being described.

Crossing the snow slope was dangerous. They informed in the blog that an ice axe

should be used. However, I am reporting that crossing the snow field in the late after-

noon I had to use crampons.

I could not cross the snow creek since it was dangerous. This was because the pre-

vious hiker reported that ice axe should be used in late afternoon. To inform the

fellow hikers, I had to use crampons going across the show field in the late afternoon.

As a result of generalization [5, 6, 8] from two above cases, we will obtain a set of

expressions for various ways of formulating commonalities between these cases. We

will use the following snapshot of a corpus of text to illustrate how a lattice query is

matched with a paragraph:

I had to use crampons to cross snow slopes without an ice axe in late afternoon

this spring. However in summer I do not feel it was dangerous crossing the snow.

We link two phrases in different sentences since they are connected by a rhetoric

relation based on However …
rel: <sent=1-word=1..inform> ===> <sent=2-word=4..report>

From [<1>NP'They':PRP]

TO [<4>NP'am':VBP, NP'reporting':VBG, <8>NP'the':DT,

<9>NP'snow':NN, <10>NP'field':NN, <11>NP'in':IN, <12>NP'the':DT,

<13>NP'late':JJ, <14>NP'afternoon':NN, <15>NP'I':PRP,

<16>NP'had':VBD, <17>NP'to':TO, <18>NP'use':VB,

<19>NP'crampons':NNS]

We are also linking phrases of different sentences based on communicative actions:

rel: <sent=1-word=6..report> ===> <sent=2-word=1..inform>

From [<4>NP'the':DT, <5>NP'previous':JJ, <6>NP'hiker':NN]

TO [<1>NP'To':TO, <2>NP'inform':VB, <3>NP'the':DT,

<4>NP'fellow':JJ, <5>NP'hikers':NNS]

As a result of generalizing two paragraphs, we obtain the lattice query:
[[NP [NN-ice NN-axe], NP [DT-the NN-snow NN-*], NP [PRP-i

], NP [NNS-crampons], NP [DT-the TO-to VB-*], NP [VB-* DT-the

NN-* NN-field IN-in DT-the JJ-late NN-afternoon (TIME)]], [VP

[VB-was JJ-dangerous], VP [VB-* IN-* DT-the NN-* VB-*], VP

[VB-* IN-* DT-the IN-that NN-ice NN-axe MD-should VB-be VB-used

], VP [VB-* NN-* VB-use], VP [DT-the IN-in], VP [VB-reporting

IN-in JJ-late NN-afternoon (TIME)], VP [VB-* NN*-* NN-* NN*-*

], VP [VB-crossing DT-the NN-snow NN-* IN-*], VP [DT-the NN-*

NN-field IN-in DT-the JJ-late NN-afternoon (TIME)], VP [VB-had

TO-to VB-use NNS-crampons]]]

Notice that potential safety-related “issues” are ice-axe, snow, crampons, being at a

… field during later afternoon, being dangerous, necessity to use ice-axe, crossing the

snow, and others. These issues occur in both samples, so that are of a potential inter-

est. Now we can run the formed lattice query against the corpus and observe which

issues extracted above are confirmed. A simple way to look at it is as a Boolean OR

query: find me the conditions from the list which is satisfied by the corpus. The gener-

alization for the lattice query and the paragraph above turns out to be satisfactory:
[[NP [NN-ice NN-axe], NP [NN-snow NN*-*], NP [DT-the NN-

snow], NP [PRP-i], NP [NNS-crampons], NP [NN-* NN-* IN-in JJ-

late NN-afternoon (TIME)]], [VP [VB-was JJ-dangerous], VP [VB-

* VB-use], VP [VB-* NN*-* IN-*], VP [VB-crossing NN-snow NN*-*

IN-*], VP [VB-crossing DT-the NN-snow], VP [VB-had TO-to VB-

use NNS-crampons], VP [TO-to VB-* NN*-*]]] => matched

Hence we got the confirmation from the corpus that the above hypotheses, encoded

into this lattice query, are true. Notice that forming a data exploration queries from the

original paragraphs would contain too many keywords and would produce too much

marginally relevant results.

4 Evaluation of Performance of Lattice Queries

We conduct evaluation for complex information extraction tasks such as identifying

communicative actions and detecting emotional states. Also, we perform evaluation

for the rhetoric relation domain: this task is necessary to build a set of parse trees for a

paragraph, linking its parse trees. We draw the comparison between information ex-

traction based on the means available within Elasticsearch and Solr framework:

 keyword Boolean queries,

 span queries where the distance between keywords in text is constrained, and

 lattice query-based information extraction.

The corpus is based on he set of customer complains, where both communicative

actions and emotions are frequent and essential for complaint analysis tasks. Evalua-

tion was conducted by quality assurance personnel.

We observe in Table 1 that the information extraction F-measure for Keywords and

Regular expressions is both 64% for querying indexed data and string search (alt-

hough the former is about 50 times faster). Relying on span queries gives just 2%

increase in F-measure, whereas using lattice queries delivers further 10% improve-

ment.

