
Belgacem BEN HEDIA, CEA, LIST, France
Florin Popentiu VLADICESCU, University of Oradea, Romania

VECoS’2015
Verification and Evaluation of Computer and Communication
Systems

9th International Workshop
Bucharest, Romania, September 10-11, 2015
Proceedings

c©Copyright 2015 for the individual papers by the papers’ authors. Copying permitted for private and academic purposes. This volume is published and copyrighted

by its editors.

These proceedings are published online by the editors as Volume 1431 at
CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-1431

http://ceur-ws.org/Vol-1431

PREFACE

These are the proceedings of the 9th International Workshop on Verification and Evaluation of Computer and
Communication Systems (VECoS’2015) held the 10th and 11th of September 2015 at the University POLITEHNICA
of Bucharest that is the main organizer together with the support of MeFoSyLoMa group and Formal Methods
Europe.

The International Workshop on Verification and Evaluation of Computer and Communication Systems (VECoS)
was created by an Euro-Maghrebian network of researchers in computer science. Its first edition, VECoS 2007,
took place in Algiers, VECoS 2008 in Leeds, VECoS 2009 in Rabat, VECoS 2010 in Paris, and VECoS 2011 in
Tunis, VECoS 2012 in Paris, VECoS 2013 in Florence and VECoS 2014 in Bejaia. The aim of the VECoS workshop
is to bring together researchers and practitioners, in the areas of verification, control, performance, quality of
service, dependability evaluation and assessment, in order to discuss the state-of-the-art and the challenges in
modern computer and communication systems in which functional and extra-functional properties are strongly
interrelated. Thus, the main motivation for VECoS is to encourage the cross-fertilization between the various
formal verification and evaluation approaches, methods and techniques, and especially those developed for
concurrent and distributed hardware/software systems. Beyond its technical and scientific goals, another main
purpose of VECoS is to promote collaboration between participants in research and education in the area of
computer science and engineering. We welcome contributions describing original research, practical experience
reports and tool descriptions/demonstrations in the areas of verification, control, performance, quality of service
and dependability evaluation.

The invited speakers for VECoS 2015 are: Liliana CUCU-GROSJEAN from AOSTE, INRIA Paris-Rocquencourt,
France, Gabriel CIOBANU from Romanian Academy, ICS, Iasi, Romania and Mohamed KAÂNICHE from LAAS,
Toulouse, France.

We received 15 high-quality contributions. For each paper three to five reviews were made. The program
committee has accepted 9 papers for full presentation.

Without support of our academic and corporate sponsors, the enormous efforts of authors, reviewers, steering
committee and the local organizational team this workshop wouldn’t provide such an interesting booklet.

We thank the authors for their submissions and the program committee for their hard work.

September 2015 Belgacem BEN HEDIA and Florin Popentiu VLADICESCU

3

ORGANIZING COMMITTEE

Professor Nicolae Tăpus, Computer Science Department, The Faculty of Automatic Control and Computer
Science, University POLITEHNICA of Bucharest, Bucharest, Romania
Professor Viorel-Puiu Paun, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Bucharest,
Romania

STEERING COMMITTEE

Hassane Alla , GIPSA Lab INPG Grenoble
Djamil Aissani, LAMOS, Université de Bejaia
Kamel Barkaoui , CEDRIC CNAM Paris (Chair)
Hanifa Boucheneb, Veriform, Ecole Polytechnique de Montréal
Francesco Flammini, Ansaldo STS, Milano
Mohamed Kaaniche, LAAS CNRS, Toulouse
Bruno Monsuez , ENSTA - UIIS, Paris
Nihal Pekergin , LACL UPEC, Créteil
Denis Poitrenaud, LIP6 UPMC, Paris
Tayssir Touili, LIAFA, Université Paris Diderot

PROGRAM COMMITTEE

Bernhard K. Aichernig, ISF, Graz
Djamil Aissani, LAMOS, Bejaia
Yamine Ait Ameur, IRIT/ENSEEIHT, Toulouse
Otmane Ait Mohamed, Concordia University, Montréal
Hassane Alla, GIPSA, Grenoble
Lamia Atma Djoudi, Synchrone Technologies, Paris
Kamel Barkaoui, Cedric Cnam, Paris
Zohra Bakkoury, EMI EAMPIS, Rabat
Belgacem Ben Hedia, LIST-CEA, Saclay (co-chair)
Saddek Bensalem, VERIMAG Grenoble, France
Simon Bliudze, EPFL, Lausanne
Jean-Louis Boimond, LARIS, Angers
Patrice Bonhomme, LI, Tours
Abdelmadjid Bouabdallah, Heudiasyc Lab, Compiegne
Hanifa Boucheneb, Polytechnique Montréal
Florian Brandner, ENSTA ParisTech, Saclay
Carla Ceatzu, University of Cagliari
Tijani Chahed, Telecom SudParis, Evry
Feng Chu, IBISC, Evry
Isabel Demongodin, LSIS Marseille
Josée Desharnais, Université Laval, Quebec
Karim Djouani, LISSI UPEC, Créteil
Mohamed Escheikh, ENIT,Tunis
Alessandro Fantecchi, Unifi, Italy
Francesco Flammini, Ansaldo STS, Milano
Mohamed Ghazel, INRETS, Villeneuve d’Ascq
Latéfa Ghomri, University of Tlemcen.
Bernd Heidergott, VU Amsterdam University
Serge Haddad, LSV Cachan
Awatef Hicheur Cairns, Altran Research, Velizy
Malika Ioulalen, USTHB Alger

Mohamed Jmaı̈el, ENSI, Sfax
Mohamad Jaber, AUB, Beyrouth
Jorge Julvez, University of Zaragoza
Mohamed Kaaniche, LAAS, Toulouse
Lars Michael Kristensen, Bergen Univ. College, Bergen
Bechir Ktari, Université Laval, Québec
Gaiyun Liu, Xidian Univ., Xi’an
Borhen Marzougui, ECT, Abu Dhabi
Mourad Maouche, Philadephia University, Amman
Louiza Bouallouche Medjkoune, LAMOS, Bejaia
Bruno Monsuez, ENSTA ParisTech, Saclay
Mohamed Mosbah, LaBRI, Bordeaux
Safia Nait-Bahloul, LITIO, Université d’Oran
Meriem Ouederni, IRIT, Toulouse
Claire Pagetti, ONERA, Toulouse
Vladimir Paun, ENSTA ParisTech, Palaiseau
Nihal Pekergin, LACL, Créteil
Olivier Perrin, INRIA-LORIA, Nancy
Denis Poitrenaud, LIP6, Paris
Florin Popentiu Vladicescu, Univ. of Oradea (co-chair)
Riadh Robbana, INSAT, Tunis
Zaı̈di Sahnoun, LIRE, Constantine
Zohra Sbaı̈, ENIT, Tunis
Larbi Sekhri, Univ. es Senia, Oran
Nadia Tawbi, Université Laval, Quebec
Thouraya Tebibel, ESI, Alger
Ferucio Laurentiu Tiplea, University of Iasi
Tayssir Touili, LIPN Villetaneuse
Farouk Toumani, LIMOS, Clermont-Ferrand
Karsten Wolf, Universitaet Rostock

4

CONTENTS

I Session: Control and Diagnosis 7

Resilience Assessment: Accidental and Malicious Threats (Invited talk)
Mohamed KAÂNICHE . 9

Fault Diagnosis of P-Time Labeled Petri Net Systems
Patrice BONHOMME . 11

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems
Abderraouf BOUSSIF, Mohamed GHAZEL and Kais KLAI . 23

II Session: Program verification 35

Probabilistic Approaches for Time Critical Embedded Systems (Invited talk)
Liliana CUCU-GROSJEAN . 37

Towards the Property-Based Testing of an L4 Microkernel API
Cosmin DRAGOMIR, Lucian MOGOSANU, Mihai CARABAS, Razvan DEACONESCU and Nicolae TAPUS 39

An Approach for Formal Verification of Updated Java Bytecode Programs
Razika LOUNAS, Mohamed MEZGHICHE and Jean-Louis LANET . 51

State Space Reduction Strategie for Model Checking Concurrent C Programs
Amira METHNI, Matthieu LEMERRE, Belgacem BEN HEDIA, Serge HADDAD and Kamel BARKAOUI . 65

III Session: Performance evaluation 77

Timeout Interaction and Migration in Distributed Systems (Invited talk)
Gabriel CIOBANU . 79

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control
Admar Ajith Kumar SOMAPPA, Andreas PRINZ and Lars KRISTENSEN 81

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension
Zohra SBAÏ and Kamel BARKAOUI . 97

Verification of Bounded Real-Time Distributed Systems With Mobility
Bogdan AMAN and Gabriel CIOBANU . 109

5

Part I

Session: Control and Diagnosis

7

Resilience Assessment:
Accidental and Malicious Threats

Mohamed Kaâniche
CNRS; LAAS; Université de Toulouse – 7, Avenue du colonel Roche, F-31077 Toulouse, France

Université de Toulouse; UPS; INSA; INP; LAAS; F-31077 Toulouse, France
mohamed.kaaniche@laas.fr

A large body of research has been dedicated to the analysis, assessment and protection of cyber-
physical systems and critical infrastructures against potential threats that might affect the
dependability, the security or the resilience of the services delivered to the users. Traditionally,
accidental and malicious threats have been taken into account separately. In this talk we will
address the challenges raised by the resilience assessment and analysis of such systems
considering accidental and malicious threats in an integrated way and we will present some
examples of research studies carried out in this context.

Critical infrastructures, resilience, assessment, accidental threats, malicious threats

1. SUMMARY

In the past decade, several concerns have been
raised about the vulnerability of critical
infrastructures and cyber-physical systems and
their efficient protection in the presence of
accidental and malicious threats (Rahman et al.
2009).

Historically, most of the efforts were dedicated to
the protection of critical infrastructures against
accidental faults and natural disasters with a
specific focus on safety. The situation changed
significantly after the September 11, 2001 tragic
events that led to increased international concerns
about the security and robustness of critical
infrastructures in response to evolving malicious
threats

The vulnerability of critical infrastructures has
increased as a result of the wider use of open
networks and information infrastructures, and the
proliferation of vulnerable operating systems and
control devices. Recent events targeting critical
infrastructures show that the threat is real. A widely
reported example is the Stuxnet sophisticated
malware discovered in July 2010 that targeted
specific industrial computer control equipment and
software, used for instance in nuclear power plants
in Iran [(Langner 2011).

A large body of research has been dedicated to the
analysis, assessment and protection of cyber-
physical systems and critical infrastructures against
potential threats that might affect the dependability,
the security or the resilience of the services

delivered to the users. The resilience term is used
differently, by different communities. It is defined in
(Laprie 2011) as the persistence of service delivery
that can justifiably be trusted, when facing
changes.

Traditionally, accidental and malicious threats have
been taken into account separately. In this talk we
will address the challenges raised by the resilience
assessment and analysis of such systems
considering accidental and malicious threats in an
integrated way and we will present some examples
of research studies carried out in this context.

In particular this objective has been addressed in
the context of the CRUTIAL project
(http://crutial.rse-web.it/) considering the example
of power grid critical infrastructures and the
associated information infrastructures dedicated to
their management and control.

CRUTIAL focussed on the failures resulting from
interdependencies between these infrastructures.
The characterization of such failures and the
modelling of their impact on relevant properties of
power systems have been investigated by means
of models at different abstraction levels: i) from a
very abstract view expressing the essence of the
typical phenomena due to the presence of
interdependencies, ii) to an intermediate detail level
representing in a rather abstract way the structure
of the infrastructures, in some scenarios of interest,
iii) to a quite detailed level where the infrastructures
components and their interactions are investigated
at a finer grain, considering elementary events

9

occurring at the components level and analysing
their impact at the system level.

Accordingly, the proposed resilience assessment
framework (Kaâniche et al. 2009) is based on a
hierarchical modelling approach that
accommodates the composition of different types of
models and formalisms, including generalized
stochastic Petri nets, fault trees, Stochastic Well
formed Nets, and Stochastic Activity Networks.
Additionally, a new formalism called “Dependent
Automata” has been developed to provide a
rigorous definition of interdependencies related
failures. Also, unified models for describing
cascading and escalating failures considering
accidental and malicious threats in an integrated
way have been defined (Laprie et al. 2007)

Besides these models, the CRUTIAL project
resilience assessment activities included
architecture validation activities as well as testbed
based experiments to analyse the impact of
different attack scenarios on control applications.

We will outline some of the results obtained in the
context of this project and discuss some open
research problems.

BIO

Mohamed Kaâniche has been at LAAS-CNRS,
Toulouse, France, since 1988 where he currently
holds a position of “Directeur de Recherche”,
heading the Dependable Computing and Fault
Tolerance Group. From March 1997 to February
1998, he was a Visiting Research Assistant
Professor at the University of Illinois at Urbana-
Champaign, IL, USA.

His research addresses the dependability and
security assessment of hardware and software fault
tolerant computer systems and critical
infrastructures, using analytical modelling and
experimental measurement techniques.

He has been involved in several national and
European research projects and acted as a
consultant for companies in France and as an
expert for the European Commission. He has
served on program and organization committees of
international dependability related conferences. He
was Program Chair of PRDC-2004, EDCC-5, DSN-
PDS 2010, LADC-2011 and SAFECOMP- 2013. He
is General co-Chair of DSN-2016 that will be held
in Toulouse, France in June 2016.

3. REFERENCES

Kaâniche, et al. (2009) CRUTIAL Project
Deliverable D16 - Final version of the modelling
framework. http://crutial.rse-
web.it/Dissemination/DELIVERABLES-OF-THE-
PROJECT.asp

Laprie, Jean-Claude, Kanoun, Karama, Mohamed
Kaâniche, (2007) Modelling interdependencies
between Electricity and Information
Infrastructures. The 26th International
Conference on Computer Safety, Reliability, and
Security (SAFECOMP-2007), Nuremberg,
Germany, LNCS 4680, Springer, pp. 54-67.

Laprie, Jean-Claude “From Dependability to
Resilience”, IEEE International Conference on
Dependable Systems and Networks (DSN-
2008), Supplemental volume, Anchorage,
Alaska, USA, pp. G8-G9, 2008.

Langner, R. “Stuxnet: Dissecting a Cyberwarfare
Weapon,” IEEE Security & Privacy, vol. 9, no. 3,
2011, pp. 49–51.

Rahman, H.A., Beznosov, K., Marti, J.R.,
“Identification of sources of failures and their
propagation in critical infrastructures from 12
years of public failure reports“, Int. Journal on
Critical Infrastructures, vol.5, n°3, 2009

Resilience Assessment: Accidental and Malicious Threats

10

Fault Diagnosis of P-Time Labeled Petri Net
Systems

Patrice Bonhomme
University François-rabelais

CNRS, LI EA 6300, OC ERL CNRS 6305
64 avenue Jean Portalis

37200 Tours
France

bonhomme@univ-tours.fr

This paper focuses on the fault diagnosis problem of systems modeled with P-time labeled Petri nets with partial
information. Indeed, the set of transitions is partitioned into those labeled with the empty string ǫ called silent (as their
firin cannot be detected) including the faulty transitions and the observable ones. The proposed approach is based on
the synthesis of a function called diagnoser allowing to determine the diagnosis state of the system based on the current
observation. The novelty of the developed approach resides in the fact that, although the time factor is considered as
intervals, the diagnoser is computed thanks to the underlying untimed Petri net structure of the P-time labeled model
considered. Furthermore, the method relies on the schedulability analysis of particular firin sequences exhibited by the
analysis of the obtained diagnoser and does not require the building of the state class graph.

Discrete event systems. Petri nets. Time labeled systems. Observability. State estimation. Fault diagnosis.

1. INTRODUCTION

The correct behavior of a real-world application is the
ultimate requirement, particularly for systems such as
communication protocols, manufacturing and real-time
systems. Indeed, a drift from an expected behavior can
be of crucial importance and can even lead, in extreme
cases, to severe consequences including human losses. So,
knowing the current state of a system in order to take the
appropriate decisions and determining the malfunction of
a system component are nowadays fundamental issues.

From a practical point of view, associating a dedicated
sensor to each variable of interest in order to monitor
its internal state is inconceivable. This restriction, due to
economical or physical accessibility reasons leads to a
system analysis in presence of uncertainties as the state
information cannot be directly obtained. This particularity
has gave rise to the introduction of the observers paradigm
in the classical system theory. Indeed, an observer can
be viewed as a mechanism allowing to estimate or
reconstruct the internal state of a system based on some
measurements. From a discrete event dynamic systems
point of view and more precisely from a Petri net (PN on
short) perspective this issue corresponds to the estimation
of a PN marking based on some event observations.

Thus, being given a sequence of observed events (called
word or trace) the challenge consists in determining if a
fault has occurred, eventually or for sure!

It can be noticed that the problems of fault diagnosis
has receive extensive attention these recent years and
particularly in the framework of automata models and
regular languages (Sampath et al. (1995), Cassandras and
Lafortune (2008), Lin (1994), Cassez and Tripakis (2008))
but there are few studies in the time discrete event systems
context.

A preliminary version of this paper was presented in
(Bonhomme (2014)) where an approach allowing to
estimate the marking of a P-time labeled Petri net (P-
TLPN) system based on the observation of particular
labels was presented. The plant observation is given by
a set of labels whose occurrence can be detected/observed
by an external agent (called observer or estimator) - these
particular labels are associated to observable transitions.
The other transitions, the unobservable ones (called silent
transitions) are labeled with the empty string ǫ.

In this extended and enriched version, a fault diagnosis
problem is solved thanks to the introduction of a function
called diagnoser which associates to each observation
a diagnosis state. In the proposed technique the set of
unobservable transitions is further partitioned into the

©
11

set of faulty transitions and the set of regular ones. The
regular transitions are unobservable and non faulty.

The proposed approach does not require the state class
graph construction and consequently it is designed to
alleviate the state space explosion problem. Indeed, the
construction of the considered state observer is based on
the analysis of the underlying untimed PN structure of the
P-time labeled PN considered.

In particular, the following four assumptions are made:

1. the net structure and the initial marking are known,

2. the fault model is known,

3. the underlying untimed PN, of the P-TLPN
considered is bounded,

4. the Petri net induced by the set of unobservable
transitions does not contain circuit of null length.

Note that this latter assumption is adopted to exclude
the situation where an infinit of actions may take place
in a finit amount of time: it prevents the net induced
by the set of unobservable transitions from being Zeno
(Hadjidj et al. (2007)) which is in contradiction with a
diagnosability scheme. In addition, there is no assumption
on the backward conflic freeness of the subnet induced
by the set of unobservable transitions as in (Giua et al.
(2007)).

The paper is organized as follows: after an overview
of the relevant literature in the next section, a brief
reminder of the basics of untimed Petri nets followed by a
formal definitio of P-time labeled Petri nets is realized
in the third section. Section four covers the procedure
of estimation and the construction of the state observer.
The schedulability analysis of the occurrence sequence
highlighted by the state observer and its application to the
estimation problem are studied in the fift section. In the
sixth section the fault diagnosis problem is solved. Section
seven presents an illustration of the developed method and
the last section concludes the paper and gives suggestions
for future research.

2. LITERATURE REVIEW

For discrete event system (DES) state estimation has
been addressed by several researchers. For instance, in
(Giua et al. (2007)) the authors deal with the marking
estimation of a labeled Petri net system. Thanks to
structural assumptions on the subnet induced by the set
of unobservable transitions, they propose an algebraic
characterization of the set of consistent markings once a
sequence is observed.

In the framework of fault detection or fault diagnosis
several approaches can also be found in the literature -
fault diagnosis is closed to the state estimation problem.

Note that a complete survey of fault diagnosis methods
for DES can be found in (Zaytoon and Lafortune (2013)).
In (Cabasino et al. (2010)) the authors proposed a
diagnosis approach based on the concept of basis marking
and justificatio under the acyclicity assumption of the
unobservable subnet of the system considered. Intuitively,
for an observed sequence (word) ω, a justificatio can be
thought as the set of minimal (in terms of firin vector)
unobservable transitions interleaved with ω necessary to
complete ω into a fireabl sequence on the net considered,
from the initial marking. They extended their work in
(Cabasino et al. (2014)) to provide a diagnosability
approach for bounded labeled PN by introducing two
graphs, namely the modifie basis reachability graph
(MBRG) and the basis reachability diagnoser (obtained
from the MBRG). Necessary and sufficien conditions for
diagnosability are given but the construction of the two
graphs is of exponential complexity with respect to the
structure of the PN considered and its initial marking.

There are relatively few works in this topic in the time
discrete event systems scheme where the time factor is
modeled as intervals, so, numerous problems are still
open. Concerning the time Petri net model of Merlin
(Merlin and Faber (1976)), the authors in (Basile et al.
(2013)) proposed a procedure for estimating the marking
of the model in presence of unobservable transitions. They
introduced a modifie state class graph which captures
the required information on the possible evolution of the
system starting from a given initial marking. Thanks to
this graph, being given a timed sequence and a time
instant, the set of markings consistent with the current
observation is determined via integer linear programming
techniques. The approach is restricted to bounded time
Petri nets.

In a recent paper, the authors in (Basile et al. (2015))
extend the previously mentioned approach developed in
(Basile et al. (2013)) to deal with the state estimation and
the fault diagnosis problem for systems modeled by time
PN augmented with labels.

The authors in (Wang et al. (2013)), thanks to a fault
diagnosis graph (FDG) which is a truncation of the
conventional state class graph (SCG) (Berthomieu and
Diaz (1991)), developed an online technique for the
fault diagnosis of systems modeled by unlabeled time
Petri nets. The FDG is constructed incrementally with
respect to the current observation and its number of states
can be, in the worst case, the same as the one of the
traditional state class graph. Indeed, the FDG is obtained
from the SCG by only keeping the information required
for the evaluation of the fault states and the authors
concentrate on the sequence information and remove the
irrelevant state classes (i.e., which are not used in the fault
diagnosis). Intuitively, the state classes which are obtained
after the firin of an unobservable transition are discarded
as the diagnosis state is updated after an observation.

Fault Diagnosis of P-Time Labeled Petri Net Systems

12

The acyclicity assumption of the subnet induced by the
unobservable transitions is also considered. The authors
further extend the method in (Wang et al. (2014)) by using
reduction rules and model checking techniques.

3. PETRI NETS

3.1. Untimed Petri Nets

The reader unfamiliar with Petri nets can refer to (Murata
(1989)), in the following only the basic notions are
recalled.

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set ofm places; T is a set
of n transitions. Pre : P ×T → N and Post : P ×T → N
are the pre and post incidence functions that specify the
arcs; C = Post−Pre is the incidence matrix. The preset
and postset of a node X ∈ P ∪ T are denoted ◦X and
X◦. A marking is a vector M : P → N that assigns to
each place of a P/T net a non-negative integer number of
tokens, represented by black dots. M(p) is the marking of
place p.

A net system 〈N ; M0〉 is a net N with an initial marking
M0. A transition t is marking enabled at M if M ≥
Pre(·, t). A transition t enabled at M may fire yielding
the marking M ′ = M + C(·, t). We write M [σ > to
denote that the sequence of transitions σ is enabled at M ,
and we write M [σ > M ′ to denote that the firin of σ
yieldsM ′. A markingM is reachable in 〈N ; M0〉 iff there
exists a firin sequence σ such that M0[σ > M .

The set of all sequences that are enabled at the initial
marking M0 is denoted L(N, M0) i.e., L(N, M0) =
{σ ∈ T ⋆|M0[σ >} with T ⋆ the Kleene closure of set T
i.e. the set of all firin sequences of elements of T of
arbitrary length, including the empty sequence λ. The
notation σ′σ will correspond to the firin sequence σ′

followed by firin sequence σ, i.e., the concatenation
operation ; σ′ is the prefi of firin sequence σ′σ.

The set of all markings reachable from M0 define the
reachability set of 〈N ; M0〉 and is denoted R(N, M0).

Given a net N = (P, T, Pre, Post) and a subset
Ts ⊆ T , the Ts-induced subnet of N is the net Ns =
(P, Ts, P res, Posts) where Pres and Posts are the
restrictions of Pre and Post to Ts. So, the net Ns is
obtained from N by removing all transitions in T \ Ts,
it is denoted also by Ns∠Ts

N .

3.2. Labels mapping

A labels mapping LM is associated to each transition of
the net considered as follows

LM : T → Ω
⋃ {ǫ} ,

with Ω a finit alphabet and ǫ the empty string.

In the proposed approach, the set of transitions is
partitioned into two sets: observable transitions whose
firin can be detected by an external observer, denoted
as To and unobservable transitions whose firin cannot be
detected, denoted as Tu with T = To∪Tu and To∩Tu = ∅.

More precisely, the following stands:

• Tu = {t ∈ T |LM(t) = ǫ}, transitions in Tu are
also called silent,

• To = {t ∈ T |LM(t) 6= ǫ} (i.e., To is the set of
transitions labeled with a symbol in Ω).

In the proposed approach, the same label ζ ∈ Ω can be
shared by several transitions, i.e., two transitions ti, tj
with ti 6= tj will be called indistinguishable if:

LM(ti) = LM(tj) = ζ.

The extension of the label mapping can be realized over
sequences, LM : T ⋆ → Ω⋆, recursively as follows:

1. LM(ti) = ζ ∈ Ω if ti ∈ To,

2. LM(ti) = ǫ if ti ∈ Tu,

3. let σ ∈ T ⋆ and ti ∈ T then LM(σti) =
LM(σ)LM(ti),

4. LM(λ) = ǫ where λ is the empty sequence.

3.3. P-time Petri Nets

Definitio 1 The formal definitio of a P-TPN (Khansa
et al. (1996)) is given by a pair 〈N ; I〉 where:

• N is a marked Place/Transition net (a P/T net
system augmented with a marking)

• P → (Q+ ∪ {0}) × (Q+ ∪ {∞}),

• pi → I(pi) = [ai, bi] with 0 ≤ ai ≤ bi

With:

• P : the set of places of the net N ,

• Q+: the set of positive rational numbers,

• Ii define the static interval of the operation
duration of a token in a place pi.

A token in place pi will be considered in the enabledness
of the output transitions of this place if it has stayed for
ai time units at least and bi at the most. Consequently,
the token must leave pi, at the latest, when its operation
duration becomes bi. After this duration bi, the token
will be ”dead” and will no longer be considered in the
enabledness of the transitions. According to the strong
firin mode, a transition in a P-TPN, is forced to fir unless
it is disabled by the firin of another conflictin transition.

Fault Diagnosis of P-Time Labeled Petri Net Systems

13

Let consider αi the clock associated with the token
denoted i ∈ TK of the P-TPN (TK being the set of
tokens of the P-TPN considered). υ is a valuation of the
system, i.e., a mapping associating to each token i of
the P-TPN, an element of (R≥0), υi, representing the
time elapsed since the token i has been created (i.e., the
valuation of the clock αi). So, υ ∈ (R≥0)

TK with the
notation AX representing the set of mappings from X to
A. 0 is the initial valuation with ∀i, 0i = 0

The semantics of a P-TPN can be define as a Timed
Transition System (TTS). A state of the TTS is a couple
s = (M, υ) where M is a marking and υ a valuation of
the system.

Definitio 2 The semantics of a P-TPN 〈N ; I〉 is define
by the Timed Transition System SN = (Q, {q0} , Σ,−→):

1. Q = NP × (Q≥0)
TK

2. q0 = (M0, 0)

3. Σ = T

4. −→∈ Q × (Σ ∪ Q≥0) × Q

• The continuous transition is define ∀d ∈ R≥0 by:

(M, υ)
d→ (M, υ′) iff

{
υ′ = υ + d.
∀ token k in ps ⇒ υ′

k ≤ bs.

• The discrete transition is define ∀ti ∈ T by:

(M, υ)
ti→ (M ′, υ′) iff:

M ≥◦ ti.
∀ token k in pl, υk ≤ bl.
∀ ps ∈◦ ti,∀ token k in ps involved in ti’s firin :⋂

k[max(0, as − υk), (bs − υk)] 6= ∅.
M ′ = M −◦ ti + t◦i .

∀ token r, υ′
r =

{
0 if created by ti.
υr otherwise.

The dynamic evolution of a P-TPN depends on the
timing situation of each token. Indeed, each token will
be associated with a potential firin interval (or dynamic
interval) which can be different from its static one. For
instance, consider place pi with static interval [ai, bi],
let a token arrive in place pi at absolute time τ . At τ
its potential firin interval will correspond to [ai, bi]. At
time τ + c with c ≤ bi the dynamic interval of the
considered token will become [max(ai − c, 0), bi − c].
It can be noticed that a token is considered as dead when
its dynamic interval becomes [0, 0].

Definitio 3 A P-time labeled Petri net (P-TLPN on
short) over an alphabet Ω is a triple 〈N, I,LM〉 where
〈N, I〉 is a P-TPN and LM : T → Ω

⋃ {ǫ} is a labeling
function.

Finally, given a sequence of labels (a word) ω ∈ Ω⋆, it
is denoted by ωk the kth element in ω and the number
of elements of ω is denoted by |ω|. For a ∈ Ω, we write
a ∈ ω if there exists k ≥ 1 such that ωk = a (i.e., a is an
element of the word ω).

Furthermore, let ω1, ω2, . . . , ωn be n sequences of labels
(i.e., wi ∈ Ω⋆, 1 ≤ i ≤ n), the notation ω = ω1ω2 . . . ωn

will be the concatenation of ω1, ω2, . . . , ωn.

The next section recalls the procedure (Bonhomme
(2015)) to construct the state observer.

4. ESTIMATION PROCEDURE

The goal of the observer is to give the current state
estimate of the system based on the information of the
observed traces. The state of the observer will consist in a
set of states the model can be in after a label observation.

The following set will be associated to any observed word
ω (i.e., the observed labels sequence):

• L(ω) is the set containing all sequences of
transitions that are consistent with ω, i.e., the
set of all possible firin sequences that produce
observation ω.

In general, if ω is an observed word, the associated firin
sequence σ ∈ LM−1(ω) is not necessarily fireabl on the
net as some unobservable transitions should be interleaved
to obtain a fireabl sequence that produce ω.

Definitio 4 Let N be a P-TLPN with T = To ∪ Tu. The
following operator is defined

• The projection over To is Po : T ⋆ → T ⋆
o define as:

– Po(λ) = λ,
– for all σ ∈ T ⋆ and t ∈ T, Po(σt) = Po(σ)t if

t ∈ To and Po(σt) = Po(σ) otherwise (with
λ representing the empty sequence).

Given a sequence σ ∈ L(N, M0), ω = LM(Po(σ))
denotes the corresponding observed word.

Definitio 5 Let N be a P-TLPN with T = To ∪ Tu and
ω ∈ Ω⋆ be an observed word. L(ω) is define as:

L(ω) = P−1
o (LM−1(ω)) ∩ L(N, M0) =

{σ ∈ L(N, M0)|LM(Po(σ)) = ω},

i.e., the set of firin sequences consistent with ω ∈ Ω⋆.

Definitio 6 Let N be a P-TLPN with T = To ∪ Tu and
ω ∈ Ω⋆ be an observed word. C(ω) is define as:

C(ω) = {M ∈ R(N, M0)|∃σ ∈ L(ω) : M0[σ > M},

i.e., the set of markings consistent with ω.

Fault Diagnosis of P-Time Labeled Petri Net Systems

14

So, being given an observed word ω, L(ω) is the set of
sequences that may have fire while C(ω) is the set of
markings in which the system may actually be.

P5

t4

t5

t6 t7

[1, 3]

[0, 6]
P1

P2

P3

P4

t1

t2

t3

[1, 3] [1, 2]

[2, 4]

a

b

b

Figure 1: P-TLPN model.

Let consider the P-TLPN of Figure 1 with Tu =
{t4, t5, t6, t7}, To = {t1, t2, t3}, Ω = {a, b}. It holds
LM(t1) = a, LM(t2) = LM(t3) = b (transitions t2
and t3 are indistinguishable) and LM(ti) = ǫ,∀ti ∈ Tu.

If the observed word is ω = ab then LM−1(ω) =
{t1t2, t1t3} and L(ω) = {t4t1t2, t4t1t6t7t3} and C(ω) =
[10000].

Definitio 7 Let N be a P-TLPN with T = To ∪ Tu, the
unobservable reachability mapping UR, which enables
to fin the markings reachable from a given marking
Mi, following the firin of all unobservable sequences is
define as:

UR : Nm → 2N
m

,

Mi → UR(Mi) =
{Mj ∈ Nm|∃σu ∈ T ⋆

u , Mi[σu > Mj} ,

with 2N
m

the power set of the markings of the PN
considered.

4.1. State observer

Let Ni and Nj be two nodes of the graphical representa-
tion of the state observer (associated respectively to the
states yi and yj of the observer) such that it exists a
directed arc linking Ni to Nj (Ni → Nj , i.e., Ni is
a predecessor of Nj) labeled with ak with ak ∈ Ω as
illustrated on Figure2.

Ni

Nj

ak

Figure 2: nodes of the state observer.

Definitio 8 The state observer for the partially observ-
able P-TLPNN with initial markingM0 and T = To∪Tu

is define by the 5-tuple (Yso, Eso, fso, y0, ςso) where:

• Yso is the set of states of the state observer,

• Eso = Ω is the set of labels (associated to the
observable events),

• ςso : Yso → 2R(N,M0) is a function associating to
each state yso ∈ Yso a set of reachable markings,

• y0 is the initial state of the state observer and
ςso(y0) = SEM(N0) ∪ SSM(N0),

• fso : Yso × E⋆
so → Yso is the transition function

define as :
for yl ∈ Yso a state of the observer and
ω ∈ E⋆

so a string of observable labels
fso(y0, ω) = yl if ςso(yl) /∈ ∅ where ςso(yl) ={

Ml : M0
τ→ Ml ∧ LM(Po(τ)) = ω

}
=

SEM(Nl) ∪ SSM(Nl).

With the two sets SSM and SEM define as follows:

Definitio 9 Sets SSM and SEM

• SEM(Nj), the Set of Entry Markings of Nj ,

SEM(Nj) = {Ms ∈ Nj |∃Mu ∈ Ni, tk ∈ To,

ak ∈ Ω,LM(tk) = ak : Mu[tk > Ms}

• SSM(Nj), the Set of Shadow Markings of Nj ,

SSM(Nj) = {Ms ∈ Nj |∃Mu ∈ SEM(Nj),

σu ∈ T ⋆
u : Mu[σu > Ms}

or equivalently, SSM(Nj) = UR(SEM(Nj)).

Intuitively, for a given node Ns of the state observer,
after the observation of the word ω, the set SEM(Ns) ∪
SSM(Ns) represents the set of markings that are
consistent with the current observed word (i.e., C(ω)). The
other nodes can be computed recursively as explained in
the following.

1. The state observer starts in the initial state y0

and its associated initial node N0 is composed of
SEM(N0) = {M0} and SSM(N0) = UR(M0).

2. as soon as a label ak (associated with an observable
transition tk ∈ To) is observed a new state yl of the
observer is calculated yielding a new node Nl:

• the set of entry markings of node Nl is
obtained by investigating the set of markings
resulting from the firin of transition tk
starting from any marking (SEM ∪ SSM) of
N0,

• the set of shadow markings of Nl corresponds
to the set of markings obtained by the firin
of all unobservable sequences of transitions
starting from any entry marking of Nl,

Fault Diagnosis of P-Time Labeled Petri Net Systems

15

3. return to 2 with the newly calculated state as the
initial state.

Definitio 10 Let Ni and Nj be two nodes of the state
observer,Ni andNj are said to be equivalent (Ni ⇔ Nj)
if and only if:

SEM(Ni) = SEM(Nj) and SSM(Ni) = SSM(Nj).

Proposition 1 Two nodesNi andNj of the state observer
will be equivalent if and only if, the following holds:

SEM(Ni) = SEM(Nj).

Definitio 11 Given a marking Mi ∈ R(N, M0) and a
transition tf ∈ To (associated with a label lf ∈ Ω, i.e.,
LM(tf) = lf), the set of candidate sequences denoted
CS(Mi, tf) is the set of firin sequences, composed of
the unique fina observable transition tf , which can occur
fromMi, i.e.:

CS(Mi, tf) = {s.tf |s ∈ T ⋆
u ∪ λ, tf ∈ To : Mi[s.tf >}.

With respect to the timing constraints to be satisfied
candidate sequences can be in the state possible or
impossible.

As Nu∠Tu
N (i.e., the Petri net induced by the set of

unobservable transitions) is not Zeno by assumption, it
is ensured that the time is diverging with regard to the
length of the firin sequences, thus, the set of candidate
sequences from a marking is necessarily finit (at the
instant of observation) and it can be investigated. The
following section addresses the schedulability analysis
(Bonhomme (2013b)) of an occurrence sequence (i.e., a
procedure verifying if the considered firin sequence can
occur without any violation of timing constraints) and its
application to the estimation problem.

5. SCHEDULABILITY ANALYSIS AND
ESTIMATION

Let σ = tatbtc . . . tq be a firin sequence of length s
(denoted |σ| = s). The jth fire transition of σ will
be associated with the jth firin instant (Bonhomme
(2013a)). A variable xi will represent the elapsed time
between the (i − 1)th firin instant and the ith one (with
x0 = 0).

For instance on Figure 3, (x2 + x3) is the time elapsed
between the firs firin instant (associated with transition
ta) and the third one (transition tc).

x1 x2 x3

firing of ta firing of tb firing of tc firing of tq

xs

Figure 3: Firing instants.

In a P-TPN, the sojourn time (i.e., the amount of time
that a token has been waiting in a place) is counted up

as soon as the token has been dropped in the place as seen
previously. To compute the firin instants, this approach
requires that a token is identifie by three parameters:
the place that contains it, the information of its creation
instant and of its consumption one.

Function TOK is define with this purpose assuming that
a FIFO queuing policy in the net is used in the sequel:

TOK:N × (N \ {0}) × T ⋆ → ℘(P)),

TOK(j, n, σ) = {p ∈ P |p contains a token created by
the jth firin instant and consumed by the nth one in firin
sequence σ}.

With ℘(P) the set of subsets of P (also noted 2P).

When it is clear from the context σ will be omitted in the
notation of TOK(.).

When the weight of the P-TPN arcs is element of N,
TOK(j, n) is a multi-set. For the sake of simplicity,
only ordinary P-TPN are considered (the arcs weight are
element of {0, 1}).

Tokens, with the same creation instant, located in different
places and involved in the same transition firin may
mutually constrained their sojourn time, the following
quantities, Dsmin and Dsmax, are introduced in order
to evaluate the contribution of these tokens. So, Dsmin
represents their availability in order to participate to this
firin and similarly, Dsmax expresses the fact that they
all must be prevented from dying (with [ai, bi] the static
interval associated with the place pi).

Dsmin(j, n) =

{
max (ai), i | pi ∈ TOK(j, n)
else 0 if TOK(j,n) = ∅ ,

Dsmax(j, n) =

{
min (bi), i | pi ∈ TOK(j, n)
else + ∞ if TOK(j,n) = ∅ .

The definitio of the following set SEN(q), allowing to
determine the creation instants of tokens involved in the
qth firin instant, is also necessary:

SEN(q) = {u|TOK(u, q) ⊂ (°tq)}

To express more simply the obtained results, the definitio
of the following coefficient is required:

cuq =

{
Dsmin(u, q) if u ∈ SEN(q)
0 else ,

djk =

{
Dsmax(j, k) if TOK(j, k) 6= ∅
+∞ else

With, ∀(j, k) ∈ [0, q − 1] × [1, q], j /∈ SEN(q) and k 6=
q, then cjk = 0, and ∀k ∈ [0, q], xk ≥ 0.

The following proposition is finall obtained:

Fault Diagnosis of P-Time Labeled Petri Net Systems

16

Proposition 2 A sequence of transitions σ = t1t2....tq
is schedulable (i.e., it may be fi ed respectively at firin
instants 1, 2, . . . , q) if and only if there exist x1 ≥ 0,
x2 ≥ 0,..., xq ≥ 0 such that:

c0k ≤ x1 ≤ d0k, k = 1, ..., n
max

k=2,...,n
(c0k, c1k + x1) ≤ x1 + x2 ≤ min

k=2,...,n
(d0k, d1k + x1)

. . .

max
j=0,...,q−1
k=q,...,n

(cjk +

j∑

s=0

xs) ≤
q∑

s=0

xs ≤ min
j=0,...,q−1
k=q,...,n

(djk +

j∑

s=0

xs)

In the sequel this system will be denoted as Sσ(q) or
simply Sσ when it is clear from the context.

Definitio 12 The firin space at the qth firin instant,
associated with a firin sequence σ, denoted by FSσ(q)
is the set of non negative vectors (x1, ..., xq) such that
the fi st, the second, . . . and the qth firin conditions
are satisfied Thus, a firin sequence σ = t1t2....tq
is schedulable if and only if its associated firin space
FSσ(q) is non-empty.

Thanks to this characterization of a firin sequence, the
Zenoness property can be checked by evaluating the
minimal duration of the circuit of unobservable transitions
under consideration (for instance, by minimizing the sum
of the xi associated with the considered transitions).

Definitio 13 A P-TLPN Nr firin schedule, will be a

sequence of ordered pairs (ti,
i∑

k=0

xk) ; transition ti

fi able at time (
i∑

k=0

xk), obtained from the state reached

by starting from Nr initial state and firin the transitions
tj , 1 ≤ j < i, in the schedule at the given times.

Finally, as in (Basile et al. (2015)), let denote:

ωt = ((a1, τ1), (a2, τ2) . . . (an, τn)) ∈ (Ω × Q+)⋆,

a time-label sequence (TLS), i.e., a sequence of pairs
(observed label-time instant).

Indeed, in the considered sequence, label ai is observed at
absolute time τi (i ≥ 1) and τ1 ≤ τ2 . . . ≤ τn.

Now all the required material for the proposed method is
given, the principle is presented as follows:

• starting from the initial state, once a label af will be
observed at the absolute time τf ,

• the set of associated observable event Taf
=

{t ∈ To|LM(t) = af} will be evaluated,
• then, ∀tf ∈ Taf

the set of feasible candidate
sequences CS(M0, tf) will be computed,

• a switch from node N0 to node Nf (created by
the observation of label af) is realized in the state
observer,

• for each σf ∈ CS(M0, tf) (with Po(σf) = tf) the
associated linear system Sσf

will be constructed,

• and each σf will be checked for schedulability with
the following additional constraint:

∑|σf |
i=0 xi = τf .

Thanks to these considerations it is ensured that sequence
σf is schedulable and the firin of tf occurs at τf . Once a
firin sequence is proved to be possible the set of markings
the system can be in is then determined.

Let denote by FEAS(N0, tf) the set of schedulable
firin sequences from node N0 ending with the unique
observable transition tf (it is a subset of the set of
candidate sequences).

FEAS(N0, tf) = {σ ∈ CS(M0, tf)|FSσ(|σ|)

augmented with
∑|σ|

i=0 xi = τf is non-empty
}
.

Furthermore, based on the knowledge of the schedulable
candidate firin sequences only a subset of the set of
entry markings of node Nf (resulting from the firin of
transition tf), denoted SEM ′(Nf), will be considered for
the next step.
It holds:

SEM ′(Nf) = {M ∈ SEM(Nf)|M0[σ > M,

σ ∈ FEAS(N0, tf)}.

With SEM ′(Nf) ⊆ SEM(Nf).

Afterwards, if another label ax is observed at absolute
time τx then:

• The set of associated observable event Tax
=

{t ∈ To|LM(t) = ax} will be evaluated,
• then, ∀tx ∈ Tax

the set of feasible candidate
sequencesCS(Mi, tx)will be computed withMi ∈
SEM ′(Nf),

• a switch from nodeNf to nodeNx is realized in the
state observer,

• for each feasible firin sequence (on the underlying
untimed PN) σ′

fσx (i.e., M0[σ
′
fσx >) with

σx ∈ CS(Mi, tx) and σ′
f ∈ FEAS(N0, tf) the

associated linear system Sσ′
f σx

will be constructed.

It is recalled that σ′
f is a schedulable firin sequence

determined in the previous step with label af

observed at τf and Po(σ
′
fσx) = tf tx.

• each previously determined σ′
fσx will be checked

for schedulability with the following additional
constraint:

∑|σ′
f |+|σx|

i=0 xi = τx.

Fault Diagnosis of P-Time Labeled Petri Net Systems

17

ensuring that the firin of tx occurs at τx.

And so on, the same method is iteratively applied with
respect to the current observation.

So, more formally the following principle is obtained:
let ωobs be an observed word (i.e., a sequence of labels
ωobs = a1a2a3 . . . aiai+1 . . . ∈ Ω⋆) and let Ni (i ≥ 1)
be the node of the associated state observer obtained after
the observation of label ai ∈ ωobs detected at absolute
time τi, as illustrated on the following figur (Figure 4).

N0 N1

a1 a2

N2

....
ai

Ni

a i+1
....

Figure 4: Observable sequence.

The associated sets FEAS and SEM ′ are computed as
follows:

Let t1 ∈ Ta1
= {t ∈ To|LM(t) = a1},

FEAS(N0, t1) = {σ ∈ CS(M0, t1)|FSσ(|σ|) augmented

with
∑|σ|

k=0 xk = τ1 is non-empty
}
.

SEM ′(N0) = SEM(N0) = {M0} and

SEM ′(N1) = {M ∈ SEM(N1)|M0[σ > M,

σ ∈ FEAS(N0, t1)}.

∀i > 0,

Let LM(ti+1) = ai+1,

FEAS(Ni, ti+1) = {σ ∈ CS(Mb, ti+1)|Mb ∈ SEM ′(Ni),

M0[̟ >,FS̟(|̟|) augmented with∑|̟|
k=0 xk = τi+1 is non-empty

}
.

