
Model-Based Verification of the DMAMAC
Protocol for Real-time Process Control

Admar Ajith Kumar Somappa
Bergen University College

University of Agder
aaks@hib.no

Andreas Prinz
University of Agder

andreas.prinz@uia.no

Lars M Kristensen
Bergen University College

lmkr@hib.no

Medium Access Control (MAC) protocols are responsible for managing radio communication that constitute
the main energy consumer in wireless sensor-actuator networks. The Dual-Mode Adaptive MAC (DMAMAC)
protocol is a recently proposed MAC protocol for process control applications in industrial automation. The
goal of the DMAMAC protocol is to improve energy efficiency along with addressing real-time requirements
for process control applications. The DMAMAC protocol switches between two operational modes that
correspond to the two main states in process control: the transient state and the steady state. The state-
switch is a safety critical function of the DMAMAC protocol (along with other functional properties) motivating
the application of formal verification techniques. In this article, we use timed automata and the Uppaal tool to
verify the design of the DMAMAC protocol. We have created a time-based model in Uppaal that constitutes a
formal specification of the DMAMAC protocol. Using this model, we have successfully verified key properties
of the DMAMAC protocol, thereby increasing confidence in the design of the protocol.

Model checking, Timed automata, Medium Access Control Protocols, Wireless Sensor Actuator Networks

1. INTRODUCTION

A Wireless Sensor Actuator Network (WSAN) (Aky-
ildiz and Kasimoglu (2004)) consists of sensors and
actuators that use radio to send, relay, and receive
information. WSANs are used in a wide range of
domains including process- and factory automation,
smart home automation, and health-care. Feedback-
based control loops that use wired or wireless so-
lutions are collectively known as Networked Con-
trol Systems (NCS) (Hespanha et al. (2007)). NCS
mainly use wired communication systems, but are
increasingly adopting wireless communication. The
salient feature of a wireless solution is the reduction
in cost and size compared to the use of wired net-
works. The use of wireless communication, however,
also has shortcomings and it has not yet become the
de-facto replacement for wired solutions. The limi-
tations of wireless solutions include low-bandwidth,
energy efficiency, signal interference, and packet-
loss. Energy efficiency in particular is an important
concern when devices are battery powered.

Wireless solutions are made up of a collection of
protocols that cater for different functions. Medium
Access Control (MAC) is one of the functions that
are critical to the proper operation of the entire

WSAN. MAC protocols govern the communication
and control the use of the radio on each node
in the network. The radio module is the dominant
consumer of energy in wireless nodes. The Dual-
Mode Adaptive MAC (DMAMAC) protocol is a
recently proposed MAC protocol in (Kumar S. et al.
(2014)) for process control applications. The protocol
is aimed to provide an energy efficient solution.
The DMAMAC protocol was proposed for NCSs
with real-time and energy efficiency requirements. In
particular, it targets process control applications that
fluctuate between two states of operation: steady
and transient. Fig. 1 shows a typical process control
with two states. The transient state corresponds to
the process state with large and frequent change
in measurements of physical quantities, resulting in
a high data rate. The steady state refers to the
process state with measurements contained within
a controlled range of values, thus requiring less
data transfer. An example is process control for
chemical reactors. The varying physical quantities
are temperature and pressure which are measured
by sensors. This can be controlled by varying the
inflow of chemicals to the chemical reactors and
using coolants, controlled by actuators. The state-
switch is a safety critical feature of the DMAMAC
protocol and can benefit from formal verification to
ensure proper functioning.

©

Figure 1: Process control states

Model-checking is a powerful technique for verifica-
tion of protocol designs. Model-checking allows for
exhaustive verification and has been widely used on
related protocols (see, e.g., (Fehnker et al. (2012,
2007); Tschirner et al. (2008)). Verification in the
early design phase can be used to ensure the
behavioral correctness of protocols. Model-checking
assists in discovering design faults by exhaustively
traversing all possible execution traces of a given
model. Furthermore, model-checking tools can pro-
vide error-traces to failure states, thus assisting
in resolving any discovered design issues. Uppaal
(David et al. (2011)) is a modelling and verification
tool-suite that supports model checking of real-time
systems. In addition to model-checking and verifica-
tion, Uppaal also supports simulation which can be
used to provide useful insights into the operation of
a protocol.

In this article, we apply the Uppaal tool to analyze
qualitative features of the DMAMAC protocol. We
present a formal specification of the DMAMAC
protocol in the form of a network of timed automata
and verify safety properties related to the absence
of faulty states. Additionally, we verify real-time
properties including switch delay and maximum
data delay. The timed modelling of the DMAMAC
protocol is based on a Finite State Machine (FSM)
representation of the sensors, actuators, and the
sink node in the WSAN network configuration under
consideration.