In this work we introduced a new type of query for search engine framework, the

lattice query, which is intended to facilitate the process of an abstract data exploration.

Instead of having a user formulate a query, one or more instances are automatically

formed from sample expressions. To derive a lattice query, as well as measure rele-

vance of a question to an answer, an operation of syntactic generalization [8, 9] is

used. It finds a maximal common sub-trees between the parse trees for the sample text

fragments, and also it finds the maximum common sub-trees between the parse trees

for the lattice query and that of the candidate answers. In the latter case, the size of the

common sub-trees is a measure of relevance for a given candidate search results.

Method

Task

Keywords and

Regexps –

finding in

string

Keywords and

Regexp Queries

– Lucene index

Span and ‘Like’

Queries –

Lucene index

Lattice queries

First Lucene

index then verifi-

cation by ^

P/R

S
p

ee
d

P/R

S
p

ee
d

P/R

S
p

ee
d

P/R

S
p

ee
d

Extracting

communicative

actions

64 71 1 63 72 0.02 68 70 0.05 82 75 15.1

Extracting

emotional state

62 70 1.2 59 70 0.02 64 68 0.05 80 74 18.2

Extracting

rhetoric

relation

56 65 1.5 56 66 0.02 59 70 0.05 77 70 25.4

Table 1: Evaluation of lattice query-based information extraction tasks.

 We now proceed to an information extraction example in the security domain.

One needs to identify text which contains some information of personal interest, such

as social security numbers or driver’s license numbers, as well as names and addresses

of individuals. The requirement is to identify a reference to a person, her activity and a

certain document with an id number. Rather than attempting to come up with a rule, a

developer of this system specifies the training samples:

"John Doe send her california license 4567456"

"Mary Smith hid her US social number 666-66-6666"

"Jennifer Poppins got her identification 8765"

"Andrew Chen lost his Oregon driver license 731234"

The rules obtained from this samples cover following cases:

"Judith Jain received her washington license 4567456"

"Mary Jones send her Canada prisoner id number 666666666"

"Mary Jones send her Canada prisoner id number 666666666"

"Mary Stewart hid her Mexico cook id number 666666666"

"Robin mentioned her Peru fisher id 2345"

“Peter Doe hid his Bolivia set id number 666666666"

"Robin mentioned her best Peru fisher man id 2345"

But leaves the following cases out:

"Spain hid her Canada driver id number 666666666"

"John Poppins hid her prisoner id 666666666"

"Microsoft announced its Windows Azure release number 666666666"

"John Poppins hid her Google id 666666666"

It should be obvious for the reader the negative set included cases not related to a

possible leakage of personal information.

In our evaluation we compared the conventional information extraction approach

where extraction rules are expressed using keywords and regular expressions, with the

one where rules are frame queries. We observed that frame queries improve both

precision and recall of information extraction by producing more sensitive rules, com-

pared to sample expressions which would serve as extraction rules otherwise. An

importance of the lattice queries in data exploration is that only the most important

keywords are submitted for web search, and neither single document nor keyword

overlap deliver such the set of keywords.

References

1. Borgida ER, DL McGuinness, Asking Queries about Frames. Proceedings of the

5th Int. Conf. on the Principles of Knowledge Representation and Reasoning 1996,

340—349.

2. Bill MacCartney, Michel Galley, and Christopher D. Manning, A phrase-based

alignment model for natural language inference. The Conference on Empirical

Methods in Natural Language Processing (EMNLP-08), Honolulu, HI, October 2008.

3. Galitsky, B. Natural Language Question Answering System: Technique of Semantic

Headers. Advanced Knowledge International, Australia (2003).

4. Galitsky, B., Josep Lluis de la Rosa, Gábor Dobrocsi. Inferring the semantic

properties of sentences by mining syntactic parse trees. Data & Knowledge

Engineering. Volume 81-82, November (2012) 21-45.

5. Galitsky, B., Daniel Usikov, Sergei O. Kuznetsov: Parse Thicket Representations for

Answering Multi-sentence questions. 20th International Conference on Conceptual

Structures, ICCS 2013 (2013).

6. Galitsky, B. Machine Learning of Syntactic Parse Trees for Search and Classification

of Text. Engineering Application of AI,

http://dx.doi.org/10.1016/j.engappai.2012.09.017, (2012).

7. Galitsky, B. Transfer learning of syntactic structures for building taxonomies for

search engines. Engineering Applications of Artificial Intelligence. Volume 26 Issue

10, November, 2013, Pages 2504-2515.

8. Galitsky B, Ilvovsky D, Kuznetsov SO, Strok F. Matching sets of parse trees for

answering multi-sentence questions. Recent Advances in Natural Language

Processing. 2013. doi:http://www.aclweb.org/anthology/R13-1037.

9. Galitsky, B., Learning parse structure of paragraphs and its applications in search.

Engineering Applications of Artificial Intelligence 01/2014; 32:160–184.