With firin sequence ̟ = σ1σ2 . . . σiσ where σs ∈
FEAS(Ns−1, ts), s ∈ {1, . . . , i} and Po(̟) =
t1t2t3 . . . titi+1.

More precisely:

Po(σj) = tj , j ∈ {1, . . . , i} with LM(tj) = aj .

SEM ′(Ni+1) = {M ∈ SEM(Ni+1)|Mk[σ > M,

σ ∈ FEAS(Ni, ti+1), Mk ∈ SEM(Ni)}.

SEM ′(Ni) is the set of entry markings of node Ni

resulting from the firin of schedulable firin sequences
with respect to the current observation.

Roughly speaking, FEAS(Ni, tk) is the set of candidate
sequences of node Ni ending with tk and which

can be completed by schedulable sub-sequences into
a schedulable firin sequence starting from the initial
marking of the P-TLPN considered.

So, by this way it is ensured that the feasible
firin sequences associated with the observed time-
label sequence ((a1, τ1), (a2, τ2) . . . (ai+1, τi+1)) are
effectively computed.

In the next section, addressing the fault diagnosis problem
of a P-TLPN system, this set will be used to evaluate the
state diagnosis associated with an observed TLS.

6. FAULT DIAGNOSIS

The set of unobservable transitions is partitioned into two
subsets, Tu = Tf ∪ Treg where the set Tf includes all the
fault transitions (modeling anomalous or faulty behavior)
while Treg includes all unobservable transitions which
correspond to regular events. Furthermore, the set Tf is
partitioned into r different subsets T i

f , where i = 1, . . . , r,
that models the different fault classes.

Definitio 14 Let 〈N ; M0〉 be a net system with labeling
function LM : T → Ω

⋃ {ǫ} , where N =
(P, T, Pre, Post) and T = To ∪Tu. Let consider the TLS
ωt = ((a1, τ1), (a2, τ2) . . . (an, τn)) associated with the
state observer of Figure 4.

Let define
∑

(M0, ωt) = {σ ∈ T ⋆|M0[σ >, σ = σ1σ2 . . . σn :

LM(σi) = ai, i = 1, . . . , n, σs ∈ FEAS(Ns−1, ts),

LM(ts) = as, s = 1, . . . , n}

Indeed, σ can be viewed as a concatenation of
subsequences, namely σi, i ≥ 1. Each subsequence σi is
of the form s.ti with s ∈ T ⋆

u , LM(ti) = ai and absolute
firin instant of ti is τi.

So, it holds:

σi ∈ CS(Mb, ti) with Mb ∈ SEM ′(Ni−1).

Definitio 15 A diagnoser is a function

Γ : [Ω × Q+]⋆ ×
{
T 1

f , T 2
f , . . . , T r

f

}
→ {N, U, F}

that associates with each observed time-label sequence ωt

and each fault class T i
f , where i = 1, . . . , r, a diagnosis

state.

• Γ(ωt, T
i
f) = N if ∀σ ∈ ∑

(M0, ωt) and ∀tf ∈ T i
f ,

it is tf /∈ σ.
In such a case the ith fault cannot have occurred,
because none of the firin sequences consistent

Fault Diagnosis of P-Time Labeled Petri Net Systems

18

with the considered observation contains a fault
transition of class i.

• Γ(ωt, T
i
f) = U if:

1. ∃σ ∈ ∑
(M0, ωt) and tf ∈ T i

f such that
tf ∈ σ,

2. ∃σ′ ∈ ∑
(M0, ωt) such that ∀tf ∈ T i

f , it is
tf /∈ σ′.

In such a case a fault transition of class i may
have occurred or not, the diagnosis is in this case,
uncertain.

• Γ(ωt, T
i
f) = F if ∀σ ∈ ∑

(M0, ωt), ∃tf ∈ T i
f such

that tf ∈ σ.
In such a case the fault of class i must have
occurred, because all firabl sequences consistent
with the considered observation contains at least
one fault transition of class i.

Let consider the P-TLPN of Figure1 with Tu =
{t4, t5, t6, t7}, To = {t1, t2, t3}, Ω = {a, b}. It holds
LM(t1) = a, LM(t2) = LM(t3) = b (transitions t2
and t3 are indistinguishable). Furthermore, T 1

f = {t5} and
T 2

f = {t7}, i.e., there are two fault classes.

b

a

N1

[10000]

N0

SEM
SEMSSM

SSM

[01000]

[00100]

[00010]

[00001]

[00100]

[00010]

[00001]

b

Figure 5: State observer.

The corresponding state observer with two nodes is
depicted on Figure 5.

Let consider the following observed TLS ωt =
((a, 2), (b, 5)) then:
∑

(M0, ωt) = {ω1, ω2} with ω1 = t4t1t2 and ω2 =
t4t1t6t7t3.

We have (according to the notations of definitio 14):

• ω1 = σ1σ2 with σ1 = t4t1 and σ2 = t2,

• ω2 = σ1σ2 with σ1 = t4t1 and σ2 = t6t7t3.

The two obtained candidate sequences are feasible
with regard to the timing constraints. Indeed, the
two associated firin schedules can be, for instance,
considered respectively for ω1 and ω2:

• ((t4, 1), (t1, 2), (t2, 5)),

• ((t4, 1), (t1, 2), (t6, 2), (t7, 3), (t3, 5)).

It holds t7 ∈ T 2
f and t7 ∈ ω2 (t7 /∈ ω1), and t5 ∈ T 1

f ,
t5 /∈ ω1, t5 /∈ ω2.

So, Γ(ωt, T
1
f) = N and Γ(ωt, T

2
f) = U .

It means, that according to the previous observed time
label sequence ωt, it is known for sure that the fault of
class 1 (corresponding to fault transition t5) cannot have
occurred while fault transition t7 ∈ T 2

f may have occurred
(via ω2).

If the observed TLS corresponds to ωt = (b, 1), it is
easy to verify that

∑
(M0, ωt) = {ω3} with ω3 = t5t2

(the associated firin schedule is ((t5, 1), (t2, 1))) and
consequently, Γ(ωt, T

1
f) = F and Γ(ωt, T

2
f) = N (i.e., a

fault of class T 1
f occurs for sure and a fault of the second

class cannot have occurred).

In the next section an illustrative example is presented
where the Tu-induced subnet is cyclic.

7. ILLUSTRATIVE EXAMPLE

Let consider the P-TLPN of Figure 6 with To = {t2, t5},
Tu = {t1, t3, t4, t6, t7}, Tf = {t6} and LM(t2) =
a, LM(t5) = b. The Tu-induced subnet contains the cycle
(p3 − t4 − p4 − t6 − p3).

P1

P2

P3
P4

t1

t2

t3

t6

t5t4

t3

[1, 3]

[2, 2]
[1, 12]

[2, 8]

a

b

P5

t7

[10, 15]

Figure 6: P-TLPN with a cyclic Tu-induced subnet.

The state observer is depicted on Figure 7, it consists of
three nodes X0, X1 and X2.

a

X1

[10000]

X0

SEM

SEM

SSM

SSM

[00100]
b

[01000]

[01000]

[00010]

a

[00001]

[01000]

[00100]

[00010]

bX2

a

[00100]

SEM SSM

Figure 7: State observer of the P-TLPN of Figure 6.

If the observed word is ω = (a, b) then the set of possible
associated firin sequences is of the form t1t2t4(t6t4)

⋆t5
with the ⋆ after the subsequence (t6t4) (derived from the

Fault Diagnosis of P-Time Labeled Petri Net Systems

19

Kleene star operator) indicating that it is allowed to occur
from zero time to infinitel . Thanks to the time instant
of occurrence of each label the set of feasible associated
firin sequences is necessarily finite

For instance if the TLS considered is:

ωt = ((a, 3), (b, 6)) then
∑

(M0, ωt) = {ω1} with
ω1 = t1t2t4t5. The associated firin space FSω1

(|ω1|)
augmented with the following constraints:

• x1+x2 = 3 (absolute firin instant of transition t2),

• x1 + x2 + x3 + x4 = 6 (absolute firin instant of
transition t5),

is non-empty.

It holds:

ω1 = σ1σ2 with σ1 = t1t2 and σ2 = t4t5 and an example
of firin schedule is:

̟ = ((t1, 1), (t2, 3), (t4, 5), (t5, 6)),

and it is unique with respect to the static intervals of the
P-TLPN places. So, it is easy to see that Γ(ωt, Tf) = N
and the faulty transition t6 cannot have occurred.

If the TLS considered is now: ωt = ((a, 3), (b, 9)) then
Γ(ωt, Tf) = U , as the computation of the set

∑
(M0, ωt)

leads to the following possible firin schedules (with the
same observable projection), one containing the faulty
transition and the other one not:

• ̟1 = ((t1, 1), (t2, 3), (t4, 5), (t5, 9)),

• ̟2 = ((t1, 1), (t2, 3), (t4, 5), (t6, 6), (t4, 8),
(t5, 9)).

If the TLS considered is now: ωt = ((a, 3), (a, 14))
then Γ(ωt, Tf) = F . Indeed, the computation of the set∑

(M0, ωt) leads to the following possible firin schedule
containing the faulty transition:

• ̟2 = ((t1, 1), (t2, 3), (t4, 5), (t6, 10), (t3, 12),

(t2, 14)).

In this case the faulty transition occurs with certainty
thanks to the timing structure of the P-TLPN considered
and the occurrence date of the observed labels.

8. CONCLUSION AND PERSPECTIVES

In this paper, a new methodology allowing to analyze
the fault diagnosis of systems modeled by P-time labeled
Petri nets is developed. It is based on the construction of
a function called diagnoser which associates with each
observation and each fault class a diagnosis state. This
diagnoser is obtained thanks to the synthesis of a state

observer which is an automaton allowing to estimate the
set of markings in which the system may be, being given
a sequence of observed labels.

Furthermore, the considered state observer is computed
on the basis of the untimed underlying Petri net of the
P-time labeled PN considered. This particularity allows
to avoid the combinatorial state space explosion problem
usually associated with the consideration of the time
factor modeled as time intervals.

Thanks to a schedulability analysis technique, the
feasibility of the candidate firin sequences associated
with the observed time-label sequence is evaluated via
linear programming techniques.

An issue currently being investigated is the extension of
the method to test the diagnosability property of P-TLPN
systems, i.e., is the fault can be detected within a finit
number of steps after its occurrence ?

REFERENCES

Basile, F., M. Cabasino, and C. Seatzu (2015, April). State
estimation and fault diagnosis of labeled time petri
net systems with unobservable transitions. Automatic
Control, IEEE Transactions on 60(4), 997–1009.

Basile, F., M. P. Cabasino, and C. Seatzu (2013). Marking
estimation of time Petri nets with unobservable
transitions. In IEEE Emerging Technologies and
Factory Automation (ETFA), pp. 1–7.

Berthomieu, B. and M. Diaz (1991, March). Modeling
and verificatio of time dependent systems using time
petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273.

Bonhomme, P. (2013a). Scheduling and control of real-
time systems based on a token player approach. Journal
of Discrete Event Dynamic Systems 23(2), 197–209.

Bonhomme, P. (2013b). Towards a new schedulability
technique of real-time systems modeled by p-time Petri
nets. International Journal of Advanced Manufacturing
Technology 67(1-4), 759–769.

Bonhomme, P. (2014). Estimation of p-time labeled petri
nets with unobservable transitions. In Proceedings
of the 2014 IEEE Emerging Technology and Factory
Automation, ETFA 2014, Barcelona, Spain, September
16-19, 2014, pp. 1–8.

Bonhomme, P. (2015). Marking estimation of P-time Petri
nets with unobservable transitions. IEEE Transactions
on Systems, Man, and Cybernetics: Systems 45(3), 508–
518.

Cabasino, M., A. Giua, and C. Seatzu (2010). Fault
detection for discrete event systems using Petri nets
with unobservable transitions. Automatica 46(9), 1531–
1539.

Fault Diagnosis of P-Time Labeled Petri Net Systems

20

Cabasino, M. P., A. Giua, and C. Seatzu (2014).
Diagnosability of discrete event systems using labeled
Petri nets. IEEE Transactions on Automation Science
and Engineering 11(1), 144–153.

Cassandras, C. G. and S. Lafortune (2008). Introduction
to Discrete Event Systems. Springer-Verlag New York,
Inc.

Cassez, F. and S. Tripakis (2008). Fault diagnosis with
dynamic observers. In Discrete Event Systems, 2008.
WODES 2008. 9th International Workshop on, pp. 212–
217.

Giua, A., C. Seatzu, and D. Corona (2007). Marking
estimation of Petri nets with silent transitions. IEEE
Transactions on Automatic Control 52(9), 1695–1699.

Hadjidj, R., H. Boucheneb, and D. Hadjidj (2007).
Zenoness detection and timed model checking for real
time systems. In VECoS’07, pp. 120–134.

Khansa, W., J. P. Denat, and S. Collart-Dutilleul (1996).
P-time Petri nets for manufacturing systems. In
WODES’96, Edinburgh UK, pp. 94–102.

Lin, F. (1994). Diagnosability of discrete event
systems and its applications. Discrete Event Dynamic
Systems 4(2), 197–212.

Merlin, P. and D. Faber (1976). Recoverability of
communication protocols-implications of a theoretical
study. IEEE Trans. Comm. 24(9), 381–404.

Murata, T. (1989). Petri nets, properties, analysis and
applications. Proceedings of the IEEE 77, 541–580.

Sampath, M., R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D. Teneketzis (1995). Diagnosability of
discrete-event systems. IEEE Transactions on Auto-
matic Control 40(9), 15551575.

Wang, X., C. Mahulea, and M. Silva (2013, 07/2013).
Fault diagnosis graph of time petri nets. In ECC’13:
European Control Conference, Zurich, Switzerland.

Wang, X., C. Mahulea, and M. Silva (2014). Model
checking on fault diagnosis graph. In 12th International
Workshop on Discrete Event Systems, WODES 2014,
Cachan, France, May 14-16, 2014., pp. 434–439.

Zaytoon, J. and S. Lafortune (2013). Overview of fault
diagnosis methods for discrete event systems. Annual
Reviews in Control 37(2), 308 – 320.

Fault Diagnosis of P-Time Labeled Petri Net Systems

21

Combining Enumerative and Symbolic
Techniques for Diagnosis of Discrete-Event

Systems

Abderraouf Boussif
Univ. Lille Nord de France,

F-59000 Lille, France
IFSTTAR, Cosys/Estas,

F-59650 Villenveuve d’Ascq, France
FR

abderraouf.boussif@ifsttar.fr

Mohamed Ghazel
Univ. Lille Nord de France,

F-59000 Lille, France
IFSTTAR, Cosys/Estas,

F-59650 Villenveuve d’Ascq, France
FR

mohamed.ghazel@ifsttar.fr

Kais Klai
LIPN, CNRS UMR 7030,

Univ. Paris 13, Sorbonne Paris Cité,

FR
kais.klai@lipn.univ-paris13.fr

In this paper, an efficient approach to verify diagnosability of discrete-event systems is proposed. The
approach consists in constructing a hybrid diagnoser based on the symbolic observation graph (SOG), which
is a technique that combines symbolic and enumerative representations in order to build a deterministic
observer from a partially observed model. The construction of the diagnoser as well as the verification of
diagnosability are performed simultaneously on-the-fly, which can considerably reduce the generated state
space of the diagnoser and thus the overall running time. Furthermore, the proposed approach provides
a heuristic strategy in order to converge fast into the necessary part, of the diagnoser, for analysing
diagnosability.

Discrete-Event Systems, Diagnosability Analysis, Symbolic Observer Graph, On-the-Fly Verification.

1. INTRODUCTION

In automated monitoring and fault diagnosis of
complex dynamic systems, one of the central tasks
is to detect and identify the occurrence of failures
as early as possible. This task has become an
active research area in recent years (Zaytoon and
Lafortune 2013). From the theoretical point of view
and at a high level of abstraction, Discrete-Event
Systems (DESs) are more suitable for performing
diagnosis analysis on complex systems (Cassandras
and Lafortune 2007).

One of the main issues in diagnosis activity that
must be addressed is diagnosability investigation.
Analysing diagnosability of a system intends to
determine accurately whether any predetermined
failure or class of failures can be detected and
identified within a finite delay following its occurrence
(Sampath et al. 1995).

Diagnosability verification has received considerable
attention since the seminal paper by (Sampath
et al. 1995), which provides a basic concept and
a formal definition of diagnosability analysis and
fault diagnosis of DESs that were adopted and

further developed later. In this paper, (Sampath et al.
1995), the original definition of diagnosability was
introduced in the language context. A systematic
method to check diagnosability based on a dedicated
deterministic version of the model derived from the
original system, a so-called diagnoser, was also
provided. It consists of a specific observer of the
system associated with a labelling function that
attributes to each state (or macro-state), in this
observer, a label indicating whether the state is
reached by a faulty execution or not, i.e. an execution
where some particular unobservable events, called
faults, have occurred or not.

Other automata-based approaches (Jiang et al.
2001; Yoo and Lafortune 2002), aiming to reduce
computational complexity have been then proposed.
In (Yoo and Lafortune 2002), a polynomial-time
algorithm for checking diagnosability based on
a structure called verifier is adopted. In (Jiang
et al. 2001), an algorithm based on the twin plant
structure (a parallel composition of the investigated
automaton with itself) is proposed. Reformulations
of these works in model-checking framework were
first proposed in (Cimatti et al. 2003) and extended
in (Boussif and Ghazel 2015). The goal is to check

23

diagnosability property in the same way as to check
any safety property.

Furthermore, some works on diagnosability of
DESs turned to Petri nets (PNs) formalism,
benefiting from the mathematical and graphical
representations capability and the well-developed
theory underlying PNs (Peterson 1981). (Ushio
et al. 1998) extended Sampath’s study to systems
modelled by PNs with the assumption that some
places are observables whereas all of the transitions
are unobservable. A diagnoser is constructed from
the reachability graph. In (Wen and Li 2005),
the authors proposed a sufficient condition for
testing diagnosability by checking the structure
of T -invariants of a PN. In (Cabasino et al.
2009) the modified basis reachability graph (MBRG)
and basis reachability diagnoser (BRD), which
provide a compact representation of the reachability
graph, were developed. In (Basile et al. 2012), an
approach for checking diagnosability by quantifying
the finite delay of diagnosability (the so-called K-
diagnosability) was proposed by using the integer
linear programming (ILP) technique. A structure
called verifier net (VN) was introduced in (Cabasino
et al. 2014) to deal with diagnosability for both
bounded and unbounded PNs. Recently, (Liu et al.
2014a) has proposed an on-the-fly and incremental
diagnosis technique to construct a diagnoser from a
bounded PN in order to verify diagnosability and K-
diagnosability properties.

To get a general overview on the literature pertaining
to diagnosis of DESs, the reader can refer to the
recent survey in (Zaytoon and Lafortune 2013),
where theoretical and practical issues, tools and
other issues in relation with diagnosis are discussed.

The challenge of analysing diagnosability is the
combinatorial explosion problem that appears during
the building of the intermediate models (diagnoser,
verifier, twin plant, MBRG, etc.). This is due to the
high complexity of these constructed models and to
the generation of the whole state-space which may
have considerable time and memory cost.

To partially overcome this problem, we propose,
in this paper, an efficient approach to construct
a hybrid diagnoser on-the-fly, in the sense of
combining enumerative and symbolic techniques.
The contributions of this paper are twofold:

1. We provide a behavioural diagnoser based
on the Symbolic Observation Graph (Haddad
et al. 2004) which is an efficient binary
decision diagram (BDD) based abstraction of
the model state space. Thus, macro-states of
the diagnoser will be compacted using BDDs

while transitions between macro-states are
represented by enumerate observable events.

2. We design an appropriate algorithm, for
simultaneously constructing the diagnoser and
checking diagnosability on-the-fly. Actually, the
verification process is stopped (only a part
of the diagnoser is built) as soon as the
diagnosability is proven to be unsatisfied,
which can considerably reduce the generated
state space of the diagnoser. Furthermore,
the proposed algorithm is endowed with a
heuristic strategy in order to converge fast
into the necessary part of the diagnoser for
diagnosability analysis.

The paper is structured as follows. In Section 2,
we introduce the basic background needed to deal
with diagnosability and to develop our approach. In
Section 3, we recall the notion of diagnosability as
well as the original diagnoser approach. Section 4 is
devoted to discuss the Symbolic Observation Graph
adapted to the context of this paper. In Section 5,
the verification approach is sketched out then an on-
the-fly algorithm based on the SOG is presented.
Section 6 discusses the pertinent existing work in
relation with the present work. Finally, conclusion
remarks and future research directions are given in
Section 7.

2. PRELIMINARIES

We first recall some standard notations that will be
used in the sequel. Let Σ be a finite alphabet of
events (actions). A string is a finite sequence of
events in Σ. ε denotes the empty string. Given a
string s, the length of s is denoted by |s|. The set
of all strings formed by events in Σ is denoted by Σ∗.
Any subset of Σ∗ is called a language. Given a string
s ∈ L, L/s , {t ∈ Σ∗|s.t ∈ L} is called the post-
language of L after s and defined as L/s. L is said
to be extension-closed when L.Σ∗ = L.

The approach introduced in this paper applies
to discrete-events systems modelled by Labelled
Transitions Systems (LTSs for short). The formal
definition of LTS is as follows.

Definition 1 (LTS): An LTS over Σ is defined by a
4-tuple 〈Q,Σ,→, q0〉, where:

• Q is a finite set of states;

• Σ is a finite set of events;

• →⊆ Q× Σ×Q is the transition relation;

• q0 ∈ Q is the initial state.

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

24

In the remainder of this section, we consider a given
LTS G = 〈Q,Σ,→, q0〉. For q, q′ ∈ Q and σ ∈ Σ, we
denote q σ−→ q′ , (q, σ, q′) ∈→. q → means that ∃q′ ∈
Q : q

σ−→ q′. If s = σ1, σ2, . . . , σn is a string (sequence
of events), s̄ denotes the set of actions occurring in s.
Moreover, q s−→ q′ denotes that ∃q1, q2, . . . , qn−1 ∈ Q
such that, q σ1−→ q1

σ2−→ . . . qn−1
σn−−→ q′. q ∗−→ q′

denotes that q′ is reachable from q (i.e. q s−→ q′ for
some s ∈ Σ∗), and q ∗−→E q′ holds if s̄ ⊆ E.

We denote by Enable(q) the set of events σ s.t. q σ−→,
for a set of states Q′ ⊆ Q, EnableE(Q′) denote the
set of enabled events from the set of states Q′, i.e.
Enable(Q′) denotes

⋃
q∈Q′Enable(q).

An execution from the initial state q0 of an LTS G is
a finite sequence of transitions π = q0

σ1−→ q1 . . .
σn−−→

qn. The event-trace of π, denoted by Tr(π), is the
sequence of events σ1, . . . , σn, π[i] stands for the
prefix of π truncated at state qi, i.e., π[i] = q0

σ1−→
q1 . . .

σi−→ qi and last(π) represents the last state of
π. The set of finite executions of LTSG from the initial
state q0 is denoted by Runs(G). The behaviour of G
is described by its language L(G) = {s ∈ Σ∗|q0

s−→}.

As we are interested in diagnosis issues, partial
observation plays a central role. In this regard, some
events in Σ are observable, i.e. their occurrence can
be observed, while the rest are unobservable. Thus,
the event set Σ can be partitioned as Σ = Σo

⊎
Σu,

where Σo denotes the set of observable events and
Σu the set of unobservable events. To reflect the
limitation on observation, we define the projection
function P : Σ∗ → Σ∗o. In the usual manner, P (σ) = σ
for σ ∈ Σo; P (σ) = ε for σ ∈ Σu, and P (sσ) =
P (s)P (σ), where s ∈ Σ∗, σ ∈ Σ. Thus, P simply
erases the unobservable events in any event-trace.
The inverse projection operation P−1

L is defined by
P−1
L (y) = {s ∈ L(G) : P (s) = y}. Any two executions
π and π′ are called indistinguishable with respect to
the projection function P if they can generate the
same observed event-trace. With a slight abuse of
notation, we write P (π) = P (π′) if π and π′ are
indistinguishable.

In the context of fault diagnosis, let Σf ⊆ Σu
denote the set of failure events. They are usually
represented using unobservable events, since their
detection and diagnosis would be trivial if they were
observable. We partition the set of failure events into
disjoint failure classes Σf = Σf1

⊎
Σf2

⊎ · · ·⊎Σfm ,
with Σfi denotes the failure class fi.

3. DIAGNOSABILITY ANALYSIS

In this work, only diagnosability analysis of
permanent faults is considered. Once a fault has
occurred, the system remains irreparably faulty. We

assume that the LTS G under consideration satisfies
the following two assumptions:

1. The language generated by G is live, i.e. there
is an executable transition from any state of the
system.

2. The LTS G is finite, in term of the state space,
and does not contain cycles formed only by
unobservable events.

3.1. Definition of diagnosability

Diagnosability is an important property in the
monitoring and fault diagnosis activities. In simple
terms, it refers to the ability to infer accurately,
from a partially observed execution, about the
faulty behaviour within a finite delay after possible
occurrences of faults. The original definition of
diagnosability, introduced in the seminal work of
(Sampath et al. 1995) is recalled in the following.

Definition 2 (diagnosability (Sampath et al. 1995))
A prefix-closed and live language L is said to be

diagnosable with respect to the projection function P
and with respect to a failure class of faults Σf if the
following holds

(∃ni ∈ N) [∀s ∈ Ψ(Σf)] (∀t ∈ L/s) [|t| ≥ ni ⇒ D]

where the diagnosability condition D is

ω ∈ P−1[P (s.t)]⇒ Σf ∈ ω.

with Ψ(Σf) is the set of finite sequences that
terminate with a faulty event from Σf .

The above definition means the following. Let s be
any sequence generated by the LTSG that ends with
a failure event from Σf , and let t be any sufficiently
long continuation of s. Condition D then requires that
every sequence ω belonging to the language that
produces the same observable trace as sequence
s.t (P (ω) = P (s.t)) must hold a failure event from
Σf . In other terms, diagnosability requires that every
failure event leads to observations distinct enough to
identify the failure type within a finite delay.

3.2. Verification of diagnosability

In order to analyse diagnosability, (Sampath
et al. 1995) has proposed a systematic approach
that consists in building a specific model called
diagnoser. It is a deterministic automaton whose
transitions correspond to the observable events of
the system and whose states are estimation system
state associated with labels to indicate if a state is
reached by an observable trace containing a faulty
event or not.

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

25

Definition 3 (Diagnoser (Sampath et al. 1995))

Let G = 〈Q,Σ,→, q0〉 be an LTS to be diagnosed.
A diagnoser of G is a deterministic LTS Gd =
〈X ,Σo,→d,X0〉 associated with a tagging function
Diag : X → 24, with 4 = {N,F} (for only one class
of failures). with N means normal and F means
faulty.

Each diagnoser state x has the form x =
{(q1, l1), . . . , (qn, ln)}, with qi ∈ Q and li ∈ 4. If
∀i = 1, . . . , n, we have li = N (resp. li = F), the
diagnoser state x is said to be N -certain (resp. F -
certain), otherwise F -uncertain state.

For more details about the formal framework and
algorithmic procedure of constructing the diagnoser,
we refer the reader to the original paper (Sampath
et al. 1995).

We define an f -indeterminate cycle in a diagnoser
to be a cycle composed exclusively of F -uncertain
diagnoser states and corresponding to the presence
of two cycling traces, in the system, that sharing the
same observable events, such that the faulty event
f from the class Σf occurs in the 1st trace but not
in the 2nd. The notion of f -indeterminate cycle is
very important, since it helps to give a necessary and
sufficient condition for diagnosability analysis.

Theorem 1 ((Sampath et al. 1995))

A system modelled by an LTS G is diagnosable if
and only if there are no f -indeterminate cycles in its
diagnoser Gd for any class of faults Σf .

3.3. Example

Let us consider the LTS G in Figure 1 (adapted from
(Sampath et al. 1995)). The set of observable events
is Σo = {a, b, d, t} and the set of unobservable events
is Σu = {u, f} with f a faulty event in Σf .

1start

2 3 4 5

7

8 9 10 6

11 12

f

a b u

d

ta
f

b u
t

b u

d

Figure 1: The LTS G

The diagnoser Gd corresponding to the LTS G
is depicted in Figure 2. There exists a cycle
of f -uncertain states composed of {3F, 7N} and
{5F, 10F, 12N} w.r.t. the observable sequence (bd)∗.
This cycle corresponds to two cycles in the LTS
G. The 1st one, which is composed of states
{3}, {4}, {5} w.r.t. the sequence (bud)∗, which is
reachable from the faulty sequence fa. The 2nd

cycle, which is composed of states {7}, {11}, {12}
and reached by the fault-free sequence a. Thus
we can infer, according to Theorem 1, that there
exists an f -indeterminate cycle in the diagnoser and
consequently the LTS G is not diagnosable w.r.t. to
faulty class Σf and the projection function P .

{1N}start {3F, 7N}

{5F, 10F, 12N}{6F}

a

bd

t

t

Figure 2: Diagnoser Gd of the LTS G

It is worth noticing that the diagnoser can be used
either off-line to check diagnosability or on-the-fly by
connecting it to the system in order to provide on-line
diagnosis upon the occurrence of observable events.

4. SYMBOLIC OBSERVATION GRAPH (SOG)

In this section, we present the so-called symbolic
observation graph (Haddad et al. 2004) and we
show how it is used to abstract LTS behaviour. In
(Haddad et al. 2004), the authors have introduced
the SOG as an abstraction of the reachability
graph of concurrent systems and showed that the
verification of an event-based formula of LTL/X on
the SOG is equivalent to the verification on the
original reachability graph. The construction of the
SOG is guided by the set of observable events.
The SOG is defined as a graph where each node
is a set of states linked by unobserved events and
each arc is labelled with an observable event. The
SOG nodes are called aggregates and may be
represented and handled efficiently using decision
diagram techniques (BDDs, see for instance (Bryant
1992)). The SOG is said to be hybrid since it is
both an explicit and a symbolic structure: the graph
is represented explicitly while the nodes are sets of
states encoded and managed symbolically. Despite
the exponential theoretical complexity of the size of
a SOG, it has a very moderate size in practice (see

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

26

(Haddad et al. 2004; Klai and Petrucci 2008); (Klai
and Poitrenaud 2008) for experimental results).

In the following, we first define what an aggregate
is formally, before providing a formal definition of a
SOG associated with an LTS.

Definition 4 (aggregate)

Consider the LTS G = 〈Q,Σ,→, q0〉 with Σ =
Σo

⊎
Σu. An aggregate a is a non empty set of states

satisfying: q ∈ a ⇔ SaturateΣu
(q) ⊆ a; where

SaturateΣu
(q) = {q′ ∈ Q|q ∗−→Σu

q′}.

In the following, SaturateΣu is extended to
sets of states as follows: SaturateΣu

(Q′) =⋃
q∈Q′ SaturateΣu

(q).

Definition 5 (symbolic observation graph)

The deterministic symbolic observation graph
SOG(G) associated with an LTS G is an LTS
〈A,Σo,→Σo , a0〉 where:

1. A is a finite set of aggregates such that:

a) There is an aggregate a0 ∈ A s.t. a0 =
SaturateΣu(q0);

b) For each a ∈ A and for each σ ∈ Σo, if
∃q ∈ a, q′ /∈ a: q σ−→ q′ then Saturate({q′ /∈
a|∃q ∈ a, q

σ−→ q′}) equals a′ for some
aggregate a′ and (a, σ, a′) ∈→Σo ;

2. →Σo
⊆ A × Σo × A is the transition relation,

obtained by applying 1.b).

The SOG can be constructed by starting with
the initial aggregate a0 and iteratively adding new
aggregates as long as the condition of 1.b) holds
(see (Haddad et al. 2004) for a construction
algorithm).

5. USING SOGS TO ANALYSE
DIAGNOSABILITY

In this section, we discuss how the SOG is used in
order to build a hybrid diagnoser and we provide an
on-the-fly algorithm to construct the hybrid diagnoser
and to verify diagnosability simultaneously.

The underlying idea behind using SOG for diag-
nosability analysis is basically to tackle the state
explosion phenomenon raised when building the
diagnoser. It is worth recalling here that the Sam-
path’s diagnoser is computed with an exponential
complexity regarding the state space of the model
(Sampath et al. 1995). Obviously, this represents a
serious limit of the diagnoser based approach when
large models are handled.

Using the results of Section 4, we would use the
SOG to perform a hybrid diagnoser construction.
In order to capture the feature of analysing
diagnosability which is tracking the ambiguous
behaviour of the system, i.e. normal and faulty
executions which share the same observable events,
we modify the structure of the aggregate, introduced
in Definition 4, by splitting the set of states (managed
using BDDs) into tow sets of states in the same
aggregate: one set contains normal states, i.e.
states reachable by fault-free sequences, and the
other contains faulty states, i.e. states reachable by
sequences containing one (or more) faulty events.
Both of sets are represented and managed using
BDDs.

Figure 3 depicts the general form of a diagnoser
aggregate where two BDDs represent two sets of
states; BDDn represents the set of normal states,
while BDDf represents the set of faulty ones. The
set of faulty states may be reached from the set of
normal states by the occurrence of a faulty event,
and thus a faulty transition form BDDn to BDDf

may exist in any diagnoser aggregate. Depending on
the executed behaviour, i.e. the executed sequence,
the diagnoser aggregate may contain the two sets
of states (BDDs) or only one set. If a diagnoser
aggregate contains only BDDn (resp. BDDf), it
is called an N -certain (resp. F -certain) diagnoser
aggregate, else it is an F -uncertain diagnoser
aggregate in the same way as in the classic
diagnoser (Definition 3).

The dashed arrows show the different possibilities
that a transition from a diagnoser aggregate can
produce. For instance, observable event b enabled
by the diagnoser aggregate can be enabled from
both normal and faulty sets or from only one set.
This feature will be considered during the on-the-fly
construction of our hybrid diagnoser, since we do not
need to construct the diagnoser aggregates reached
through an observable event from only the faulty set
of an aggregate. Moreover, this information will be
used to establish some heuristics that prioritizing the
branches to be followed while building the hybrid
diagnoser.

Figure 3: A diagnoser aggregate

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

27

Definition 6 (diagnoser aggregate)

Consider an LTSG = 〈Q,Σ,→, q0〉 with Σ = Σo
⊎

Σu
and Σf ⊂ Σu. A diagnoser aggregate a = 〈Qn, Qf 〉
is a non empty set of states satisfying:

1. ∀q ∈ Q s.t. q0
∗f∗−−→ q (i.e. q is reachable by a

faulty sequence): q ∈ a ⇔ SaturateΣu
(q) ⊆

a.Qf ;

2. ∀q ∈ Q s.t. q0
∗−→Σ\Σf

q (i.e. q is
reachable by a fault-free sequence): q ∈
a ⇔ Q′ = SaturateΣu\Σf

(q) ⊆ a.Qn ∧
SaturateΣu

(Img(Q′, f) ⊆ a.Qf .

3. ∀q, q′ ∈ a,∃s, s′ ∈ Σ∗, s.t. q0
s−→ q, q0

s′−→ q′, and
P (s) = P (s′)

with SaturateΣu\Σf
(q)={q′ ∈ Q|q →Σu\Σf

q′}, and

Img(Q′, f)={q′|q ∈ Q′ : q
f−→ q′}, i.e. it returns

the set of immediate successors of states in Q′

through the occurrence of event f .

To simplify the notation, we denote by a.Qn (resp.
a.Qf) the set of normal (resp. faulty) states in an
aggregate a.

5.1. Constructing the hybrid diagnoser

We now introduce the hybrid diagnoser which is a
modified SOG built from the LTS model G.

Definition 7 (hybrid diagnoser)

The hybrid diagnoser DSOG(G) associated with an
LTS G is a modified SOG 〈Γ,Σo,→SOG,Γ0〉.

1. Γ is a finite set of diagnoser aggregates.

2. Γ0 is the initial diagnoser aggregate with;

a) Γ0.Qn = SaturateΣu\Σf
(q0);

b) Γ0.Qf =SaturateΣu
(Img(Γ0.Qn, f)).

3. →SOG⊆ Γ × Σo × Γ is the transition relation,
defined as below,

∀a, a′ ∈ Γ, σ ∈ Σo s.t. σ ∈ Enable(a.Qn∪a.Qf):

a
σ−→SOG a′ ⇔ a′.Qn= SaturateΣu\Σf

(Img(a.Qn, σ))

∧ a′.Qf=SaturateΣu(Img(a′.Qn, f) ∪
Img(a.Qf, σ))

To summarize, the hybrid diagnoser DSOG(G) is
constructed as follows: let the current aggregate of
the diagnoser be a, and the next observed event be
σ. The target diagnoser aggregate a′ of the hybrid
diagnoser is computed following these rules:

1. If σ ∈ Enable(a.Qn) ∩ Enable(a.Qf) then:

a. a′.Qn = SaturateΣu\Σf
(Img(a.Qn, σ)).

b. a′.Qf =
SaturateΣu

(Img(a′.Qn, f) ∪
Img(a.Qf, σ)).

2. If σ ∈ Enable(a.Qn)\Enable(a.Qf) then:

a. a′.Qn = SaturateΣu\Σf
(Img(a.Qn, σ)).

b. a′.Qf = SaturateΣu(Img(a′.Qn, f)).

3. If σ ∈ Enable(a.Qf)\Enable(a.Qn) then:

a. a′.Qn = ∅.
b. a′.Qf = SaturateΣu

(Img(a.Qf , σ)).

These rules preserve a specific fault propagation.
From an F -uncertain diagnoser aggregate, we can
reach either another F -uncertain, an F -normal
or an F -certain diagnoser aggregate, from an N -
certain diagnoser aggregate, we can reach either
another N -certain diagnoser aggregate or an F -
uncertain one, and finally from an F -certian
diagnoser aggregate, we can reach only another F -
certain diagnoser aggregate, which depicts exactly
the hypothesis of permanent failures. Figure 4
illustrates these points.

N -certain F -uncertain

F -certain

Figure 4: Fault propagation on the hybrid diagnoser

Example 1 Figure 5 represents the hybrid diag-
noser associated with the LTS of Example 1, de-
picted in Figure 1. As it is intended to construct
the hybrid diagnoser on-the-fly, it is more convenient
to represent the hybrid diagnoser as a tree-like
structure.

The initial aggregate composed of the initial state
of the LTS and the state 2 reachable from state
1 by the occurrence of faulty event f . Both of the
diagnoser aggregates (2) and (3) contain two sets
of states (each one is represented by a BDD).
After the occurrence of event d we reach diagnoser
aggregate (4), which is the same as diagnoser
aggregate (2) thus, there exists a cycle on the
hybrid diagnoser composed of aggregates (2) and
(3) by executing the observable event sequence
(bd)∗. Diagnoser aggregate (5) is reached after the
occurrence of event t and it contains only the set
of faulty states thus, it is an F -certain diagnoser
aggregate. As F -certain diagnoser aggregates are

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

28

not necessary to analyse diagnosability, in on-the-
fly constructing of the hybrid diagnoser, we do
not construct them. Indeed, one knows that all
the subsequent aggregates will be F -certain as
well. Besides, computing such aggregates is not
necessary for online diagnosis.

Figure 5: Hybrid diagnoser of the LTS in Figure 1.

We recall that our goal is to avoid the state-explosion
problem, not only by providing this compact form
(SOGs) to build the hybrid diagnoser but also by
constructing the hybrid diagnoser on-the-fly and
verifying diagnosability simultaneously. Constructing
the hybrid diagnoser on-the-fly serves to avoid
generating the whole state space of the diagnoser
even if the system is diagnosable, i.e. as we deal
with permanent faults, we do not need to construct
the part, of the hybrid diagnoser, containing only F -
certain diagnoser aggregates since such a part is not
necessary for analysing diagnosability (see (Liu et al.
2014a) for more details).

Hereafter, we provide the SOG-based algorithm
needed for on-the-fly construction of the hybrid
diagnoser. The following function and data structures
are used:

• Img(S, t), as described previously, returns the
set of immediate successors of the states of a
set S through the occurrence of event t.

• OBDDs (Ordered Binary Decision Diagram)
are used to represent the sets of states
belonging to an aggregate, i.e. the set of
normal states and the set of faulty states in
an aggregate. This task is performed by the
function Reduce().

• The hybrid diagnoser is represented by a
standard graph representation with a set of
vertices, namely V , and a set of edges, namely
E, connecting these aggregates and labelled
with observable events.

• EnableObs(S) returns the set of observed
events that are enabled by at least one of the
states in set S.

• SaturateΣi
(), as defined before, computes the

various states reached through events from set
Σi.

• Stack is an ordered set of 5-uplet, which
contains two sets of states (Sn, Sf) and three
sets of events (Evtf , Evtn, Evt) with Evt =
(Evtn ∪ Evtf)\(Evtn ∩ Evtf).

• IsUncertain() is a function that returns
Boolean value (true if the encountered cycle
is composed of only f -uncertain diagnoser
aggregates and false otherwise).

• IsIndeterminate(): is a function that returns
Boolean value (true if the existing cycle is an f -
indeterminate cycle and faulse otherwise. This
function will be discussed later.

• RemoveLast(S) is an operation that removes,
then returns, the last event of a set S.

• For the sake of simplicity, we consider that Σf
contains only one faulty event, generalization
to a set of faulty events is straightforward.

The initialization step (lines 1-11) serves to compute
the initial diagnoser aggregate, handle it efficiently
using OBDD (function Reduce()), and push it,
associated with its enabled observable events, into
the stack. The construction of the hybrid diagnoser
is performed using a depth first exploration: As long
as the stack in not empty, a new observable event t,
enabled by the diagnoser aggregate a at the top of
the stack, is removed from the set of enabled events
(Evt) and then processed. If such an event does
not exist, the corresponding aggregate is poped from
the stack (lines 13-15). Otherwise, if the set Evtn of
events enabled by the set of normal states Sn of the
diagnoser aggregate a, is empty then the aggregate
a is poped from the stack (lines 16 and 18). This step
serves to avoid the construction of the subsequent
F -certain diagnoser aggregates, i.e. since this part
of the hybrid diagnoser is not necessary to analyse
diagnosability.

The computation of the new aggregate a′, reachable
through an observable event from aggregate a, is
completed by saturation on the unobservable events
(lines 20-26). If a′ has already been encountered
(i.e. existence of a cycle) then the hybrid diagnoser
is updated by adding a new edge (lines 27-28)
and if the cycle is uncertain (i.e., contains only
f -uncertain diagnoser aggregates), the function
IsIndeterminate() is launched in order to detect
whether there exists an f -indeterminate cycle or
not (line 29-32). If the cycle is an f -indeterminate

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

29

one then we output that the model is undiagnosable
and we stop the diagnoser construction. Otherwise,
construction is continued, a′ with its enabled
observable events are pushed into the stack, and
so on. When the stack is empty, then the necessary
part of the diagnoser, for analysing diagnosability,
is completely built, we output that the model is
diagnosable.

As mentioned in Section 3, diagnosability analysis
is performed by searching two infinite executions
that share the same observed event-sequences
such that one sequence contains a faulty event
and not the other one. That means to search an
f -indeterminate cycle in the diagnoser (Sampath
et al. 1995). The same procedure is used in our
case, i.e. searching f -indeterminate cycles in the
hybrid diagnoser. Two steps are needed to check
the existence of f -indeterminate cycles when a cycle
of F -uncertain diagnoser aggregate is found in the
hybrid diagnoser:

1. Extract the observed event-sequence that
leads to this cycle (of F -uncertain diagnoser
aggregates).

2. Check if this observed event-sequence corre-
sponds to two cycle in the LTS model. One
cycle is reached by a fault-free event-sequence
and the other one is reached by a faulty event-
sequence.

This task is performed by function
IsIndeterminate() in the Algorithm 1 (line 28)
which calls a specific function (path exists()) from
the digraph library (Rushton 2012). (digraph is
a library dedicated for searching cycles from the
system model).

We emphasize that verification of the existence of
f -indeterminate cycles is performed on-the-fly in
parallel to the process of constructing the hybrid
diagnoser, i.e. the process of constructing the hybrid
diagnoser runs and when a cycle of F -uncertain
diagnoser aggregates is found, we check whether
this cycle corresponds to an f -indeterminate cycle
or not. If it is the case (i.e. the cycle is an f -
indeterminate cycle), then the whole process is
stopped and a negative verdict is emitted regarding
diagnosability, else the building process is continued.

Example 2 Let us take again LTS G of Figure 1 and
its hybrid diagnoser (Figure 5). We have a cycle, in
the hybrid diagnoser, composed of only F -uncertain
diagnoser aggregates (2)
 (3). Once the algorithm
of construction arrives at this cycle, we check if
this cycle is an f -indeterminate one or not, before
continuing the construction process. The cycle of
f -uncertain diagnoser aggregates (2)
 (3) is

reached by executing the observed event-sequence
a(bd)∗.