1.1. Related Work

Uppaal has been widely used to model and verify
communication protocols (see, e.g., (Fehnker et al.
(2012); Tschirner et al. (2008); Fehnker et al.
(2007)). The Lightweight Medium Access Control
(LMAC) (Fehnker et al. (2007)) protocol is the
closest MAC protocol modelling related to the
work presented in this article. The LMAC and the
DMAMAC protocols are two distinct protocols with
distinct goals, and differ significantly in their base
features. The LMAC protocol is a self-organising
protocol with nodes selecting their own slots i.e.,
time duration allocated for data transfer. The focus
in the LMAC protocol verification is on efficient slot
selection and collision detection. In the DMAMAC

protocol, the slot scheduling is done statically
and offline prior to deployment. The focus of the
DMAMAC protocol is to provide an energy efficient
solution along with efficient switching between
the two operational modes. It requires a different
model to represent the features of the DMAMAC
protocol than the one used for the LMAC protocol.
In (Tschirner et al. (2008)), the authors have
focused mainly on modelling the Chipcon CC2420
transceiver. This work is related in terms of their
use of a packet collision model and how collisions
are observed. We use a collision model similar
to (Tschirner et al. (2008); Fehnker et al. (2007)).
With the extension of Statistical Model-Checking
(SMC) features, Uppaal can also be used to assess
performance related queries as shown in the case
study (David et al. (2011)) of the Lightweight Medium
Access Control (LMAC) protocol.

1.2. Outline

The rest of the article is organised as follows. In
Sect. 2 we briefly introduce the DMAMAC protocol.
For extensive details, we refer to (Kumar S. et al.
(2014)). Section 3 describes in detail the constructed
Uppaal model of the DMAMAC protocol. As part
of this, we briefly introduce the constructs of timed
automata as implemented in Uppaal, and perform
some initial validation of the protocol model. In Sect.
4 we complete the validation of the constructed
model. The verification of the protocol for different
deployment configurations is discussed in Sect. 5.
Finally in Sect. 6 we sum up the conclusions and
discuss future work. The reader is assumed to be
familiar with the basic concepts and operation of
MAC protocols, including superframes and slots,
and the principles of Time Division Multiple Access
(TDMA) and Carrier Sense Multiple Access (CSMA).

2. DMAMAC PROTOCOL

The DMAMAC protocol (Kumar S. et al. (2014))
has two operational modes catering for the two
states of process control applications: transient
mode and steady mode. The protocol is based
on Time-Division Multiple Access (TDMA) for
data communication and a Carrier Sense Multiple
Access (CSMA)-TDMA hybrid for alert message
communication. The basic functioning of the protocol
is based on the GinMAC protocol (Suriyachai
et al. (2010)) proposed for industrial monitoring
and control. The network topology of the DMAMAC
protocol consists of sensor nodes, actuator nodes,
and a sink. The sensor nodes are wireless nodes
with sensing capability which sense a given area
and update the sink by sending the sensed data.
The actuator nodes are wireless nodes equipped
with actuators, which act on the data performing a

physical operation. It is also possible to have wireless
nodes with both sensors and actuators. The sink is
a computationally powerful (relative to the nodes)
wire powered node which collects the sensed data,
performs data processing on it, and then sends the
results to corresponding actuators.

Figure 2: The network topology for DMAMAC protocol

Similar to the GinMAC protocol, the network
deployment for the DMAMAC protocol is based on
a tree topology as shown in Fig. 2. The solid lines
between nodes represent data communication. The
dashed lines represent nodes which can hear each
other, but which have no direct data communication
with each other. Each level in the tree topology is
ranked (marked with “R#”, # is 1 or 2), with the sink
having the lowest rank number and the farthest leaf
nodes having the highest rank number. This ranking
is exploited in the alert message sending procedure.

Firstly, we discuss the key assumptions that were
made to support the design of the protocol. Further,
we explain in brief the working of the two operational
modes and the respective superframes they use.

• The nodes are assumed to be time synchro-
nized via an existing time synchronization pro-
tocol. Thus, the time synchronization mecha-
nism is not defined as a part of the protocol.
• The sink is assumed to be powerful, and it can

reach all nodes in one hop.
• A pre-configured static network topology with

no mobility is assumed.
• A single slot accommodates both a data packet

and a corresponding acknowledgement.