Algorithm 1 On-the-fly algorithm to construct the
hybrid diagnoser
DiagSOG (LTS,Σo,Σu, f);
Diagnoser aggregate a, a′;
Set of vertices V ;
Set of edges E;
Set of Events Evtn, Evtf , Evt;
Set of states Sn, Sf , S′n, S′f ;
Stack st = ∅;

1: Sn = SaturateΣu\f (q0);
2: Sf= Img(Sn, f);
3: if (Sf 6= ∅) then
4: Sf = SaturateΣu

(Sf);
5: end if
6: a = 〈Sn, Sf 〉;
7: Reduce (a,Σu);
8: V = a; E = ∅;
9: Evtn = EnableObs(Sn);

10: Evtf = EnableObs(Sf);
11: st.Push(〈Sn, Sf , Evtn, Evtf , Evt〉;
12: while (st 6= ∅) do
13: 〈Sn, Sf , Evtn, Evtf , Evt〉 = st.Top();
14: if Evt = ∅ then
15: 〈S′n, S′f , Evtn, Evtf , Evt〉 = st.Pop();
16: else
17: if (Evtn = ∅ then
18: 〈S′n, S′f , Evtn, Evtf , Evt〉 = st.Pop();
19: else
20: t = RemoveLast(Evt);
21: S′n = Img(Sn, t);
22: S′n = SaturateΣu\f (S′n);
23: S′f = Img(Sf , t) ∪ Img(S′n, f);
24: S′n = SaturateΣu

(S′f);
25: a′ = 〈S′n, S′f 〉;
26: Reduce (a′,Σu);
27: if (∃w ∈ V | w = a′); then
28: E = E ∪ a t−→SOG w;
29: if (IsUncertain()) then
30: if (IsIndeterminate()) then
31: return UNDIAGNOSABLE;
32: end if
33: end if
34: else
35: V = V ∪ {a′};
36: E = E ∪ a t−→SOG a′;
37: Evtn = EnableObs(S′n);
38: Evtf = EnableObs(S′f ;
39: st.Push〈S′n, S′f , Evtn, Evtf , Evt〉;
40: end if
41: end if
42: end if
43: end while
44: return DIAGNOSABLE;

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

30

In LTS G, the observed event-sequence a(bd)∗

corresponds to two event-sequences:

1. The faulty sequence fa(bud)∗ that leads to a
cycle composed of states 3, 4, and 5.

2. The fault-free sequence a(bud)∗ that leads to a
cycle composed of states 7, 11, 12.

Thus, we can infer that the cycle, in the hybrid
diagnoser, composed of diagnoser aggregates (2)
and (3) is an f -indeterminate cycle. Thus, we stop
constructing the hybrid diagnoser and we output that
LTS G is non diagnosable with respect the fault f .

5.2. A heuristic strategy to improve the building
algorithm

Our algorithm for constructing the hybrid diagnoser
is based on a depth-first search (DFS) to investigate
the state space (diagnoser aggregate in the devel-
oped tree-like structures) execution by execution.
Generally, no rules are defined to select the execu-
tion to be investigated first, i.e. the order of execution
exploring is arbitrary. However, as we deal with
diagnosability analysis, in our case, the diagnoser
aggregate structure provides some information that
can be exploited to direct the search in such a way
as to increase the chances of quickly obtaining a di-
agnosability verdict by exploring the most promising
executions at first.

When we deal with diagnosability analysis, the
interesting executions of the system are those which
share the same observed event-sequence such
that some of them contain a faulty event and the
others are fault-free. This is reduced to track the
observed event-sequences, in the hybrid diagnoser,
leading to F -uncertain aggregates. Generally, there
exists three types of enabled transitions from any
aggregate, as depicted in Figure 6.

1. Transitions enabled only by states from the
faulty set (Figure 6.(a)). As said before, this
type of branches will not be explored.

2. Transitions enabled only by states from the
normal set (Figure 6.(b)). In this case, we need
to continue the construction since other faults
may occur in the future.

3. Transitions enabled from both normal and
faulty sets (Figure 6.(c)). In this case, the
reached diagnoser aggregate will be certainly
F -uncertain.

This last type of transitions is the most-promising to
find an f -indeterminate cycle since we know, a priori,
that the new diagnoser aggregate will be certainly an
f -uncertain aggregate, contrary to the other above
cases. Thus, it will be the first to be explored in order

Figure 6: Types of enabled transitions from an
aggregate

to direct the construction of the hybrid diagnoser and
to potentially speed up the verification process. We
note that in the actual version of the algorithm, this
heuristic strategy is not implemented.

6. RELATED WORKS

In the literature, there are several diagnoser-based
approaches for analysing diagnosability inspired
from the seminal work of (Sampath et al. 1995). In
(Zad et al. 2003) a state-based approach for on-line
passive fault diagnosis was introduced. In the state-
based approach, it is assumed that the set of states
of the system model can be partitioned according
to the faulty or normal condition of the system. In
this work, a specific diagnoser is constructed as
a finite state machine that takes information from
the system (i.e. sequences of inputs/outputs) and
generates an estimate of the condition of the system
(i.e., faulty or normal). Establishing of this diagnoser
has exponential time complexity. However, a model
reduction scheme with polynomial time complexity is
proposed to reduce the computational complexity of
the procedure.

(Schumann et al. 2004) propose a symbolic
framework based on binary decision diagrams
for the diagnosis of DESs. A symbolic version
of Sampath’s diagnoser was proposed, while
requiring considerably lower space and time than
the enumerative approach of (Sampath et al.
1995). Recently, (Liu et al. 2014a) propose an
on-the-fly algorithm for constructing and checking
diagnosability of discrete-event systems modelled by
LPNs using an enumerative approach. The goal is
to avoid the construction of the whole state-space
of the diagnoser especially when the system is not
diagnosable. The approach was experimented over
a Petri net benchmark and the obtained results
were promising compared to those of Sampath’s
approach. A tool, called OF-PENDA (Liu et al.
2014b), was developed based on this approach to
analyse diagnosability, K-diagnosability and Kmin-
diagnosability of systems, modelled by Labelled Petri
Nets.

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

31

The approach proposed in this paper, takes
advantage from these two last approaches (i.e.,
(Schumann et al. 2004) and (Liu et al. 2014a)) by
combining the symbolic representation of diagnoser
states and on-the-fly techniques for constructing the
hybrid diagnoser and verifying diagnosability. We
believe that this approach will improve efficiently
analysis of diagnosability in terms of runtime
and memory resources. We still need to apply
the approach on several benchmarks in order to
assess its efficiency. Indeed, determining analytical
complexity while considering the worst case is not
appropriate for such an on-the-fly approach.

7. CONCLUSION

In this work, we have developed an on-the-fly
approach for diagnosability analysis, based on a
hybrid diagnoser. The approach is based on the
symbolic observation graph (SOG), which is a
paradigm that combines symbolic and enumerative
representations in order to build a deterministic
observer from a partially observed model. The
approach aims to improve the efficiently in terms
of runtime and memory resources when analysing
diagnosability.

Several future directions are considered. First,
we wish to make experimentations over case-
studies in order to assess the efficiency and the
scalability of our approach and also to compare
the obtained results with those provided by other
existing approaches. Then, we will investigate
some other practical versions of diagnosability,
namely K-diagnosability and Kmin-diagnosability.
Finally, we intend to extend the proposed approach
for analysing diagnosability based on the verifier
approach by means of a non deterministic version
of the symbolic observation graph.

REFERENCES

J. Zaytoon and S. Lafortune. Overview of fault
diagnosis methods for discrete event systems.
Annual Reviews in Control, pages 308–320, 2013.

C. G. Cassandras and S. Lafortune. Introduction to
discrete event systems. Second Edition, Springer,
2007.

M. Sampath, R. Sengupta, and S. Lafortune.
Diagnosability of discrete-event systems. IEEE
Transactions on Automatic Control, pages 1555–
1575, 40(9), 1995.

S. Jiang, Z. Huang, V. Chandra, and R. Kumar.
A polynomial algorithm for testing diagnosability
of discrete-event systems. IEEE Transactions

on Automatic Control, pages 46(8), 1318–1321,
2001.

T. S. Yoo and S. Lafortune. Polynomial-time
verification of diagnosability of partially observed
discrete-event systems. IEEE Transactions on
Automatic Control, pages 47(9), 1491–1495,
2002.

A. Cimatti, C. Pecheur, and R. Cavada. Formal
verification of diagnosability via symbolic model
checking. Int. Joint Conference on Artificial
Intelligence, 2003.

A. Boussif and M. Ghazel. Diagnosability analysis
of input/output discrete event system using model
checking. The 5th International Workshop on
Dependable Control of Discrete Systems, 2015.

J. Peterson. Petri Net Theory and the Modeling of
Systems. Prentice Hall PTR, 1981.

T. Ushio, I. Onishi, and K. Okuda. Fault detection
based on Petri net models with faulty behaviors.
Systems, Man, and Cybernetics, pages 113–118,
1998.

Y. Wen and C. Li. A polynomial algorithm for
checking diagnosability of Petri nets. IEEE
International Conference on Systems, Man and
Cybernetics, 3:2542–2547, 2005.

M. P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu.
Diagnosability analysis of bounded Petri nets.
Proceedings of the 48th IEEE Conference on
Decision and Control (CDC) held jointly with 28th
Chinese Control Conference, pages 1254–1260,
2009.

F. Basile, P. Chiacchio, and G. De Tommasi. On
k-diagnosability of Petri nets via integer linear
programming. Automatica, 48(9):2047–2058,
2012.

M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosabil-
ity of discrete-event systems using labeled Petri
nets. IEEE Transactions on Automation Science
and Engineering, 11(1):144–153, 2014.

B. Liu, M. Ghazel, and A. Toguyéni. Toward an
efficient approach for diagnosability analysis of
des modeled by labeled petri nets. Proceeding of
the 13th European Control Conference, 2014a.

S. Haddad, J.-M. Ilié, K. Klai, and F. Wang. Design
and Evaluation of a Symbolic and Abstraction-
based Model Checker. 2nd International Sympo-
sium on Automated Technology for Verification and
Analysis (ATVA’04), pages 198–210, 2004.

R. E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Comput.
Surv., 24(3):293–318, 1992.

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

32

K. Klai and L. Petrucci. Modular construction of the
symbolic observation graph. The 8th International
Conference on Application of concurrency to
System Design, pages 23–27, 2008.

K. Klai and D. Poitrenaud. MC-SOG: An LTL model
checker based on symbolic observation graphs.
Proceedings of the 29th International Conference
on Application and Theory of Petri Nets, pages
23–27, 2008.

A. Rushton. A directed graph conainer. http://
www.andyrhshton.co.un/programming/stlplus-
library-collection, 2012.

S. H. Zad, R .H. Kwong, and W. M. Wonham. Fault
diagnosis in discrete-event systems: Framework
and model reduction. IEEE Transactions on
Automatic Control, 48(7):1199–1212, 2003.

A. Schumann, Y. Pencole, and S. Thiebaux.
Diagnosis of discrete event systems using ordered
binary decision diagrams. 15th International
Workshop on Principles of Diagnosis, 2004.

B. Liu, M. Ghazel, and A. Toguyéni. OF-PENDA:
A software tool for fault diagnosis of discrete
event systems modeled by labeled petri nets.
International Worshop Petri Nets for Adaptive
Discrete-Event Control Systems, 2014b.

Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems

33

Part II

Session: Program verification

35

Probabilistic approaches for time critical
embedded systems

Liliana Cucu-Grosjean
AOSTE team, INRIA Paris-Rocquencourt

Domaine de Voluceau, BP 105
78153, Le Chesnay

France
liliana.cucu@inria.fr

During the last twenty years different design solutions have been proposed for time critical embedded
systems through pessimistic estimation of performances of the processors (thus increased costs) while
using average time behavior processors. A possible solution to decrease the pessimism while designing
time critical embedded systems is to enrich existing models with appropriate probabilistic descriptions.

time critical embedded systems, probabilistic worst-case reasoning

1. INTRODUCTION

An embedded system is a computing system with
a dedicated function, embedded within a larger
device,e.g., a defibrillator or an airplane. Today
95% of current processors are embedded, making
embedded systems central computing systems
of our society. Beside constraints like power
consumption and weight, embedded systems may
have time constraints and such systems are
called time critical embedded systems. Time critical
embedded systems design is mainly based on
commercial processors with a good average time
behavior. During the last twenty years different
design solutions have been proposed through
pessimistic estimation of performances of the
processors (thus increased costs) while using
average time behavior processors.

The pessimism of all existing solutions comes mainly
from the implementation phase where an absolute
value is considered for the worst case execution
time of a program. The arrival of modern and more
complex processors (e.g., use of caches, multi-
and many-core processors) increases the timing
variability of programs, i.e., the absolute worst case
execution time is becoming significantly larger. For
instance, larger execution times require an increased
number of processors or more powerful processors.

An intuitive solution to overcome this pessimism is
the introduction by Steve Vestal in Vestal (2007)
of the notion of mixed criticality for time critical

embedded systems. This solution defines several
possible values for the worst case execution time
of a program on a processor and it has propagated
from the original work on scheduling theory Burns
and Davis (2015) to synchronous languages Yip
and al. (2014), predictable processors Zimmer
and al. (2014), model checking Boudjadar and al.
(2014), etc. Nevertheless today the mixed criticality
solutions are heterogeneous and they are proposed
for different phases of design without a common
framework.

A possible solution to build such common framework
while decreasing the pessimism may be proposed
by enriching existing models with appropriate
probabilistic descriptions. Probabilistic description of
a model provides more information to the designer
while allowing several values for a parameter, or
several states for a property. Nevertheless, the
introduction of probabilities is not trivial as not
every probabilistic approach may be used to study
time critical embedded systems. First, we prove
that the worst case values of the execution times
of a program are rare events Cucu-Grosjean and
al. (2012). Secondly, the average-case probabilistic
reasoning is not useful to guarantee time constraints
Maxim and Cucu (2013). We define the probabilistic
worst case reasoning as a probabilistic bound on
possible values for a parameter or a property of the
system Cucu-Grosjean (2013).

In this talk we define probabilistic upper bounds
on all possible values or states as the probabilistic

©
37

worst case reasoning ensuring the migration of
probabilistic methods from modelling soft time
constraints to analysing hard time constraints. Two
common misconceptions concerning probabilistic
time critical embedded systems are discussed:
independence and the identical distribution. We
summarize recent state-of-the-art research into
probabilistic approaches, and we conclude with the
main open challenges in this area.

2. DESIGN OF TIME CRITICAL EMBEDDED
SYSTEMS

The design of a time critical embedded system may
have basically three main phases: (i) the description
of the physical process that should be controlled
(control theory), (ii) the description of the functional
requirements that should be fulfilled (synchronous
and asynchronous models) and (iii) the description
of the implementation of the time critical embedded
system (scheduling or verification).

Synchronous**
Models*

Model*
Checking*

Asynchronous**
Models*

Processor*

Real78me*
Scheduling*

Control*
Theory*

Func8onal*
requirem

ents*
Im

plem
enta8on*

Figure 1: Different phases of the design of a time critical
embedded system

In order to decrease the pessimism of the design
solutions, while ensuring time critical constraints,
probabilistic description of parameters may be
defined at different levels of design of a time critical
embedded system:

• Probabilistic approaches for control theory for
mixed criticality systems. Solving a control sys-
tem problem consists in finding the sampling
frequency and we identify it as the first property
to be described probabilistically.

• Probabilistic approaches for synchronous
models for mixed criticality systems. The
transition between states might be the first
property to be described probabilistically by
relaxing the synchrony hypothesis.

• Probabilistic approaches for asynchronous
models taking into account mixed criticality
systems. Here the transition between states
may be the first to be described probabilisti-
cally.

• Probabilistic approaches for real-time schedul-
ing analysis for mixed criticality systems.

• Probabilistic approaches for verification for
mixed criticality systems. The integration of
rare events probability distributions in current
probabilistic model checking seems to be the
first reasonable step.

REFERENCES

Vestal, S. (2007) Preemptive scheduling of multi-
criticality systems with varying degrees of execu-
tion time assurance the IEEE Real-Time Systems
Symposium.

Burns, A. and Davis, R., (2015) Mixed Criticality
Systems - Review University of York.

Yip, E. and Kuo, M. and Roop, P. and Broman,
D., (2015) Relaxing the synchronous approach
for mixed-criticality systems the 20th IEEE Real-
Time and Embedded Technology and Application
Symposium.

Zimmer, M. and Broman, D. and Shaver, C. and
Lee, E., (2014) FlexPRET: A processor platform
for mixed-criticality systems the 20th IEEE Real-
Time and Embedded Technology and Application
Symposium.

Boudjadar, A.J. and David, A. and Kim, J. and
Larsen, K.G. and Mikucionis, M. and Nyman, U.
and Skou, A., (2014) Degree of Schedulability
of Mixed-Criticality Real-Time Systems with
Probabilistic Sporadic Tasks Theoretical Aspects
of Software Engineering Conference.

Maxim, D. and Cucu-Grosjean, L., (2014) Response
Time Analysis for Fixed-Priority Tasks with Multiple
Probabilistic Parameters the 34th IEEE Real-Time
Systems Symposium.

Cucu-Grosjean, L. and Santinelli, L. and Houston,
M. and Lo, C. and Vardanega, T. and Kosmidis,
L. and Abella, J. and Mezzeti, E. and Quinones,
E. and Cazorla, F., (2012) Measurement-Based
Probabilistic Timing Analysis for Multi-path Pro-
grams the 24th Euromicro Conference on Real-
time Systems.

Cucu-Grosjean, L., (2013) Independence - a
misunderstood property of and for (probabilistic)
real-time systems Real-Time Systems: the past,
the present, and the future.

Probabilistic approaches for time critical embedded systems

38

Towards the Property-Based Testing of an L4
Microkernel API

Cosmin Dragomir
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest
Splaiul Independentei nr. 313
Sector 6, Bucuresti, Romania
cosmin.dragomir@cti.pub.ro

Lucian Mogosanu
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest
Splaiul Independentei nr. 313
Sector 6, Bucuresti, Romania
lucian.mogosanu@cs.pub.ro

Mihai Carabas
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest
Splaiul Independentei nr. 313
Sector 6, Bucuresti, Romania

mihai.carabas@cs.pub.ro

Razvan Deaconescu
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest
Splaiul Independentei nr. 313
Sector 6, Bucuresti, Romania

razvan.deaconescu@cs.pub.ro

Nicolae Tapus
Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest
Splaiul Independentei nr. 313
Sector 6, Bucuresti, Romania

nicolae.tapus@cs.pub.ro

Software testing has been a significant part of the software development process for the last 30 years and is
gaining even more importance with the increasing complexity of software products. As each application has
its own requirements, multiple software testing methodologies exist. It is the decision of the developers to
choose the best suited types of testing methodologies for their product. This paper presents the design and
implementation of a property-based testing framework. Unlike traditional testing methods this methodology
uses the formal specification of the API to automatically generate the input and validate the output. The
framework will be used to test the API of an L4 microkernel (called VMXL4); VMXL4 possesses the constraints
of an embedded environment and of an ongoing development of a stateful system.

Property-Based Testing, L4 Microkernel, API

1. INTRODUCTION

The software industry has been constantly growing
in the last decades and the liability and robustness of
the software products must match their requirements
in order to remain competitive. To obtain a stable
product, the entire software stack must be reliable.
Therefore software testing must be done at each
layer of the software stack, starting with the lowest
level: the operating system.

Multiple software testing methodologies are in use
nowadays, each of them targeting a degree of
test cases coverage and test writing complexity.
Alongside the well known unit testing method,
another functional methodology named property-
based testing has gained ground among software
developers. It uses the concept of “tests as

specification”, in which tests are written to cover
most of the specification.

Writing a large number of tests for the same
specification implies a sizable effort from the
developers. Property-based testing mitigates this
by automaticallly generating the input and creating
general and abstract tests known as properties.
Those can be similar to unit tests, except for the way
input is generated and output is validated.

This paper presents an user space framework
named QC that is based on an open source basic im-
plementation of a property-based testing framework
implemented by Pennebaker (2012). Although the
well-known related released frameworks are written
in functional programming languages, QC is written
in C due to the VMXL4 native environment support.

©
39

• • • •

Porting a new language environment would have
meant a sizable and unnecessary effort.

The QC framework solves issues commonly encoun-
tered in unit testing by using properties and testing
those properties on a large number of randomly
generated inputs and by maintaining the internal
state of the system. As a downside, QC introduces
the problem of formalizing the specification.

The paper is organised as follows: Section 2 is
introducing the concepts necessary to understand
the paper. Section 3 briefly presents the existing
similar frameworks. Section 4 discusses the design
and implementation of QC and Section 5 its
evaluation in comparison with the existing testing
methods for the API of an L4 microkernel, VMXL4.
Lastly, in Section 6 we present the overview of the
paper and future work.

2. BACKGROUND

This section presents the basic concepts required
to understand the next sections of the paper. It
starts with the overview and importance of software
testing, followed by the essential concepts of unit
testing and property-based testing. We show the
power of property-based testing in contrast with unit
testing. We also do a short introduction of the testing
environment, describing the VMXL4 microkernel.

2.1. Software Testing

Nowadays the number of different programming lan-
guages, hardware platforms and software libraries
is increasing. Requirements, for both specifications
and performance, are also more rigorous as time
passes by. As a consequence, software applications
are becoming more complex and bugs are intro-
duced in new software at all levels. As a countermea-
sure software testing has gained more importance
and attention from programmers.

It is important that applications and services can be
stateful or stateless. In a stateful system, an internal
state is being held and some of the actions have side
effects which might change the state. The design of
a stateful software system can be modeled using
a finite-state machine and a formal specification of
the inputs for every possible state. The summarizing
difference between stateful and stateless systems
is that for the first one the output depends on the
input and possibly on the internal state, whereas for
the second one the output always depends only on
the input. A well known example of stateful versus
stateless are the TCP and UDP transport layer
protocols from the TCP/IP stack, where TCP creates
and maintains a connection between the client and
the server and UDP does not.

At a higher level, software testing can be defined
as the process of executing a part or the entire
application in order to find errors or to evaluate the
quality of the user experience. Any moderately sized
application has flaws, but finding them is a complex
activity. It is usually unfeasible to do an exhaustive
testing on stateful systems, since the number of
different possibilities for the input values associated
with the existing internal system state is too large.
Even for some stateless applications this testing
would imply a sizable effort. We conclude that it is
more resource and time demanding to test a stateful
system instead of a stateless system.

There are multiple methodologies in software testing
which must be used in various steps of the
development process. In this paper we insist only
on those that can be split in two major categories:
functional and nonfunctional testing.

Functional testing verifies the client or design
specifications by testing the system functionality:
checking if the program operations and features
behave as they should. In summary it is used to
ensure that the application does not have bugs.
There are two categories of functional testing:
positive and negative. Positive testing is done using
valid inputs and comparing the actual output with the
expected output, whereas negative testing is done
by supplying the system functionalities with invalid
or unexpected inputs and operations. In the case of
negative functional testing, usually the system must
not behave nondeterministically and rather inform
the user of the input error.

On the other side, nonfunctional testing is concerned
with the user experience, including tests for
performance, security, availability, usability. Using
this type of testing, one can measure and compare
the results in different situations and cover the blanks
left by functional testing. For a competitive software
product, developers must test the program using
both functional and nonfunctional methodologies.

2.2. Unit Testing

One of the most used and successful software
testing methodologies is unit testing (Binder (2000);
Hunt et al. (2004); Osherove (2010)). It is centered
on the concept of unit of work, meaning a single,
invokable, logical and functional use case of the
system.

Unit testing is composed of a suite of tests that
can be run anytime during the development cycle to
test certain functions, logic and capabilities of the
code. Each test uses a predefined set of inputs,
runs a functionality of the system and compares
the output with the desired output. If the outputs

Towards the Property-Based Testing of an L4 Microkernel API

40

• • • •

differ, the tested functionality has at least one bug.
Although unit tests usually verify only one small
feature, sometimes it is not easy to find the bug,
due to the black-box nature of the methodology. This
means that unit testing does not use the internal
structure of the functionality, but only the higher level
invoked part, and therefore the bug may be in the
internal logic and further debugging must be done.
One big advantage of unit testing is its reusable
nature. Even if the internal logic changes, usually the
requirements of the function remains the same and
the old test can still be used.

Although unit testing is very useful, it has a very
important flaw, which may leave hard detectable
bugs in the system. Using unit tests a programmer
only verifies a small finite set of inputs and for
every different input set he must write another test.
Therefore, using unit test programmers cannot even
get close to an exhaustive testing. In addition to
not finding possible subtle bugs, the work of the
programmer is hardened by thinking of all the corner
cases and writing more code for them. In the end,
these drawbacks are less important than the benefits
of unit testing: because it gives good results in
practice, it is very used and every major language
has frameworks for this testing methodology.

2.3. Property-Based Testing

A software testing methodology which addresses
the problems left by unit testing is property-based
testing (Fink and Bishop (1997); Fernandez et al.
(2004); Machado et al. (2007)). Its main advantage
is that it covers substantially more test cases than
unit testing; moreover, it can do exhaustive testing
though the time required to do this is not directly
proportional to the benefits. This is done using
only one generic test, named property, and some
functions to generate the inputs, named generators.

A property is the replacement of a unit test
and is run multiple times with different automated
generated inputs. Every running of the property
generates a different test. The input of the property
depends on the type and domain specified by
the programmer; because the input is generic,
the validation conditions of the test must be also
generic, following a formal specification. The name
“property” comes from the type of test validation,
where each test result must pass a general formal
property. In layman’s terms a property validation
condition specifies in a generic way how the tested
functionality should behave. A drawback of property-
based testing is that the formal specification does not
usually exist and the programmer must infer it from
the business and logic specifications.

A generator is a callback that does random data
generation at each running of the property. Because
complicated non-basic data types may be needed, a
property-based testing tool must allow user defined
generators. In order to achieve a good test coverage,
the generated data must be uniformly distributed
across its domain.

To show the differences between unit testing and
property-based testing, let’s assume one would want
to test a function named getMax, a function which
returns the maximum of two integer values. In a
unit test he would hard-code two values and test
if the output equals to the maximum value. If he
wants to test multiple cases, possibly corner cases,
then multiple tests need to be written. A pseudocode
implementation of the unit test is shown in Listing 1.

max = getMax (2 , 5)
asser t (max == 5)

Listing 1: Pseudocode for getMax unit testing

Using property-based testing, a pseudocode imple-
mentation would be the one from Listing 2.

a = generator ()
b = generator ()
max = getMax (a , b)
asser t ((max == a | | max == b) &&

(max >= a && max >= b))

Listing 2: Pseudocode for getMax property-based
testing

As shown above, the property is generic and more
powerful than the unit test. However, the validation
condition is bigger and must be correctly determined
by the test writer, otherwise the property may give
false positives or, even worse, false acceptances.

The quality of the automatic testing tool may be
improved by reducing the number of failing test
case inputs in order to obtain the minimum set of
inputs determining a given failure, a method known
as shrinking. This has the advantage of improving
the debugging process by providing the programmer
with minimal necessary information for debugging;
another advantage is that the overhead of this
method is not significant.

All in all, property-based testing has the benefits of
unit testing and some advantages over it: bigger test
coverage, improved specification completeness and
it is easier to maintain because of the reduced code
size, as illustrated by Nilsson (2014).

2.4. VMXL4

VMXL4 is a general purpose, high performance
L4 microkernel (Liedtke (1995)), developed in

Towards the Property-Based Testing of an L4 Microkernel API

41

Figure 1: VMXL4 testing infrastructure

partnership with VirtualMetrix, Inc1. It provides
mechanisms for performance management and a
minimal layer of hardware abstraction on which
virtualized operating systems personalities can be
built. Using the VMXL4 API, trust and security
models can be implemented. Examples of systems
built using VMXL4 are given in Carabas et al. (2014),
Manea et al. (2015) and Mogosanu et al. (2015).

An L4 microkernel was chosen due to the fact that
the L4 API’s formalization was proven to be feasible
by Kolanski and Klein (2006). The seL4 microkernel
is the first operating system kernel to be fully formally
specified and verified, as shown by Elkaduwe et al.
(2008) and Klein et al. (2009). Furthermore, other
implementations have been proposed for formally
verifiable L4 microkernels (Kauer and Völp (2005)).
The property-based testing approach proposed by
this paper is in some respects similar to previous
work, as it also relies on a formal specification.
The most important difference between the two
approaches is that property-based testing is more
efficient in terms of development resources, as
opposed a full mathematical refinement proof, which
may require a significant number of man-months to
be implemented.

Figure 1 shows the architecture of the current
VMXL4 testing infrastructure. The L4 microkernel
runs in the privileged CPU mode commonly known
as kernel space, while the tests run as user
space applications. The testing infrastructure is
implemented using support libraries, but the test
themselves call the L4 API directly in order to
validate it functionally.

Currently most API tests are following unit testing
principles, so test coverage is not nearly as exten-
sive. However, microkernels are stateful systems,
some of their core mechanisms being strongly cou-
pled. As a result, the current testing framework does
not employ true unit tests and only partially validates
the interaction between components.
1http://www.virtualmetrix.com/

We propose that the QC testing framework
presented in Section 4 use the same testing design,
with the addendum that additional support libraries
may be needed, e.g. in order to generate random
numbers. This converges with our goal to provide
a POSIX compliant native environment based on
VMXL4.

3. FRAMEWORKS FOR PROPERTY-BASED
TESTING

The idea of a property-based testing framework is
not new. Previous frameworks have been developed,
but the most successful are for functional languages,
due to some of their distinctive features: higher order
programming, which is very useful for properties
and data generators, lack of side effects, time of
development. Moreover, functional programming fits
better for random testing than imperative program-
ming because it uses fine-grained properties. This
section presents an overview of three of the most
influential existing frameworks and of some open
source projects.

Haskell QuickCheck
Haskell QuickCheck2 is the first well known
framework for property-based testing and future
frameworks were inspired by it. QuickCheck is a
tool which automates testing for Haskell programs.
As shown in Claessen and Hughes (2002, 2011), it
does this by defining a formal specification language,
which is powerful enough to represent common
forms of specifications: algebraic, model-based and
preconditional or postconditional. QuickCheck uses
combinators to define properties and test data
generators and obtain the test generated data
distribution. An important feature of the framework
is the shrinking of the generated data when a test
fails, to give the minimum input which still fails the
property.

Erlang QuickCheck
The programmers who developed Haskell
QuickCheck saw the bigger commercial opportunity
offered by Erlang and developed a new version
of the framework3, which has its specifications in
Erlang. Linking specification in Erlang to code under
test in other languages is easier than in Haskell.
Two very important distinctive features of the Erlang
version are the ability to test stateful systems
by using state machine testing and the ability to
generate and run parallel test cases in order to find
race conditions (Arts and Hughes (2003)).
2https://hackage.haskell.org/package/QuickCheck
3http://www.quviq.com/products/erlang-quickcheck/

Towards the Property-Based Testing of an L4 Microkernel API

42

• • • •

ScalaCheck
ScalaCheck4 is the third main framework used for
property-based testing and is used for automated
randomized property-based testing of programs
developed in Scala or Java (Odersky (2010)). It
was inspired by Haskell QuickCheck and implements
most of its features, but also some in addition to its
predecessor, such as stateful testing. Nilsson (2014)
provides a comprehensive guide to ScalaCheck.

Open Source Initiatives
Due to the success of Haskell QuickCheck, open
source implementations in most major programming
languages were started, such as C, C++, Java,
Python, but with less features and success. QC was
inspired by one of those open source initiatives,
employed by Pennebaker (2012).

4. QC DESIGN AND IMPLEMENTATION

This section presents the design and implementation
of the QC framework and the motivation behind
it. QC intends to test the L4 microkernel API in
a functional manner, following the property-based
testing methodology. It may be used alongside unit
tests, because it tries to generalize them, but on a
long term it may strive to replace unit testing for the
VMXL4 microkernel API.

4.1. Implementation Starting Point

The implementation is based on the open source
project developed by Pennebaker (2012). It is a basic
framework, supporting only two features: random
data generation and one property per test, which
was run for a predefined number of times. A part
of the implementation is not really usable, because
the programmer who uses the framework must know
the size of the generated types and create tests
accordingly, which is error-prone. The only part
which we partially used is the test data generation
component.

The framework is implemented in the C program-
ming language because it was the most convenient
option taking into consideration the testing environ-
ment. Porting a new language environment can be
very complicated, because the native environment
offered by a microkernel is very low-level. Moreover,
implementing a POSIX environment is equivalent
with the implementation of an entire operating sys-
tem. Also, because the API had already been written
in C, there is no need for further linking between
different languages.
4https://www.scalacheck.org/

4.2. General Design

Because a kernel is a stateful system and QC is
developed to test the L4 microkernel API, being
evaluated on VMXL4, two more concepts used by
QC have to be introduced. Preconditions are a set of
predicates that must be true prior to the execution of
a property and postconditions are a set of predicates
that must be true after the execution of an action in
the property. If all the preconditions of a property are
true, then the property is applicable, otherwise it is
not. If all the postconditions of a property are true,
than the property has passed.

Due to the fact that QC is designed for a stateful
system, it uses tests containing multiple properties
that are used as actions with side effects in
the stateful system. Therefore QC borrows some
elements from integration testing, a methodology
in which individual software modules are tested
together. Each test consists of at least one property,
randomly generated from the available properties.
Each property has a finite number of arguments
with known data types at compile time, a fact
that provides the opportunity to use property-based
testing. When at least one of the postconditions
of a property has failed, then the test fails, the
entire generic test completes and the actions taken
during the test are printed alongside their input. The
second situation in which a test fails is when its state
becomes inconsistent, meaning that no property has
all of its preconditions passing and therefore no
future action can be taken. When a test fails, the
programmer sees all the randomly generated data
used by the test and this facilitates easier debugging.

Properties are divided in two categories: normal
properties and cleanup properties. Normal prop-
erties are placeholders for actions that the sys-
tem may take anytime, provided the preconditions
are satisfied. Cleanup properties are used to end
tests and to free allocated resources. Every test
must have at least one cleanup property. If a test
does not have allocated resources, QC provides the
empty clean property macro for an empty property,
whose only purpose is to end the test. Although
most of the time only one cleanup property will
be used for a generic test, having multiple cleanup
properties may be useful in some situations. One
can use fine-grained cleanup properties if the system
can have many internal states. This makes the code
cleaner and in a system with many generic tests, the
probability to reuse cleanup properties is bigger if
they are fine-grained.

A higher level design of QC is shown in Figure 2. The
programmer must call QC with an array of normal
properties and an array of cleanup properties, as
previously discussed. To generate random input and

Towards the Property-Based Testing of an L4 Microkernel API

43

Figure 2: QC design

randomly pick properties, QC uses a seed. When a
test fails, the programmer will want to reproduce the
exact same sequence of properties and inputs to test
the fix for the bug. Because the random generation is
deterministic given the seed, QC shows it for every
generic test so the programmer can use that seed
if he wants to reproduce the tests. Otherwise, QC
generates a random seed to assure random tests
and a good test coverage.

QC will generate a fixed number of tests, previously
given by the user. Another available option is the
verbosity level for generic tests. The user can see
the sequence used by every test or only by failing
tests. Viewing the sequence used by every test can
be useful to improve the generic test and its test
coverage.

There may be cases when tests will end prematurely,
after using only a few properties, because QC may
choose and use a cleanup property whenever its
preconditions are satisfied. To mitigate this, the user
chooses the minimum number of properties that
must be used during a test.

The last parameter from Figure 2 represents the type
of statistics shown at the end of the generic test. QC
supports two types of statistics for every generic test:
user defined and automatically generated. The user
can choose to see both categories, only one or none.

4.3. Generators

As previously mentioned, generators are the
callbacks that randomly produce the input data.

A QC generator consists of 2 callbacks: one to
generate the data and the other to print the
data, as the C printf function needs different
formats depending on the printed type. Because of
that, the QC equivalent of a generator is struct

generator printer.

QC offers a set of predefined generators for C
basic data types, such as int and char, and also
for bool, string (stored as a char dynamic array)
and generic arrays. Moreover, a user can write his
own generators or printers and use them for his
properties.

In order to generate arrays, only the basic type
generator is needed, because QC offers a wrapper
which automatically generates new array types. The
array type can have fixed or random size in a given
range, depending on the user needs. All generated
arrays are dynamically allocated and their memory
is freed after their associated property ends. This
avoids out of memory errors for big tests with many
generated arrays, but can introduce subtle bugs if the
user forgets to copy the content of the array in case
he needs it after the property ends.

Sometimes basic types may need additional features
such as a maximum or minimum value. QC offers two
solutions for this. The first one is that miscellaneous
parameters can be added to the generators, in
order to modify the generated value to match the
requirements. The second solution is to change and
update the generated values from the property code.
Both solutions are acceptable for code readability,
but in general cases the first option should be used,
because it’s reusable and only the parameters will be
changed.

All generated data for a property is stored in a
dynamically allocated array with the size in bytes
equal to the maximum number of arguments of a
property multiplied by the maximum size in bytes of
an argument type. This approach solves the problem
with the variable number of property arguments and
their different types. The value of the generated data
is obtained in the property and the user must only
know the data type and the index of the argument,
something that he had already defined in the state
machine test specification.

4.4. Statistics

In order to measure various metrics, QC offers
the possibility to attach user defined statistics to a
property. After a property ends successfully, each of
its statistics callbacks is called and the metrics are
updated. This can help the user to investigate bugs
and also measure the test coverage. An example of
this logging category is shown in Listing 7.

Towards the Property-Based Testing of an L4 Microkernel API

44

• • • •

By default, QC logs statistics regarding properties
and their sequence. For every property, QC logs the
number of total calls, the number of starting test
property calls and for every property how many times
it followed the current property. An example of this
type of logging is shown in Listing 8. The default
logging done by QC can be very useful to detect
preconditions bugs and see if the tests are surfacing
the desired states.

The user decides if he wants to see any of the two
statistics category when the QC framework is called
to generate and validate tests.

4.5. Properties, Preconditions and
Postconditions

Since QC supports stateful system testing, using
a property requires the following steps: testing
preconditions, getting the values for the randomly
generated data, applying actions and testing
postconditions.

The preconditions are optional but if they are
missing, the property can be always chosen by the
framework as the next part of the test. Preconditions
are implemented as a callback, differently from
the property callback. Because the preconditions
depend only on the internal state, not on the
generated data, it is better to obtain the new
data only if the property can be applied, avoiding
generation of useless data, which will be replaced
afterwards. Therefore, preconditions must be tested
before the data generation step and this can be
achieved by having another callback, associated with
a property. This approach has another benefit: some
preconditions are used by multiple properties and
having them as functions gives better reusability. If
a property does not have any preconditions, their
callback will be NULL. To address any possible usage,
preconditions can be used from inside the property
too, but this is not a good practice, as explained
above.

Actions are the main content of properties, because
they change the state of the system and their side
effects are verified by the postconditions. Actions
can be interleaved with their postconditions, which
are obtained from the formal specification of the
API. As opposed to preconditions, postconditions
are located in their corresponding property callback,
because they depend on the generated data and we
do not obtain a performance improvement if we have
them in separate callbacks. Moreover, if the property
contains multiple actions, then it is recommended to
check the postconditions for an action or a group of
actions as soon as possible, in order to have good
code readability.

Figure 3: Property info callbacks

As can be seen in Figure 3, QC properties are
composed of multiple callbacks, stored in a structure
named property info. We need an array of generators
for the property input and another array of user
defined statistics to gather various data. On the
other side, we need a callback for preconditions
and a callback for the property itself, to make the
API calls and test the postconditions. Having all
of those callbacks, different components of generic
tests become easier to integrate with each other.

struct p r o p e r t y i n f o {
/∗ ca l l back f o r the proper ty ∗ /
prop f u n c t i o n ;

/∗ d i s p l a y i n g name ∗ /
char const ∗ const name ;

/∗ ar ray o f generators ∗ /
struct g e n e r a t o r p r i n t e r ∗gp ;

/∗ number o f generators ∗ /
i n t gp s ize ;

/∗ precond i t i ons ca l l back ∗ /
p recond i t i on prec ;

/∗ ar ray o f s t a t i s t i c s ca l l backs ∗ /
struct u s e r s t a t i s t i c ∗ s t a t s ;

/∗ number o f s t a t i s t i c s ca l l backs ∗ /
i n t s t a t s s i z e ;

} ;
Listing 3: Struct property info

In QC’s implementation, property descriptions and
callbacks are contained by the property info

structure, as shown in Listing 3. In addition to what
was previously discussed, the name field assigns a

Towards the Property-Based Testing of an L4 Microkernel API

45

• • • •

descriptive name to the property and is used for the
verbosity option QC INFO or for failing tests.

4.6. QC test logic

Having all the previously discussed elements, QC
can generate and run tests. Figure 4 shows a state
machine with the actions taken by QC during a test.
Until a test fails or the required number of tests have
been run, the framework tries to falsify the generic
test by finding a failing test.

Starting a test, QC chooses a property, checks
its preconditions (should they exist) and, based on
the result, picks another property or continues with
the current one. If the preconditions have passed,
QC generates test data, executes the actions and
the postconditions are checked. If any of the
postconditions fails, the testing is over, because QC
falsified a sequence of properties. Otherwise, the
statistics are updated and if the property is from
the cleanup group, the current test completes and
another test starts; if the property is from the normal
group, the test continues and another property is
chosen.

4.7. Pseudorandom number generator

QC has a random module which currently supports
two implementations: the POSIX rand function
and the Mersenne Twister PRNG. The default
implementation is Mersenne Twister (presented
in Matsumoto and Nishimura (1998)), because it
provides better data distribution than rand and
always has the same output for a given seed, on
32 bits, in contrast with rand, whose result may vary
depending on the architecture.

4.8. VMXL4 Influence over QC

Internally QC uses a seed for randomizing the
test data generation and the chosen property at
every step of a test. Because the VMXL4 native
environment is under ongoing development and
some POSIX functions (e.g. rand) are not yet
implemented, inside the testing environment the
seed is actually a numerical value obtained from
a hardware timer provided by the development
platform. However, the framework does not depend
on a specific platform and is portable, requiring only
POSIX functionality.

The VMXL4 API is currently being tested using
the Check Unit Testing Framework for C. In order
to be as easy as possible to use and because
unit tests usually need little changes to become
properties, the QC interface has been designed to
have some similarities with the Check framework.
For that reason, postconditions can be tested using

prop fail if and prop fail unless, wrappers
similar to Check’s fail if and fail unless.

5. QC EVALUATION AND TESTING

This section describes evaluation, results and
implications, while the framework is still under
development. To evaluate the performance of the QC
framework, its impact on the test coverage and code
size will be detailed.

/∗ normal p r o p e r t i e s ∗ /
struct p r o p e r t y i n f o p [] = {

{ i n i t p r o p e r t y , ” i n i t ” ,
(gp ar ray){ q c u i n t } , 1 ,
q i s n o t i n i t i a l i z e d ,
(s t a t s a r r a y){ queue s i ze s ta t } , 1} ,

{dequeue property , ” dequeue ” ,
(gp ar ray){} , 0 ,
q i s i n i t i a l i z e d ,
NULL, 0} ,

{enqueue property , ” enqueue ” ,
(gp ar ray){ q c i n t } , 1 ,
q i s i n i t i a l i z e d ,
(s t a t s a r r a y){ e lemen t s i gn s ta t } , 1}

} ;

struct proper ty group normal group = {
. prop = p , . s i ze = 3

} ;

/∗ cleanup p r o p e r t i e s ∗ /
struct p r o p e r t y i n f o c lean p [] = {

{ c l ea r p rope r t y , ” c l ea r ” ,
(gp ar ray){} , 0 ,
q i s i n i t i a l i z e d ,
NULL, 0}

} ;

struct proper ty group clean group = {
. prop = clean p , . s i ze = 1

} ;

q c f o r a l l (
/∗ proper ty groups ∗ /
normal group , clean group ,
/∗ minimum p r o p e r t i e s ∗ /
5 ,
/∗ v e r b o s i t y l e v e l ∗ /
QC ERROR,
/∗ number o f t e s t s ∗ /
1000 ,
/∗ s t a t i s t i c s l e v e l ∗ /
QC SHOW STATS

) ;

Listing 4: QC initialization and calling to test a circular
queue library API

Towards the Property-Based Testing of an L4 Microkernel API

46

Figure 4: Test state machine

QC has been tested so far on two modules. The
first module is an implementation of a circular
queue, which has been chosen for the following
three reasons: it is easier to validate new features
of the framework with a simpler module, it is a
stateful system, with an internal representation for
the queue, and it is a portable module which can
be used to validate QC against Haskell QuickCheck.
The second module is the thread scheduling module
of VMXL4, currently being tested with unit tests using
the Check framework.

For the circular queue, the code from Listing 4 was
used to initialize QC in order to test the queue
library public API. It can be observed that the code
uses normal properties and cleanup properties, as
mentioned in Section 4. With just four properties,
similar to unit tests, the framework automatically
generates 1000 test cases with a different number
of properties and different sequences of properties,
each with automatically generated different inputs.
As one can see, there is not much difference in the
code logic complexity for unit testing and property-
based testing, but the benefits of property-based are
significant. When different bugs were introduced on
purpose in the queuing logic, QC detected all of
them, using only the code from Listing 4 and its four
properties.

An example of QC finding a bug for the circular
queue is Listing 5. It displays, in order, all the
properties taken during the test and their generated
input. Judging by the output, it is most likely that

there are problems with the enqueue operation when
the queue gets full. This is one of the corner cases
which the programmer should have taken care of
personally if he were to use unit testing.

∗∗∗ Test Fa i led ! ∗∗∗
Test number 43
−−−−−−−−−−−−−−
i n i t : 2
dequeue :
enqueue : −392470180
enqueue : −692402

Listing 5: QC failing test

After solving the bug, QC validates the implementa-
tion in Listing 6.

+++ Success : passed 1000 t e s t s . +++
Listing 6: QC tests passing

For the generic test from Listing 4, the generated
user defined statistics are shown in Listing 7. QC
displays the total number of statistics for every
property. For the init property, we wanted to see
in what range is the queue size. For the enqueue

property, we wanted to see the sign of the enqueued
number. It can be observed that the numbers are
showing a balance for the generated data.

−−−TESTS USER DEFINED STATISTICS−−−

” i n i t ” INFO
t o t a l s t a t i s t i c s : 1

Towards the Property-Based Testing of an L4 Microkernel API

47

• • • •

name : ” queue size ”
<20: 201
<40: 201
<60: 202
<80: 203
<100: 193

−−−
” enqueue ” INFO
t o t a l s t a t i s t i c s : 1

name : ” e lement s ign ”
negat ive : 1457
p o s i t i v e : 1423

Listing 7: User defined statistics

Last but not least, for the generic test from Listing 4,
the QC default statistics are shown in Listing 8. For
every property, QC displays the total number of calls,
how many times it was the first property of the test
and afterwards for every property how many times it
followed the current property. Note that for cleanup
properties QC doesn’t show the following properties,
because the cleanup property will be the last from
the test. Generally, QC default statistics are useful
not only to balance the tests, but also to debug
preconditions.

−−−TESTS PROPERTY SEQUENCE STATISTICS−−−

” i n i t ” INFO
t o t a l c a l l s : 1000
s t a r t i n g c a l l s : 1000

i n i t : 0
dequeue : 527
enqueue : 473
c lea r : 0

−−−
” dequeue ” INFO
t o t a l c a l l s : 3003
s t a r t i n g c a l l s : 0

i n i t : 0
dequeue : 1264
enqueue : 1239
c lea r : 500

−−−
” enqueue ” INFO
t o t a l c a l l s : 2880
s t a r t i n g c a l l s : 0

i n i t : 0
dequeue : 1212
enqueue : 1168
c lea r : 500

+++
” c l ea r ” INFO
t o t a l c a l l s : 1000
s t a r t i n g c a l l s : 0

Listing 8: QC statistics

When porting some of the unit tests for the VMXL4
thread scheduling module to QC properties, the
VMXL4 API Reference Manual was needed to
understand the behavior of tested functions and to
infer the formal specification, which, in the end, is not
a sizable effort for a programmer who is accustomed
to the design of the module. For some of the ported
unit tests the specification was very simple and their
content remained almost the same.

Although only a few unit tests were ported to
QC properties, the framework already found one
inconsistency in the unit test. The faulty unit test
was verifying if two threads with different priorities
are scheduled accordingly; however on symmetric
multiprocessing (SMP) the validation condition was
always true. The test would have passed even if the
system had a bug.

The inconsistency was found after transforming the
unit test into a property and using the same wrong
specification. The property was failing, therefore
only two causes could have been possible: the
property was wrong or the module had a bug.
Fortunately, the first case was true and the unit test
was the cause. QC found the inconsistency using
its random generation feature. This emphasizes
that unit tests are not very reliable compared to
properties, because usually they do not take into
consideration many test cases, therefore they may
hide system bugs or even test design bugs.

6. CONCLUSIONS AND FURTHER WORK

Every software system needs testing in order to fulfill
its business requirements and, as a consequence,
be reliable and successful. This paper concentrates
on property-based testing, because although it is
more powerful than unit testing, due to its bigger
input coverage, it is used less frequently than unit
testing. In order to emphasize the property-based
testing applicability and importance, the paper gives
an overview of the QC framework.

QC is an automated testing tool written in C which
runs in the native environment of an L4 microkernel
and whose purpose is to test the microkernel API in
a functional manner. Because the microkernel is a
stateful system, the framework allows the testing of
multiple controlled series of operations, besides the
usage of random generated input. In order to obtain
a thorough testing, QC offers support for generating
any data type, using predefined generators which
can be combined to obtain new test data generators.
To test and evaluate the framework, the native
environment of the VMXL4 microkernel is used.

Towards the Property-Based Testing of an L4 Microkernel API

48

• • • •

As future work, QC failing tests will be shrinked
to a more suggestive failing test, to ease the work
of the debugging programmer. Additionally, we aim
to analyze QC’s code coverage, compare it to that
of other L4 testing infrastructures and find ways to
improve it.

REFERENCES

T. Arts and J. Hughes. Erlang/quickcheck. In Ninth
International Erlang/OTP User Conference, 2003.

R. Binder. Testing object-oriented systems: models,
patterns, and tools. Addison-Wesley Professional,
2000.

M. Carabas, L. Mogosanu, R. Deaconescu, L. Ghe-
orghe, and N. Tapus. Lightweight display virtual-
ization for mobile devices. In Secure Internet of
Things (SIoT), 2014 International Workshop on,
pages 18–25. IEEE, 2014.

K. Claessen and J. Hughes. Testing Monadic Code
with QuickCheck. http://www.cs.tufts.edu/

~nr/cs257/archive/john-hughes/quick.pdf,
2002.

K. Claessen and J. Hughes. Quickcheck: a
lightweight tool for random testing of haskell
programs. Acm sigplan notices, 46(4):53–64,
2011.

D. Elkaduwe, G. Klein, and K. Elphinstone. Verified
protection model of the sel4 microkernel. In
Verified Software: Theories, Tools, Experiments,
pages 99–114. Springer, 2008.

J.-C. Fernandez, L. Mounier, and C. Pachon.
Property oriented test case generation. In Formal
Approaches to Software Testing, pages 147–163.
Springer, 2004.

G. Fink and M. Bishop. Property-Based Testing; A
New Approach to Testing for Assurance. http:

//citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.93.5559&rep=rep1&type=pdf, 1997.

A. Hunt, D. Thomas, and P. Programmers. Pragmatic
unit testing in Java with JUnit. Pragmatic
Bookshelf, 2004.

B. Kauer and M. Völp. L4. sec preliminary
microkernel reference manual. 2005.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. sel4: Formal
verification of an os kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 207–220. ACM, 2009.

R. Kolanski and G. Klein. Formalising the l4
microkernel api. In Proceedings of the Twelfth
Computing: The Australasian Theory Symposium-
Volume 51, pages 53–68. Australian Computer
Society, Inc., 2006.

J. Liedtke. On micro-kernel construction, volume 29.
ACM, 1995.

P. D. Machado, D. A. Silva, and A. C. Mota. Towards
property oriented testing. Electronic Notes in
Theoretical Computer Science, 184:3–19, 2007.

V. Manea, M. Carabas, L. Mogosanu, and L. Ghe-
orghe. Native runtime environment for internet
of things. In Advanced Computational Meth-
ods for Knowledge Engineering, pages 381–390.
Springer, 2015.

M. Matsumoto and T. Nishimura. Mersenne
twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM
Transactions on Modeling and Computer Simula-
tion (TOMACS), 8(1):3–30, 1998.

L. Mogosanu, M. Carabas, R. Deaconescu, L. Ghe-
orghe, and V. G. Voiculescu. VMXHAL: A Versatile
Virtualization Framework for Embedded Systems,
2015.

R. Nilsson. ScalaCheck: The Definitive Guide, 2014.

M. Odersky. Contracts for scala. In Runtime
Verification, pages 51–57. Springer, 2010.

R. Osherove. The art of unit testing. mitp, 2010.

A. Pennebaker. A C port of the QuickCheck unit
test framework. https://github.com/mcandre/

qc, 2012.

Towards the Property-Based Testing of an L4 Microkernel API

49

An Approach for Formal Verification of
Updated Java Bytecode Programs

Razika Lounas1,2

1University of M’hamed Bougara of Boumerdes
Facutly of Sciences, LIMOSE Laboratory

Avenue de l’independance, 35000 Boumerdes
Algeria

2University of Limoges
123 Avenue Albert Thomas, 87700 Limoges, France

razika lounas@umbb.dz

Mohamed Mezghiche
University of M’hamed Bougara of Boumerdes

Facutly of Sciences, LIMOSE Laboratory
Avenue de l’independance, 35000 Boumerdes

Algeria
mohamed-mezghiche@umbb.dz

Jean-Louis Lanet
INRIA LHS-PEC

263 Avenue Général Leclerc, 35000 Rennes
France

jean-louis.lanet@inria.fr

This paper deals with formal specification and verification of Java bytecode update. Programs update for
java applications has gained a wide interest since it is used for several purposes: transforming semantics
of a program, adding features to a program or performing optimizations. In this paper, we focus on
program transformations for java programs at the bytecode level. Because these transformations may
introduce errors, our goal is to provide a formal way to verify the update and establish its correctness.
Our approach for formal specification and verification of updated Java bytecode programs is based on four
ingredients: a formal interpretation of the semantics of update operations, a functional representation of
bytecode, bytecode annotation and predicate transformation calculus. We use the concept of Hoare predicate
transformation to derive a specification of an annotated bytecode. Annotations are used to express update
operations within the code. A functional representation is used to model annotations and bytecode. The
approach derives then a new specification for the annotated bytecode using a weakest precondition calculus
defined to deal with update operations. Verification conditions are then generated and proved to establish
the correction of the update.

Bytecode transformation, formal semantics, weakest precondition calculus, bytecode verification.

1. INTRODUCTION

During their life cycle, programs need to be
updated in order to alter their semantics, perform
optimizations or add features. Several techniques
were presented for this purpose in literature, for
example, (Neamtiu et al. (2006) and Gupta et al.
(1996)) present systems for C programs updating
and (Orso et al. (2002), Hlopko et al. (2013))
present systems to update Java programs.

Updating programs leads to the transformation
of their elements such as code, data structures
and state. We focus on the transformation of
Java codes. In this context, several tools were
developed, for example, Java Syntactic Extender
(JSE) (Bachrach and Playford (2001)) and ixj
(Boshernitsan and Graham (2004)). However, in

some cases, the source code is not available (or
not distributed). Transforming a program at bytecode
level is an interesting alternative since several
languages like Java or Java Card are based on
virtual machines executing bytecode. Transforming
programs at bytecode level offers some advantages:
it does not require to recompile which can be a time
consuming task as in the case of transformations
at source code level. On the other hand, bytecode
level transformation is more complex than source-
level manipulation for the users because they have
to know bytecode language very well and because
of the many low-level details one needs to use.

Java bytecode transformation is used in several
applications and several tools were developed to
manipulate Java bytecode programs such as BCEL

51

• •

(Dahm (1999)) and RuggedJ (McGachey et al.
(2009)). In (Sakamoto et al. (2000)), the authors
developed an algorithm to ensure portable thread
migration in Java. This algorithm is based on
bytecode transformation. Bytecode is transformed in
order to enable programs to save and restore their
execution state after migration through the network.
Another purpose for bytecode transformation is
presented in (Binder and Hulaas (2005)) where
a framework based on bytecode transformation is
developed in order to enable Java applications to
perform CPU management.

In some cases, the transformation occurs at runtime.
The update is then said to be dynamic (Dynamic
Software Update: DSU). In (Noubissi (2011)) and
in (Noubissi et al. (2011)), the authors presented a
system to perform DSU: while the Java Card virtual
machine is executing the program, the bytecode is
updated.

This large interest of Java bytecode transformation
and its use in many critical applications raise the
question of its correctness. In fact, a transformation
may introduce an error which may alter the
bytecode leading the system to an unexpected
state. Besides, in some cases, the update is
critical (e.g. EmbedDSU) in such a way that an
attacker can take advantage of an incorrect update.
In these applications where security issues are
involved the update must pass some certification
procedure for example Common Criteria (Common
Criteria (2015)). For a certain certification level
one has to provide a formal proof of the security
mechanism implemented. A formal way to specify
transformations and verify their correctness is then
necessary.

Formal methods offer rigourous means in specifying
software properties and establishing the correctness
of programs regarding their formal specifications.
In this work, we present an approach for formal
verification of bytecode update. We focus on Java
bytecode and the system presented in (Noubissi et
al. (2011)) called embedDSU: a system developed
to implement DSU functionalities in Java Card
applications. It is based on two parts: off-card in
which a module called DIFF generator computes
the syntactic changes between the old and the new
version of the application and generates a DIFF file
(called also a patch). This patch is then sent on
the card to perform the update by other modules
implemented by extending the Java Card virtual
machine.

In this work, we propose to formally verify that
the obtained bytecode is semantically equivalent to
the one written by the programmer and used to
perform the DIFF file. Our approach is based on

the following contributions: the definition of a new
weakest precondition calculus as the base of the
verification process, a formal interpretation of the
semantics of the update operations, a functional
representation of bytecode programs and bytecode
annotation. The choice of functional representation
is motivated by our interest in capturing the behavior
of the initial bytecode and the updated version and
the mature existing tools for formal reasoning about
functional programming languages.

This paper is organized as follows: in section 2
we give an overview of embedDSU. Section 3
introduces the language and the formal semantics of
the updates. In section 4, we present an overview
of our approach in its steps. We present the
specification languages is section 5. In section 6,
we give our functional modelisation of Java bytecode
and annotations. We propose a predicate calculus
for update operations in section 7 and give the
notion of a correct update. This section ends with an
example to show how the logic works. We discuss
related work in section 8 and conclude in section 9.

2. OVERVIEW OF EMBEDDSU

EmbedDSU (Noubissi (2011), Noubissi et al. (2011),
Noubissi et al. (2010)), is a software-based DSU
technique for Java-based smart cards which relies
on the Java virtual machine. It is based on
the modification of an embedded virtual machine.
EmbedDSU is divided in two parts: off-card and on-
card:

(i) In off-card, a module called DIFF generator
determines the syntactic changes between
versions of classes in order to apply the update
only to the parts of the application that are
really affected by the update. The changes are
expressed using a Domain Specific Language
(DSL). Then, the DIFF file result is transfered
to the card and used to perform the update.

(ii) The on-card part is divided into two layers:
1) Application Layer: The binary DIFF file
is uploaded into the card. After a signature
check with the wrapper, the binary DIFF is
interpreted and the resulting instructions are
transferred to the patcher in order to perform
the update. The patcher initializes data
structures for update. These data structures
are read by the updater module to determine
what to update and how to update, by the
safeUpdatePoint detector module to determine
when to apply the update and by the rollbacker
to determine how to return to the previous
version in case of update failure. These
points require the introspection of the virtual
machine. 2) System Layer: the modified virtual

An Approach for Formal Verification of Updated Java Bytecode Programs

52

Figure 1: Architecture of EmbedDSU

machine supports the followings features: (1)
Introspection module which provides search
functions to go through VM data structures
like the references tables, the threads table,
the class table, the static object table,
the heap and stack frames for retrieving
information necessary to other modules;
(2) updater module which modifies object
instances, method bodies, class metadata,
references, affected registers in the stack
thread and affected VM data structures; (3)
SafeUpdatePoint detector module permits to
detect safe point in which we can apply the
update by preserving coherence of the system.

The system EmbedDSU is suitable for smard cards
especially in term of resource limitations. It was
established that sending a DIFF file is less ressource
consuming than sendig the whole new version to the
card and perform updates and that the resources
implied by the update modules are acceptable in
term of memory occupation (Noubissi (2011)). The
system EmbedDSU updates three principal parts:

(i) The bytecode: the process updates first the
bytecode of the updated class and the meta
data associated with it e.g., constant pool,
fields table, methods table...

(ii) The heap: The process updates the instances
of the updated class in the heap, obtains new
references for modified objects and updates
instances using these references.

(iii) The frames: The process updates in each frame
in the thread stack the references of updated
objects to point to new instances.

This paper addresses the first part: bytecode update
at the method level. The types of updates that
may occur are: adding, modifying or suppressing
bytecode instructions, changing the signatures of a
method or modifying local variables. These updates
are contained in the DIFF file which indicates the

Figure 2: An example of a patch (DIFF file)

update and where it occurs in the bytecode. An
example is shown figure 2: the patch indicates that
the instruction iadd in the method compute sum is
deleted and the instruction isub is added at the same
place provided by the program counter.

3. LANGUAGE AND SEMANTICS

3.1. The language

For the definition of the semantics, we extend the
formalism used by Freund and Mitchell (Freund and
Mitchell (1999)). The authors define a type system
for a small subset of Java bytecode. We define a
subset and propose to extend it with instructions
to indicate updates called update instructions
(Upd instr) for instruction addition, deletion and
modification. In this definition, x is a local variable;
L is an instruction address; A is a class name; f is a
field name; l is a method name and pc the program
counter.

Instruction ::= |pop |if L |store x |load x |new A
|binop |neg |const a |invokevirtual A l t |goto L
|getfield A f t |putfield A f t |return

Upd Instr ::= Add Inst Instruction pc
|Dlt Inst Instruction pc
|Mod Inst Instruction instruction pc

In this language, the instruction pop extracts the top
of the stack and const a pushes a constant a on
the top of the stack. The instruction load x pushes
the value in the variable x on the top of the stack
whereas the instruction store x pops the top of the
stack and stores it in the variable x. The instruction
if L jumps to L if the top of the stack is not zero else
it performs the following instruction. Goto L jumps to
L. The instruction New A allocates a new object of
type A and pushes it on the top of the stack. The
instructions manipulating fields are : getfield A f t
and putfield A f t. Getfield reads the field f , which
has the type t of the object of class A whose
reference is on the top of the stack and pushes its
value on the top of the stack and putfield modifies
the field f with the value popped form the stack.

An Approach for Formal Verification of Updated Java Bytecode Programs

53

• •

The instruction invokevirtual invokes the method l
of signature t and the class A. The instruction Binop
is used to gather arithmetic binary operations: add,
mult and sub. The instruction neg negates the top of
the stack and return is for method return.

Update instructions are respectively: adding an
instruction, deleting instruction and modifying an
instruction. We indicate the place of the update
operation with pc.

3.2. Operational semantics for bytecode
instructions

We model the interpretation of the instructions
of the bytecode instructions using the standard
framework for operational semantics (Freund and
Mitchell (1999), Bannwart and Müller (2005)). Each
instruction is characterised by the transformation of
a configuration. A configuration < M, s, h, f, pc >
representing a step execution consists of an operand
stack s, a heap h, a local variables map f , a
program counter pc and the body M . Operational
semantics is defined by a transition relation over
configurations. A transition < M, s, h, f, pc >→<
M, s2, h2, f2, pc2 > takes the state from the
configuration < M, s, h, f, pc > to the configuration
< M, s2, h2, f2, pc2 >.

The rules for the instructions of our language are
represented in table 1. The instruction new A creates
a new object of class A, thereby modifying the
current heap. A reference to the new object is
pushed onto the stack. store x pops a value from
the evaluation stack and assigns it to a variable,f is
modified accordingly. load x put the value of x on the
top of the stack. The binop operation which pops two
values from the stack, performs the binary operation,
and pushes the result. if l has two rules; wether it
jumps to the indicated line or performs the following
instruction according to the value of the top of stack.
The instruction putfield updates the heap with the
new value of the field of the object which is on the
top of the stack. The new value is popped from the
second element of the stack. invokevirtual invokes
the method l on an object reference and parameters
on the stack and replaces these values by the return
value v of the invoked method after its execution.

3.3. Formal semantics for update instructions

We propose a static semantics to express the effects
of update instructions on a configuration of the
bytecode. This semantics was introduced in our
initial paper (Lounas et al. (2012)). The purpose
of the semantics is to express formally the effects
and the conditions of update instructions and thus
prevent type errors in the updated bytecode. In this
paper, we give more rules and show how to use

the semantics to establish that an updated program
is well typed. It is also used in further section to
derive specifications for program transformations. In
the rules shown in tables 2 and 3, F is a mapping
from a program point to a mapping from a frame
variable to a type. S is a mapping from a program
point to an ordered sequence of types, i denotes
a program point or an address of code. The map
Fi gives a type of local variables at program point
i. The string Si gives the types of entries in the
operand stack at program point i. These F and S
are useful to our semantics since they contain typing
information about valid local variables and entries
in the operand stack respectively. SD represents
the stack depth and M (mapping) is a function that
associates a number to each line. Dom is the set
of addresses used by the method. A configuration
at line i is represented by < (F, S, SD,M), i >. The
judgement that expresses that a bytecode BC is well
typed by F , S, SD and M is:

F1 = F⊤, SD1 = 0
S1 = ε, M1 = Map(BC)
∀i ∈ DOM(BC), F, S, SD, M, i ⊢ BC

F,S,M,SD⊢BC

The first two lines of the judgement represent the
initial configuration: all variables are mapped to the
value top (default initial value), stack depth is zero,
the sequence of types is initially empty (ε) and M1
is the mapping of the initial bytecode. The last line
expresses that each instruction (update instruction)
in the bytecode is well typed. This is ensured by
the rules given in tables 2 and 3. For illustration,
the insertion of the instruction new A at line i +
1 allows us to obtain a new configuration if the
stack depth is incremented, local variables are not
affected and in the stack, the type A is inserted.
In the instruction invokevirtual the function dom
represents the domain of the invoked function (types
of its arguments) and the function card represents
the number of elements in the domain. The rule
expresses that these arguments are popped from the
stack of type and then the result is pushed. For the
insertion of an instruction representing an arithmetic
binary operation Binop, we show the rule of the
instruction add: this operation pops two elements
(integers) from the stack and then pushes the result.
mult and sub have analogous explanations by writing
the right operation. In the rules, the mapping M2 is
the result of operations on M1. The operations which
represent manipulations on bytecode are: range and
shift. The operation range extracts from a mapping
M1 a part M2 included between line n and line m.
The second operation shifts a part from a mapping
between n and m for p positions which is determined
by the number of added instructions.

An Approach for Formal Verification of Updated Java Bytecode Programs

54

• •

We define the operations look for jumps and
update jumps to take into account jumps in bytecode
transformation: look for jumps returns from a
mapping a list of jumps instructions represented by
their line number and the operation update jumps
updates jump instructions:
Look for jumps : mapping → int list
Update jumps : mapping ∗ int list ∗ int→ mapping

These operations updates jumps within the bytecode
if necessary. When we add for instance an
instruction at pc, the instructions after this position
are shifted and their numbers change. It is then
necessary to update goto and if instructions
accordingly. These modifications keep the structure
of the bytecode coherent. In the rules for instructions
suppression (table 3), Effect STK, Effect F and
Effects SD are used to express the effects of
an instruction of the stack and the local variables
and stack depth. They are used to readjust these
elements to the instruction at (i + 1) in the
new bytecode after the suppression. The notation
(M2)F (Respectively, (M2)S) is used to express F
(Respectively, S) in the mapping M2. We notice that
in this formalisation, a modification is considered as
a suppression followed by an insertion.

4. APPROACH FOR FORMAL VERIFICATION

The mechanism of EmbedDSU implies the modifica-
tion of the bytecode of a running application on-card
after the conventional verification during the process
of its life cycle. In this process, bytecode passes
verification process based especially on type veri-
fication. The applications of update operations on-
card is performed with insertion and suppression of
instructions according to the DIFF file. Consequently,
we obtain on-card, after the update process, a new
bytecode that was not submitted to the conventional
verification process. Our framework allows to:

(i) Ensure the validity of update operations of the
DIFF file according to the formal specification
of the Java Card virtual machine specification.

(ii) Guarantee that the application of the update
leads to a bytecode with the specification
that is conform to the intended specification
(provided by the programmer).

The first point is ensured by the formalisation
of the semantics of update operations. In the
second point, we aim to establish that given an
initial program P1, its new version P2 and a
DIFF file ∆ containing the specification of the
transformation derived from the differences between
P1 and P2, the application of the DIFF file on-
card on P1 (noted App PATCH) leads to P2′.
The two programs P2 and P2′ are verified to be

Figure 3: Approach for verification

semantically equivalent. This equivalence ensures
that the system indeed implemented the desired
transformation. This problem can be expressed
equationally by:

∀P1, P2, P2′, ∆ = DIFF (P1, P2), P2′ =
App PATCH(P1,∆)⇒ P2 ≡ P2′

This raises two major issues: 1- how to model
the application of the DIFF file on an existing
program? and 2- how to express the equivalence
which guarantees the correctness of the update?
We present the overview of our approach for
transformation verification. Figure 3 represents an
overview of our approach which is split in three parts:

(i) The transformation block: in this stage, we obtain
from a first version of a bytecode program
BC V 1 and a second version BC V 2 (Version
one transformed), a DIFF file. This DIFF file
will be applied to the on-card first version.
We obtain a new version on-card. The goal
of our approach is to establish that the on-
card new version and BC V 2 are semantically
equivalent. At this level, the specifications of
both BC V 1 and BC V 2 are provided by
the programmer using existing specification
languages.

(ii) The functional block: we define a functional
model for representing and manipulating
the Java Card bytecode. We implement an
automatic translator called functional reader
which takes a program written in bytecode
and produces a functional representation of it.
The application of the DIFF file is represented
at this level as annotations of the functional
representation with expressions indicating the
place of the update operation and its nature
(addition of instructions, deletion . . .)

(iii) The verification block: our goal is to verify
that the bytecode obtained by transformation
is equivalent to the one written by the program-
mer i.e., it satisfies the same specification. The

An Approach for Formal Verification of Updated Java Bytecode Programs

55

• •

Table 1: Rules for operational semantics

M [pc]=pop
<M,v.s,h,f,pc>→ <M,s,h,f,pc+1>

M [pc]=new A,h′=h[create(A,ref)]
<M,s,h,f,pc>→ <M,ref.s,h′,f,pc+1>

M [pc]=load x
<M,s,h,f,pc>→ <M,f [x].s,h,f,pc+1>

M [pc]=store x
<M,v.s,h,f,pc>→ <M,s,h,f [x←v],pc+1>

M [pc]=if l
<M,0.s,h,f,pc>→ <M,s,h,f,pc+1>

M [pc]=if l,v ̸=0
<M,v.s,h,f,pc>→ <M,s,h,f,l>

M [pc]=const a
<M,s,h,f,pc>→ <M,a.s,h,f,pc+1>

M [pc]=getfield a f t,v=h[o.f]
<M,o.s,h,f1,pc>→ <M,v.s,h,f1,pc+1>

M [pc]=neg
<M,v.s,h,f,pc>→ <M,(−v).s,h,f,pc+1>

M [pc]=binop,op∈{+,−,∗}
<M,v1.v2.s,h,f,pc>→ <M,(v1 op v2).s,h,f,pc+1>

M [pc]=putfield A f t,h′=h[o.f←v]
<M,o.v.s,h,f1,pc>→ <M,s,h′,f1,pc+1>

M [pc]=goto l
<M,s,h,f,pc>→ <M,s,h,f,l>

M [pc]=invokevirtual A l t ,<l,ε,h,fl,0>→<l,v,h1,f ′
l ,pcl>

<M,a1...an.s,h,f,pc>→ <M,v.s,h1,f1,pc+1>

Table 2: Rules for update operations (insertion of instructions)

Add inst goto L(i + 1)
SDi+1 = SDi PC MAX + +
Si+1 = Si Fi+1 = Fi

M2 =
Add inst(M1, goto L, i + 1)
i + 1, L ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

Add inst store x(i + 1)
SDi+1 = SDi − 1 PC MAX + +
Si = t.S0 Fi+1 = Fi[x← t]
Si+1 = S0

M2 = Add inst(M1, store x, i + 1)
i + 1 ∈ DOM(BC) x ∈ V AR(BC)

F,S,M2,SD,i+1⊢BC

Add inst add(i + 1)
SDi+1 = SDi − 1
Si = int.int.S0 ⇒
Si+1 = int.S0

M2 = Add inst(M1, add, i + 1)
i + 1 ∈ DOM(BC) Fi+1 = Fi

F,S,M2,SD,i+1⊢BC

Add inst pop (i + 1)
SDi+1 = SDi − 1 Fi+1 = Fi

Si = t.S0 → Si+1 = S0

M2 = Add inst(M1, pop, i + 1)
PC MAX + +
i + 1 ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

Add inst putfield(A, f, t)(i + 1)
SDi+1 = SDi − 2 Fi+1 = Fi

Si = t.A.S0 ⇒ Si+1 = S0

M2 =
Add inst(M1, putfield(A, f, t), i + 1)
PC MAX + 3 i + 1 ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

Add inst new A(i + 1)
SDi+1 = SDi + 1
Si+1 = A.Si Fi+1 = Fi

M2 =
Add inst(M1, new A, i + 1)
PC MAX + +
i + 1 ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

Add inst getfield(A, f, t)(i + 1)
SDi+1 = SDi

Si = A.S0 ⇒ Si+1 = t.S0

M2 =
Add inst(M1, getfield(A, f, t), i + 1)
PC MAX + 3 Fi+1 = Fi

F,S,M2,SD,i+1⊢BC

Add inst load x(i + 1)
SDi+1 = SDi + 1
PC MAX + +
Si+1 = Fi[x].Si Fi+1 = Fi

M2 =
Add inst(M1, load x, i + 1)
i + 1 ∈ DOM(BC) x ∈ V AR(BC)

F,S,M2,SD,i+1⊢BC

Add inst if L(i + 1)
SDi+1 = SDi

PC MAX + +
Si+1 = Si Fi+1 = Fi

M2 =
Add inst(M1, if L, i + 1)
i + 1, L ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

Add inst invokevirtuel(A, l, t)(i + 1)
SDi+1 = SDi − (card(dom(t)) + 1)
Si+1 = tn1.tn2 . . . tnn.S0 → Si+1 = S0

M2 =
Add inst(M1, invokevirtuel(A, l, t), i + 1)
i + 1 ∈ DOM(BC) Fi+1 = Fi

PC MAX + 3
F,S,M2,SD,i+1⊢BC

Add inst const a(i + 1)
SDi+1 = SDi + 1
PC MAX + +
Si+1 = int.Si Fi+1 = Fi

M2 =
Add inst(M1, const a, i + 1)
i + 1 ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

Add inst neg (i + 1)
SDi+1 = SDi Fi+1 = Fi

Si = int.S0 = Si+1

M2 =
Add inst(M1, negi + 1)
PC MAX + +
i + 1 ∈ DOM(BC)

F,S,M2,SD,i+1⊢BC

An Approach for Formal Verification of Updated Java Bytecode Programs

56

• •

Table 3: Rules for update operations (suppression of instructions)

Dlt inst goto L (i + 1)
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, goto L, i + 1)
(M2)Si+1 = Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1, L ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (store x (i + 1))
SDi = a→ SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, store x, i + 1)
Si = t.S0, Fi[x] = t→
(M2)Si+1Effects STK(M2[i + 1], t.S0)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (add (i + 1))
M2 = Dlt inst(M1, add, i + 1)
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
Si = int.int.S0 →
(M2)Si+1 = Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (pop (i + 1))
SDi = a→ SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, pop, i + 1)
Si = t.S0 →
(M2)Si+1 = Effects STK(M2[i + 1], t.S0)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (putfield(A, f, t) (i + 1))
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, putifield(A, f, t), i + 1)
Si = A.t.S0 →
(M2)Si+1Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (getfield(A, f, t) (i + 1))
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, getifield(A, f, t), i + 1)
Si = A.S0 →
(M2)Si+1Effects STK(M2[i + 1], A.S0)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst new A (i + 1)
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, new A, i + 1)
(M2)Si+1 = Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst if L (i + 1)
SDi = a→ SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, if L, i + 1)
Si = int.S0 →
(M2)Si+1 = Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1, L ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (neg (i + 1))
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, neg, i + 1)
Si = int.S0 →
(M2)Si+1 = Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (load x (i + 1))
SDi = a→ SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, load x, i + 1)
(M1)Si+1 = t.S0 →
(M2)Si+1Effects STK(M2[i + 1], S0)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (const a (i + 1))
SDi = a→
SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, const a, i + 1)
Si = S0 →
(M2)Si+1 = Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

Dlt inst (invokevirtuel(A, l, t) (i + 1))
SDi = a→ SDi+1 = Effects SD(a,M2[i + 1])
M2 = Dlt inst(M1, invokevirtuel(A, l, t), i + 1)
Si = tn1.tn2 . . . tnn.S0 →
(M2)Si+1Effects STK(M2[i + 1], Si)
(M2)Fi+1 = Effects F (M2[i + 1], Fi)
i + 1 ∈ DOM(BC) PC MAX −−

F,S,M2,SD,i+1⊢BC

An Approach for Formal Verification of Updated Java Bytecode Programs

57

• •

specification of the obtained bytecode in its
functional representation with annotations is
performed by a weakest precondition calculus
that we define specially to deal with update
operations. A verification condition generator
gives then statements to be verified to estab-
lish that the obtained specification matches
the specification given by the programmer at
the level one. A proof assistant is used to
discharge verification conditions.

5. JML AND BML SPECIFICATIONS

The starting point is a new version BC V 2 of
un existing program BC V 1. First the programmer
writes the new version with its specification in terms
of pre/post conditions. The specification language
used is JML (Java Modeling Language).

JML (Burdy et al. (2005)) is a specification language
for Java/Java Card programs. It allows assertions
to be included in the source code, specifying for
example pre- and postconditions and invariants. JML
annotations are a special kind of Java comments:
they are preceded by / / @, or written between /*
@ and @* /.

A simple method specifications is of the form:

/*@ normal_behavior

requires : <precondition> ;

ensures : <postcondition> ;

@*/

This specification means that if the precondition
(requires) holds at the beginning of a method
invocation, then the method terminates normally
and the postcondition (ensures) will hold at the
end of the method. Constructs are defined to write
assertion such as: \old, to denotes the old value of a
variable,\result to denote the result of a method and
the quantifiers, \forall and \exists.

The DIFF file in the system EmbedDSU is created
from the program’s bytecode. To ensure the
correctness of the transformation, the verification
of the specification will be done at bytecode level.
The language BML (Burdy et al. (2007)), allows
to express specifications of bytecode programs. Its
formalism is based on JML and the structures of
specifications in both languages are very similar.

At the transformation block, specifications for
both first version and second version are written
in JML. Starting from a specified source code
{Pjml}codesource{Qjml}, with Pjml and Qjml rep-
resenting respectively precondition and postcondi-
tion of codesource, we obtain a specified bytecode
program {Pbml}codeBC{Qbml}. This information is

Figure 4: Bytecode annotation with update instructions

obtained by applying a compiler JML2BML and will
be used by the next stages of the approach to
perform verification condition generation and ensure
the transformation correctness.

6. ANNOTATION AND FUNCTIONAL
REPRESENTATION OF BYTECODE

The DIFF file containing the update instructions
is calculated at bytecode level and then sent to
perform the update on-card. In order to ensure that
we send the right one, we model its application on
an initial version of bytecode P1 as annotations.
The operation of annotating a bytecode with
expressions indicating where an update instruction
occurs and what is the operation involved can be
defined recursively as an annotation function which
transforms a program to an annotated program.
Annot(ε, P) ≡ P
Annot([Updi|∆], P) ≡ let P ′ =
Add Annot Line(Updi, P) in Annot(∆, P ′)

The annotation of a program with an empty DIFF
file (ε) is the program itself otherwise, the function
iterates over the update operations (Updi) in the
patch and adds a corresponding annotated line
(Add Annot Line(Updi, P)) to the program. Figure
4 shows an annotated program obtained by the
application of a DIFF file on an initial byte
code. The annotations are represented as special
commentaries. For example, Del 4 : deletes the
instruction at program counter (pc) 4 and add isub
4, adds the instruction isub at pc 4.

In our framework, we use a functional representation
for both bytecode programs and annotation function.
Figure 5 shows a fragment of the formalisation
written in OCaml. We start by defining the data
manipulated by the program (integers, objects and
variables, then, we formalise the instructions of the
sub language. The definition of an instruction is
given by the name of a construct (representing the
name of the instruction) followed by its arguments.
For example, for the instruction new, we have
the construct New taking an Object as argument
and the instruction putfield is represented by the
construct Putfield followed by a triple representing

An Approach for Formal Verification of Updated Java Bytecode Programs

58

Figure 5: An extract of functional modelisation of bytecode

the arguments: the class (Object) and the names of
the type of the field and its name as strings.

A bytecode line is defined as a number (representing
the program counter) with an instruction. The
bytecode is represented as a list of bytecode
lines. An annotated line is represented by the
product of a bytecode line and a string representing
the annotation. An annotated bytecode is a list
of annotated bytecode lines. The result of this
modelisation is used to derive specifications of
updated programs.

7. VERIFICATION

Our approach for verification is based on the
fact that the transformation of a bytecode (of
its semantics) implies the transformation of its
specification. In Hoare Logic (Hoare (1969)), a
program P1 and its specification is represented by
a triple {pre1}P1{post1} where pre1 (post1) is the
precondition (postcondition) of the program P1. A
new version of this triple written off-card by the
programmer is {pre2}P2{post2} (a target triple). The
DIFF file is performed with P1 and P2 and then sent
to the card to perform update operations, meaning,
obtaining a new bytecode and a new spacification.
Our goal is to establish that the target triple and the
obtained triple match.

7.1. Interpretation of the update

In order to formally define our update interpreter,
we need to define some notions. In this in-
terpretation, a state is modeled by a 3-tuple:<
Heap, Frame, Stack − Frame > which represents

the machine state where Heap represents the
contents of the heap, Frame represents the ex-
ecution state of the current Method and, Stack-
Frame is a list of frames corresponding to the
call stack. A frame contains the following ele-
ments : the stack of operands OperandStack and
the values of the local variables LocalV ar at the
program point PC of the method Method (<
H,Method, PC, OperandStack, LocalV ar >). The
definition of the update interpretation is based on the
notion of step.

Definition 1. Step The semantics of an instruction
(update instruction) is specified as a function step:
Bytecode Prog ∗ State ∗ Specification− > State ∗
StepName ∗ Specification that, given a bytecode
P, a state S and a specification SP, computes the
next state S’, the name of the next step and a new
specification.

Definition 2. Java bytecode update interpreter
We define now an update interpreter (Upd int) which
iterates over steps, take as parameters an annotated
program in its functional representation, an initial
state and an initial specification and relies on
predicate calculus and update interpretation function
to produce a new state and a new specification. The
interpreter is defined as Upd int(BC,S) = (S′, Sp′)
with S = initial(BC, Sp) the function for defining an
initial state for the execution of the bytecode BC with
the initial specification Sp. The Code BC is given
with its parameters and an initial heap. The result of
the interpreter is a state S′ and a new specification
Sp′.

Definition 3. Verified updated bytecode

• Let P1 and P2 be the first and the new version
of a program and P a patch,

• let P2′ = annot(P1, P) be the program
obtained by annotation of P1 with P,

• let f(P2′) the functional representations of P2′,

• let spec(P1) = (pre1, post1) the specification
of P1 and spec(P2) = (pre2, post2) the
specification of P2,

We say that P2′ is a successfully verified update of
P1 if and only if: verification(spec(P2), spec(P2′))
succeeds where spec(P2′) is obtained by predicate
transformation on f(P2′) starting from post2.

7.2. Weakest precondition calculus

In this section, we define a bytecode update
logic in terms of a weakest precondition calculus.
The proposed weakest precondition (WP) considers
that each (update) instruction has a precondition.
An instruction with its precondition is called an

An Approach for Formal Verification of Updated Java Bytecode Programs

59

• •

Table 4: Defining rules for weakest precondition calculus for update operations

wp(Add instr(pop,i)) = (shift exp2(@Ei))
wp(Add instr(store x,i)) = shift exp2(@Ei)(S(0)/x)
wp(Add instr(if L,i)) = ((S(0) = 0)⇒ shift exp2(EL)) ∧ ((S(0) ̸= 0)⇒ shift exp2(@Ei))
wp(Add instr(load x,i)) = unshift exp(shift exp(@Ei))(x/S(0))
wp(Add instr(const a,i)) = unshift exp(shift exp(@Ei))(a/S(0))
wp(Add instr (new A,i)) = unshift exp(shift exp(@Ei[create(H, A)/S(0), A :: H/H])
wp(Add instr(add,i) = (shift exp2(@Ei))[(s(1) + S(0))/S(1)]
wp(Add instr(neg,i) = (unshift exp(@Ei))[−S(0)/S(0)]
wp(Add instr (getfield a f t,i)) = shift exp(@Ei[(val(S(0), (a, f)))/S(0)]) ∧ S(0) ̸= null
wp(Add instr(putfield a f t,i)) = (shift exp3(@Ei))[H((S(0), (a, f)) := S(1))/H] ∧ S(0) ̸= null
wp(goto l1) = shift exp(El1)

instruction specification and is noted as: Ei : Ii

where Ii is the instruction and the expression Ei

its specification. This notation expresses that the
precondition Ei holds when the program pointer is
at the program counter i. Table 4 shows the calculus
of the WP rules for the update operations (inserting
instructions).

Functions and notations used. The functions
shift exp and unshift exp are used to express:
the effect of pushing (popping) elements to (from)
the stack S and the effect of shifting an expression
regarding to the stack elements due to the insertion
of instructions. They are defined as follows:

shift exp(Exp) = Exp[s(i + 1)/s(i) forall i ∈ N]
unshift exp = shift exp−1

The elements of the stack are represented by
positive integers, the top stack is 0. The symbol @
is used to express the old specification associated
to a position i: when we add an instruction at
position i, the program and the specification are
shifted from i and then a new instruction is inserted.
Its precondition is calculated with the specification
of the instruction that was at position i before the
update.

In the rules, for the instructions store x, load x,
and pop, a precondition is obtained, as in Hoare’s
assignment (Hoare (1969)) by substituting the right-
hand side by the left-hand side in the postcondition.
The precondition of an instruction store x under a
postcondition Ei+1 (the precondition of the following
instruction) is given by: shift exp(Ei+1)(S(0)/x)
meaning that if the expression E holds after the
execution of store x then it also holds for the top of
the stack before storing it in x. The function shift exp
is used to express that before the execution of the
instruction, the top of the stack corresponding to the
instruction at i + 1 was at index 1.

Inserting an instruction, e.g. store x at line i means
that the precondition of the old instruction at i

becomes the postcondition of the inserted instruction
and thus the calculated precondition starts from
this old postcondition (@Ei). The function shift exp
is used twice (shift exp2) to express also the
impact due to the insertion of the instruction on the
specifications of the following instructions.

The instructions new, putfield and getfield are heap
manipulating instructions. The function create used
in the instruction new A returns a new object of
type A in the heap H. This obtained heap (A :: H)
replaces the old heap. The function val used in the
definition of getfield to get the value of the field f of
the class a from the address (top of the stack). This
value is then pushed on the stack. In putfield, the
value of the field designated by the top of the stack
is updated with the value at the second elements of
the stack. The insertion of this instruction which pops
two values implies three applications of shift exp.

In order to establish semantical equivalence of a
code written by the programmer and a program
obtained by applying a DIFF file, we check the
equivalence of the weakest precondition of an
annotated program obtained by WP calculus and a
precondition written by the programmer before DIFF
file is performed.

7.3. Example

In order to illustrate how the logic works, we take
the example of the function abs that returns the
absolute value of an integer taken as argument.
This function is then transformed in order to get
the double of the result in the initial calculus: for
an integer given as argument, the new function
returns the abstract value multiplied by two (modified
abs). The specifications of the two functions are
respectively:

{p = P} abs {(P ≥ 0 → result = P) ∧ (P < 0 →
result = −P)}

{p = P} modified abs {(P ≥ 0 → result = 2 ∗ P) ∧
(P < 0→ result = −2 ∗ P)}

An Approach for Formal Verification of Updated Java Bytecode Programs

60

• •

In the specification, P denotes the logical value at
the entry and result is the result of the function.
Figure 6 shows the bytecode of the first version
(a) and the second version (b) of the described
function. The part (c) of the figure shows the DIFF
file generated from the two versions. The last part of
the figure (d) shows the bytecode of the function abs
annotated with update instructions. We notice that
in this bytecode local variables are represented by
integers: in load 1 for example, the number 1 means
the local variable 1. The same notation is applied to
other local variables.

In figure 7, The WP calculus is performed on
the bytecode (without annotation) starting from the
postcondition of the new version. The WP calculus
is applied on the annotated bytecode as shown on
figure 8. The specification for the update instructions
are in bold. This example shows that we obtain
the same precondition {P = v0} which means
that at the beginning of the calculus the logical
value P is in the first local variable of the function.
This result expresses the equivalence of the two
bytecodes according to our definition of verified
updated program.

8. RELATED WORK

Several studies have been conducted in order
to use formal semantics to prevent type errors
in bytecode. Our work extends the formalism
presented in (Freund and Mitchell (1999)). This
work defined semantics and a type system to study
object initialization in bytecode. The original idea
was developed in (Stata and Abadi (1999)) to
study bytecode subroutines. In (Freund and Mitchell
(2003)), the authors extended the work (Freund
and Mitchell (1999)) to bytecode subroutines, virtual
method invocation and exceptions. On another
side, using predicate transformation to reason
about bytecode properties has been studied in
(Grégoire,Sacchini and Sivan (2008)). The authors
presented a verification condition generator for
bytecode formalized in the Coq proof assistant and
based on weakest precondition calculus. Another
work using weakest precondition to generate
verification conditions from an annotated bytecode
is presented in (Burdy and Pavlova (2006), Burdy et
al. (2007)).

Our work is close to (Freund and Mitchell (1999))
in the sense of the use of static semantics to
analyze bytecode. The specificity of our work is
the definition of semantics for updates. We use
predicate transformation to reason about bytecode
properties using existing tools for specification and
proofs. Our bytecode logic for weakest precondtion
calculus is inspired by (Bannwart and Müller (2005)).

The authors present a Hoare-style logic combined
with instruction specification in term of precondition
for sequential bytecode. We adopted such instruction
specification in our logic for weakest precondition for
update operation.

In some studies, manipulating and analysing byte-
code requires its modelisation in flexible representa-
tions suitable to the manipulation required. In (Puder
and Lee (2009)), bytecode is represented by XML
trees in order to use the technologies supporting
XML to ease the injection and extraction of bytecode.
In (Albert and al. (2007)), bytecode is represented
by clauses written in Prolog to perform verification of
bytecode programs. Generally, functional modelisa-
tion is used when the goal is to consider programs
as mathematical models whose meaning is inde-
pendent of runtime states. Therefore, it is possible
to apply equational rewriting and reasoning to them
(Guodong (2010)) and use several proof systems
that are built on or uses functional languages in
specifications.

9. CONCLUSION

In this paper, we proposed an approach for
formalisation and verification of java bytecode
updated programs. Our approach relies on four
main concepts. We showed first how to use existing
specification languages for Java and Java bytecode
programs to write specification and transform
them. Then, we defined a formal semantics which
constitute a formal mean to establish the validity
of update operations with regard to Java type
safety. We proposed a functional representation of
bytecode in order to model the application of update
operations with the use of the notion of bytecode
annotation. We presented a predicate transformation
calculus based on weakest precondition for update
operations to derive a specification for the annotated
bytecode and showed how to establish the
correctness of the update.

The approach presented is implemented using
the OCaml language. Our study started with
considering the system EmbedDSU but this is
not restrictive, the framework proposed can be
generalised to specification and verification of
updated programs written in languages that are
complied to bytecode. The use of the functional
language and representation eases its integration
with existing formal methods. Our immediate future
work is to define WP calculus for instruction
suppression. We plan to define another predicate
transformation calculus (strongest postcondition) for
update operation and the integration of our approach
in an existing formal method supporting verification
condition generation for functional programs.

An Approach for Formal Verification of Updated Java Bytecode Programs

61

Figure 6: An example of an annotated bytecode (abs)

Figure 7: WP calculus on the modified function

Figure 8: WP calculus on an annotated bytecode

An Approach for Formal Verification of Updated Java Bytecode Programs

62

• •

REFERENCES

Freund, S. N and Mitchell, J. C, (1999) A type
system for object initialization in the Java bytecode
language. In ACM Trans. Program. Lang. Syst., vol
21, pp.1196–1250.

Grégoire, B, Sacchini, J. L and Sivan, R, (2008)
Combining a verification condition generator for
a bytecode language with static analyses. In
Proceedings of the 3rd conference on Trustworthy
global computing, Springer-Verlag, pp.23–40.

Binder, W and Hulaas, J, (2005) Java Bytecode
Transformations for Efficient, Portable CPU Ac-
counting. In Electron. Notes Theor. Comput. Sci.,
Elsevier Science Publishers B. V. vol 141, pp.53–
73.

Noubissi,A.C, Iguchi-Cartigny, J and Lanet,J. L,
(2011) Hot updates for Java based smart cards.
In ICDE Workshops, pp.168-173.

Burdy, L and Pavlova,M, (2006) Java bytecode
specification and verification In SAC 2006,
pp.1835-1839.

Burdy,L, Huisman, M and Pavlova,M, (2007)
Preliminary Design of BML: A Behavioral Interface
Specification Language for Java Bytecode In
FASE 2007, pp.215-229.

Freund, S. N and Mitchell, J. C,(2003) A Type System
for the Java Bytecode Language and Verifier. In J.
Autom. Reasoning, vol 30, pp.271-321.

Hoare,C. A. R, (1969) An Axiomatic Basis for
Computer Programming. In Commun. ACM,
vol 12, pp.576-580.

Stata, R and Abadi, M, (1999) A Type System
for Java Bytecode Subroutine In ACM Trans.
Program. Lang. Syst., vol21, pp.90-137.

Dahm,M, (1999) Byte Code Engineering. InJava-
Informations-Tage, pp.267-277.

Sakamoto, T, Sekiguchi, T and Yonezawa, A, (2000)
Bytecode Transformation for Portable Thread
Migration in Java. In ASA/MA, 2000, pp.16-28.

Bachrach, J and Playford, K, (2001) The Java
Syntactic Extender. In OOPSLA 2001, pp.31-42.

Noubissi,A. C, Iguchi-Cartigny, J and Lanet, J.
L, (2010) Incremental Dynamic Update for
Java-Based Smart Cards. In Fifth International
Conference on Systems, pp.110-113.

Burdy,L, Cheon,Y, Cok, D. R, Ernst, M. D, Kiniry,J.
R., Leavens,G. T, Leino, K. R. M, and Poll, E. An
Overview of JML Tools and Applications . In Int. J.
Softw. Tools Technol. Transf., vol 7, pp. 212–232.

Bannwart, F and Müller, P, (2005) A Program Logic
for Bytecode. In Electron. Notes Theor. Comput.
Sci.vol 141, Elsevier Science Publishers B. V.,
2005, pp 255–273.

Common Criteria,http://www.commmoncriteria.org

McGachey, P, Hosking,A. L and Moss, J.E.B,
(2009) Pervasive Load-Time Transformation for
Transparently Distributed Java. In Electron. Notes
Theor. Comput. Sci., vol 253, Elsevier Science
Publishers B. V., pp.47–64.

Puder, P and Lee, J, (2009) Towards an XML-
based Bytecode Level Transformation Framework.
In Electron. Notes Theor. Comput. Sci.,vol 253,
Elsevier Science Publishers B. V., pp.97–111.

Boshernitsan, M and Graham,S. L, (2004) iXj: Inter-
active Source-to-source Transformations for Java.
In Companion to the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming Sys-
tems, Languages, and Applications, pp.212–213.

Guodong, L, (2010) Formal verification of programs
and their transformations. PhD thesis, University
of Utah, USA.

Lounas,R, Mezghiche, M and Lanet,J. L, (2012) To-
wards a General Framework for Formal Reasoning
about Java Bytecode Transformation In Proceed-
ings Fourth International Symposium on Symbolic
Computation in Software Science, pp.63–73.

Noubissi,A. C, (2011) Mise á jour dynamique et
sécurisée de composants systéme dans une carte
á puce. PhD thesis, University of Limoges, France,
2011.

Albert, E, Gomez-Zamalloa, M, Hubert, L and
Puebla,G, (2007) Verification of Java Bytecode
Using Analysis and Transformation of Logic Pro-
grams . In Practical Aspects of Declarative Lan-
guages,2007, Springer Berlin Heidelberg,pp.124-
139.

Neamtiu,I, Hicks,M, Stoyle, G and Oriol, M, (2006)
Practical Dynamic Software Updating for C.In
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages
7283, 2006.

Gupta, D, Jalote P and Barua, G. A formal
framework for online software version change.
Software Engineering, IEEE Transactions on, 22
(2):120131, 1996.

Orso,A, Rao, A and Harrold,M. J. A technique
for dynamic updating of Java Software. In ICSM,
2002.

Hlopko, M, Kurs,J, and Vrany, J. Towards a Runtime
Code Update in Java an exploration using
STX:LIBJAVA. In proceeding of Dateso 2013.

An Approach for Formal Verification of Updated Java Bytecode Programs

63

State Space Reduction Strategies for Model
Checking Concurrent C Programs

Amira Methni, Belgacem Ben Hedia, Matthieu Lemerre,
CEA, LIST, Centre de Saclay,

PC172, 91191, Gif-sur-Yvette, FRANCE
{amira.methni,belgacem.ben-hedia,

matthieu.lemerre}@cea.fr

Serge Haddad
LSV, ENS Cachan, CNRS

& INRIA, France
haddad@lsv.ens-cachan.fr

Kamel Barkaoui
CEDRIC Lab, CNAM,

Paris, France
kamel.barkaoui@cnam.fr

Model checking is an effective technique for uncovering subtle errors in concurrent systems. Unfortunately,
the state space explosion is the main bottleneck in model checking tools. Here we propose a state space
reduction technique for model checking concurrent programs written in C. The reduction technique consists
in an analysis phase, which defines an approximate agglomeration predicate. This latter states whether a
statement can be agglomerated or not. We implement this predicate using a syntactic analysis, as well
as a semantic analysis based on abstract interpretation. We show the usefulness of using agglomeration
technique to reduce the state space, as well as to generate an abstract TLA+ specification from a C program.

Model checking, TLA, State space reduction, Agglomeration predicate.

1. INTRODUCTION

Model checking is an attractive formal verification
technique because it is automatic. It offers extensive
and thorough coverage by considering all possible
behaviors of a system, unlike traditional testing
methods. Given a set of properties expressed in
a temporal logic and a model, model-checking
automatically analyzes the state space of the
model and checks whether the model satisfies the
properties (Clarke et al. 1999). However, the main
obstacle of model checking is the state explosion
problem and concurrency is a major contributor to
this problem.

Many solutions have already been investigated for
reducing the complexity of model checking. For
instance, by getting a simpler model from the original
one using abstraction technique (Clarke et al. 1994),
or by using on-the-fly model checking to eliminate
part of the search to the automaton representing the
(negation of the) checked property (Fernandez et al.
1992).

1.1. Contribution

In this paper, we present a state space reduction
technique for model checking concurrent programs
written in a low level language. We apply this
technique to the verification of C programs by an
explicit model checker. We use TLA+ (Lamport
1994) as a formal specification language for our

concurrent C programs and we base ourselves on
previous work reported in (Methni et al. 2015).
The reduction technique is based on an analysis
phase, which defines an approximate agglomeration
predicate. This latter states whether a statement
can be agglomerated or not. We implement this
predicate using a syntactic analysis, as well as a
semantic analysis based on abstract interpretation
of C code. The particularity of our method is that we
apply the reduction technique during the generation
of TLA+ code and by using the abstract interpretation
technique. We show the usefulness of using this
technique to reduce the state space during the
verification of C programs, as well as to generate an
abstract TLA+ specification from a C program.

1.2. Outline

The rest of the paper is organized as follows. We
give an overview of TLA+ in Section 2. Section 3
presents how we specify the semantics of C in TLA+.
Section 4 describes the reduction technique and how
we implement it on C programs. Experimental results
are presented in Section 5. We discuss related work
in Section 6. Section 7 concludes and illustrates
future research directions.

2. OVERVIEW OF TLA

TLA+ (Lamport 2002) is the specification language
of the Temporal Logic of Actions (TLA). TLA is

65

〈formula〉 , 〈predicate〉 | �[〈action〉]〈state function〉 | ¬〈formula〉
| 〈formula〉 ∧ 〈formula〉 | �〈formula〉

〈action〉 , boolean valued expression containing constant symbols, variables,
and primed variables

〈predicate〉 , 〈formula〉 with no primed variables | ENABLED 〈action〉
〈state function〉 , nonboolean expression containing constant symbols and variables

Figure 1: TLA syntax (Lamport 2002)

a variant of linear temporal logic introduced by
(Lamport 1994) for specifying and reasoning about
concurrent systems. Readers interested in a more
detailed presentation of TLA+ can refer to Lamport’s
book (Lamport 2002).

TLA+ specifies a system by describing its possible
behaviors. A behavior is an infinite sequence
of states. A state is an assignment of values
to variables. A state function is a nonboolean
expression built from constants, variables and
constant operators and it assigns a value to each
state. For example, y + 3 is a state function that
assigns to state s the value 3 plus the value
that s assigns to the variable y. An action is a
boolean expression containing constants, variables
and primed variables (adorned with “′” operator).
Unprimed variables refer to variable values in the
current state and primed variables refer to their
values in the next-state. Thus, an action represents
a relation between old states and new states. A state
predicate (or predicate for short) is an action with no
primed variables.

The syntax of TLA is given in Figure 1 (the symbol
, means equal by definition). TLA+ formulas are
built up from actions and predicates using boolean
operators (¬ and ∧ and others that can be derived
from these two), quantification over logical variables
(∀,∃), and the unary temporal operator � (always) of
the linear temporal logic (Manna and Pnueli 1992).

The predicate “ENABLED A”, where A is an action, is
defined to be true in a state s iff there exists some
state t such that the pair of states 〈s, t〉 satisfies
A. The formula [A]vars, where A is an action and
vars the tuple of all system variables, is equal to
(A ∨ (vars′ = vars)) where vars′ is the expression
obtained by priming all variables in vars. It asserts
that every step (pair of successive states) is either
an A step or else leaves the values of all variables
vars unchanged. TLA+ defines the abbreviation
“UNCHANGED vars” to denote that vars′ = vars.

While TLA+ permits a variety of specification styles,
the specification that we use is defined by:

Spec , Init ∧�[Next]vars ∧ Fairness (1)

where:

• Init is a state predicate describing the possible
initial states by assigning values to all system
variables,

• Next is an action representing the program’s
next-state relation,

• vars is the tuple of all variables,

• Fairness is an optional formula representing
weak or strong assumptions about the execu-
tion of actions.

Formula Spec is true of a behavior σ iff Init is
true of the first state of σ and every step of σ is
either a Next step or a “stuttering step”, in which
none of the specified variables change their values,
and Fairness holds. The behaviors satisfying the
specification formula given by Equation (1) are the
ones that represent correct behaviors of the system,
where a behavior represents a conceivable history of
a universe that may contain the system.

The TLA+ formula Spec ⇒ φ is valid when the
model represented by Spec satisfies the property φ,
or implements the model φ.

TLA+ has an explicit model checker called TLC that
can be used to check the validity of safety and
liveness properties. TLC handles specifications that
have the standard form of the formula (1). For this
reason, we only use specification formula of the form
of Equation (1). TLC requires a configuration file
which defines the finite-state instance to analyze. It
begins by generating all states satisfying the initial
predicate Init. Then, it generates every possible
next-state t such that the pair of states 〈s, t〉 satisfies
Next and the Fairness constraints, looking for a
state where an invariant is violated. Finally, it checks
temporal properties over the state space.

3. TRANSLATION FROM C TO TLA+

Our approach to checking a concurrent C program is
to first translate it into a TLA+ specification, to which
the TLA+ tools can be applied. In what follows, we
briefly present how we specify the semantics of C in

State Space Reduction Strategie for Model Checking Concurrent C Programs

66

1 int x = 3;

2 int y = 0;

3

4 int inc(int i)

5 {

6 int tmp;

7 tmp = i+1;

8 return tmp;

9 }

10

11 void p1(){

12 int a = 1;

13 x = inc(a);

14 a = x;

15 return;

16 }

17

18 void p2(){

19 int a;

20 x = x - 1;

21 x = 3;

22 y = 0;

23 }

(a) Code C source (b) Memory layout

Figure 2: Example of a C code in which one process (with id equals to 1) executes p1() function and the second one
executes p2(). The top of the stack[1] indicates that process 1 is executing the statement with label 6 of inc() function.
Undef represents an undefined value such as the value of an uninitialized variable.

TLA+ by describing the memory layout considered
and how we model the control flow of a C program.

3.1. Memory Layout

C file is parsed and normalized according to CIL
(C Intermediate Language) (Necula et al. 2002)
which transforms complicated constructs of C into
simpler ones. This transformation makes programs
more amenable to analysis and transformation.
According to the Abstract Syntax Tree (AST) of the
C program, C2TLA+ generates automatically a TLA+
specification according to a set of translation rules
detailed in our previous work (Methni et al. 2015).

In C2TLA+, a concurrent program consists of
many interleaved sequences of operations called
processes, corresponding to threads in C. Each
process has a unique identifier id. The set of all
processes is determined by the TLA+ constant
ProcSet.

Figure 2 presents a C program and the content of
the memory as modeled by C2TLA+. We consider
that the C code is executed by two processes. One
process executes p1() function and the other one
executes p2() function.

The memory is separated into four areas that do not
overlap:

• a shared memory called data that stores
global (and static) variables. In the example of
Figure 2a, the x variable is shared by the two
processes.

• a local memory for each process, called
stack and stores local variables and function
parameters. The memory stack[id] specifies
the local memory of process id and is
composed of stack frames. Each stack frame
corresponds to a call to a function. In the
example of Figure 2a, stack[1] is composed
of two stack frames, one of p1() function and
one of inc() function. When a function call
terminates, its stack frame is removed.

• a local memory for each process called
register modeled as a sequence and stores
the program counter of each process. The
head of this sequence contains the statement
being currently executed by the process id.

• a local memory called ret which contains
values to be returned by processes.

State Space Reduction Strategie for Model Checking Concurrent C Programs

67

The memory is modeled in TLA+ by a variable called
memory. It is a record whose four fields represent
the four memory areas. The global memory data
behaves like an array of values, whereas stack
and register behave like a FIFO (First In, First
Out) queues. Access to those memory areas is
addressed using offsets. So, a memory address is
a couple [loc,offs] of memory location loc, (data or
stack area) and an offset offs in this location. For
instance, Addr x specified in Figure 2b defines the
memory address of x variable.

The main operations that manage the memory are
load() and store():

• load() is the function that given the current
state of memory mem and a memory address
addr (in the form of [loc, offs]), returns the
value stored at the address addr in the memory
mem,

• store() is the function that given the current
state of memory mem, a memory address
addr and a value val, returns the new copy of
the memory after storing the value val at the
memory address addr.

3.2. Specifying the C control-flow

Each C statement i is identified in C2TLA+ by a
label assigned by CIL and is modeled by a TLA+
function, noted stmti(), which takes as arguments
the process identifier id and the memory mem,
and returns the new content of the memory after
executing the statement.

Each stmti() updates the program counter register
of the process id and may change the content of
mem, stack, and/or ret memory areas depending
on the type of the statement (assignment, jump
statements, etc.). For instance, the statement
on line 20 is translated into the TLA+ function
p2 20(id,mem) defined as follows:

p2 20(id,mem)
∆
=

LET mcopy
∆
= load(id, Addr x, [val 7→ 3]) IN

[data 7→ mcopy.mem, stack → mcopy.stack,
register 7→ [mem.register EXCEPT ![id] =
〈[pc 7→ 〈“p2 21”〉, fp 7→ Head(mem.register[id]).fp]〉

◦ Tail(mem.register[id]),
ret 7→ mem.ret]

The definition of p2 20() function uses the TLA+
construct LET/IN to define a temporary variable that
stores the value of the memory after affecting the
value 3 to the memory address Addr x. The symbol
◦ defines the concatenation operator for TLA+
sequences. Head(s) is a TLA+ function that returns
the head of the sequence s and Tail(s) returns
the tail of the sequence s. Then, the register[id]

is updated by the label value of the successor
statement given by the control flow graph (CFG) of
the C program (provided by CIL).

The control flow of the C program in C2TLA+ is
ensured by the dispatch() function. For the example
of Figure 2a, this function is defined as follows:

dispatch(id,mem)
∆
=

CASE Head(mem.register[id]).pc = ”inc 6”
→ inc 6(id,mem)

� Head(mem.register[id]).pc = ”inc 7”
→ inc 7(id,mem)

� Head(mem.register[id]).pc = ”p1 11”
→ p1 11(id,mem)

� Head(mem.register[id]).pc = ”p1 12”
→ p1 12(id,mem)

� Head(mem.register[id]).pc = ”p1 13”
→ p1 13(id,mem)

� Head(mem.register[id]).pc = ”p1 14”
→ p1 14(id,mem)

� Head(mem.register[id]).pc = ”p2 19”
→ p2 19(id,mem)

� Head(mem.register[id]).pc = ”p2 20”
→ p2 20(id,mem)

� Head(mem.register[id]).pc = ”p2 21”
→ p2 21(id,mem)

� OTHER → mem

The dispatch() function calls, according to the
value of the pc field contained at the top
the process register (determined by the expres-
sion Head(mem.register[id]).pc), the corresponding
TLA+ function to execute, i. e., the C instruction to
execute.

The C program is thus simulated by the Spec formula
given by equation (1). The Init predicate specifies
the initial values of the memory and the Next action
is defined as follows:

Next
∆
=

∨ ∃ id ∈ ProcSet :
∧ memory.regsiter[id] 6= 〈〉
∧ memory′ = dispatch(id,mem)

∨ ∀ id ∈ ProcSet :
∧ memory.regsiter[id] = 〈〉
∧ UNCHANGED memory

It states that one of the processes that has not
finished execution (its register[id] is not empty) is
nondeterministically chosen to execute one action
until all processes finish execution, i. e., all registers
become empty. Executing an action consists in
calling dispatch() function. For example, when
Head(mem.register[id]).pc equals to ”inc 6”, calling
the function inc 6(id,mem) will update the value of
stack[id] (as tmp is stored in the local memory) as
well as the top of register[id]. As the register[id] is

State Space Reduction Strategie for Model Checking Concurrent C Programs

68

Figure 3: Example of a state space

still not empty, the control flow is thus passed to the
successor statement.

The behavior of the C program modeled by the Spec
formula can be given in terms of a state transition
system.
Definition 1. A state transition system is a 3-tuple
T = (Q, I, δ) given by

• a finite set of states Q,

• a set I ⊆ Q of initial states, specified by the
Init predicate,

• a transition relation δ ⊆ Q × Q that links two
states. This latter corresponds to satisfying the
predicate Next.

The state transition system encodes the state space
of the corresponding TLA+ specification of the C
program.

Figure 3 illustrates the state space of the corre-
sponding TLA+ specification of the C code given in
Figure 2a. It consists in all the possible interleaving
of process execution. In order to simplify, we rep-
resent only the content of pc field contained at the
top of the register[1] and register[2] memories. Each
state of the graph matches a valuation of memory
variable, i. e., its four fields.

3.3. Process Synchronization

All processes interact with each other through the
shared memory data. Concurrent access to this lat-
ter is ensured via synchronization mechanism. There

are many different ways to implement concurrency
synchronization in C. For instance, by using locks
and semaphores, or by providing low level hard-
ware instructions (e. g., test-and-set and compare-
and-swap). To support synchronization mechanism,
generated TLA+ specifications by C2TLA+ can be
completed with manually written TLA+ specifications
to provide concurrency primitives and atomic instruc-
tions. More detailed information about integrating
synchronization primitives in TLA+ specifications can
be found in our previous work (Methni et al. 2015).

4. APPLYING REDUCTION ON C PROGRAMS

The process of generating an optimized TLA+
specification is illustrated in Figure 4. To apply
reduction on C programs, it is necessary to define
the agglomeration predicate. The C program is
first analyzed. This analysis phase defines an
approximate agglomeration predicate which takes
as argument a C statement and returns true or
false depending on whether the statement can be
agglomerated or not. This predicate can be safe or
unsafe. The meaning of safe predicate depends on
how the analysis is performed.

• The predicate is said safe when the analysis
is a safe approximation. Its definition is as
follows:

– if the statement does not modify the
shared memory, the predicate returns
true,

State Space Reduction Strategie for Model Checking Concurrent C Programs

69

– if the statement modifies the shared
memory or it is unknown, it returns false.

The unknown predicate states that we have no
idea if the statement modifies the memory or
not.

• The predicate is called unsafe when a
statement is agglomerated and we are not sure
if it modifies the global memory or not.

Figure 4: Reduction process

In this Section, we introduce the agglomeration
technique by an example. Then, we describe the
implementation of a safe agglomeration predicate
by using a syntactic and semantic analysis on C
programs. Then, we show the interest of using
an unsafe agglomeration predicate to generate an
abstract TLA+ specification of a C program.

In what follows, we use the expression agglomer-
ating TLA+ actions, to designate agglomerating the
corresponding statements in the C program.

4.1. An introducing example

As the semantics of a TLA+ is expressed through
a state transition system, where transitions between
states are ensured by TLA+ actions, the reduction
technique consists in agglomerating consecutive
actions into one atomic action which performs the
effects of the original ones. The reduction idea based
on agglomeration has been widely used in Petri Nets
(Haddad and Pradat-Peyre 2006; Berthelot 1986).

Figure 5 shows three consecutive states linked by
two actions x′ = x + 1 and x′ = x + 2. The result
of this agglomeration (represented by −→), is two
states linked by one atomic action which is the result
of executing the action x′ = x+ 1, then x′ = x+ 2.

x = 2

x = 3

x = 5

x′ = x+ 1

x′ = x+ 2

→

x = 2

x = 5

x′ = (x+ 1) + 2

Figure 5: Agglomerating actions

(a) Before reduction (b) After reduction

Figure 6: The control flow graph of a C code example

4.2. Using syntactic and semantic analysis

Syntactic analysis
A syntactic analysis is performed to detect state-
ments on which reduction can be applied. Often, C
functions make use of local variables, and when a
statement refers only to local variables, the value
for which the statement is executed by a process
cannot change the execution of other processes.
Furthermore, we assume that statements involving
local pointer variable cannot be agglomerated as
they may reference shared memory.

Moreover, we consider that jump statements, namely
goto, break and continue, can be agglomerated
with its successor (designated by computing the
CFG), as they only change the local register of the
process (register[id] in TLA+ specification).

Semantic analysis
In many scenarios, a concurrent C program could
contain, in its global memory, data blocks that are
accessed only by one process at a time. In that case,
syntactic analysis is insufficient. Therefore, we use
a semantic approximation predicate. The C program
is thus analyzed and an approximation of memory
access is computed using the Mthread Frama-C
plugin (Mth). This latter provides information about
the memory zones that are accessed concurrently
by more than one process and those that are not. In
this case, the agglomeration predicate is safe as the
analysis is based on an over-approximation of the
memory.

We consider the example given by Figure 2a.
To illustrate the agglomeration technique on this
example, we represent the C program by its control
flow graph, illustrated by Figure 6a, where each
state of the graph represents a C statement and
edges represent the control flow. After applying the
syntactic and semantic analysis on this example,

State Space Reduction Strategie for Model Checking Concurrent C Programs

70

the control flow graph is transformed into a smaller
graph, given in Figure 6b. Each state of the
graph corresponds to one statement or a block of
statements. As the inc() function uses only local
memory, its block definition is combined into one
basic block. For p1() function, statement on line
11 is agglomerated with statement on line 12 and
statement on line 14 is agglomerated with the return

instruction.

4.3. Generating an abstract specification

Agglomerating statements can also be useful to
generate an abstract TLA+ specification of a C
program. The user can define which C statements
can be agglomerated using an unsafe predicate. The
resulting TLA+ specification can be viewed as an
abstract formal specification of the C program.

As TLA+ is a fragment of LTL\x (Linear Temporal
Logic without the “next operator”), it is well known
that the equivalence between checking a property
given in LTL\x on an abstract model and checking it
on the original model is ensured by the preservation
(Goltz et al. 1992).

Example: Agglomerating critical sections
Consider the following fragment of C code (Figure 7)
implementing an example of the producer/consumer
model. The two processes share a buffer protected
by a mutex m. The synchronization between
processes is ensured by two semaphores empty and
full. Mutex and semaphores are implemented as
an integer values and are only accessible through
two atomic operations P() and V().

Translating this implementation into a TLA+ spec-
ification and model checking results in verifying
all interleavings of actions between processes. We
define the agglomeration predicate that states that
statements protected by mutex (namely by P() and
V() primitives) can be agglomerated. After reduction,
the control flow graph of this example is illustrated in
Figure 8b.

Therefore, the block statements from line 12 to line
14 and that from line 12 to 26 are agglomerated into
one state. The state space of the TLA+ specification
generated after agglomerations contains fewer
states than the one without agglomerations as the
reduction inside the critical section restricts the
amount of interleaving allowed between processes.
We define the mutual exclusion property in TLA+ as
follows:

mut exclusion(lbl1, lbl2)
∆
= �((∀ id1, id2 ∈ ProcSet :

∧ (id1 6= id2) ∧ (Head(memory.register[id1]) 6= 〈〉)
∧(Head(memory.register[id2]) 6= 〈〉)
∧(Head(memory.regsiter[id1]).pc = lbl1))
⇒ Head(memory.register[id2]).pc 6= lbl2)

1 #define BUFFER_SIZE 5

2 mutex m;

3 sem full = 0, empty = BUFFER_SIZE;

4 int buffer[BUFFER_SIZE]; /* the buffer */

5 int count; /* buffer count */

6

7 void Producer(int item) {

8 while(TRUE) {

9 item = rand();/* generate a random number */

10 P(&empty); /* acquire the empty lock */

11 P(&m); /* acquire the mutex lock */

12 if(count < BUFFER_SIZE) {

13 buffer[count] = item;

14 count ++; }

15 V(&m); /* release the mutex lock */

16 V(&full); /* signal full */

17 }

18 }

19 void Consumer(void) {

20 while(TRUE) {

21 int item;

22 P(&full); /* acquire the full lock */

23 P(&m); /* aquire the mutex lock */

24 if(count > 0) {

25 item = buffer [(count -1)];

26 count --; }

27 V(&m); /* release the mutex lock */

28 V(&empty); /* signal empty */

29 }

30 }

Figure 7: Example of a producer/consumer model using
locks

This property expresses that critical sections cannot
be executed simultaneously. This property was
verified on the TLA+ specification after reduction.
Thus, we can deduce that the property is also
verified on the specification generated without the
reduction technique.

4.4. Integrating the reduction into TLA+
specification

In what follows, we show how we implement
the reduction on TLA+ specification. As described
in Section 3, each execution of Next action
corresponds to executing an atomic C statement.
The reduction in C programs, consists in translating
a sequence of C statements into one action instead
of multiple ones. Let i be the identifier of a statement
and j be the identifier of its successor. To do that, we
generate for each statement i a new function that we
call stmt longi() defined below.

stmt longi(id,mem)
∆
=

stmt longj(id, dispatch(id,mem))

The definition of stmt longi(id,mem) consists in
calling the function of the successor statement j,
noted by stmt longj() and passing as argument the
memory state returned by dispatch(id,mem).

State Space Reduction Strategie for Model Checking Concurrent C Programs

71

(a) Before reduction (b) After reduction

Figure 8: The control flow graph of the Producer() and Consumer() functions before and after reduction

To generate a reduced TLA+ specification, we
iterate over all statements and when the ag-
glomeration predicate returns true for a state-
ment i, its translation consists in calling the func-
tion stmt longj(id, dispatch(id,mem)). Otherwise,
we call dispatch(id,mem) function.

The C program is thus specified by the formula
Spec given by equation (1), except that the Next
action calls a new function dispatch red(), instead of
dispatch() function. For the example of figure 2a, the
dispatch red() function is defined in Figure 9:

The dispatch red(id,mem) function calls according
to the value the program counter pc contained at the
head of mem.register[id] the corresponding TLA+
function to execute.

5. EXPERIMENTS

The reduction technique is totally automatic and was
integrated in C2TLA+ which is a Frama-C (Cuoq
et al. 2012) plugin, implemented in OCaml. This
Section is concerned with our practical experience.
We use the Mthread plugin results and the syntactic
analysis as described in Section 4 to implement our
agglomeration technique.

We consider one sequential C program and four
concurrent programs:

dispatch red(id,mem)
∆
=

CASE Head(mem.st[id]).pc = ”inc 6”
→ inc long 6(id,mem)

� Head(mem.register[id]).pc = ”inc 7”
→ inc long 7(id,mem)

� Head(mem.register[id]).pc = ”p1 11”
→ p1 long 11(id,mem)

� Head(mem.register[id]).pc = ”p1 12”
→ p1 long 12(id,mem)

� Head(mem.register[id]).pc = ”p1 13”
→ p1 long 13(id,mem)

� Head(mem.register[id]).pc = ”p1 14”
→ p1 long 14(id,mem)

� Head(mem.register[id]).pc = ”p2 19”
→ p2 long 19(id,mem)

� Head(mem.register[id]).pc = ”p2 20”
→ p2 long 20(id,mem)

� Head(mem.register[id]).pc = ”p2 21”
→ p2 long 21(id,mem)

� OTHER → mem

Figure 9: Example of the dispatch red() function definition

State Space Reduction Strategie for Model Checking Concurrent C Programs

72

Table 1: Comparing Model Checking Results with & without Reduction (time in seconds)

Prorgam #Proc Without reduction With reduction Factor
#St #T #St #T

Zunebug 1 389 0.147 2 0.136 99.48

Dekker 2 173 0.128 70 0.109 59.53

Peterson 2 107 1.37 22 0.131 79.43
4 1.080.161 59.2 31.221 4.82 97.10

Bakery 2 2.389 1.91 223 1.67 90.66
4 50.515.927 1560 835.355 76.6 98.36

Philos 4 9.791.509 366 146.106 12 98.5
5 >619.309.984 25340 4.179.520 352 99.32

• Zunebug which is a bug in the internal clock
driver of Zune 30GB music player. The source
code is taken from (Weimer et al. 2010).

• Lamport’s Bakery and Peterson algorithms ob-
tained from (Raynal 2013) and Dekker mu-
tual exclusion algorithm presented in (Dijkstra
1968).

• Dining philosopher problem. We use the
solution that appears in Tanenbaum’s book
(Tanenbaum 2007).

These programs make typical examples for demon-
strating the strength of the state space reduction.
C2LTA+ takes as input a C program and generates
for each one the corresponding TLA+ specification.

Using the TLC model checker, we compute the total
number of generated states and we verify a set of
properties on the two specifications.

Results of experiments are shown in Table 1, where
#Proc denotes the process number, #St denotes the
numbers of states and #T denotes the time for model
checking in seconds. Columns 3 to 6 give information
about the state space generated with and without
applying the reduction technique. The last column
indicates the reduction factor, the ratio between the
state space generated without reduction and the one
after applying the reduction technique.

All experimental results were performed on an
Intel Core Pentium i7-2760QM machine with 8
cores (2.40GHz each), with 8Gb of RAM memory.
For zunebug, one property to verify is program
termination, which is a liveness property that we
express as follows:

termination
∆
= �(Head(memory.register[1]) = 〈〉)

This property asserts that the register of the
program will eventually be empty. For the TLA+

specification without agglomeration, checking this
property causes TLC to report an error. This error
occurs when the code takes as input the last day
of a leap year, causing the code to enter into an
infinite loop. After applying the reduction technique
for the zunebug program, the state space size of its
corresponding TLA+ specification equals 2. This is
due to the fact that the program is sequential. Model
checking the TLA+ code with the last day of a leap
year causes the TLC model to report an incorrect
recursive function definition.

For the concurrent programs, the mutual exclusion
property has been successfully verified on Peterson,
Bakery, Dekker and Philosophers benchmarks. As
expected, the size of the state space with agglom-
erations is always smaller than the one without
agglomerations. For the philosopher example with
5 processes, the state space without agglomeration
takes more than 7 hours to be model checked.
However, using the reduction technique the specifi-
cation is verified in 6 minutes. The reduction factor
in this cas reaches 99.32. The reduction technique
obtains good results on these benchmarks due to the
elimination of some intermediate states.

6. RELATED WORK

There are a wealth of research contributions on
formal verification of software as well as techniques
for the reduction of the state space.

Program slicing is a technique introduced by
(Weiser 1981) for simplifying sequential programs for
debugging and program understanding. It consists
in removing from the program features that are
irrelevant for the property to be verified. Recently,
slicing technique has been used to reduce the state
space of a system in model checking. It has been
applied to Promela (Millett and Teitelbaum 2000),
the input language for the Spin model checker

State Space Reduction Strategie for Model Checking Concurrent C Programs

73

(Holzmann 1997). The interested reader can refer to
(Tip 1995) for a detailed description of the different
approaches used in the program slicing.

Predicate abstraction (Graf and Saı̈di 1997) is a
technique in which a set of predicates over the
programs variables is used to construct an abstract
program. This technique is being used in SLAM (Ball
and Rajamani 2002), BLAST (Henzinger et al. 2003)
and MAGIC (Chaki et al. 2004).

Other approaches perform reduction during explo-
ration of the state space of the program. For exam-
ple, partial order reduction (Valmari 1989) is a tech-
nique which explores only a representative subset
of the state space of a model. The basic idea is to
exploit the commutativity caused by the interleav-
ings of transitions, which result in the same state.
This technique was first introduced for checking the
absence of deadlock. Subsequently, a number of
variants of this technique have been developed and
integrated in verification tools, like Spin (Holzmann
1997) and Verisoft (Godefroid 1997).

Although we have mentioned some projects in the
C context, there are also significant works interested
in model checking the Java language. For example,
JPF (Visser et al. 2003) uses state compression
technique to handle big states, partial order and
symmetry reduction, slicing, abstraction and runtime
analysis techniques to reduce the state space.

In this work, the state space reduction technique that
we propose is closer to that originally introduced by
(Berthelot 1986) in Petri nets formalism. Berthelot
developed a large set of reduction rules for reducing
the complexity of verification. Extended work has
been proposed by (Haddad and Pradat-Peyre 2006).
Our work differs from this latter by the fact that the
model of our TLA+ specification is a state transition
system and the agglomeration predicate depends
on the analysis of the C program. Our reduction
technique is applied during the generation of TLA+
code unlike the partial order reduction technique
which performs reduction during the construction of
the state space. Besides, we use TLA+ as formal
framework which provides an expressive power to
specify the semantics of a programming language
and can reason about concurrent systems and
can express safety and liveness properties unlike
SLAM and BLAST which have limited support for
concurrent properties as they only check safety
properties.

7. CONCLUSION AND FUTURE WORK

We have proposed a technique to reduce the state
space for model checking C programs. We used

C2TLA+ to translate the semantics of C to the
formal specification language TLA+. This reduction
technique is based on an analysis phase, which
defines an approximate agglomeration predicate that
states whether a statement can be agglomerated
or not. We implemented this predicate by applying
a syntactic and semantic analysis on C Programs.
We illustrated the effectiveness of applying the
agglomeration technique to reduce the state space
during the verification of C programs and also as
well as to define an abstract TLA+ specification that
model the behavior of C programs.

We aim to integrate a mechanism for structuring
large TLA+ specifications from C programs using
a refinement process between different levels of
abstraction. Finally, we are planning to apply the
methodology on a critical part of the microkernel of
the PharOS (Lemerre et al. 2011) real-time operating
system (RTOS).

REFERENCES

Mthread plugin. URL http://frama-c.com/

mthread.html.

Thomas Ball and Sriram K. Rajamani. The SLAM
project: Debugging System Software via Static
Analysis. SIGPLAN Not, 2002.

Gérard Berthelot. Checking properties of nets
using transformation. In Advances in Petri Nets
1985, Covers the 6th European Workshop on
Applications and Theory in Petri Nets-selected
Papers, pages 19–40, London, UK, UK, 1986.
Springer-Verlag.

Sagar Chaki, Edmund M. Clarke, Alex Groce,
Somesh Jha, and Helmut Veith. Modular
verification of software components in c. IEEE
Trans. Software Eng., 30(6):388–402, 2004.

Edmund M. Clarke, Orna Grumberg, and David E.
Long. Model Checking and Abstraction. ACM
Trans. Program. Lang. Syst., 16(5):1512–1542,
1994.

Edmund M. Clarke, Jr., Orna Grumberg, and
Doron A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov,
Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A Software Analysis
Perspective. In Proceedings of the 10th
international conference on Software Engineering
and Formal Methods, SEFM’12, pages 233–247,
Berlin, Heidelberg, 2012. Springer-Verlag. URL
http://frama-c.com/.

State Space Reduction Strategie for Model Checking Concurrent C Programs

74

Edsger W. Dijkstra. Cooperating sequential
processes. In F. Genuys, editor, Programming
Languages: NATO Advanced Study Institute,
pages 43–112. Academic Press, 1968.

Jean-Claude Fernandez, Laurent Mounier, Claude
Jard, and Thierry Jron. On-the-fly verification
of finite transition systems. Formal Methods in
System Design, 1(2-3):251–273, 1992.

Patrice Godefroid. Model Checking for Programming
Languages using VeriSoft. In In Proceeedings
of the 24th ACM Symposium on Principles of
Programming Languages, pages 174–186. ACM
Press, 1997.

Ursula Goltz, Ruurd Kuiper, and Wojciech Penczek.
Propositional Temporal Logics and Equivalences.
In W.R. Cleaveland, editor, CONCUR ’92, volume
630 of Lecture Notes in Computer Science, pages
222–236. Springer Berlin Heidelberg, 1992.

Susanne Graf and Hassen Saı̈di. Construction of
Abstract State Graphs with PVS. In Proceedings
of the 9th International Conference on Computer
Aided Verification, CAV ’97, pages 72–83, London,
UK, UK, 1997. Springer-Verlag.

Serge Haddad and Jean-François Pradat-Peyre.
New Efficient Petri Nets Reductions for Parallel
Programs Verification. Parallel Processing Letters,
16(1):101–116, 2006.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majum-
dar, and Gregoire Sutre. Software Verification with
BLAST. pages 235–239. Springer, 2003.

Gerard J. Holzmann. The Model Checker SPIN.
IEEE Trans. Software Eng., 23(5):279–295, 1997.

Leslie Lamport. The Temporal Logic of Actions.
ACM Trans. Program. Lang. Syst., 16(3):872–923,
1994.

Leslie Lamport. Specifying Systems, The TLA+
Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

M. Lemerre, E. Ohayon, D. Chabrol, M. Jan, and
M-B. Jacques. Method and Tools for Mixed-
Criticality Real-Time Applications within PharOS.
In Proceedings of AMICS 2011: 1st International
Workshop on Architectures and Applications for
Mixed-Criticality Systems, 2011.

Zohar Manna and Amir Pnueli. The Temporal Logic
of Reactive and Concurrent Systems. Springer-
Verlag New York, Inc., New York, NY, USA, 1992.

Amira Methni, Matthieu Lemerre, Belgacem Ben He-
dia, Serge Haddad, and Kamel Barkaoui. Spec-
ifying and Verifying Concurrent C Programs with

TLA+. In Formal Techniques for Safety-Critical
Systems, volume 476 of Communications in Com-
puter and Information Science, pages 206–222.
Springer, 2015.

Lynette I. Millett and Tim Teitelbaum. Issues
in Slicing PROMELA and its Applications to
Model Checking, Protocol Understanding, and
Simulation. International Journal on Software
Tools for Technology Transfer, 2(4):343–349,
2000.

George C. Necula, Scott Mcpeak, Shree P. Rahul,
and Westley Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of
C Programs. In International Conference on
Compiler Construction, pages 213–228, 2002.

Michel Raynal. Concurrent Programming: Algo-
rithms, Principles, and Foundations. Springer,
Heidelberg, 2013.

Andrew S. Tanenbaum. Modern Operating Systems.
Prentice Hall Press, Upper Saddle River, NJ, USA,
3rd edition, 2007.

Frank Tip. A Survey of Program Slicing Techniques.
Journal of Programming Languages, 3:121–189,
1995.

Antti Valmari. Stubborn Sets for Reduced State
Space Generation. In Proceedings of the
Tenth International Conference on Application and
Theory of Petri Nets, pages 1–22, 1989.

Willem Visser, Klaus Havelund, Guillaume Brat,
Seungjoon Park, and Flavio Lerda. Model
Checking Programs. Automated Software Engg.,
10(2):203–232, April 2003.

Westley Weimer, Stephanie Forrest, Claire
Le Goues, and ThanhVu Nguyen. Automatic
Program Repair with Evolutionary Computation.
Commun. ACM, 53(5):109–116, May 2010.

Mark Weiser. Program Slicing. In Proceedings of
the 5th International Conference on Software En-
gineering, ICSE ’81, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.

State Space Reduction Strategie for Model Checking Concurrent C Programs

75

Part III

Session: Performance evaluation

77

Timeout Interaction and Migration
in Distributed Systems

Gabriel Ciobanu
Romanian Academy, Institute of Computer Science, Iaşi, Romania

gabriel@info.uaic.ro

The complexity of distributed systems is increasing,
and so they require appropriate formalisms and
techniques for their specificatio and verification
Since these distributed systems grow more complex
and more powerful, it is important to fin scaling
formal methods for both specificatio and verifi
cation. Successful formalisms for specificatio and
verificatio of certain distributed systems are given
by networks of timed automata and by Petri nets;
however, these formalisms are not easily scalable,
a reason why we look for compositional specificatio
and verificatio techniques. In terms of specification
a process calculus would solve the compositional
issue. Moreover, in distributed systems coordination
is given by time scheduling, access to resources,
and interaction among processes. When modelling
distributed systems it is useful to have an explicit
notion of location, local clocks, explicit migration and
resource management.

We have introduced in Ciobanu and Koutny (2008)
a rather simple and expressive formalism called
TIMO as a simplifie version of timed distributed
π-calculus Ciobanu and Prisacariu (2006) which
is an extension of distributed π-calculus Hennessy
(2007). TIMO is a process calculus with explicit
migration allowing the use of timers for controlling
process mobility and interaction. Migration involves
several explicit locations. Each location has a local
clock, modelling distributed systems in a more
accurate way. Timing constraints for migration allow
to specify a temporal timeout after which a process
must move to another location. Two processes may
communicate only if they are present at the same
location. A timer denoted by ∆3 associated to a
migration action go∆3work indicates that the process
moves to location work after at most 3 time units.
It is also possible to indicate a deadline for a
communication over a channel; if a communication

action does not happen before this deadline, the
process gives up and switches its operation to an
alternative process. E.g., a timer ∆5 associated to
an output action a∆5!〈v〉makes the channel available
for communication only for a period of 5 time units.
Considering suitable data sets including a set Loc
of locations, a set Chan of communication channels
and a set Id of process identifier , the syntax of
TIMO is presented in Table 1.

Using TIMO , we can specify and analyse complex
timing systems in a new and intuitive way. Aiming
to bridge the gap between the existing theoretical
approach of process calculi and forthcoming realistic
programming languages for distributed systems,
TIMO represents in several aspects a prototyping
language for multi-agent systems featuring mobility
and local interaction. Starting with a firs version
proposed in Ciobanu and Koutny (2008), several
variants were developed during the last years. We
mention here the access permissions given by a type
system in perTIMOCiobanu and Koutny (2011a),
as well as a probabilistic extension pTIMOCiobanu
and Rotaru (2013). Inspired by TIMO , a fl xible
software platform was introduced in Ciobanu and
Juravle (2009, 2012) to support the specificatio
of agents allowing timed migration in a distributed
environment.

In terms of verification interesting properties de-
scribed by TIMO regarding could be analysed and
checked. The properties of distributed systems de-
scribed by TIMO refer to process migration, time con-
straints, bounded liveness and optimal reachability
Aman et. all (2012); Ciobanu and Koutny (2011b).
A verificatio tool called TIMO@PATCiobanu and
Zheng (2013) was developed by using Process
Analysis Toolkit (PAT), an extensible platform for
model checkers. A formal relationship between

©
79

P ::= a∆lt !〈~v〉 then P else P ′ p (output)
a∆lt?(~u: ~X) then P else P ′ p (input)
go∆lt l then P p (move)
P | P ′ p (parallel)
0 p (termination)
id(~v) (definition
sP (stalling)

L ::= l[[P]] Located Processes

N ::= L p L | N Networks
Table 1: TIMO Syntax.

rTIMO and timed automata presented in Aman and
Ciobanu (2013) allows the use of model checking
capabilities provided by the well-known verificatio
tool UPPAAL . A probabilistic temporal logic called
PLTM was introduced in Ciobanu and Rotaru (2013)
to verify complex probabilistic properties making
explicit reference to specifi locations, temporal con-
straints over local clocks and multisets of actions.

Acknowledgements. The work was supported by
a grant of the Romanian National Authority for
Scientifi Research, project PN-II-ID-PCE-2011-3-
0919.

REFERENCES

Aman, B. and Ciobanu, G. (2013) Real-Time
Migration Properties of rTIMOVerifie in UPPAAL .
In Hierons, R., Merayo, M.and Bravetti, M. (Eds.),
SEFM 2013. Lecture Notes in Computer Science
8137, 31–45.

Aman, B., Ciobanu, G. and Koutny, M. (2012) Be-
havioural Equivalences over Migrating Processes
with Timers. In Giese, H. and Rosu, G. (Eds.)
FMOODS/FORTE 2012, Lecture Notes in Com-
puter Science 7273, 52–66.

Ciobanu, G. (2008) Behaviour Equivalences in
Timed Distributed π-Calculus. In Wirsing, M.,
Banâtre, J.-P., Hölzl, M. and Rauschmayer, A.
(Eds.), Lecture Notes in Computer Science 5380,
190–208.

Ciobanu, G. and Juravle, C. (2009) A Software
Platform for Timed Mobility and Timed Interaction.
In Lee, D., Lopes, A. and Poetzsch-Heffter, A.
(Eds.) FMOODS/FORTE 2009, Lecture Notes in
Computer Science 5522, 106–121.

Ciobanu, G. and Juravle, C. (2012) Flexible
Software Architecture and Language for Mobile
Agents. Concurrency and Computation: Practice
and Experience24, 559–571.

Ciobanu, G. and Koutny, M. (2008) Modelling and
Verificatio of Timed Interaction and Migration.
In Fiadeiro, J.L., Inverardi, P. (Eds.) FASE 2008,
Lecture Notes in Computer Science 4961, 215–
229.

Ciobanu, G. and Koutny, M. (2011) Timed Migration
and Interaction With Access Permissions. In
Butler, M., Schulte, W. (eds.) FM 2011, Lecture
Notes in Computer Science 6664, 293–307.

Ciobanu, G. and Koutny, M. (2011) Timed Mobility
in Process Algebra and Petri nets. The Journal of
Logic and Algebraic Programming 80(7), 377–391.

Ciobanu, G. and Prisacariu, C. (2006) Timers for
Distributed Systems. In Di Pierro, A. and Wiklicky,
H. (Eds.) QAPL 2006,Electronic Notes in Theoretic
Computer Science 164(3), 81–99.

Ciobanu, G. and Rotaru, A. (2013) A Probabilistic
Logic for PTIMO. In Liu, Z., Woodcock, J. and Zhu,
H. (Eds.) ICTAC 2013, Lecture Notes in Computer
Science 8049, 141–158.

Ciobanu, G. and Zheng, M. (2013) Automatic
Analysis of TIMOSystems in PAT. In Proc.
18th International Conference on Engineering of
Complex Computer Systems (ICECCS 2013),
IEEE Computer Society, 121–124.

Hennessy, M. (2007) A distributed π-calculus.
Cambridge University Press.

Timeout Interaction and Migration in Distributed Systems

80

Model-Based Verification of the DMAMAC
Protocol for Real-time Process Control

Admar Ajith Kumar Somappa
Bergen University College

University of Agder
aaks@hib.no

Andreas Prinz
University of Agder

andreas.prinz@uia.no

Lars M Kristensen
Bergen University College

lmkr@hib.no

Medium Access Control (MAC) protocols are responsible for managing radio communication that constitute
the main energy consumer in wireless sensor-actuator networks. The Dual-Mode Adaptive MAC (DMAMAC)
protocol is a recently proposed MAC protocol for process control applications in industrial automation. The
goal of the DMAMAC protocol is to improve energy efficiency along with addressing real-time requirements
for process control applications. The DMAMAC protocol switches between two operational modes that
correspond to the two main states in process control: the transient state and the steady state. The state-
switch is a safety critical function of the DMAMAC protocol (along with other functional properties) motivating
the application of formal verification techniques. In this article, we use timed automata and the Uppaal tool to
verify the design of the DMAMAC protocol. We have created a time-based model in Uppaal that constitutes a
formal specification of the DMAMAC protocol. Using this model, we have successfully verified key properties
of the DMAMAC protocol, thereby increasing confidence in the design of the protocol.

Model checking, Timed automata, Medium Access Control Protocols, Wireless Sensor Actuator Networks

1. INTRODUCTION

A Wireless Sensor Actuator Network (WSAN) (Aky-
ildiz and Kasimoglu (2004)) consists of sensors and
actuators that use radio to send, relay, and receive
information. WSANs are used in a wide range of
domains including process- and factory automation,
smart home automation, and health-care. Feedback-
based control loops that use wired or wireless so-
lutions are collectively known as Networked Con-
trol Systems (NCS) (Hespanha et al. (2007)). NCS
mainly use wired communication systems, but are
increasingly adopting wireless communication. The
salient feature of a wireless solution is the reduction
in cost and size compared to the use of wired net-
works. The use of wireless communication, however,
also has shortcomings and it has not yet become the
de-facto replacement for wired solutions. The limi-
tations of wireless solutions include low-bandwidth,
energy efficiency, signal interference, and packet-
loss. Energy efficiency in particular is an important
concern when devices are battery powered.

Wireless solutions are made up of a collection of
protocols that cater for different functions. Medium
Access Control (MAC) is one of the functions that
are critical to the proper operation of the entire

WSAN. MAC protocols govern the communication
and control the use of the radio on each node
in the network. The radio module is the dominant
consumer of energy in wireless nodes. The Dual-
Mode Adaptive MAC (DMAMAC) protocol is a
recently proposed MAC protocol in (Kumar S. et al.
(2014)) for process control applications. The protocol
is aimed to provide an energy efficient solution.
The DMAMAC protocol was proposed for NCSs
with real-time and energy efficiency requirements. In
particular, it targets process control applications that
fluctuate between two states of operation: steady
and transient. Fig. 1 shows a typical process control
with two states. The transient state corresponds to
the process state with large and frequent change
in measurements of physical quantities, resulting in
a high data rate. The steady state refers to the
process state with measurements contained within
a controlled range of values, thus requiring less
data transfer. An example is process control for
chemical reactors. The varying physical quantities
are temperature and pressure which are measured
by sensors. This can be controlled by varying the
inflow of chemicals to the chemical reactors and
using coolants, controlled by actuators. The state-
switch is a safety critical feature of the DMAMAC
protocol and can benefit from formal verification to
ensure proper functioning.

©
81

Figure 1: Process control states

Model-checking is a powerful technique for verifica-
tion of protocol designs. Model-checking allows for
exhaustive verification and has been widely used on
related protocols (see, e.g., (Fehnker et al. (2012,
2007); Tschirner et al. (2008)). Verification in the
early design phase can be used to ensure the
behavioral correctness of protocols. Model-checking
assists in discovering design faults by exhaustively
traversing all possible execution traces of a given
model. Furthermore, model-checking tools can pro-
vide error-traces to failure states, thus assisting
in resolving any discovered design issues. Uppaal
(David et al. (2011)) is a modelling and verification
tool-suite that supports model checking of real-time
systems. In addition to model-checking and verifica-
tion, Uppaal also supports simulation which can be
used to provide useful insights into the operation of
a protocol.

In this article, we apply the Uppaal tool to analyze
qualitative features of the DMAMAC protocol. We
present a formal specification of the DMAMAC
protocol in the form of a network of timed automata
and verify safety properties related to the absence
of faulty states. Additionally, we verify real-time
properties including switch delay and maximum
data delay. The timed modelling of the DMAMAC
protocol is based on a Finite State Machine (FSM)
representation of the sensors, actuators, and the
sink node in the WSAN network configuration under
consideration.

1.1. Related Work

Uppaal has been widely used to model and verify
communication protocols (see, e.g., (Fehnker et al.
(2012); Tschirner et al. (2008); Fehnker et al.
(2007)). The Lightweight Medium Access Control
(LMAC) (Fehnker et al. (2007)) protocol is the
closest MAC protocol modelling related to the
work presented in this article. The LMAC and the
DMAMAC protocols are two distinct protocols with
distinct goals, and differ significantly in their base
features. The LMAC protocol is a self-organising
protocol with nodes selecting their own slots i.e.,
time duration allocated for data transfer. The focus
in the LMAC protocol verification is on efficient slot
selection and collision detection. In the DMAMAC

protocol, the slot scheduling is done statically
and offline prior to deployment. The focus of the
DMAMAC protocol is to provide an energy efficient
solution along with efficient switching between
the two operational modes. It requires a different
model to represent the features of the DMAMAC
protocol than the one used for the LMAC protocol.
In (Tschirner et al. (2008)), the authors have
focused mainly on modelling the Chipcon CC2420
transceiver. This work is related in terms of their
use of a packet collision model and how collisions
are observed. We use a collision model similar
to (Tschirner et al. (2008); Fehnker et al. (2007)).
With the extension of Statistical Model-Checking
(SMC) features, Uppaal can also be used to assess
performance related queries as shown in the case
study (David et al. (2011)) of the Lightweight Medium
Access Control (LMAC) protocol.

1.2. Outline

The rest of the article is organised as follows. In
Sect. 2 we briefly introduce the DMAMAC protocol.
For extensive details, we refer to (Kumar S. et al.
(2014)). Section 3 describes in detail the constructed
Uppaal model of the DMAMAC protocol. As part
of this, we briefly introduce the constructs of timed
automata as implemented in Uppaal, and perform
some initial validation of the protocol model. In Sect.
4 we complete the validation of the constructed
model. The verification of the protocol for different
deployment configurations is discussed in Sect. 5.
Finally in Sect. 6 we sum up the conclusions and
discuss future work. The reader is assumed to be
familiar with the basic concepts and operation of
MAC protocols, including superframes and slots,
and the principles of Time Division Multiple Access
(TDMA) and Carrier Sense Multiple Access (CSMA).

2. DMAMAC PROTOCOL

The DMAMAC protocol (Kumar S. et al. (2014))
has two operational modes catering for the two
states of process control applications: transient
mode and steady mode. The protocol is based
on Time-Division Multiple Access (TDMA) for
data communication and a Carrier Sense Multiple
Access (CSMA)-TDMA hybrid for alert message
communication. The basic functioning of the protocol
is based on the GinMAC protocol (Suriyachai
et al. (2010)) proposed for industrial monitoring
and control. The network topology of the DMAMAC
protocol consists of sensor nodes, actuator nodes,
and a sink. The sensor nodes are wireless nodes
with sensing capability which sense a given area
and update the sink by sending the sensed data.
The actuator nodes are wireless nodes equipped
with actuators, which act on the data performing a

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

82

physical operation. It is also possible to have wireless
nodes with both sensors and actuators. The sink is
a computationally powerful (relative to the nodes)
wire powered node which collects the sensed data,
performs data processing on it, and then sends the
results to corresponding actuators.

Figure 2: The network topology for DMAMAC protocol

Similar to the GinMAC protocol, the network
deployment for the DMAMAC protocol is based on
a tree topology as shown in Fig. 2. The solid lines
between nodes represent data communication. The
dashed lines represent nodes which can hear each
other, but which have no direct data communication
with each other. Each level in the tree topology is
ranked (marked with “R#”, # is 1 or 2), with the sink
having the lowest rank number and the farthest leaf
nodes having the highest rank number. This ranking
is exploited in the alert message sending procedure.

Firstly, we discuss the key assumptions that were
made to support the design of the protocol. Further,
we explain in brief the working of the two operational
modes and the respective superframes they use.

• The nodes are assumed to be time synchro-
nized via an existing time synchronization pro-
tocol. Thus, the time synchronization mecha-
nism is not defined as a part of the protocol.
• The sink is assumed to be powerful, and it can

reach all nodes in one hop.
• A pre-configured static network topology with

no mobility is assumed.
• A single slot accommodates both a data packet

and a corresponding acknowledgement.

Figure 3: The transient superframe of the DMAMAC
protocol

2.1. Transient mode

The transient mode is designed to imitate the tran-
sient state operation in process control. During tran-
sient state, the process changes rapidly generating
data at a faster rate relative to the steady mode.
During the transient mode operation, the DMAMAC
protocol uses the transient superframe shown in Fig.
3. The superframe includes a data part for data
transfer from the sensors to the sink, followed by a
data part with data being sent from the sink to the
actuators, and then a sleep part. The data part also
includes a notification message slot from the sink
to all nodes, and a sink processing slot. A typical
transient mode operation cycle is described below:

• A notification message is sent from the
sink to all the nodes. The notification mes-
sage includes control data like state-switch
message and time-synchronization. Time-
synchronization is an integral part of TDMA
based protocols.
• The data part is executed with data transmis-

sion from sensors to sink and then to actuators.
• The sleep part is executed where all sensors

and actuators enter sleep mode in order to
improve energy efficiency. This part represents
the situation where all nodes are in sleep
mode. Individually, the nodes are in sleep
mode when they are not performing other
tasks.

2.2. Steady Mode

The steady mode operation is designed to operate
during the steady state of the controlled process.
The steady superframe used in the steady mode
operation is shown in Fig. 4. In addition to the
parts that also exist in the transient superframe,
the steady superframe contains an alert part. The
alert part is used to ensure that the state-switch
from steady to transient occurs whenever a sensor
detects a threshold interval breach in its reading.
This threshold is set by the sink when the switch
from transient to steady is made. Note that w.r.t

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

83

Figure 4: The steady superframe of the DMAMAC protocol

(Kumar S. et al. (2014)) a slightly modified steady
mode superframe is used. There are notification
slots placed at the end of each transient (Nt) part.
This is done to facilitate immediate application of
alert, and making a state-switch. In the alert part,
one slot is allocated to each level or to nodes with
the same rank. All the nodes in the same rank have
the possibility to send an alert message in this slot.
The alert sending method is described later. A typical
steady mode operation cycle is as follows:

• A notification message is followed by the data
and the sleep part, similar to the working in
transient mode operation.
• (Alert part) Sensor nodes that have alert mes-

sages to be communicated use appropriate
slots provided for each rank to notify parents
about the alert. This is relayed towards the sink
which then makes the switch to the transient
state. In an absence of alert, sensor nodes still
wake up on their alert receive slot and then
enter sleep mode until the next notification slot.
• In the alert part, the notification slot is placed

at the end. This is to ensure a quick transition
between the two states. All regular nodes
wake up in this slot, and receive a notification
message from the sink. Alert notification to
change superframes is sent here.

2.3. Change of superframes

A process switches between two states: transient
and steady. The DMAMAC protocol follows these
states via its transient and steady mode operation.
There are two switches possible: transient to steady
and steady to transient. The latter is a critical
switch since the data rate in transient is higher
and it is important to accommodate the higher data
rate in transient state. The switch from transient to
steady is decided by the sink, which determines if
the process is in steady state based on previous
readings. When the sink decides to make the switch,
it informs all the nodes in the network to change
their mode of operation. The message is sent via
a notification message from the sink. When the
sink node switches from transient to steady, it

defines a threshold interval within which the sensor
readings should lie, and informs the sensors about
this threshold interval. During the entire steady
mode operation, the sensors constantly monitor for a
threshold breach. When there is a breach, the sensor
node waits until its alert slot, then notifies its parent,
which in turn forwards the alert towards the sink.
The sink then informs the nodes in the network to
switch to transient in its immediate next notification
message.

2.4. Alert Message

An alert message is the message created by the
sensor nodes to notify the sink that a state-switch is
required. The sensor nodes choose a random delay
in the slot before transmitting the alert message. At
the completion of the time duration of the random
delay, the nodes sense the channel to prevent
collision. If a node during channel assessment
detects another node sending an alert message,
then it just drops its alert message. Collisions are
still possible, e.g., when two nodes choose the same
random delay or when two senders cannot listen to
each other but the receiver can listen to both. Nodes
check for a change of operational mode following the
sending of the alert. If no change occurs (because of
collision) the nodes save the alert and send the alert
again in the next alert slot.

3. THE DMAMAC UPPAAL MODEL

Uppaal (David et al. (2011)) is a tool-set based
on timed automata for model-checking of real-
time systems. It is an integrated tool environment
that supports modeling, simulation, validation, and
verification. An abstract representation of a real-time
system in the form of a model is structured as a
network of timed automata. The query language of
Uppaal allows for verification of safety, reachability,
liveness, and time-bounded properties. In Uppaal,
models are constructed as a network of templates
based on timed automata. Templates are used to
represent independent entities (e.g. a sensor node).
Uppaal consists of two simulators: a symbolic and a
concrete simulator. The symbolic simulator is used to

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

84

inspect the execution of the model step by step. For
certain queries, Uppaal outputs traces which can be
viewed in the symbolic simulator. This is useful for
pin-pointing error locations and sequences of events
that lead to errors/faults. The symbolic simulator also
shows all the templates in the model and message
sequence charts (MSC) can be used to visualize
communication between different processes. The
symbolic simulator also allows interactive step-wise
simulation of the model. Along with features similar
to the symbolic simulator, the concrete simulator
has the added advantages of firing transitions at a
specified time. For extensive detail on modeling in
Uppaal, we refer to (Behrmann et al. (2004)).

3.1. Model design decisions and assumptions

We use a non-deterministic timed automata model
to verify the properties of the DMAMAC protocol.
The constructed model has several sources of non-
determinism including the delay for sending alert
messages in nodes, and the decision made by the
sink to change from the transient mode to the steady
mode. Given the design of alert messages, collisions
are possible when sending alert messages. We use
a simplified collision model, detailed later in this
section. The sink and sensor/actuator nodes have
separate timed automata models. Local clocks are
used for each automaton. A global clock is used for
a common network time reflecting the assumption
on time synchronisation between the nodes. The
main aim of the verification of the DMAMAC protocol
model is to check that the two modes of operations
are working correctly given the presence of non-
deterministic choices (like collision) during execution
and the delays that may occur.

Below, we discuss the assumptions and design
decisions made during the construction of the
Uppaal model for the DMAMAC protocol.

• Packets are abstractly modeled without pay-
load. The messages or packets exchange
mechanism is represented by channel syn-
chronization in the Uppaal model.

• A time synchronization mechanism is provided
using clock variables in Uppaal. This can be
considered as a way of implementing the time
synchronization between nodes assumed by
the DMAMAC protocol.

• An exact model of CSMA results in a
rather complex model. Instead, we use
a representative CSMA procedure, which
imitates the service and effects of actual
CSMA on the working of the protocol. The
effects include skipping packet transmission
on detection of ongoing transmission and
also collision. This makes our model and
verification independent of the particular

CSMA procedure that may be used in
conjunction with DMAMAC.

• The collision caused due to the use of CSMA
has effects on the state-switch procedure.
A simple collision model is used, where we
record collision when two or more nodes send
packets at the same time. Collision results in
failure of the packets, thus affecting the state-
switch procedure.

A channel synchronization variable choice is used
to force enabled transmissions. This is a modeling
artifact and is not part of the protocol as such. In
Uppaal, execution of models can stay in a location
indefinitely even after outgoing edges are enabled.
To force the model execution to continue via enabled
outgoing edges, an urgent channel synchronization
is required.

3.2. Sink Model

The sink model is shown in Fig. 5. We have used
colors in the automaton locations to differentiate
between states. Both the sink and the node
automata begin in an initial location Start. The
sink initiates the startup procedure of the network
using a broadcast synchronization channel startup
on the edge towards the StateController location.
The function INITIALIZE() is used to set proper values
to local and global variables. The sink reaches
the StateController location upon having executed
the startup procedure of the network. The node
automata synchronize with the channel variable
startup, and reach the StateController location.

The StateController location represents an event
handler for handling transition between different
states in the state-machine. The sink model uses
a local clock variable “x”, which is active in all
states indicated by “x′ == 1”. “x′ == 0” can be
used to pause the clock counter. This is used as
an invariant on all states to represent continuously
running time. It also includes an invariant x ≤
currentMaxSlots ∗ 10 to prevent it from being in
the state beyond the maximum timeframe of the
active superframe (transient or steady). A typical
slot time in WSANs is 10 milliseconds, and this we
use the unit “ms” for time in our model. Given the
time unit of “ms”, the variable currentMaxSlots is
multiplied by 10 to obtain the slot-time. The use of the
StateController location is also similar to the self-
message handler in the commonly used OMNeT++
(Varga and Hornig (2008)) framework for MAC
protocols. The function of this particular handler is
to check the self-message that it receives, and to
act on the message by choosing an appropriate next
state. Also, it determines the next state which is then
sent as a self-message. The automaton changes
between the different locations (states) in the model

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

85

Figure 5: Uppaal Model of the sink

based on the local variable currentSlot, and the local
clock variable x.

The Notification location is reached when the sink
is due to send a notification message. The notifi-
cation message is sent by the sink, and received
by other nodes in the network. This is represented
by the broadcast channel regNotify[change], where
change carries a message of the status of the
Boolean variable changeSuperframe. The change-
Superframe variable is true when the sink needs to
indicate to the nodes a change in superframes to
switch the mode of operation. For both the steady to
transient switch and the transient to steady switch,
the sink uses changeSuperframe.

The switch from transient to steady is decided
by the sink. There are two separate notification
edges for transient mode and steady mode. In the
transient mode, the sink decides if it has to switch
to steady mode based on the random selection
statement (i : int[1, 10]) and the obtained change
value is sent over the channel. In the absence
of real inputs a random selection is used. The
edge with select statements (i : int[1, 10]) and
(change : int[0, 1]) is used in transient mode.
The second select statement (change : int[0, 1])
is a modeling artifact used to be able to send the
value of changeSuperframe over the channel via
the synchronization variable regNotify[change]. The
guard change == changeSuperframe makes sure
that the select statement selects the same value as
the changeSuperframe variable.

In the steady mode, a switch is based on alert
from nodes. The notification for the steady mode is

done via the edge with only one select statement
(change : int[0, 1]). As a symbolic representation, we
have used a guard x == (currentSlot ∗ 10) + 1 on
these edges, and an invariant x ≤ (currentSlot ∗
10) + 1 on location Notification to indicate a delay
of 1 ms for message transmission. Both these edges
use a function SINKRESET(), which resets the sink
variables at the beginning of a new superframe, and
implements changing of superframes.

The Sleep location is reached when the sink
or nodes do not have any active operations to
be conducted in the current slot. The edge to
Sleep is guarded by a Boolean function ISSLEEP()
which checks if the current slot is a sleep slot.
We use the urgent broadcast channel choice
(model artifact) to force this transition whenever
ISSLEEP() evaluates to true. In the absence of
this channel variable, the model can continue to
be in the location StateController forever even
when ISSLEEP() is true. The location Sleep has an
invariant x <= currentSlot ∗ 10 which indicates that
during execution, the control can be in the location
as long as the time does not exceed the value
currentSlot, which holds the value of the slot at which
the sink should wake up for its next event. This is set
by the function CALCULATEWAKEUP() when Sleep is
reached.

The location Sent is reached when the sink
sends data in its data slot. The Received location
is reached when the sink receives any sensor
data, and then sends an ACK via channel
synchronization. Location Received has an invariant
x ≤ (currentSlot ∗ 10) + 2. This invariant is used

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

86

Figure 6: Uppaal Model of a regular sensor/actuator node

to add a delay of 2 ms as a representation for the
time required for data communication. A follow up
guard on the ACK sending edge x == (currentSlot∗
10) + 2 makes sure that the delay is applied. Upon
sending or receiving of ACK synchronization, the
local variable currentSlot is incremented.

Lastly, the location ReceiveAlert is reached when
it is the sink’s turn to receive an alert. This
is determined by the alert levels defined in the
myLevel array variable represented by the guard
rxSlot[currentSlot] == myLevel[sinkId]. The sink
stays in the location for an entire slot duration (10
ms), and waits for any alerts from nodes it can
listen to. The CANLISTEN(I) function is used as a
guard to make sure that the sink listens to alerts
from only those nodes that are in its listening range
(same function used for nodes). The variable i given
as input to the function is the result of a select
statement i : nodeid t, which allows the node to
listen to any node that is transmitting. The guard
makes sure that the sink can listen to that particular
node. At the completion of the alert slot, the sink
checks if any collision has occurred via the function
CHECKCOLLISION(), and gives back the control to
the StateController.

3.3. Sensor/Actuator Node Model

The sensor/actuator node model is shown in Fig.
6. The node model is similar to the sink model
except for the notification handling procedure. Also,
the node template consists of an extra location for
sending alert messages. The notification part of the
node model is simpler, since nodes only receive
notifications. Location Notification is reached when

the node is in its notification slot (receive) in
either of the two types of superframes. The
nodes then synchronize on the channel variable
regNotify[change] from the sink, and reset the node
variables using the function NODERESET() based on
the value of the variable change.

The node model works similar to the sink model for
sleep, sent (data), received (data), and alert receive.
This means that in locations Sleep, Sent, Received,
and ReceiveAlert the node and the sink model have
the same modeling elements. Further, the location
SendAlert which handles the crucial part of alert
message sending is required by the protocol for the
switch of operational mode from steady to transient.
Based on the protocol specification, a node can send
an alert message when the sensed data crosses the
threshold interval. This threshold interval is set by
the sink depending on the particular process being
controlled. We imitate this event using a probability
weight-based selection for sending alert messages
as reflected in the edge towards SendAlert (shown
with dashed lines). The edge with probability weight
90 represents no alert to be sent. The one with
probability weight 10 represents the choice to send
an alert. The guards on the edge make sure it is
the alert slot of the node, and that the node does
not already have an alert to be sent. When the node
chooses to send an alert, a delay is chosen within the
interval [0, 8] via the select statement i : int[0, 8]. The
chosen value is assigned to the alertDelay variable.
The node then waits in the location SendAlert
for the duration of the delay and performs carrier
sense prior to sending the alert message. This is
represented by the edge with the guard function

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

87

Figure 7: Message sequence chart for carrier sense during Alert

Listing 1: Carrier Sense trace
(Sleep, receiveAlert , ReceiveAlert , ReceiveAlert ,Sleep, StateController , StateController ,Sleep)
choice : Node(5)[][3]−> // Delay of 3 ms chosen by node 5
(Sleep, ReceiveAlert , ReceiveAlert , ReceiveAlert ,Sleep,SendAlert, StateController ,Sleep)
choice : Node(6)[][3]−> // Delay of 3 ms chosen by node 6
(Sleep, ReceiveAlert , ReceiveAlert , ReceiveAlert ,Sleep,SendAlert,SendAlert,Sleep)
ALERT[5]: Node(5)−> Node(1)[5]Node(2)[5]Node(6)[5] // Alert send by node 5 is heard by node 2 and node 6
(Sleep, ReceiveAlert , ReceiveAlert , ReceiveAlert ,Sleep, StateController , StateController ,Sleep)

CANLISTEN(I), where the node synchronizes to the
broadcast channel ALERT[i] sent by other nodes
in the vicinity (listening range) to skip sending a
message.

We use a representative carrier sense mechanism
in the model. Nodes skip sending an alert when
another node within their listening range is sending
with the same delay. In reality, carrier sense would
involve listening to the channel for a small duration
before sending the packets. Also, in a case where
two nodes start carrier sense at the same instant,
their packets would collide since they would start
sending at the same instant after the carrier sense
delay. In the carrier sense mechanism presented
here, we represent a case in which two nodes can
hear each other and have the same delay by one
of the two nodes skipping the sending the alert
message. When the nodes do not hear each other
and the receiver can hear both, the packets collide
at the receiver. An example message sequence of
carrier sense is shown in Fig. 7. In this example,
Node(5) and Node(6) are trying to send alert with
the same delay (3ms) as shown in List. 1. In the
listing, we have added comments with prefix “//” to
add more detail. When Node(5) begins to send the
alert, Node(6) senses the sending and skips sending
alert via the edge guarded by CANLISTEN(I) function.

In a case where the channel is free, the nodes send
an alert at the time instant after the chosen delay.
The sending is represented using the send part
of the broadcast channel variable ALERT[id]!. The
local variable currentSlot is updated, along with the
variable sentAlert, and function UPDATERECORD().
The variable sentAlert is used by the node to
remember that it has sent an alert. In a case where
no superframe change occurs after an alert was
sent, a node updates its local variable savedAlert.
The UPDATERECORD() function updates a global
array variable alertTimeRecord[] which stores the

delay chosen by each node in the given round.
This is used to check if a collision has occurred. In
certain cases when the alert messages fail to reach
the sink due to collision, the savedAlert variable
is used to save the alert, that is sent again in
the next round. During this, the probability edge is
not used. Instead, the nodes directly move to the
location SendAlert via the edge (solid line) with
the guard (alertReceived||savedAlert). The variable
alertReceived represents the case when nodes
have to forward an alert received from other nodes
towards the sink. The nodes then choose a new
delay value from the interval [0, 8] for sending the
alert message again.

3.4. Collision

We use a simple collision model similar to the
one used in (Tschirner et al. (2008)) and (Fehnker
et al. (2007)). In the LMAC (Fehnker et al. (2007))
protocol, when two nodes send a packet in the same
slot it is considered as a collision. In the DMAMAC
protocol model, collision is counted when a node
receives at least two alert messages with the same
delay in the same alert slot. In our model, we assume
that apart from its child nodes, the parents can
also listen to nodes in the vicinity (similar to real
networks). We define statically which other nodes a
given node can listen to. Based on the representative
carrier sense model, the collision occurs at a node
only when it receives two alert messages from nodes
(of the same rank) that cannot listen to each other,
and had chosen the same delay within the alert
slot. A message sequence chart showing a collision
occurrence at the sink is shown in Fig. 8.

The trace corresponding to the Message Sequence
Chart in Fig. 8 is shown in List. 2. In the considered
scenario, Node(1) and Node(3) choose the same
delay of 7 (ms) independently. Since they cannot
listen to each other their alert packets end up

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

88

Figure 8: Message sequence chart for collision at the sink

Listing 2: Collision Trace
(ReceiveAlert , StateController , Notification , StateController ,Sleep,Sleep,Sleep ,Sleep)
choice : Node(1)[][7]−> // Delay of 7 ms chosen by node 1
(ReceiveAlert ,SendAlert, Notification , StateController ,Sleep,Sleep,Sleep ,Sleep)
choice : Node(3)[][7]−> // Delay of 7 ms chosen by node 3
(ReceiveAlert ,SendAlert, Notification ,SendAlert,Sleep,Sleep ,Sleep ,Sleep)
ALERT[1]: Node(1)−> Sink[1] // Alert sent by node 1 to the sink
(ReceiveAlert , StateController , Notification ,SendAlert,Sleep,Sleep,Sleep ,Sleep)
ALERT[3]: Node(3)−> Sink[3] // Alert sent by node 3 to the sink
(ReceiveAlert , StateController , Notification , StateController ,Sleep,Sleep,Sleep ,Sleep)

colliding at the sink. This prevents a change of
the superframe (mode of operation). Node(1) and
Node(3) detect this and save the alert. The saved
alert is used to resend the alert in the next round
(with a new delay) to make sure the superframe
changes. Note that there could be a situation where
collision occurs at lower levels (and even at the sink),
but still the change of superframe occurs because
of another alert message reaching the sink. For our
model, we have created the topology in such a way
that both cases exist in different configurations as
discussed in Sect. 5. In reality, the receiver nodes do
not detect collision: in certain cases nodes receive
parts of packets that collide (difficult to decode them)
and in other cases they receive nothing at all. In
that respect, we rely on a representative model of
collision detection designed to be consistent with the
effects of collision on the change of superframe.

3.5. Network Topology

The node topology used for the verification of the
models is shown in Fig. 9. We use 5 sensor
nodes, 2 sensor-actuator nodes, and a sink in
the tree topology considered. We consider a small
topology to keep the state-space small which is
needed in order to conduct exhaustive verification.
The current node topology has 3 ranks but since
the sink only listens (and does not send alerts),
we have 2 alert slots in the DMAMAC protocol.
This representative topology allows for both carrier
sense and collision, has both sensors and actuators
with data communication for both types of nodes,
and also has multiple hops. A topology based
assumption for listening range is that a higher level
(lower rank) node is listening to all of its children
nodes, and also sometimes to other nodes in the

vicinity. A real node has a listening range based on
its receiver sensitivity, and distance with other nodes
in the vicinity that varies with topology. Given that our
main aim is to check the working of the protocol, we
define the listening range in the topology manually
instead of calculating it dynamically based on
multiple factors like node position, path-loss, and
receiver sensitivity as is typically done in network
simulators for quantitative analysis.

In the topology used for the evaluation of the
DMAMAC protocol the functionalities that need to be
verified are covered. The DMAMAC protocol is used
for applications with offline scheduling. This means
that scheduling is done prior to deployment and all
slot allocations are known prior to deployment. The
topology in general is well-planned, and no random
deployment is used. A real topology would be much
larger than the one considered here. In the current
topology, we have 3 levels and a maximum of 2
hops. For a qualitative analysis this covers the error
scenarios that could potentially exist with multiple-
hops.

The schedule for the considered node topology
is shown in Fig. 10. The schedule shows both
sender/receiver identification (node/sink). The send-
ing part is marked by TX and receiving part is
marked by RX. For notification messages, only the
sender identification (sink) is marked. The schedule
only represents the steady superframe. In the tran-
sient superframe only the first Nt part is used with
the alert parts replaced by sleep. Note that we use
10 milliseconds (“ms”) as slot duration similar to slot
sizes used in general practise.

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

89

Figure 9: Node topology

Figure 10: Superframe structure based on the schedule
and node topology

3.6. Configurations

Multiple configurations of the DMAMAC protocol
can be analysed based on values that can be
varied in the model. Firstly, the Uppaal model can
start in either steady or transient mode and this
could have an effect on some of the verification
properties (as discussed in Sect. 5). Another
important factor affecting the configurations is the
range of possibilities for the variable alertDelay.
In the protocol, we have used the range [0,8] to
reduce collision. Due to state-space issues we use
only alertDelay[1, 1] for exhaustive queries, e.g.,
deadlock query. The alertDelay[1, 1] in itself covers
all possibilities including possibility of state-switch,
collision and CSMA, and hence all the qualitative
aspects of the protocol. For other non-exhaustive
queries, we use up to alertDelay[1, 4] configurations
to further validate the verification procedure. The
only difference between alertDelay[1, 1] and the
other considered configurations is the applicability
of property sink mode and consistent node mode of
the verification properties and is further discussed
in Sect. 5. Also, the select statement interval [1, 10]
used to decide the switch from transient to steady
mode by the sink is reduced to [1, 2] to keep the
state-space low for all the queries. The reduction of

the interval only means that in transient mode there
is a 50% probability to switch to steady mode, and
thus does not affect the qualitative results.

4. MODEL VALIDATION

We first validate the constructed Uppaal model of
the DMAMAC protocol by checking some basic
behavioural properties related to the operation of the
model. The purpose is to obtain a high degree of
confidence in the constructed model prior to verifying
key properties of the protocol in the next section.
During construction of the DMAMAC protocol, we
validated the operation of the model via MSCs
obtained from step-by-step execution of the model
in the Uppaal simulator. These properties were
related to data transmission between nodes, data
transmission between the nodes and the sink,
sending/receiving of alert message, possibility of
collision, and carrier sense when sending alert
messages.

Below we validate properties of the model related
to data communication and collisions using the
verification engine of Uppaal. For this, we express
the properties to be validated in the form of Uppaal
queries. Queries in Uppaal are written in a restricted
variant of Computation Tree Logic (CTL) in which
path formulas cannot be nested. Specifically, the
following path formulae are supported by Uppaal:
A� (always globally), A♦ (always eventually), E♦
(reachable), and E� (exists globally).

For validation purposes, we first check the operation
of the model with respect to data communication
between neighbouring nodes and between the
sink and its neighbouring nodes. We check that
if two nodes i and j are such that the parent
node of node j is i, then these will eventually
communicate. Furthermore, it should be such that

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

90

any child node of the sink node should eventually
communicate with the sink. Formally, these two
properties can be expressed as the set of queries
below. Here, nodeid t is the type used to represent
node identifiers in the model, parent[i] is used to
obtain the parent node of node i, and sinkId denotes
the identity of the sink. The property is expressed by
reference to the location Sent and location Received
which are reached by the communicating nodes
upon synchronization over the channel DATA.

Node data communication
∀ i,j ∈ nodeid t such that parent[j]==i:
A♦ (Node(i).Sent && Node(j).Received)

Sink data communication
∀ i ∈ nodeid t such that parent[i]==sinkId:
A♦ (Node(i).Sent && Sink.Received)

It should be noted that we do not check the
property that two neighbouring nodes always have
the possibility to communicate. This is due to the fact
that Uppaal does not support nesting of CTL path
formulae.

The second property that we validate is related
to collisions which play an important role in the
DMAMAC protocol in relation to the sending of
alert messages. In this case, we check that it is
possible to have collision happening on all nodes
and on the sink. Collision cannot be guaranteed to
happen and hence we verify only the possibility of
collision occurring. Formally, these two properties
are expressed as the following set of queries:

Node collisions ∀ i ∈ nodeid t : E♦ Node(i).collision

Sink collisions E♦ Sink.collision

Finally, we also validate that there are no deadlocks
in the model. In Uppaal, this can be expressed via
the query below where deadlock is a built-in state
property in Uppaal.

No deadlock A� !deadlock

The above queries related to data communication,
collision, and deadlocks were all verified on both the
transient and the steady variant of the model. This in
turn increased confidence in the proper operation of
the model.

5. PROTOCOL VERIFICATION

We now consider verification of the key functional
properties of the DMAMAC protocol. As explained
earlier, the constructed model comes in two variants:
one variant with the protocol starting in the transient
mode and one variant with the protocol starting in the
steady mode. We first consider common properties
that are independent of whether the protocol starts
in the transient or in the steady mode. Then we

consider properties specific for the transient mode
case followed by properties specific for the steady
mode case. Finally, we verify two real-time properties
of the protocol related to upper bounds on mode
switch delay and data transmission delay.

5.1. Common Properties

Given the dual-mode operation of the DMAMAC
protocol, the important properties relate to the
nodes operating in different modes, and switching
between them. Firstly, we check the operating mode
properties. We make sure that the sink is exclusively
either in the steady mode or in the transient mode
at all times. Following this, we check that all nodes
follow the operating mode of the sink consistently.
Formally, these properties are expressed as follows:

Sink mode
A� (Sink.steady && !Sink.transient) ||
(!Sink.Steady && Sink.transient)

Consistent node mode
∀ i ∈ nodeid t:
A� (Node(i).transient == Sink.transient ||
Node(i).steady == Sink.steady)

Next, we investigate properties of the protocol
related to collision and its effect on the change
of operational modes. The queries refer to the
changeSuperframe variable which indicates whether
the network should change mode in the next
superframe. Collisions may have different effects
depending on the configuration under consideration.
For configurations with alertDelay[1, 1] where all
the nodes will pick the same delay, collision
at the sink should not result in a change of
superframe or operational modes. For configuration
with alertDelay[1, 2], we may have both collision
and change of superframe since, e.g., two nodes
may pick a delay of 1 (which will result in a
collision) while a single third node picks a delay
of 2. The latter choice will result in the sink being
notified of a required change of mode. Formally,
properties related to collisions and change of mode
are specified as follows:

Collision and mode switch
E♦(Sink.collision && Sink.changeSuperframe)

Collision and no mode switch
E♦(Sink.collision && !Sink.changeSuperframe)

Following the discussion above, we expect that the
first property is false in configurations where all
nodes must choose the same delay while it is true
in configurations where different alert delays can
be chosen. This implies that the protocol design
ensures that the DMAMAC protocol can change
mode even in the presence of collisions. The second
property is expected to be true as we may (in all
configurations) have the situation that the choice

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

91

Listing 3: Collision and change of superframe together
(ReceiveAlert , StateController , StateController , StateController ,Sleep,Sleep,Sleep,Sleep)
choice : Node(1)[][1]−> // Node 1 chose delay of 1 ms
(ReceiveAlert ,SendAlert, StateController , StateController ,Sleep,Sleep,Sleep ,Sleep)
choice : Node(3)[][1]−> // Node 3 chose delay of 1 ms
(ReceiveAlert ,SendAlert, StateController ,SendAlert,Sleep,Sleep,Sleep ,Sleep)
choice : Node(2)[][2]−> // Node 2 chose delay of 2 ms
(ReceiveAlert ,SendAlert,SendAlert,SendAlert,Sleep,Sleep ,Sleep ,Sleep)
ALERT[3]: Node(3)−>Sink[3] // Node 3 sends alert
(ReceiveAlert ,SendAlert,SendAlert, StateController ,Sleep,Sleep,Sleep ,Sleep)
ALERT[1]: Node(1)−>Sink[1] // Node 1 sends alert
(ReceiveAlert , StateController ,SendAlert, StateController ,Sleep,Sleep,Sleep ,Sleep)
ALERT[2]: Node(2)−>Sink[2] // Lastly, Node 2 sends alert with a delay of 2 ms (higher than others two)
(ReceiveAlert , StateController , StateController , StateController ,Sleep,Sleep,Sleep,Sleep)

of delay (alert) causes collisions such that the sink
may not be notified of the required change of mode
in the current superframe. Of course, the sink may
be notified via retransmission of the alert in a later
superframe, eventually causing a mode switch (see
below).

An example trace demonstrating co-existence of
collisions and change of superframe is shown in List.
3. In this example, the nodes 1 and 3 choose the
same delay (1 ms) and cannot listen to each other.
The transmissions therefore collide at the sink. But
node 2 which has chosen a different delay (2 ms)
successfully alerts the sink thus inducing change
of superframe. This delay choice is done when the
model changes location from StateController to
SendAlert.

Finally, we verify a property related to the critical
change of state in the protocol from steady to
transient. When the data requirement is higher,
the protocol should be able to detect and switch
accordingly. Also, when a switch fails due to
collisions, there should be a possibility to re-use the
failed alert to induce change of operational modes.
The failed alert is used as a saved alert in the next
alert round. We use the query which searches for
one example where this occurs.

Critical change of state
∃ i ∈ nodeid t:
E♦ Node(i).savedAlert && Sink.steady &&
Sink.changeSuperframe

It should be noted that given the nature of the model,
the collisions could occur forever preventing the
change of superframe. This means that we cannot
show that a state switch will eventually happen.

5.2. Transient model variant

We now consider properties specific for the variant
of the model where the sink and nodes starts
in transient mode. In the model, transient and
steady are boolean variables. In the case where
the controller process stays in the transient state
permanently, the protocol needs to stay in transient
mode of operation to suit the application needs. The

given query below checks if there is a path where the
system invariantly is in the transient mode.

Remain transient E� transient

The second property represents the reachability of
steady mode from the starting state, i.e., that it
is possible for the system to change mode from
transient to steady.

Steady switch E♦ steady

5.3. Steady model variant

For the variant of the model that starts in the steady
mode, we verify the dual properties of the variant that
starts in the transient mode. These two properties
are listed below:

Remain steady E� steady

Transient switch E♦ transient

The two properties check that it is possible to remain
in steady mode and that it is possible to switch to
transient mode.

5.4. Real-time properties

We now consider real-time properties related to
mode switch delay and data communication delay.
In order to verify these properties, we use a modified
version of the Uppaal model where we have included
the use of two watch templates (Watch1 and Watch2)
in order to record elapsed time.

The first real-time property that we consider is the
switch delay, i.e., the time difference between a
detection of threshold breach and the mode switch
happening. This switch is required to happen within
the duration of a superframe (transient superframe
length). This property is specified as follow:

Switch delay
A�Watch1.switchDelay ≤ superframeLength

We verified the switch delay property by considering
a single node farthest from the sink. By symmetry,
the property applies to other nodes at the same level,
and also to the parent nodes which (by the tree
topology) will have a smaller maximum switch delay.

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

92

The second real-time property concerns the data
communication delay. It is the time elapsed between
the first data sent in the superframe until the last
data received. This is required to be within the same
superframe. The property is expressed as follows:

Data delay
A�Watch2.dataDelay ≤ superframeLength

All properties listed above evaluate to the expected
results. Details on the execution time for the
queries based on different configurations of the
model are shown in table 1. The verification was
conducted on a PC with 4 GB RAM, 2.30 GHz
2-core processor. The query Collision and mode
switch could be verified only on the configuration
with alertDelay[1, 1] and resulted in memory
exhaust in other configurations. Other queries were
verified also on configuration alertDelay[1, 2], and
alertDelay[1, 4] with i : int[1, 2].

6. CONCLUSION AND PERSPECTIVES

In this article, we have detailed the modelling and
verification process of the DMAMAC protocol. The
DMAMAC protocol is designed for process control
applications and we have used the Uppaal model-
checking tool for modelling and verification. The
model consists of a network of timed automata with
multiple nodes and a sink operating according to the
DMAMAC protocol.

We have explained the model in Uppaal including
its modelling elements and templates in detail. The
constructed timed automata model includes generic
MAC slot operations including data sending and
receiving, notification, and sleep. This means that
the model can be extended to represent other MAC
protocols with similar (and extra) slotting within
their superframe. To illustrate the generality of the
constructed model, the finite state machine for the
protocol model and the possible extensions are
shown in Fig. 11. The diagram is divided into
three parts: the generic part, DMAMAC extensions,
and other possible extensions. The generic part
consists of notification and data transfer, which is
generally part of a wide range of MAC protocols
for WSANs. The DMAMAC extensions with alert
sending and receiving parts are specifically relevant
for DMAMAC. Given the generic structure, the model
can be extended to include other MAC protocol
slot types or state types including Channel Sense,
Backoff and Link establishment. S-MAC (Ye et al.
(2002)) is a one such MAC protocol that uses
Request To Send (RTS), Clear To Send (CTS),
and carrier sense. The current model can be easily
extended to model S-MAC with re-use of generic
parts.

We have validated the basic operation of the
constructed model using message sequence charts
highlighting the most important features, and
operations of the protocol including data transfer,
alert message functioning, carrier sense, and
possibility of collision. Further, we validated the
proper operation of the model using the verification
engine of Uppaal. The validated model was
then verified for the switch procedure and safety
properties, including absence of deadlock and other
faulty states. The key real-time properties in the
form of upper bounds on switch delay and data
delay were also verified. Two variants of the model
were used for verification and validation, one starting
with the transient mode of operation and the other
starting with steady mode. Different configurations
of the model with varying alert delay were used as
a basis for the verification. For the verification, we
used a representative node topology that covers all
important features of the protocol including existence
of sensors and actuators, multi-hop, alert messages,
and possibility of collision. The DMAMAC protocol
model in Uppaal satisfied the properties considered
which increases confidence on the design of the
protocol. As a proposed future work, a stochastic
model of the DMAMAC protocol to verify the
quantitative properties including collision probability,
expected switch delay, and energy consumption
could provide further insights to the working of the
protocol.

Currently, we are also in the process of developing a
prototype implementation of the DMAMAC protocol
on real hardware. The Uppaal model constructed
in this paper serve as an important specification
in terms of ensuring the proper and correct
implementation of the protocol logic and frame
processing.

REFERENCES

Akyildiz, I. F. and Kasimoglu, I. H. (2004),
‘Wireless Sensor and Actor Networks: Research
challenges’, Ad Hoc Networks 2(4), 351–367.

Behrmann, G., David, A. and Larsen, K. (2004), A
tutorial on Uppaal, in M. Bernardo and F. Corradini,
eds, ‘Formal Methods for the Design of Real-Time
Systems’, Vol. 3185 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 200–236.

David, A., Larsen, K. G., Legay, A., Mikucionis, M.,
Poulsen, D. B., Vliet, J. and Wang, Z. (2011),
Statistical Model Checking for networks of Priced
Timed Automata, in ‘Proceedings of the 9th
International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS)’, Vol.
6919 of LNCS, Springer Berlin Heidelberg, pp. 80–
96.

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

93

Figure 11: Generic model with possible extensions

Fehnker, A., van Glabbeek, R., Hfner, P., McIver,
A., Portmann, M. and Tan, W. (2012), Automated
analysis of AODV using Uppaal, in ‘Tools and
Algorithms for the Construction and Analysis of
Systems’, Vol. 7214 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 173–187.

Fehnker, A., van Hoesel, L. and Mader, A. (2007),
Modelling and Verification of the LMAC protocol
for Wireless Ssensor Networks, in J. Davies and
J. Gibbons, eds, ‘Integrated Formal Methods’,
Vol. 4591 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 253–272.

Hespanha, J. P., Naghshtabrizi, P. and Xu, Y. (2007),
A survey of recent results in Networked Control
Systems, Vol. 95, pp. 138–162.

Kumar S., A. A., Øvsthus, K. and M. Kristensen, L.
(2014), Towards a Dual-Mode Adaptive Mac Pro-
tocol (DMA-MAC) for feedback-based Networked
Control Systems, in ‘The 2nd International Work-
shop on Communications and Sensor Networks’.

Suriyachai, P., Brown, J. and Roedig, U. (2010),
Time-critical data delivery in Wireless Sensor
Networks, in ‘Proceedings of DCOSS’, pp. 216–
229.

Tschirner, S., Xuedong, L. and Yi, W. (2008), Model-
based Validation of QoS properties of Biomedical
Sensor Networks, in ‘Proceedings of the 8th ACM
International Conference on Embedded Software’,
EMSOFT ’08, ACM, New York, NY, USA, pp. 69–
78.

Varga, A. and Hornig, R. (2008), An overview
of the OMNeT++ simulation environment, in
‘SIMUTOOLS’, pp. 60:1–60:10.

Ye, W., Heidemann, J. and Estrin, D. (2002), An
energy-efficient mac protocol for wireless sensor
networks, in ‘INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE’,
Vol. 3, pp. 1567–1576 vol.3.

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

94

Property / Query Result CPU Time (s) Resident Mem. (KB) Virtual Mem. (KB)

Configuration : alertDelay[1,1], i:[1,2]
Common queries
Sink mode Not Satisfied 718.837 1,795,596 3,595,148
Consistent node mode Satisfied 876.586 1,772,436 3,573,820
Collision and mode switch Not Satisfied 711.287 1,797,488 3,599,136
Collision and no mode switch Satisfied 3.214 21,044 49,512
Critical change of state Satisfied 33.868 113,084 238,116
Transient specific queries
Remain transient Satisfied 0.015 13,820 56,924
Steady switch Satisfied 0.64 13,888 40,168
Steady specific queries
Remain steady Satisfied 0.032 17,424 58,892
Transient switch Satisfied 1.965 19,308 48,796
Real-time queries
Switch delay Satisfied 273.048 440,676 891,152
Data delay Satisfied 231.302 450,664 905,284

Configuration: alertDelay[1,2], i:[1,2]
Common queries
Sink mode N/A N/A Memory exhausted Memory exhausted
Consistent node mode N/A N/A Memory exhausted Memory exhausted
Collision and mode switch Satisfied 8.331 62,292 128,008
Collision and no mode switch Satisfied 8.346 61,616 129,064
Critical change of state N/A N/A Memory exhausted Memory exhausted
Transient specific queries
Remain transient Satisfied 0.02 13,836 40,092
Steady switch Satisfied 0.562 13,848 57,012
Steady specific queries
Remain steady Satisfied 0.046 36,596 82,700
Transient switch Satisfied 16.708 66,116 137,096
Real-time queries
Switch delay Satisfied 1200.225 1,799,596 3,601,164
Data delay Satisfied 1068.014 1,799,624 3,622,604

Table 1: Performance of the protocol verification using Uppaal

Model-Based Verification of the DMAMAC Protocol for Real-time Process Control

95

On quantitative Analysis of Time Open
Workflow Nets and Parametric Extension

Zohra Sbaï
Université de Tunis El Manar

Ecole Nationale d’Ingénieurs de Tunis
BP. 37 Le Belvédère
1002 Tunis, Tunisia

zohra.sbai@enit.rnu.tn

Kamel Barkaoui
Laboratoire CEDRIC

Conservatoire National des Arts et Métiers
292 rue Saint Martin

Paris Cedex 03, France
kamel.barkaoui@cnam.fr

Collaborative systems design is today a complex process especially where constraints such as tasks delays
or resources handling have to be considered. In addition to a well constructed model of a workflow system,
a prior and rigorous verification phase is important to ensure a correct execution of the system. In this
direction, we are interested in this paper by the modeling and the analysis of interacting processes in
particular those constrained by timing delays. First, we present the Time open Workflow nets (ToWF-nets)
which stand for a sub-class of Petri nets dedicated to model any business process which interact with other
partners via interface places in order to meet a common goal. Then, after recalling the semantics of ToWF-
nets, we investigate in presenting our recent results in quantitative verification of properties related to the
correct communication of various ToWF-nets. We show how to make a TCTL based model checking of the
studied properties. Finally, we extend our analysis approach of ToWF-nets to cover concurrent processes
leading thus to propose a parametric verification of ToWF-nets.

Time Open Workflow Nets, Collaborative Systems, Quantitative Analysis, Timed Computational Tree Logic,
Parametric Verification

1. INTRODUCTION

Nowadays, collaboration in organizations is more
and more sought since it allows to end users to
benefit from more enhanced and complex services.
Although it is possible to allow complex services
with a single organization, it is almost impossible to
provide, in this case, simple services nor to reuse
them. So, it is important to provide simple services
and to allow their composition, if necessary, for
more complex tasks. For instance, manufacturing
systems can be seen as a network of servers and
queues. This system process can be seen as a
composition of multiple services interacting together
to fulfill a unique goal. As an example, we mention
a factory which make shirts. The first stage in
shirt manufacturing is the cutting of the material to
different shapes. Then, the next stage is to sew
the pieces together. Finally buttons and a quick
iron are added. This composition is more and more
studied when treating inter organizational processes.
We mention for example a manufacturing enterprize
which has to communicate with clients, suppliers,
etc. in order to fulfill the manufacturing task. Thus
the notion of services composition is of great need

and that’s why it is very studied in academic as well
as industrial environment.

In collaborative systems in general, different part-
ners, having their own processes, interact together
in order to achieve a common goal. We focus in this
paper on the modeling and the analysis of such sys-
tems involving multiple communicating processes. In
the modeling phase, we propose to use Time Open
Workflow Nets (ToWF-nets), a sub class of Time
Petri Nets (TPN) to model workflow processes with
timing delays and with ability to communicate with
partners. A ToWF-net consists of an open workflow
net (oWF-net) in which we associate with each
transition a minimum and a maximum amount of time
needed to its execution. An oWF-net is a workflow
net augmented with special places called interface
places and used to interact with other processes.

For the purpose of analysis, we propose to enhance
a formal verification due to solid theoretical basis
of formal methods. More precisely, we adopt an
analysis method based on the well known model
checking techniques. In fact, Model checking is an
automated verification technique for proving that
a model satisfies a set of properties specified in

©
97

•

temporal logic. Given a concurrent system Σ and
a temporal logic formula ϕ, the model checking
problem is to decide whether Σ satisfies ϕ. Hence,
we have to formulate in temporal logic the properties
to be verified. This kind of verification is situated
at the design phase, allowing thus to find bugs as
early as possible and therefore to reduce the cost of
failures. This, especially, permits us to check as early
as possible if two or more processes are compatible
before their composition. We express the proposed
properties in Timed Computation Tree Logic (TCTL).

The rest of the paper is organized as follows.
Section 2 is dedicated to the presentation of ToWF-
nets for modeling interacting processes which are
constrained by timing delays. In this section, we
present the semantics of the model in terms of states
and the states evolution. In section 3, we highlight
quantitative analysis results of ToWF-nets. We recall
first the principle of TPN-TCTL temporal logic, then
we characterize some properties of interest and
express them in this temporal logic and finally,
we detail how to model check these properties
via several examples. We focus in section 4 on
a parametric verification of ToWF-nets composition
and on some experiments in Romeo model checker.
Finally, section 5 presents related work and section
6 concludes the paper with a discussion and a
proposition of future work.

2. TIME OPEN WORKFLOW NETS

This section is dedicated to present Time open
Workflow nets (ToWF-nets) : a Petri nets sub class
allowing to model workflow processes communicat-
ing with partners via interface places. After defining
ToWF-nets model and semantics, we expose some
results on reachability analysis.

2.1. ToWF-nets to model communicating
processes

To model a composition of interacting processes,
we refer to Petri nets due to their expressive
power as well as their theoretical basis. The well
known Petri net class used in this modeling is
named open workflow nets (oWF-nets) (Karsten and
Schmidt (2005); Sbaï and Barkaoui (2013); Martens
(2005); Massuthe et al. (2005)). Each involved
process is modeled by an oWF-net possessing
interface places which serve for the communication
with other processes. In this way, the interaction
and conversation between the different processes
are guaranteed. The interaction considered here is
ensured through operational and control behaviors.
The operational behavior is specific to each process
according to its business logic and the control
behavior is ensured by the general behavior of any
partner in the composite process.

As mentioned above, oWF-nets nets are mainly
the extension of workflow nets (WF-nets) to
model workflow processes which interact with other
processes via interface places. Simple WF-nets
(Sbaï and Barkaoui (2013, 2012)) is a result of
Petri nets’ application to workflow management. The
choice of Petri nets is explained by the fact that they
form a powerful formalism expressing the control
flow in business processes (van der Aalst (1996);
Esparza et al. (1989); Ellis et al. (1995); De Michelis
et al. (1994)).

Commonly, a Petri net is a 4-tuple N = (P, T, F,W)
where P and T are two finite non-empty sets of
places and transitions respectively, P ∩ T = ∅ ,
F ⊆ (P × T) ∪ (T × P) is the flow relation, and
W : (P × T) ∪ (T × P) → N is the weight function
of N satisfying W (x, y) = 0 ⇔ (x, y) /∈ F . If
W (u) = 1 ∀u ∈ F then N is called an ordinary net
and it is denoted by N = (P, T, F). For every node
x ∈ P ∪ T , the set of input nodes of x is defined by
•x = {y|(y, x) ∈ F} and the output nodes of x form
a set denoted by x• = {y|(x, y) ∈ F}. We refer the
reader to (Barkaoui et al. (2007)), for more Petri nets
notations used in this paper.

A Petri net which models a workflow process is called
a WF-net (van der Aalst (1997)). An ordinary Petri
net N = (P, T, F) is a WF-net iff N has one source
place i named initial place (containing initially one
token) and a sink place f named final place. In
addition to this characteristic, every node in a WF-
net n ∈ P ∪ T exists in a path from i to f .

For processes composition, we propose to model
each process by a WF-net describing the tasks
to be performed as well as their routing. Then,
the conversation between the involved processes
is ensured by the communication places used for
the conversation and/or the messages sending.
Thus, we are using open WF-nets (oWF-nets) which
extend the classical WF-nets by integrating interface
places to ensure asynchronous communication with
the different partners. Hence, a composition is
modeled by a set of oWF-nets interacting via
interface places. Note that these places are used to
connect only transitions from different processes.

Now when we focus on incorporating time con-
straints, we find different proposals which are based
on extensions of Petri nets. In general, the time con-
straints are modeled either by durations or delays.
When they are specified by durations (constants),
the extension associated is said to be Timed Petri
nets. These constant durations are either attached
to places (the subclass is known as P-Timed Petri
nets) or to transitions (T-Timed Petri nets). In case
of delays adoption, the constraints are specified by
means of intervals specifying the minimum and the

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

98

•

maximum amounts of time representing the transi-
tions firing delays, the associated extension is called
Time Petri nets. These intervals are attached to
places (P-Time Petri nets), transitions (T-Time Petri
nets) or arcs (A-Time Petri nets) leading thus to
different extensions with variant semantics.

In the case of workflow processes, several studies
(van der Aalst (1993); Atluri and Huang (1996);
Ling and Schmidt (2000); MarteGou et al. (2001))
have shown the importance of temporal reasoning
in the specification of workflow systems. In (Ling
and Schmidt (2000)), the authors extend the simple
WF-net presented by van der Aalst (van der Aalst
(1997)) by associating with each transition a time
amount representing the task duration. A temporal
extension of the WF-net, called Timed WF-net is
proposed. The semantic adopted here is that each
enabled transition must fire immediately, otherwise
the transition will be disabled. In case of firing, its
duration should be respected, i.e. this transition can
not be delayed. Although this approach is simple, it is
strict in the sense that it requires fixed durations. To
deal with this limitation, Time Workflow nets (TWF-
nets) are proposed allowing to associate time delays
with the activities by incorporating to each transition
a time interval specifying its firing delay (Boucheneb
and Barkaoui (2012); Camerzan (2007); Ling and
Schmidt (2000)).

Since this time consideration is flexible and given
that we are interested by modeling the composition
of workflow processes with time constraints, we
propose the Time open Workflow Net model (ToWF-
net) (Sbaï et al. (2014)). This model associates
to each transition a static time interval which refers
to the execution time or delay of the corresponding
activity. The formal definition of a ToWF-net model is
the following:

Definition 1 (ToWF-net)

A Time open Workflow net N is a tuple
(P, T, F, FI, I, O) with:

• P is a set of places,

• T is a set of transitions,

• I is a set of places which represent input
interfaces that are responsible of messages
receiving from other processes: •I = ∅.

• O is a set of places which represent output
interfaces responsible of messages sending to
other partners: O• = ∅.

• I, O and P are disjoint. I and O connect
transitions of different processes.

• F ⊆ ((P ∪ I) × T) ∪ (T × (P ∪ O)) is the flow
relation,

• FI : T → Q+ ×Q+ ∪ {∞} is the function which
associates to each transition t ∈ T a static firing
interval, i.e. FI(t) = [minFI(t),maxFI(t)]
where minFI(t) and maxFI(t) are rational
numbers representing the minimal and the
maximal firing time respectively,

The marking of N is a vector of NP such that for
each place p ∈ P , M(p) is the number of tokens in
p. The initial marking of N is Mi knowing that Mp is
used to denote a marking for which M(p) = 1 and
M(q) = 0 ∀q ∈ (P ∪ I ∪O) \ {p}.

A transition t is enabled in a marking M if the
required tokens are present in the input places of t.
We denote by En(M) the set of all the transitions
enabled in the marking M . A transition t is said
disabled by the firing of t′ in M if it is enabled in
M but it isn’t in M − •t′. When focusing of newly
enabled transitions after firing a transition t from M
and leading to M ′, we denote by NEn(M, t) the set
of transitions enabled after this firing.

NEn(M, t) = {t′ ∈ En(M ′)|t′ = t ∨ ¬M ≥• t+• t′}.

When a transition t becomes enabled, its firing
interval is set to its static firing interval FI(t).
The upper and lower bounds of FI(t) decrease
synchronously with time, until t is fired or disabled
by another firing. t can fire, if the lower bound of its
firing interval reaches 0, but when upper bound of its
firing interval reaches 0, t must be fired without any
additional delay (strong semantic). The firing takes
no time but may lead to another marking.

Let us define first the state of a ToWF-net and then
the transition relation.

Definition 2 A state in a ToWF-net is the state of
the process that is modeled with ToWF-net after the
occurrence of an event. Formally, we characterize a
state in a ToWF-net by a pair (M, Int) where:

• M is a marking,

• Int is a firing interval function, Int : En(M) →
Q+ × Q+ ∪ {∞}. We denote Int(t) =
[minInt(t),maxInt(t)].

The initial state of a ToWF-net is (M0, Int0) where
M0 = Mi (since in a ToWF-net, only i contains
initially one token) and Int0(t) = FI(t) ∀t ∈ En(M0).

Starting from the initial state (M0, Int0), the net
evolves following the occurrence of events. An event
corresponds to either a transition firing or a time
progression. Hence, we define the transition relation

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

99

•

between states s1 = (M1, Int1) and s2 = (M2, Int2)

by d→ in case of time progression and by t→ in case
of a firing. We explicit in the following the conditions
of state evolution and how to compute the resulting
state after an event occurrence.

1. s1
t→ s2 if and only if s2 is immediately reachable

from s1 by firing the transition t, i.e.
t ∈ En(M1) and minInt1(t) = 0,
M2 = M1 −• t+ t•, and
∀t′ ∈ En(M2), Int2(t′) ={

FI(t′) ift′ ∈ NEn(M1, t)
Int1(t′) otherwise

2. s1
d→ s2 ∀d ∈ R if and only if state s2 is reachable

from s1 by a time progression with d time units,
i.e.
minInt1(t) + d ≤ maxFI(t),
M2 = M1, and
∀t ∈ En(M1), Int2(t) = [Max(0,minInt1(t) −
d),maxInt1(t)− d]

We can now define the semantics of a ToWF-net N
by a transition system (S, s0,→) with S the set of all
the reachable states from the initial state s0 by→ the
transition relation defined above.

We present in the following subsection some results
of reachability analysis of ToWF-nets composition.

2.2. Reachability analysis of ToWF-nets

After the formal definition of ToWF-nets, we focus
now on their reachability analysis. This analysis
is based on the efficient construction of the state
space.

By analogy with the marking graph defined in the
context of an ordinary Petri net, we define a state
space by a graph containing all accessible states
of a ToWF-net from the initial state. Therefore, to
calculate the state space of a ToWF-net, we must be
able to calculate the reachable states by activating
the enabled transitions.

Definition 3 The state space of a ToWF-net has
the following structure: SS = (S,→, s0); where S is
the set of nodes in form (M, Int) representing the
reachable states from the initial one s0 = (Mi, Int0)
; → represents the transition relation which defines
the evolution from one state to another.

S = {s|s0 ∗→ s} is the set of reachable states of the
model, and ∗→ is the reflexive and transitive closure
of→.

The reachability analysis (Boucheneb and Barkaoui
(2012)) in timed models (such as time extensions

of Petri nets as well as timed automata) is
based in general on abstraction, which preserves
reachability properties. Such an abstraction for
timed models, consists in considering only one
node for all states reachable from the same firing
sequence while abstracting from their firing times.
The grouped states, known as state classes, are
then considered modulo some equivalence relation
preserving properties of interest.

In return, the state class method is intended to
provide a finite representation of the infinite state
space of any bounded time Petri net.

Technical classes produce for a large class of time
nets a finite representation of their behavior states,
which allows a reachability analysis similar to that
permitted for Petri nets by the technique of marking
graph.

The state classes can be represented by a marking
and a firing domain. Formally, a state class is a
couple (M,D) where M is a marking and D is
characterized by a set of atomic constraints over the
firing delays of enabled transitions: minFI(t) ≤ t ≤
maxFI(t) ∀t ∈ En(M).

Note that the initial class coincides with the initial
state of the network. This initial class is (M0, D0)
where M0 = Mi and D0 corresponds to the firing
domains of transitions enabled in M0.

All states within the same node share the same
untimed information and the union of their time
domains is represented by a set of atomic
constraints handled efficiently by means of a
Difference Bound Matrix (DBM) (Ridi et al. (2012)).
A DBM form a system of linear inequalities
which constrain single variables (v1...vn) and their
differences within limits identified by coefficients bij .
This is formally expressed as:
{
vi − vj ≤ bij i, j ∈ [0..n], bij ∈ Q
v0 = 0

In terms of behavior, this state classes group
preserves highly the states traces, and thus the
safety properties.

The computation of the state class graph is neces-
sary at this point to perform the various reachability
analysis. Among the abstractions proposed in the
literature (Berthomieu and Diaz (1991); Berthomieu
and Vernadat (2003); Yoneda and Ryuba (1998)),
we consider here the state class graph method
(Berthomieu and Diaz (1991)) for its advantage,
over the others, which is the finiteness property
for all bounded time Petri nets (while using some
approximations).

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

100

•

3. QUANTITATIVE ANALYSIS OF TOWF-NETS

The analysis of the state space is very significant to
the extent that it can reveal important characteristics
of the modeled system, about its structure and
dynamic behavior. However, for a more accurate
verification, we should not be limited to this type
of checking rather than other specific properties.
Indeed, we focus in this section on the formal
verification of compatibility properties of ToWF-nets
as an extension of our results of compatibility
analysis while abstracting time information (Sbaï
and Barkaoui (2014); Sbaï et al. (2014)).
These properties focus on the correctness of the
interactions between the different partners.

We propose to adopt model checking method to
verify these properties since this method permits
an exhaustive verification over all the possible
executions. Given a concurrent system Σ and
a temporal logic formula ϕ, the model checking
problem is to decide whether Σ satisfies ϕ. Hence,
we have to formulate in temporal logic the properties
to be verified.

3.1. Model checking TPN-TCTL

Real systems often have behaviors that depend
on time. The ability to manipulate and model the
temporal dimension of the events that take place in
the real world is fundamental in many applications.
These applications may involve banking, medical, or
multimedia applications. The variety of applications
motivate many recent studies that aim to integrate
all the features necessary to take into account the
time during verification.

TCTL (Timed Computational Tree Logic) is a timed
extension of the temporal logic CTL. TCTL added
to CTL a quantitative information on the delays
between actions. It is built from atomic propositions,
logical connectors and temporal operators (U, F, G,
X, etc.). The TCTL temporal logic can be used to
check the properties of a time Petri net.

The syntax of TCTL formulas is inductively defined
by:

ϕ ::= false | ¬ϕ | ϕ ∧ ϕ | A(ϕ UI ϕ)| E(ϕ UI ϕ)

where p denotes a proposition, ϕ denotes a formula
and I = [a, b] or [a,∞[with a ∈ N and b ∈ N.

A and E are temporal quantifiers over the set of
executions. Aϕ announces that all the executions
from the current state satisfy the property ϕ. Eϕ
states that from the current state, there exists an
execution which satisfies ϕ. Finally ϕ UIψ means
that the property ϕ is true until ψ is true, and ψ will
be true in the time interval I.

We can use other compositional temporal operators
(Alur et al. (1993)): EFI ϕ = E(true UI ϕ)
(Possibility), EGI ϕ = ¬ AF I ¬ϕ (All locations along
an execution), AFI ϕ = A(true UI ϕ) (Locations along
all executions), AGI ϕ = ¬ EF I ¬ϕ (All locations
along all executions).

Semantically, TCTL formulas are interpreted on
states and execution paths of a model M = (S, V)
where S is a transition system and V is a valuation
function that associates with each state the set of
atomic propositions it satisfies. (Konur et al. (2013))

To interpret a TCTL formula on an execution path,
we introduce the notion of dense execution path. Let
s ∈ S be a state of S, π(s) the set of all execution
paths starting from s, and ρ = s0

d0t0→ s1
d1t1→ s2... an

execution path of s. The dense path of the execution
path ρ is the mapping ρ̂ : R+ → S defined by:
ρ̂(r) = si + δ such that r =

∑i−1
j=0 dj + δ, i ≥ 0 and

0 ≤ δ ≤ di.

The formal semantics of TCTL is given by the
satisfaction relation defined as follows:

• M , s 2 false,

• M , s � φ iff φ ∈ V (s),

• M , s � ¬ϕ iff M , s 2 ϕ,

• M , s � ϕ ∧ ψ iff M , s � ϕ and M , s � ψ,

• M , s � ∀(ϕ∪Iψ) iff ∀ρ ∈ π(s) ∃r ∈ I,M , ρ̂(r) � ψ
and

∀0 ≤ r′ ≤ r M , ρ̂(r′) � ϕ,

• M , s � ∃(ϕ∪Iψ) iff ∃ρ ∈ π(s) ∃r ∈ I,M , ρ̂(r) � ψ
and

∀0 ≤ r′ ≤ r M , ρ̂(r′) � ϕ,

When interval I is omitted, its value is by default
[0,∞[.

The Time Petri net model is said to satisfy a TCTL
formula ϕ iff M, s0 � ϕ.

The logic TCTL allows writing temporal properties
with a quantification of the time. We chose this
approach because it is decidable and PSPACE-
complete for bounded Petri nets (Boucheneb et al.
(2009)).

The authors of (Hadjidj and Boucheneb (2009))
have gone further by defining a sub-class of TCTL
for time Petri nets in dense time, called TPN-TCTL.
They proved the decidability of model-checking
of TPN-TCTL on Petri nets and showed that its
complexity is PSPACE.

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

101

•

Definition 4 The temporal logic TPN-TCTL is
defined inductively by:

TPN-TCTL ::= false | ϕ | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ⇒ ψ |
EϕUIψ | AϕUIψ

| EGIϕ | AGIϕ | AFIϕ | EFIϕ | AG(φ1 ⇒
AF[0,d]φ2).

Where ϕ and ψ ∈ TPN-TCTL,

I = [a, b] or [a, b[with a ∈ N and b ∈ N ∪ {∞}.

φ1 and φ2 are propositions on markings.

∀G(φ1 ⇒ ∀F[0,d]φ2) means that from the current
state, any occurrence of marking φ1 is followed by
an occurrence of marking φ2 less of d units of time
later.

Romeo permits a practical implementation of the
verification of properties described in TPN-TCTL.
It is therefore possible to model check on the
fly temporal quantitative properties. That’s why
we investigate in the following section the TCTL
expression of the compatibility property and hence
its verification in Romeo.

Before this, let us recall the notation used by Romeo
to implement a TPN-TCTL property:

TPN-TCTLRomeo = E(p)U [a, b](q) | A(p)U [a, b](q) |
EF [a, b](p) | AF [a, b](p) | EG[a, b](p) | AG[a, b](p) |
EF [a, b](p) | (p)→ [0, b](q).

where p, q: GMEC; U : until; E: exists; A: forall; F :
eventually; G: always; →: response; a: integer; b
integer or inf (to denote∞).

GMEC = a∗M(i){+,−}b∗M(j){<,<=, >,>=,=}k
| deadlock | bounded(k) | p and q | p or q | p ⇒ q |
not p.

M : keyword (marking); deadlock, bounded: keywords;
i, j:place indexes; a, b, k :integers ; ∗,+,−, and, or,⇒
, not: usual operators ; p, q: GMEC

The syntax (p) → [0, b](q) denotes a leads to
property meaning AG((p) imply AE[0, b](q)). E.g.
(p) → [0, b](q) holds iff whenever p holds eventually
q will hold as well in [0, b] time units.

3.2. TCTL characterization of ToWF-nets
compatibility

In a composition of two or more processes,
the correctness of the composite process refers
in general to the compatibility of the different
processes. From a behavioral point of view, the
involved processes are compatible if they can
interact properly. This means that composite process

does not suffer from any deadlock problem. There
is a distinction between syntactic compatibility which
refer to the conformance of interfaces (number of
interfaces, names, input, ouptut, etc.) and semantic
compatibility which refer to the absence of deadlocks
in the global system. In this paper, we focus only on
defining and verifying the semantic compatibility.

Before this, let us characterize the composite system
obtained by superposing a number of ToWF-nets
which are supposed syntactically compatible. The
composite net N of nbX ToWF-nets N1... NnbX

consists of all ToWF-nets sharing interface places. In
this composite net, every input interface of a TWF-
net has to be an output interface place of another
TWF-net of N . Trivially, N form a time Petri net with
nbX output places and nbX input places. The initial
marking of N is M0 =

∑nbX
s=1 is.

In (Bordeaux et al. (2005); Foster et al. (2004);
Martens (2003)), the authors characterized the
compatibility of non timed services as the absence of
deadlock in the composite service. They considered
that two or more oWF-nets are compatible if they
can (all) reach their final states. By analogy, we
consider that two or more ToWF-nets are compatible
if they reach their final states as well as the timing
constraints are respected.

In order to relax this definition, we propose different
categories of the compatibility property.

• Partial compatibility: A composite netN satisfies
the partial compatibility if it is deadlock-free.

• Total Compatibility: A composite net N is totally
compatible if it is deadlock-free and furthermore,
the overall process terminates properly.

• Perfect compatibility: A composite net N is
perfectly compatible if it is totally compatible and
the deadline constraints are satisfied.

• Incompatibility: A composite net N is incompati-
ble if it is neither partially nor totally compatible.

We focus in what follows on formulating the four
types of compatibility properties. Let us consider the
following notation:

• nbX: the number of processes;

• nbp: the number of places in a given process;

• nbi: the number of interface places in a
composition;

• is: the input place of the process number s.

• fs: the output place of the process number s.

Partial compatibility

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

102

•

Partial compatibility of nbX processes refers to the
absence of deadlock in their composition. A net
is deadlock-free if and only if there is at least a
transition allowed in every marking except the final
one Mfin which refer to the marking of all the final
places fs (s = 1..nbX). This property is expressed
as follows:

∀M ∈ [M0〉, Mfin ∈ [M〉

Logically, this deadlock-freeness property can be
expressed as follows: "for all the executions made
possible from the initial state, no deadlock is
encountered until the final state is reached". The
final state is characterized by the marking of the
final places. Then, we can express the partial
compatibility by the following TCTL formula:

AG[0,∞[((not MF) ⇒ not deadlock)

In this formula, deadlock is a proposition supposed to
return true if and only if there is no enabled transition
in the current state. MF is a proposition on marking
Mfin assuring that each final place is marked with at
least one token.

MF =
nbX∧
s=1

M(fs) >= 1

Here we check only the marking of final places.

Total compatibility

The proper termination of a process refers to check if
this latter complete its execution in any case, and at
the time of termination, all the places of the involved
ToWF-nets are empty except the final places which
must be marked with exactly one token. Hence, we
have to check if there exists a marking M for which
all the places are empty except the output ones.
Formally, this property can be expressed as follows:

∀M ∈ [M0〉 :
M(fs) ≥ 1 ∀s ∈ {1, .., nbX} ⇒ M =

∑nbX
s=1 fs

We can formulate the proper termination in TCTL as
follows:

AF[0,∞[StrictMF

With StrictMF a proposition on the marking with a
token in every final place fs but no tokens in the other
places including the interface ones.

StrictMF =
nbX∧
s=1

(
nbip
∧

p=1
(M(p) = 0)

∧ (M(fs) = 1)) ∧ (
nbi∧
i=1
M(Ii) = 0)

where nbip is used to denote the number of places
other than the final place in a process.

Perfect compatibility

When we have a strict overall deadline that the
system should respect, we can enforce the total
compatibility by adding this constraint. We define, in
this sense, the perfect compatibility which refers to
both deadlock-freeness and proper termination while
taking into account the deadline verification.

Let us suppose that the deadline constraint is
considered, this can be checked by verifying that a
process has to terminate (reach its final state) in Tm
time units. Which lead to the expression of the proper
termination within this delay as follows:

AF[0,Tm] StrictMF

Hence, these two TCTL formulas can be used
to express the perfect compatibility of ToWF-nets
composition:

• AG[0,Tm]((not MF) ⇒ not deadlock)

• AF[0,Tm] StrictMF

Incompatibility

The incompatibility is a situation in which neither
deadlock-freeness nor proper termination is verified.
In other words, a set of ToWF-nets are incompatible
if all the possible executions don’t lead to final
states of the different processes. We may distinguish
here between strong incompatibility checked in the
interval [0,∞[and weak incompatibility which refers
to incompatibility in a limited interval [a, b].

If we consider that the interval [x, y] may correspond
to [0,∞[or [a, b], the expression of the incompatibility
in TCTL leads to the following formula:

AG[x,y]((not MF))

3.3. Model checking ToWF-nets composition

We present in this subsection some results related
to the analysis of the compatibility and soundness
properties for a ToWF-nets composition. This
verification is ensured by Romeo (Gardey et al.
(2005)) which is a software studio dedicated to time
Petri nets analysis. Romeo is developed by the
Real-Time Systems Team at IRCCyN. It performs
analysis on Transition Time Petri Nets as well as
on one of their extensions dedicated to scheduling.
Romeo is chosen because it assures, among other
features, a State Class Graph (SCG) computation
and a graphical simulation of Transition Time Petri
Nets. Moreover, Romeo is used here because it

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

103

•

implements an on the fly model checking algorithm
of TPN-TCTL formulas.

We propose to study a simple composition of ToWF-
nets (figure 1). We can easily verify that no deadlock
will be encountered until final places are marked.
Then the partial compatibility is satisfied (see figure
2). However, the firings of transitions T4 and T5 of the
second ToWF-net lead to two tokens in its final place
f2; this violates the total compatibility property. In the
figure 3, we show the result for this property and an
execution trace. After that, we propose a correction
in figure 4 for which the total compatibility is verified
(see figure 5).

Figure 1: Example 1 of ToWF-nets composition

Figure 2: Partial compatibility is verified

4. PARAMETRIC ANALYSIS OF TOWF-NETS

In this section, we tackle with a parametric
quantitative analysis of the composition of ToWF-
nets. This suppose to consider k instances of each
ToWF-nets ready to be executed.

For sake of covering the maximum number of real
world processes, we tackle with time processes
which share resource places. This places possess

Figure 3: Total compatibility is not verified

Figure 4: Example 2 of ToWF-nets composition

Figure 5: Total compatibility is verified

tokens in the beginning of each process and these
tokens will be used and released after their use,
i.e. at the end of execution, the resource places will
regain their same initial markings.

For this, we define the time open WF-nets with
shared resources (ToWFR-nets) which stand for a

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

104

•

class of Petri nets dedicated to model workflow
processes with: time delays, resource places as well
as interface places.

Definition 5 (ToWFR-net)

A ToWFR-net N is a tuple
(P,RP, T, F,RF, FI, I, O,WRP ,M0) with:

• (P, T, F, FI, I, O) is a ToWF-net,

• RP is a set of resource places,

• I, O, P and RP are disjoint,

• RF ⊆ (RP × T) ∪ (T × RP) is the flow relation
for resources,

• WRP : RF 7→ N is the weight function defining
the weight of arcs linking the resource places. To
ensure the use of resource places, we require:
WRP (u) ≥ 1∀u ∈ RF

• M0 is the initial marking: M0 = k.i+MRP where
k is the number of tokens in the initial place i
and MRP is the marking of resource places.

For the interaction of ToWFR-nets, we use only
interface places; resource places are used to model
resources sharing between activities of the same
process.

In the sequel, we will use these notations:

• IOj refers to interface place number j

• RPj refers to resource place number j.

As an example of ToWFR-nets composition, we
study a manufacturing lane of three machines which
collaborate together to manufacture some product.
The composite net describing the manufacturing
workflow is given in figure 6.

In this example, each machine will be launched twice
(2 tokens in each initial place ij) and share an
internal resource modeled by RPj with j the number
of machines. The three machines communicate via
the two interface places IO1 and IO2.

Now, to verify if the interacting ToWF-nets commu-
nicate correctly and if their collaboration process is
sound, we propose to extend the above classes of
compatibility properties with the consideration of the
concurrent instances ready for execution.

4.1. K-compatibility analysis

We define the following formulas: the k-partial
compatibility and the k-total compatibility.

k-partial compatibility

Figure 6: Composition of three machines’ processes

The k-partial compatibility refers to verify if all
the instances of the involved processes terminate
without encountering a deadlock. This is possible
by extending the deadlock-freeness specified in the
previous section with a test of the termination of the
k instances. This can be specified by the following
TCTL formula:

AG[0,∞[(not(
nbX∧
s=1

(M(index_of_fs) >=

k)) => not deadlock)

Where nbX is the number of involved processes

For the three machines example (6) this formula is
written in Romeo as follows:

AG[0, inf](not(M(4) >= 2 and M(7) >=
2 and M(26) >= 2) => not deadlock)

Where 4,7 and 26 are the indexes attributed by
Romeo to the three final places.

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

105

•

The figure 7 shows that the two-partial compatibility
is guaranteed for the three machines example.

Figure 7: Analysis example of the two-partial compatibility

k-total compatibility

The k-total compatibility refers to verify if all
the instances of the involved processes terminate
properly. This means that we have to verify if
we reach the state in which final places have k
tokens and resource places regain exactly their initial
marking and all the other places are empty. This can
be specified by the following TCTL formula:

AF [0,∞[(
nbX∧
s=1

(M(index_of_fs) =

k) ∧ nbR∧
j=1

(M(index_of_RPj) =

mRPj) ∧
nbop
∧

j=1
(M(index_of_Pj) = 0))

Where nbX refers to the number of interacting
processes, nbR refers to the number of resource
places, mRPj

refers to the initial marking of resource
place RPj and nbop refers to the number of places
which are neither final places nor resource places.

For the three machines example (6) this formula is
written in Romeo as follows:

AF [0, inf](M(4) = 1 and M(7) = 1 and M(26) =
1 and M(27) = 1 and M(16) = 1 and M(3) =

1 and M(1) = and M(2) = 0 and M(5) =
0 and M(6) = 0 and M(8) = 0 and M(9) =

0 and M(10) = 0 and M(11) = 0 and M(12) =
0 and M(13) = 0 and M(14) = 0 and M(15) =
0 and M(17) = 0 and M(18) = 0 and M(19) =
0 and M(20) = 0 and M(21) = 0 and M(22) =

0 and M(23) = 0 and M(24) = 0 and M(25) = 0)

The figure 8 shows that the two-total compatibility is
guaranteed for the three machines example.

After these tests, we highlight some results on
the characterization of quantitative properties of

Figure 8: Analysis example of the two-total compatibility

ToWF-nets composition. Let us consider N the time
workflow net obtained by composing the involved
ToWF-nets and the adding of two special places
pstart and pend and two transitions tstart and tend
which connect respectively pstart to the the input
places of the different ToWF-nets and the different
final places to pend.

We can easily prove that if the involved ToWF-nets
are totally compatible then N is sound. In addition if
the ToWF-nets are k-totally compatible then N is k-
sound. But the reverse is incorrect, i.e. N is k-sound
9 the ToWF-nets are k-totally compatible.

5. RELATED WORK

Several works dealt with the analysis of compatibility
properties of processes modeled by open workflow
nets or by other formalisms. Wil M. P. van der Aalst
and al. (van der Aalst et al. (1998)) showed that two
or more processes are compatible if their interfaces
are compatible and there are no deadlocks. In
addition, other concepts were formulated in relation
with compatibility such as strategy and controllability.

Marlon Dumas and al. (Dumas et al. (2008)) studied
the incompatibility of Web services and classified
it into two types such that the incompatibility of
signatures and the protocol incompatibility. The
former occurs when a service requests an operation
which is not possible from another service. The
latter occurs when a service enters in a series of
interactions with an other service, but there is no
compatibility in the two services orders.

Lucas Bordeaux and al. (Bordeaux et al. (2005))
tackled the verification of Web services compatibility
while assuming that not only the exchanged
messages are semantically of the same type but
also they have the same name. For the modeling
of Web services, their work is based on labeled
transition systems (LTS). The authors defined three

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

106

•

types of compatibility: absence of deadlock, opposite
behavior and unspecified reception.

Wei Tan and al. (Tan et al. (2009)) proposed an
approach that checks interface compatibility of Web
services described by BPEL, and corrects these
services if they are not compatible. To do this, they
modeled the composition by SWF-nets, a subclass
of CPN (Colored Petri Nets). Then they checked the
compatibility of interfaces.

While these approaches dealt with non time
processes, we focused on those constrained by time
information. To check the compatibility of interacting
processes, we chose to extend oWF-nets with delays
associated to activities. In addition, we were based
on the formal verification in our approach. We mainly
used the model checking formal method to check
the compatibility classes of ToWF-nets, which shows
a counter example in case a property is violated
allowing thus to recognize and correct the eventual
errors as early as possible.

6. CONCLUSION

Nowadays, technological progress plays a funda-
mental role in the optimization of production pro-
cesses in different sectors, especially facing the va-
rieties produced and the constraints of productivity,
capability, quality and competitiveness. For this, a
prior verification of such processes and their inter-
action is tremendous.

We proposed first in this paper a model for
processes interaction based on Petri nets. Then,
we studied the compatibility of these processes by
model checking techniques. In particular, we applied
a TCTL model checking of these properties and
simulated some examples on the Romeo model
checker. Finally, we enhanced these results by taking
into account several instances ready for execution
as well as a possibility of sharing resources. Hence,
we introduced to parametric verification of interacting
processes. In future, we propose to strengthen this
parametric analysis of ToWF-nets and ToWFR-nets.

REFERENCES

Alur, R. and Courchoubetis, C. and Dill, D. (1993)
Model checking in dense real time. Information
and computation (104). pp 2-34.

Atluri, V. and Huang, W. (1996) An authorization
model for workflows. Proceedings of the 4th
European Symposium on Research in Computer
Security, London, Springer-Verlag. pp 44-64.

Barkaoui, K. and Ben Ayed, R. and Sbaï, Z.
(2007) Workflow Soundness Verification based

on Structure Theory of Petri Nets. International
Journal of Computing and Information Sciences
(IJCIS), pp. 51-61.

Berthomieu, B. and Diaz, M. (1991) Modeling and
verification of time dependent systems using
time Petri nets. IEEE Transactions on Software
Engineering, 17(3).

Bordeaux, L. and Salaun, G. and Berardi, D. and
Mecella, M. (2005) When are two web services
compatible ?. Sapienza University, 3324.

Boucheneb, H. and Barkaoui, K. (2013) Reducing
interleaving semantics redundancy in reachability
analysis of time Petri nets. ACM Transactions in
Embedded Computing Systems (TECS), 12(1), pp
1-24.

Boucheneb, H. and Barkaoui, K. (2012) Paramet-
ric Verification of Time Workflow Nets. 24th In-
ternational Conference on Software Engineering
(SEKE), pp 375-380.

Berthomieu B. and F. Vernadat F. (2003) State class
constructions for branching analysis of time Petri
nets. TACAS 2003, volume 2619 of Lecture Notes
in Computer Science, pp 442-457.

Dumas, M. and Benatallah, B. and Motahari
Nezhad, H. (2008) Web Service Protocols :
Compatibility and Adaptation. Institute of Electrical
and Electronics Engineers.

Guermouche, N. and Perrin, O. and Ringeissen,
C. (2008) Timed Specification For Web Services
Compatibility Analysis. Theoretical Computer Sci-
ence.

Hadjidj, R. and Boucheneb, H. (2009) On-the-
Fly TCTL Model-Checking for Time Petri Nets.
Theoretical Computer Science, 410(42), pp 4241-
4261.

Camerzan, I. (2007) On Soundness for Time
Workflow Nets. Computer Science Journal of
Moldova, 15(1), pp 74-87.

De Michelis, G. and Ellis, C. and Memmi, G.
(1994) Proceedings of the second Workshop
on Computer-Supported Cooperative Work, Petri
nets and related formalisms, Zaragoza, Spain..

Foster, H. and Uchitel, S. and Magee, J. and Kramer,
J. (2004) Compatibility Verification for Web Service
Choreography. Proceedings of IEEE International
Conference on Web Services, pp 738-741.

Ellis, C. and Keddara, K. and Rozenberg, G.
(1995) Dynamic change within workflow systems.
Proceedings of conference on Organizational
computing systems, pp 10-21.

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

107

•

Esparza, Javier and Silva, Manuel (1989) Circuits,
handles, bridges and nets. Applications and
Theory of Petri Nets, Lecture Notes in Computer
Science, 483, pp 210-242.

Martens, A. (2003) On Compatibility of Web
Services. Petri Net Newsletter, pp 12-20.

Gardey, G. and Lime, D. and Magnin, M. and Roux,
O.H. (2005) Romeo: A Tool for Time Petri Nets
Analysis. Proceeding of 17th International Confer-
ence on Computer Aided Verfication (CAV’05), vol-
ume 3576 of Lecture Notes in Computer Science,
pp 418-423.

Gou, H. and Huang, B. and Liu, W. and Li, Y.
and Ren, S. (2001) Modeling distributed business
processes of virtual enterprises based on the
object-oriented approach and petri nets. Systems
Man and Cybernetics.

Konur, S. and Fisher, M. and Schewe, S. (2013)
Combined model checking for temporal, proba-
bilistic, and real-time logics. Theoretical Computer
Science, 503, pp 61-88.

Ling, S. and Schmidt, H. (2000) Time Petri
Nets for Workflow Modelling and Analysis. IEEE
International Conference on Systems, Man, and
Cybernetics, pp 3039-3044.

Martens, A. (2005) Analyzing Web service based
business processes. Proceeding of International
Conference on Fundamental Approaches to
Software Engineering, Part of the European Joint
Conferences on Theory and Practice of Software,
Lecture Notes in Computer Science vol. 3442.

Massuthe P. and Reisig W. and Schmidt K. (2005) An
Operating Guideline Approach to the SOA. Annals
of Mathematics, Computing and Teleinformatics,
pp 35-43.

Ridi, L. and Torrini, J. and Vicario, E. (2012)
Developing a Scheduler with Difference-Bound
Matrices and the Floyd-Warshall Algorithm. IEEE
SOFTWARE.

Sbaï, Z. and Barkaoui, K. (2013) Vérification formelle
des processus workflow - Extension aux work-
flows inter-organisationnels. Revue Ingénierie des
Systèmes d’Information: Ingénierie des systèmes
collaboratifs, 18(5), pp 33-57.

Sbaï, Z. and Barkaoui, K. (2012) Vérification
Formelle des Processus Workflow Collaboratifs.
Actes de la conférence francophone sur les
Systèmes Collaboratifs (SysCo’12), pp. 197-210.

Boucheneb, H. and Gardey, G. and Roux, O.H.
(2009) TCTL model-checking of Time Petri Nets.
Journal of Logic and Computation, 19(6), pp 1509-
1540.

Tan, Wei and Fan, Yushun and Zhou, MengChu
(2009) A Petri Net-Based Method for Compatibility
Analysis and Composition of Web Services in
Business Process Execution Language. IEEE T.
Automation Science and Engineering, 6(1), pp 94-
106.

Yoneda, T. and Ryuba, H. (1998) CTL model
checking of time Petri nets using geometric
regions. IEICE Transactions on Information and
Systems, pp 297-396.

van der Aalst, W.M.P. and Arjan, J.M. and
Christian, S. and Wolf, K. (1998) Service
Interaction: Patterns, Formalization, and Analysis.
9th Internatinal School on Formal Methods for the
design of Computer, Communication and Software
Systems.

van der Aalst, W.M.P. (1997) Verification of Workflow
nets. ICATPN 97, LNCS, 1248.

van der Aalst, W.M.P. (1996) Three good reasons
for using a petri-net-based workflow management
system. International Working Conference on
Information and Process Integration in Enterprises
(IPIC96), pp 179-201.

van der Aalst, W.M.P. (1993) Interval timed coloured
petri nets and their analysis. Proceedings of the
14th International Conference on Application and
Theory of Petri Nets, London, Springer-Verlag, pp
453-472.

Karsten and Schmidt (2005) Controllability of open
workflow nets. EMISA. LNI, Bonner Köllen Verlag,
pp 236-249.

Sbaï. Z. and Kamel Barkaoui. and Hanifa Bouch-
eneb. (2014) Compatibility Analysis of Time Open
Workflow Nets. Proceedings of the International
Workshop on Petri Nets and Software Engineer-
ing, co-located with 35th International Conference
on Application and Theory of Petri Nets and Con-
currency (PetriNets 2014) and 14th International
Conference on Application of Concurrency to Sys-
tem Design (ACSD), pp 249-268.

Sbaï. Z. and Kamel Barkaoui. (2014) On Compat-
ibility Analysis of Inter Organizational Business
Processes. Enterprise and Organizational Model-
ing and Simulation - 10th International Workshop,
EOMAS 2014, Held at CAiSE 2014, Thessaloniki,
Greece, June 16-17, 2014, Selected Papers, pp
171-186.

On quantitative Analysis of Time Open Workflow Nets and Parametric Extension

108

Verif cation of Real-Time Bounded
Distributed Systems With Mobility

Bogdan Aman and Gabriel Ciobanu
Romanian Academy, Institute of Computer Science, Iaşi, Romania

bogdan.aman@gmail.com and gabriel@info.uaic.ro

We introduce and study a prototyping language for describing real-time distributed systems. Its time
constraints are expressed as bounded intervals to model the uncertainty of the delay in migration and
communication of agents placed in the locations of a distributed system. We provide the operational
semantics, and illustrate the new language by a detailed example for which we use software tools for
analyzing its temporal properties.

1. INTRODUCTION

Computer systems today are interconnected into
large distributed systems. Distributed and concur-
rent systems are now used in both academic and
industrial computing, forcing researchers and prac-
titioners to look for theoretical models and software
tools ref ecting the new framework based on mobility
and interaction. Programming paradigms have pro-
gressed, allowing programmers to implement soft-
ware in terms of high level abstractions. In distributed
systems, such implementations are given by taking
care of time scheduling, access to resources, and in-
teraction among processes. When solving problems
in distributed systems, it is useful to have an explicit
notion of location, explicit migration, local interac-
tion/communication and resource management.

Aiming to bridge the gap between the existing the-
oretical approach of process calculi and forthcom-
ing realistic programming languages for distributed
systems, we have introduced and studied a rather
simple and expressive formalism called TIMO as a
simplif ed version of timed distributed pi-calculus
Ciobanu and Prisacariu (2006). In several aspects,
TIMO is a prototyping language for multi-agent sys-
tems, featuring mobility and local interaction. The
mobility refers to the fact that agents are in loca-
tions and that they can migrate from one location
to the another, while agents must be in the same
location in order to communicate. In this paper we
present a revised/improved version of a real-time
variant called rTIMO (Real Timed Mobility) in which
the timing constraints are expressed as intervals in

order to model the uncertainty of the delay in mi-
gration and communication. rTIMO supports explicit
migration and local communication, together with
certain timing constraints over these actions. We
provide a relationship between rTIMO and the model
checker UPPAAL , and so making possible formal
verif cation for rTIMO . For the complex distributed
systems described by such a language, we show
how it is possible to use UPPAAL capabilities in order
to verify certain properties.

The paper is organized as follows: Section 2
presents the syntax and semantics of rTIMO using
interval constraints. Section 3 provides an example,
while Sections 5 and 6 contain the modelling and
verif cation in UPPAAL . Finally, Section 7 presents
the related work and concludes the paper.

2. SYNTAX AND SEMANTICS OF RTIMO

The prototyping language rTIMO provides suff cient
expressiveness to model in an elegant way
the migration and communication in real-time
distributed systems. In this paper we present a
revised/improved version of rTIMO involving global
timing constraints in which the timing constraints
are expressed as intervals in order to model
the uncertainty of the delay in migration and
communication. This realistic approach is used to
provide systems a larger degree of non-determinism,
for instance in deciding when a process is allowed to
move from one location to another one. We achieve
this by assuming that a rTIMOmigration process
can move to another location during a time interval
(and not necessarily after exactly a given number of

c The Authors. Published by BISL.
109

Processes
P,Q ::= a[t1,t2]!〈v〉 then P else Q p (output)

a[t1,t2]?(u) then P else Q p (input)
go[t1,t2]l then P p (move)
0 p (termination)
id(v) p (recursion)
P | Q (parallel)

Located Processes
L ::= l[[P]]

Systems
N ::= L p L | N

Table 1: rTIMO Syntax

time units). Two processes may communicate only if
they are present at the same location, they use the
same channel and the time constraints allow them to
interact.

In rTIMO , the transitions caused by performing
actions with timeouts (migration and communication)
are alternated with continuous transitions (time-
passing). The semantics of rTIMO is provided by
multiset labelled transitions in which multisets of
actions are executed in parallel (in one step).

2.1. Syntax of rTIMO

Timing constraints expressed as intervals allow to
model the uncertainty of the delay in migration and
communication. The syntax of rTIMO is given in
Table 1, where the following is assumed:

• a set Loc of locations l, a set Chan of
communication channels a, and a set Id of
process identif ers (each id ∈ Id has its arity
mid);

• for each id ∈ Id there is a unique process
def nition id(u1, . . . , umid

)
def
= Pid, where the

distinct variables ui are parameters;

• [t1, t2], where t1, t2 ∈ R+ and t1 ≤ t2 is an
execution time interval of an action;

• u is a tuple of variables;

• v is a tuple of expressions built from values,
variables and allowed operations.

• a time interval [t1,t2] associated with a migration
action such as go[t1,t2]loc then P indicates that
process P can move to location loc after t time
units, where t ∈ [t1, t2].

• a time interval [t1,t2] associated with an
output communication process a[t1,t2]!〈z〉 then
P else Q makes the channel a available for
communication (by sending z) for a period

of t2 − t1 time units, but only after an idling
of t1 time units. It is also possible to impose
an interval for an input communication process
a[t1,t2]?(x) then P else Q along a channel a. In
both cases, if the interaction does not happen
in the interval [t1, t2], the process gives up and
continues as the alternative process Q.

The only variable binding constructor is
a[t1,t2]?(u) then P else Q; it binds the variable u within
P , but not within Q. The free variables of a process
P are denoted by fv(P); for a process def nition, it
is assumed that fv(Pid) ⊆ {u1, . . . , umid

}, where ui

are the process parameters. Processes are def ned
up-to an alpha-conversion, and {v/u, . . .}P denotes
P in which all free occurrences of the variable u are
replaced by v, eventually after alpha-converting P in
order to avoid clashes.

Since location l, provided by a process
go[t1,t2]l then P , can be a variable, its value can
be assigned dynamically through communication
with other processes; this means that migration
supports a f exible scheme for the movement of
processes from one location to another. Thus, the
behaviour can be adapted to various changes of
the distributed environment. Processes are further
constructed from the (terminated) process 0, and
parallel composition P | Q. A located process l[[P]]
specif es a process P running at location l, and a
system N is built from its components L. A system
N is well-formed if there are no free variables in N .

Remark 1 In order to focus on the mobility and
local interaction aspects of rTIMO , we abstract from
arithmetical operations, considering by default that
the simple ones (comparing, addition, subtraction)
are included in the language.

2.2. Operational Semantics of rTIMO

The f rst component of the operational semantics
of rTIMO is the structural equivalence ≡ over

Verification of Bounded Real-Time Distributed Systems With Mobility

110

•

systems. The structural equivalence is the smallest
congruence such that the equalities of Table 2 hold.

(NNULL) N | l[[0]] ≡ N
(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P]] | l[[Q]]

Table 2: rTIMO Structural Congruence

Essentially, the role of ≡ is to rearrange a system in
order to apply the rules of the operational semantics
given in Table 3. Using the equalities of Table 2,
a given system N can always be transformed into
a f nite parallel composition of located processes
of the form l1[[P1]] | . . . | ln[[Pn]] such that no
process Pi has the parallel composition operator at
its topmost level. Each located process li[[Pi]] is
called a component of N , and the whole expression
l1[[P1]] | . . . | ln[[Pn]] is called a component
decomposition of the system N .

The operational semantics rules of rTIMO are pre-
sented in Table 3. The multiset labelled transitions of
formN

Λ−→ N ′ use a multiset Λ to indicate the actions
executed in parallel in one step. When the multiset Λ
contains only one action λ, in order to simplify the
notation, N {λ}−−→ N ′ is simply written as N λ−→ N ′.
The transitions of form N

t N ′ represent a time
step of length t ∈ R+.

In rule (MOVE0), the process go[0,t]l′ then P migrates
from location l to location l′ (illustrated by the
label l ⊲ l′ of the transition) and then evolves
as process P . In rule (COM), an output process
a[0,t]!〈v〉 then P else Q located at location l, succeeds
in sending a tuple of values v over channel a to
process a[0,t′]?(u) then P ′ else Q′ also located at l.
Both processes continue to execute at location l, the
f rst one as P and the second one as {v/u}P ′. The
label {v/u}@l of the rule (COM) illustrates the fact
that a communication that lead to the replacement of
u by v (denoted by {v/u}) took place at location l
(denoted by @l). If a communication action has a
timer equal to [0, 0], then by using the rule (PUT0)
for output action or the rule (GET0) for input action,
the generic process a[0,0] ∗ then P else Q where ∗ ∈
{!〈v〉, ?(x)} continues as the process Q. Rule (CALL)
describes the evolution of a recursion process. The
rules (EQUIV) and (DEQUIV) are used to rearrange a
system in order to apply a rule. Rule (PAR) is used
to compose larger systems from smaller ones by
putting them in parallel, and considering the union of
multisets of actions. The rules devoted to the passing
of time are starting with letter D.

A computational step is captured by a derivation of
the form:

N
Λ−→ N1

t N ′.

This means that a step is a parallel execution of
individual actions of Λ followed by a time step.
Performing a step N

Λ−→ N1
t N ′ means that N ′

is directly reachable from N . If there is no applicable
action (Λ = ∅), N Λ−→ N1

t N ′ is written N t N ′ to
indicate (only) the time progress.

Proposition 1 For any systems N , N ′ and N ′′, the
following hold:

1. If N t N ′ and N t N ′′, then N ′ ≡N ′′;

2. N
(t+t′) N ′ if and only if there is a N ′′ such that

N
t N ′′ and N ′′ t′

 N ′.

The f rst item of Proposition 1 states that the passage
of time does not introduce any nondeterminism into
the execution of a process. Moreover, if a process is
able to evolve to a certain time t, then it must evolve
through every time moment before t; this ensures
that the process evolves continuously.

3. TRAVEL AGENCY EXAMPLE IN RTIMO

To illustrate the syntax and semantics of rTIMO ,
we use an example describing an understaffed
travel agency, presented also in Ciobanu and Rotaru
(2013). We assume that the agency has a central
off ce (where the executives interact with agents)
and six local off ces (where agents interact with
customers). However, due to massive layoffs, the
agency has only three travel agents available, whose
jobs are to communicate special travel packages
(destinations and the costs of the travel) to potential
customers, and two executives whose only jobs
are to assign the travel agents to certain local
off ces of the agency each day (not necessarily
the same local off ce each day). Also, there are
two potential customers who are interested in the
recommendations made by the agency, by visiting
some of the local agencies (the ones that are close
to their homes). We assume that the behaviours of
the agency staff and of the potential customers are
cyclic, and can be described as rTIMO processes.

The f rst agent (i.e., process Agent1) leaves its home
(i.e., the location homeAgent1) and goes to the central
off ce of the agency (i.e., location office) in order
to be assigned a certain local off ce for the current
day (i.e., a location that will replace the location
variable newloc). After arriving at the central off ce,
it has to communicate with one of the executives
on channel b after signing the attendance register,
any time between 1 to 5 minutes (depending on

Verification of Bounded Real-Time Distributed Systems With Mobility

111

(STOP) l[[0]] 6 λ−→

(DSTOP) l[[0]]
t l[[0]]

(DMOVE)
t2 ≥ t′ > 0

l[[go[t1,t2]l′ then P]]
t′
 l[[go[max{0,t1−t′},t2−t′]l′ then P]]

(MOVE0) l[[go[0,t]l′ then P]]
l⊲l′−−→ l′[[P]]

(COM) l[[a[0,t]!〈v〉 then P else Q | a[0,t′]?(u) then P ′ else Q′]]
{v/u}@l−−−−−→ l[[P | {v/u}P ′]]

(DPUT)
t2 ≥ t′ > 0

l[[a[t1,t2]!〈v〉 then P else Q]]
t′
 l[[a[max{0,t1−t′},t2−t′]!〈v〉 then P else Q]]

(PUT0) l[[a[0,0]!〈v〉 then P else Q]]
a![0,0]@l−−−−−→ l[[Q]]

(DGET)
t2 ≥ t′ > 0

l[[a[t1,t2]?(u) then P else Q]]
t′
 l[[a[max{0,t1−t′},t2−t′]?(u) then P else Q]]

(GET0) l[[a[0,0]?(u) then P else Q]]
a?[0,0]@l−−−−−→ l[[Q]]

(DCALL)
l[[{v/x}Pid]]

t l[[P ′
id]]

l[[id(v)]]
t l[[P ′

id]]
where id(v) def

= Pid

(CALL)
l[[{v/x}Pid]]

id@l−−−→ l[[P ′
id]]

l[[id(v)]]
id@l−−−→ l[[P ′

id]]
where id(v) def

= Pid

(DPAR)
N1

t N ′
1 N2

t N ′
2

N1 | N2
t N ′

1 | N ′
2

(PAR)
N1

Λ1−−→ N ′
1 N2

Λ2−−→ N ′
2

N1 | N2
Λ1∪Λ2−−−−→ N ′

1 | N ′
2

(DEQUIV)
N ≡ N ′ N ′ t N ′′ N ′′ ≡ N ′′′

N
t N ′′′

(EQUIV)
N ≡ N ′ N ′ Λ−→ N ′′ N ′′ ≡ N ′′′

N
Λ−→ N ′′′

Table 3: rTIMO Operational Semantics

Verification of Bounded Real-Time Distributed Systems With Mobility

112

•

the availability of one of the executives). Since the
agent can use different means of transportations,
and depending on the traff c, it can take between
5 to 10 minutes for the agent to reach the central
off ce of the agency (this movement is described
by the action go[5,10]office then P). The agent then
moves to the given location (it can take between
3 to 5 minutes depending on the local off ce it has
to reach) and advertises (over channel a) the f rst
destination on the agency’s list (i.e., location dest1),
in the form of a holiday pack for 100 monetary units.
Finally, after selling one travel package, the agent
returns home (it can take between 5 to 8 minutes
depending on the local off ce it departs from). The
second and the third agent (i.e., processes Agent2
and Agent3) are similar to the f rst, but they have
different homes (i.e., the locations homeAgent2 and
homeAgent3), and advertise different destinations
(i.e., locations dest2 and dest3), in the form of holiday
packs for 200 and 300 monetary units, respectively.
Formally, we have:

AgentX(homeAgentX : Loc) =

go[5,10]office then AgentX(office : Loc)

AgentX(office : Loc) =

b[1,5]?(newloc : Loc)

then (go[3,5] newloc

then AgentX(newloc : Loc))

else AgentX(office : Loc)

AgentX(officei : Loc) =

a
[1,20]
i !〈destX, 100 ·X〉

then go[1,3] homeAgentX

then AgentX(homeAgentX : Loc)

else go[1,3] homeAgentX

then AgentX(homeAgentX : Loc),

where 1 ≤ i ≤ 6 and X ∈ {1, 2, 3} refers to the
number of the agent.

The two executives (i.e., processes Executive1 and
Executive2) reside at the central off ce (i.e., location
office), and each chooses a local off ce (i.e., in a
cyclic manner, from the locations office1, office3,
office5, for process Executive1, and the locations
office2, office4, office6 for process Executive2) that
will be assigned to the next agent that comes to
the central off ce (over channel b in a period of

time between 1 and 5 time units for Executive1 and
a period of time between 2 and 4 time units for
Executive2, namely after each executive resolves
some off ce paperwork that make different periods
for the two executives). Formally, we have:

Executive1(office1 : Loc) =

b[1,5]!〈office1〉

then Executive1(office3 : Loc)

else Executive1(office1 : Loc)

Executive1(office3 : Loc) =

b[1,5]!〈office3〉

then Executive1(office5 : Loc)

else Executive1(office3 : Loc)

Executive1(office5 : Loc) =

b[1,5]!〈office5〉

then Executive1(office1 : Loc)

else Executive1(office5 : Loc)

Executive2(office2 : Loc) =

b[2,4]!〈office2〉

then Executive2(office4 : Loc)

else Executive2(office2 : Loc)

Executive2(office4 : Loc) =

b[2,4]!〈office4〉

then Executive2(office6 : Loc)

else Executive2(office4 : Loc)

Executive2(office6 : Loc) =

b[2,4]!〈office6〉

then Executive2(office2 : Loc)

else Executive2(office6 : Loc)

The f rst customer (i.e., process Client1) leaves
home (i.e., location homeC1) when he knows the
agencies should be open and visits all of the three
local off ces of the agency that are closest to his
home (i.e., the locations office1, office2, and office3),

Verification of Bounded Real-Time Distributed Systems With Mobility

113

•

in order, receives travel offers from the agents found
at those local off ces, and chooses the cheapest
travel destination. Then, he goes to the desired
destination, spends a certain amount of time there,
after which he returns home. The second customer
(i.e., process Client2) has the same behaviour as
the f rst, except that he has a different home (i.e.,
location homeClient2), the off ces closest to his home
are locations office4, office5 and office6, and that
he chooses the most expensive travel destination.
For simplicity, we consider that both clients have
the same intervals of performing similar actions.
Formally, we have:

Client1(homeClient1 : Loc) =

go[12,13] office1

then Client1(office1 : Loc)

Client1(office1 : Loc) =

a
[0,4]
1 ?(destClient1,1 : Loc, costClient1,1 : N)

then (go[1,2] office2

then Client1(office2 : Loc))

else (go[1,2] office2

then Client1(office2 : Loc))

Client1(office2 : Loc) =

a
[0,4]
2 ?(destClient1,2 : Loc, costClient1,2 : N)

then (go[1,3] office3

then Client1(office3 : Loc))

else (go[1,3] office3

then Client1(office3 : Loc))

Client1(office3 : Loc) =

a
[0,4]
3 ?(destlientC1,3 : Loc, costClient1,3 : N)

then (go[1,5] nextClient1

then Client1(nextClient1 : Loc))

else (go[1,5] nextClient1

then Clent1(nextClient1 : Loc))

Client1(destClient1,i : Loc) =

go[1,5] homeClient1

then Client1(homeClient1 : Loc), for 1 ≤ i ≤ 3

where

nextClient1 =

destClient1,i if costClient1,i =

minj∈{1,2,3}costClient1,j ∈ N
homeClient1 otherwise.

Client2(homeClient2 : Loc) =

go[12,13] office4

then Client1(office4 : Loc)

Client2(office1 : Loc) =

a
[0,4]
4 ?(destClient2,1 : Loc, costClient2,1 : N)

then (go[1,2] office2

then Client2(office5 : Loc))

else (go[1,2] office2

then Client2(office5 : Loc))

Client2(office5 : Loc) =

a
[0,4]
5 ?(destClient2,2 : Loc, costClient2,2 : N)

then (go[1,3] office6

then Client2(office6 : Loc))

else (go[1,3] office6

then Client2(office6 : Loc))

Client2(office6 : Loc) =

a
[0,4]
6 ?(destClient2,3 : Loc, costClient2,3 : N)

then (go[1,5] nextClient2

then Client2(nextClient2 : Loc))

else (go[1,5] nextClient2

then Client2(nextClient2 : Loc))

Client2(destClient2,i : Loc) =

go[1,5] homeClient2

then Client2(homeClient2 : Loc), for 1 ≤ i ≤ 3

where

nextClient2 =

destClient2,i if costClient2,i =

maxj∈{1,2,3}costClient2,j ∈ N
homeClient2 otherwise.

Verification of Bounded Real-Time Distributed Systems With Mobility

114

•

The initial state of the corresponding
rTIMO network N is:

homeAgent1[[Agent1(homeAgent1)]] |
| homeAgent2[[Agent2(homeAgent2)]] |
| homeAgent3[[Agent3(homeAgent3)]] |

| office[[Executive1(office1) |Executive2(office2)]] |
| homeClient1[[Client1(homeClient1)]] |
| homeClient2[[Client2(homeClient2)]]

4. TIMED SAFETY AUTOMATA

Towards a necessary automated verif cation of
complex distributed systems described by rTIMO ,
we provide f rst a relationship between rTIMO and
timed safety automata Alur and Dill (1994). Then,
taking into consideration the existing software tools,
we relate rTIMO to UPPAAL . UPPAAL is an integrated
tool environment for modelling, validation and
verif cation of real-time systems. More details about
the semantics of the input language of UPPAAL can
be found at http://www.uppaal.org/. Modelling and
verif cation of real-time systems by using UPPAAL
are presented in Hessel et all (2008). Such a
system is modelled as a network of several parallel
timed automata. All the clocks are evaluated to real-
numbers and progress synchronously. The model
uses variables just as in programming languages:
they are read, written, and are subject to linear
expressions. A state of the system is def ned by
the locations of the network, the clock constraints,
and the values of the variables. In any state, every
automaton from the network may f re an edge (if it
satisf es the restrictions) separately or synchronize
with another automaton, leading to a new state.

4.1. Syntax

Assume a f nite set of real-valued variables C ranged
over by x, y, . . . standing for clocks, and a f nite
alphabet Σ ranged over by a, b, . . . standing for
actions. A clock constraint g is a conjunctive formula
of constraints of the form x ∼ m or x − y ∼ m, for
x, y ∈ C, ∼∈ {≤, <,=, >,≥}, and m ∈ N. The set of
clock constraints is denoted by B(C).

Definition 1 A timed safety automaton A is a tuple
〈N,n0, E, I〉, where

• N is a f nite set of nodes;

• n0 is the initial node;

• E ⊆ N ×B(C)×Σ× 2C ×N is the set of edges;

• I : N → B(C) assigns invariants to nodes.

n
g,a,r−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈

E. Node invariants are restricted to constraints of the
form: x ≤ m or x < m where m ∈ N.

4.2. Networks of Timed Automata

A network of timed automata is the parallel
composition A1 | . . . | An of a set of timed automata
A1, . . . ,An combined into a single system using the
parallel composition operator and with all internal
actions hidden. Synchronous communication inside
the network is by handshake synchronisation of input
and output actions. In this case, the action alphabet
Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for
internal actions). A detailed example is found
in Henzinger (1994).

A network can perform delay transitions (delay
for some time), and action transitions (follow an
enabled edge). An action transition is enabled if the
clock assignment also satisf es all integer guards
on the corresponding edges. In synchronisation
transitions, the resets on the edge with an output-
label are performed before the resets on the edge
with an input-label. To model urgent synchronisation
transitions that should be taken as soon as they
are enabled (the system may not delay), a notion of
urgent channels is used.

Let u, v, . . . denote clock assignments mapping C to
non-negative reals R+. g |= u means that the clock
values u satisfy the guard g. For d ∈ R+, the clock
assignment mapping all x ∈ C to u(x) + d is denoted
by u + d. Also, for r ⊆ C, the clock assignment
mapping all clocks of r to 0 and agreeing with u for
the other clocks in C\r is denoted by [r 7→ 0]u. Let
ni stand for the ith element of a node vector n, and
n[n′

i/ni] for the vector n with ni being substituted
with n′

i.

A network state is a pair 〈n, u〉, where n denotes a
vector of current nodes of the network (one for each
automaton), and u is a clock assignment storing
the current values of all network clocks and integer
variables.

Definition 2 The operational semantics of a timed
automaton is a transition system where states are
pairs 〈n, u〉 and transitions are def ned by the rules:

• 〈n, u〉 d−→ 〈n, u+d〉 if u ∈ I(n) and (u+d) ∈ I(n),
where I(n) =

∧
I(ni);

• 〈n, u〉 τ−→ 〈n[n′
i/ni], u

′〉 if ni
g,τ,r−−−→ n′

i, g |= u,
u′ =[r 7→ 0]u and u′ ∈I(n[n′

i/ni]);

• 〈n, u〉 τ−→ 〈n[n′
i/ni][n

′
j/nj], u

′〉 if there exist i 6= j
such that

1. ni
gi,a?,ri−−−−−→ n′

i, nj
gj ,a!,rj−−−−−→ n′

j , gi ∧ gj |= u,
2. u′ = [ri 7→ 0]([rj 7→ 0]u) and u′ ∈

I(n[n′
i/ni][n

′
j/nj]).

Verification of Bounded Real-Time Distributed Systems With Mobility

115

home
y<=5

task
y<=12

work
y<=5

2.5<=y
move

x:=0, y:=0

2.5<=y
move
y:=0

x==2.5
perform
x:=0

2.5<=y
y:=0

Figure 1: Timed Safety Automata

Graphically, a timed safety automata can be represented
as a graph having a f nite set of nodes and a f nite set
of labelled edges (representing transitions), using real-timed
variables (representing the clocks of the system). The clocks
are initialised with zero when the system starts, and then
increased synchronously with the same rate. The behaviour
of the automaton is restricted by using clock constraints, i.e.
guards on edges, and local timing constraints called node
invariants (e.g., see Figure 1). An automaton is allowed to stay
in a node as long as the timing conditions of that node are
satisf ed. A transition can be taken when the edge guards are
satisf ed by clocks values. When a transition is taken, clocks
may be reset to zero.

Building a timed automaton for each located process
of rTIMO leads to the next result about the
equivalence between an rTIMO network N and its
corresponding timed automaton AN .

Theorem 1 Given an rTIMO network N with
channels appearing only once in output actions,
there exists a network AN of several parallel timed
automata with a bisimilar behaviour.

A bisimilar behaviour is given by:

• at the start of execution, all clocks in rTIMO
and their corresponding timed automata are
set to 0;

• the consumption of a go action in a node l is
matched by a τ edge obtained by translation;

• a communication rule is matched by a
synchronization between the edges obtained
by translations;

• the passage of time is similar in both
formalisms: in rTIMO the global clock is used
to decrement by d all timers in the network
when no action is possible, while in the timed
automata all local clocks are decremented
synchronously with the same value d.

Thus, the size of a timed safety automata AN is
polynomial with respect to the size of a TIMO
network N , and the state spaces have the same
number of states.

5. MODELLING THE TRAVEL AGENCY
EXAMPLE IN UPPAAL

The model of the travel agency of Section 3 has three
templates:

• Agent(int dest) is the model of an agent
with one integer parameter dest, as shown

in Figure 2. Using the parameter dest we
can initialize the three agents from Section
3 by creating the processes A1 = Agent(1),
A2 = Agent(2) and A3 = Agent(3), where
each agent sells a travel package to a different
destination dest. It is also possible to instantiate
any number of agents, or agents that sell the
same travel package.

• Executive(int o1, int o2, int o3) is the model of
an executive with three integer parameters
o1, o2 and o3, shown in Figure 2. The three
parameters are used to initiate the two ex-
ecutives described in Section 3 by creat-
ing the processes E1 = Executive(1, 3, 5) and
E2 = Executive(2, 4, 6), where each executive
is given the off ce locations that he/she can
assign to agents. As for the agents, it is pos-
sible to create more executives than the ones
presented in Section 3.

• Client(int id, int o1, int o2, int o3) is the model
of a client with four parameters, shown
in Figure 3. The parameters are used to
initiate the two clients of Section 3 by
creating the processes C1 = Client(1, 1, 2, 3)
and C2 = Client(2, 4, 5, 6). The id parameter
is used to uniquely identify a client, while the
other parameters are used to identify three
local off ces each client is allowed to visit
before making a travel decision. As for Agent
and Executive, any number of clients can be
created.

Thus, the initial system is
system A1,A2,A3,E1,E2,C1,C2.

We explain in detail the Agent template of Figure
2 (the others are constructed in a similar manner).
It has f ve locations: home, office, office b, office o

Verification of Bounded Real-Time Distributed Systems With Mobility

116

Figure 2: The Agent (left) and Executive (right) Templates

and office a. The initial location is home, which
corresponds to the fact that an agent is at home.
The location has the invariant x <= 10 (taken
from the rTIMO action go[5,10]) which has the effect
that the location must be left within 10 time units.
The outgoing transition towards location office is
guarded by the constraints 5 <= x and x <=
10, which correspond to the above mentioned go
rTIMO action. Once at location office, the agent can
either synchronize on channel b[o] with an executive
or, if the channel expires, create another instance in
order to be able to receive an off ce location from
an executive. After the communication is performed,
the agent is at location office b (meaning that it
successfully received the location newloc = o of the
off ce he is detached to), and is ready to move to
the assigned location officeo. After arriving at officeo,
he awaits for a client for at most 20 time units, to
which he must communicate the travel package on
channel a[newloc][dest]!. Regardless of the fact that
he interacts with a client or not, he moves within
20 time units to the location office b where he is
ready to go home in order to prepare for a new
working day. Thus, an agent has a cyclic evolution
(a similar behaviour as one of the executives and of
the clients).

6. VERIFYING PROPERTIES OF TRAVEL
AGENCY BY USING UPPAAL

According to the results and descriptions presented
in the previous section, we can verify time
bounded distributed systems with mobility presented
as rTIMO networks by using UPPAAL. UPPAAL
can be used to check temporal properties of
networks of timed automata, properties expressed
in Computation Tree Logic (CTL). If φ and ψ are
boolean expressions over predicates on nodes,

integer variables and clock constraints, then the
formulas have the following forms:

A [] φ - Invariantly φ; A 〈 〉 φ - Always Eventually
φ;

E [] φ - Potentially Always φ; E 〈 〉 φ - Possibly
φ;

φ ψ - φ always leads to ψ. This is a shorthand
for A [] (φ ⇒ A 〈 〉 ψ)

The formulas can be of two types: path formulae
(quantify over paths or traces of the model) and
state formulae (individual states). Path formulae can
be classif ed into reachability (E 〈 〉 φ), safety (A [] φ
and E [] φ) and liveness (A 〈 〉 φ and φ ψ).
Reachability properties are used to check whether
there exist a path starting at the initial state, such
that φ is eventually satisf ed along that path. Safety
properties are used to verify that something bad
will never happen, while liveness properties check
whether something will eventually happen.

We present various properties that could be
analyzed and verif ed for our example from Section
3. We have used an Intel PC with 8 GB memory, 2.50
GHz × 4 CPU and 64-bit Ubuntu 14.04 LTS to run
the experiments. The results are presented for each
analyzed property.

Example 1 Given the uncertainty of the delay in
migration and communication, the size of the
potential interactions in rTIMO systems grows
exponential making the software verif cation a
necessity. We use UPPAAL to perform this kind
of verif cations for the travel agency example
presented in Section 3, for both safety and liveness
properties. Here we present only some of the
formulas/properties verif ed by using UPPAAL.

Verification of Bounded Real-Time Distributed Systems With Mobility

117

Figure 3: The Client Template

• C1.office1 − − > C1.home

The formulae C1.office1 C1.home, short-
hand for A[](C1.office1 ⇒ A〈 〉C1.home, de-
scribe that, once the client C1 is in the office1
location, then it will always reach the home
location. This implies that after leaving location
office1, even whether the client visits or not the
locations office2 and office3, the client C1 goes
to the desired location, after which returns
home.

• E〈 〉 C1.home imply C1.dest1

This formulae is used to check whether once
the client C1 is in the home location, then
it possibly reaches the dest1 location. This
implies that if the client C1 leaves the home
location, one of its travels takes him to location

dest1. In a similar manner it can be checked
that there are evolutions in which the client C1
visits one of the locations dest2 or dest3.

• E〈 〉 A1.office and A2.office and A3.office

This is checking whether or not the agents
A1, A2 and A3 reach the office location at
the same time. Due to the uncertainty of the
delay in migration and communication and of
the fact that each agent has different timing
constraints, having all agents at location office
may not happen in all the possible evolutions.

Verification of Bounded Real-Time Distributed Systems With Mobility

118

•

• A[] not deadlock

This is checking that there exists no deadlock.
This implies that, whatever are the interac-
tions between the involved participants, the
evolution never stops. This means that after
a working day the agents go the next day
to work, while the clients continue to look for
travel packages in the following days.

For this property, we have stopped the
verif cation process after 57609 seconds due
to the fact that the RAM was fully used (as it
can be seen below).

Since the verif cation of the previous property
was stopped due to insuff cient RAM, we try a
similar verif cation of “no deadlock” for smaller
systems. For systems with a smaller number
of agents, executives and clients the “no
deadlock” property is satisf ed. For one agent,
one executive and one client the UPPAAL
verif cation returned:

Adding another agent takes more time to verify,
but the property still holds:

Several other properties of rTIMO systems can be
verif ed by using UPPAAL .

7. CONCLUSION AND RELATED WORK

In this paper we presented time bounded extension
of rTIMO , suitable to work in complex distributed
systems with mobility. It is different from all
previous approaches since it encompasses specif c
features as real-time timeouts given as intervals,
explicit locations, time bounded migration and
communication. The parallel execution of a step is
provided by multiset labelled transitions. We have
presented an example of applying rTIMO to an
understaffed travel agency, illustrating that rTIMO
provides an appropriate framework for modelling and
reasoning about time bounded distributed systems
with migration and interaction/communication. We
have shown that we can model and verify real-
time systems (e.g., the travel agency) corresponding
to rTIMO networks by using UPPAAL . As rTIMO is
a prototype language, a f exible representation of
a travel agency is given as a number of parallel
processes that are instances of the AX, EX and
CX. The implementation of rTIMO processes in
UPPAAL is natural due to the fact that in UPPAAL it is
possible to use templates. For the running example
this allows, by proper instantiations, to create any
number of agents, executives and clients that can
interact when placed in parallel. It is easy to note
that the formalism presented in Aman and Ciobanu
(2013) represents a strict subclass of the formalism
presented in this paper.

Several proposals of process calculi for real-time
modelling and verif cation have been presented in
the literature: timed CSP Reed and Roscoe (1988),
timed ACP Baeten and Bergstra (1991) and several
timed extensions of CCS Moller and Tofts (1990);
Yi et all (1994). Aiming to bridge the gap between
the existing theoretical approach of process calculi
and forthcoming realistic programming languages for
distributed systems, we have introduced and studied
a rather simple and expressive formalism called
TIMO as a simplif ed version of timed distributed
pi-calculus Ciobanu and Prisacariu (2006). In
several aspects, TIMO is a prototyping language
for multi-agent systems, featuring mobility and local
interaction. Starting with a f rst version proposed
in Ciobanu and Koutny (2008), several variants
were developed during the last years; we mention
here the access permissions given by a type
system in perTIMOCiobanu and Koutny (2011a),
as well as a probabilistic extension pTIMOCiobanu
and Rotaru (2013). Inspired by TIMO , a f exible
software platform was introduced in Ciobanu and
Juravle (2009, 2012) to support the specif cation
of agents allowing timed migration in a distributed
environment Ciobanu (2010). Interesting properties
of distributed systems described by TIMO refer
to process migration, time constraints, bounded

Verification of Bounded Real-Time Distributed Systems With Mobility

119

•

liveness and optimal reachability Aman et. all
(2012); Ciobanu and Koutny (2011b). A verif cation
tool called TIMO@PATCiobanu and Zheng (2013)
was developed by using Process Analysis Toolkit
(PAT), an extensible platform for model checkers.
A probabilistic temporal logic called PLTM was
introduced in Ciobanu and Rotaru (2013) to verify
complex properties making explicit reference to
specif c locations, temporal constraints over local
clocks and multisets of actions.

Acknowledgements. Many thanks to the reviewers
for their useful comments. The work was supported
by a grant of the Romanian National Authority for
Scientif c Research, project number PN-II-ID-PCE-
2011-3-0919.

REFERENCES

Alur, R. and Dill, D.L. (1994) A Theory of Timed
Automata. Theoretical Computer Science 126,
183–235.

Aman, B. and Ciobanu, G. (2013) Real-Time
Migration Properties of rTIMOVerif ed in UPPAAL .
In Hierons, R., Merayo, M.and Bravetti, M. (Eds.),
SEFM 2013. Lecture Notes in Computer Science
8137, 31–45.

Aman, B., Ciobanu, G. and Koutny, M. (2012) Be-
havioural Equivalences over Migrating Processes
with Timers. In Giese, H. and Rosu, G. (Eds.)
FMOODS/FORTE 2012, Lecture Notes in Com-
puter Science 7273, 52–66.

Baeten, J.C.M. and Bergstra, J.A. (1991) Real Time
Process Algebra. Journal of Formal Aspects of
Computing Science 3(2), 142–188.

Ciobanu, G. (2008) Behaviour Equivalences in
Timed Distributed π-Calculus. In Wirsing, M.,
Banâtre, J.-P., Hölzl, M. and Rauschmayer, A.
(Eds.), Lecture Notes in Computer Science 5380,
190–208.

Ciobanu, G. (2010) Finding Network Resources by
Using Mobile Agents. Intelligent Distributed Com-
puting IV. Studies in Computational Intelligence
315, 305–313.

Ciobanu, G. and Juravle, C. (2009) A Software
Platform for Timed Mobility and Timed Interaction.
In Lee, D., Lopes, A. and Poetzsch-Heffter, A.
(Eds.) FMOODS/FORTE 2009, Lecture Notes in
Computer Science 5522, 106–121.

Ciobanu, G. and Juravle, C. (2012) Flexible
Software Architecture and Language for Mobile
Agents. Concurrency and Computation: Practice
and Experience24, 559–571.

Ciobanu, G. and Koutny, M. (2008) Modelling and
Verif cation of Timed Interaction and Migration.
In Fiadeiro, J.L., Inverardi, P. (Eds.) FASE 2008,
Lecture Notes in Computer Science 4961, 215–
229.

Ciobanu, G. and Koutny, M. (2011) Timed Migration
and Interaction With Access Permissions. In
Butler, M., Schulte, W. (eds.) FM 2011, Lecture
Notes in Computer Science 6664, 293–307.

Ciobanu, G. and Koutny, M. (2011) Timed Mobility
in Process Algebra and Petri nets. The Journal of
Logic and Algebraic Programming 80(7), 377–391.

Ciobanu, G. and Prisacariu, C. (2006) Timers for
Distributed Systems. In Di Pierro, A. and Wiklicky,
H. (Eds.) QAPL 2006,Electronic Notes in Theoretic
Computer Science 164(3), 81–99.

Ciobanu, G. and Rotaru, A. (2013) A Probabilistic
Logic for PTIMO. In Liu, Z., Woodcock, J. and Zhu,
H. (Eds.) ICTAC 2013, Lecture Notes in Computer
Science 8049, 141–158.

Ciobanu, G. and Zheng, M. (2013) Automatic
Analysis of TIMOSystems in PAT. In Proc.
18th International Conference on Engineering of
Complex Computer Systems (ICECCS 2013),
IEEE Computer Society, 121–124.

Hennessy, M. (2007) A Distributed π-calculus.
Cambridge University Press.

Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine,S.
(1994) Symbolic Model Checking for Real-time
Systems. Information and Computation 111, 192–
224.

Hessel, A., Larsen, K.G., Mikucionis, M. Nielsen,
B. Pettersson, P. and Skou, A. (2008) Testing
Real-Time Systems Using UPPAAL . In Hierons,
R.M., Bowen, J.P., Harman, M. (Eds.) FORTEST,
Lecture Notes in Computer Science 4949, 77–
117.

Milner, R., Parrow, J. and Walker, D. (1992) A
Calculus of Mobile Processes (i-ii). Information
and Computation 100, 1–77.

Moller, F. and Tofts, C. (1990) A Temporal Calculus
of Communicating Systems. In Baeten, J.C.M.,
Klop, J.W. (Eds.) CONCUR 1990, Lecture Notes
in Computer Science 458, 401–415.

Reed, G.M. and Roscoe, A.W. (1988) A Timed
Model for Communicating Sequential Processes.
Theoretical Computer Science 58(1-3), 249–261.

Yi, W. , Pettersson, P. and Daniels, M. (1994) Au-
tomatic Verif cation of Real-time Communicating
Systems by Constraint-solving. In International
Conference on Formal Description Techniques,
223–238.

Verification of Bounded Real-Time Distributed Systems With Mobility

120

	I Session: Control and Diagnosis
	Resilience Assessment: Accidental and Malicious Threats (Invited talk) Mohamed Kaâniche
	Fault Diagnosis of P-Time Labeled Petri Net Systems Patrice Bonhomme
	Combining Enumerative and Symbolic - Techniques for Diagnosis of Discrete-Event Systems Abderraouf Boussif, Mohamed Ghazel and Kais Klai

	II Session: Program verification
	Probabilistic Approaches for Time Critical Embedded Systems (Invited talk) Liliana Cucu-Grosjean
	Towards the Property-Based Testing of an L4 Microkernel API Cosmin Dragomir, Lucian Mogosanu, Mihai Carabas, Razvan Deaconescu and Nicolae Tapus
	An Approach for Formal Verification of Updated Java Bytecode Programs Razika Lounas, Mohamed Mezghiche and Jean-Louis Lanet
	State Space Reduction Strategie for Model Checking Concurrent C Programs Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Serge Haddad and Kamel Barkaoui

	III Session: Performance evaluation
	Timeout Interaction and Migration in Distributed Systems (Invited talk) Gabriel Ciobanu
	Model-Based Verification of the DMAMAC Protocol for Real-time Process Control Admar Ajith Kumar Somappa, Andreas Prinz and Lars Kristensen
	On quantitative Analysis of Time Open Workflow Nets and Parametric Extension Zohra Sbaï and Kamel Barkaoui
	Verification of Bounded Real-Time Distributed Systems With Mobility Bogdan Aman and Gabriel Ciobanu