Figure 3: The transient superframe of the DMAMAC
protocol

2.1. Transient mode

The transient mode is designed to imitate the tran-
sient state operation in process control. During tran-
sient state, the process changes rapidly generating
data at a faster rate relative to the steady mode.
During the transient mode operation, the DMAMAC
protocol uses the transient superframe shown in Fig.
3. The superframe includes a data part for data
transfer from the sensors to the sink, followed by a
data part with data being sent from the sink to the
actuators, and then a sleep part. The data part also
includes a notification message slot from the sink
to all nodes, and a sink processing slot. A typical
transient mode operation cycle is described below:

• A notification message is sent from the
sink to all the nodes. The notification mes-
sage includes control data like state-switch
message and time-synchronization. Time-
synchronization is an integral part of TDMA
based protocols.
• The data part is executed with data transmis-

sion from sensors to sink and then to actuators.
• The sleep part is executed where all sensors

and actuators enter sleep mode in order to
improve energy efficiency. This part represents
the situation where all nodes are in sleep
mode. Individually, the nodes are in sleep
mode when they are not performing other
tasks.

2.2. Steady Mode

The steady mode operation is designed to operate
during the steady state of the controlled process.
The steady superframe used in the steady mode
operation is shown in Fig. 4. In addition to the
parts that also exist in the transient superframe,
the steady superframe contains an alert part. The
alert part is used to ensure that the state-switch
from steady to transient occurs whenever a sensor
detects a threshold interval breach in its reading.
This threshold is set by the sink when the switch
from transient to steady is made. Note that w.r.t

Figure 4: The steady superframe of the DMAMAC protocol

(Kumar S. et al. (2014)) a slightly modified steady
mode superframe is used. There are notification
slots placed at the end of each transient (Nt) part.
This is done to facilitate immediate application of
alert, and making a state-switch. In the alert part,
one slot is allocated to each level or to nodes with
the same rank. All the nodes in the same rank have
the possibility to send an alert message in this slot.
The alert sending method is described later. A typical
steady mode operation cycle is as follows:

• A notification message is followed by the data
and the sleep part, similar to the working in
transient mode operation.
• (Alert part) Sensor nodes that have alert mes-

sages to be communicated use appropriate
slots provided for each rank to notify parents
about the alert. This is relayed towards the sink
which then makes the switch to the transient
state. In an absence of alert, sensor nodes still
wake up on their alert receive slot and then
enter sleep mode until the next notification slot.
• In the alert part, the notification slot is placed

at the end. This is to ensure a quick transition
between the two states. All regular nodes
wake up in this slot, and receive a notification
message from the sink. Alert notification to
change superframes is sent here.

2.3. Change of superframes

A process switches between two states: transient
and steady. The DMAMAC protocol follows these
states via its transient and steady mode operation.
There are two switches possible: transient to steady
and steady to transient. The latter is a critical
switch since the data rate in transient is higher
and it is important to accommodate the higher data
rate in transient state. The switch from transient to
steady is decided by the sink, which determines if
the process is in steady state based on previous
readings. When the sink decides to make the switch,
it informs all the nodes in the network to change
their mode of operation. The message is sent via
a notification message from the sink. When the
sink node switches from transient to steady, it

defines a threshold interval within which the sensor
readings should lie, and informs the sensors about
this threshold interval. During the entire steady
mode operation, the sensors constantly monitor for a
threshold breach. When there is a breach, the sensor
node waits until its alert slot, then notifies its parent,
which in turn forwards the alert towards the sink.
The sink then informs the nodes in the network to
switch to transient in its immediate next notification
message.

2.4. Alert Message

An alert message is the message created by the
sensor nodes to notify the sink that a state-switch is
required. The sensor nodes choose a random delay
in the slot before transmitting the alert message. At
the completion of the time duration of the random
delay, the nodes sense the channel to prevent
collision. If a node during channel assessment
detects another node sending an alert message,
then it just drops its alert message. Collisions are
still possible, e.g., when two nodes choose the same
random delay or when two senders cannot listen to
each other but the receiver can listen to both. Nodes
check for a change of operational mode following the
sending of the alert. If no change occurs (because of
collision) the nodes save the alert and send the alert
again in the next alert slot.

3. THE DMAMAC UPPAAL MODEL

Uppaal (David et al. (2011)) is a tool-set based
on timed automata for model-checking of real-
time systems. It is an integrated tool environment
that supports modeling, simulation, validation, and
verification. An abstract representation of a real-time
system in the form of a model is structured as a
network of timed automata. The query language of
Uppaal allows for verification of safety, reachability,
liveness, and time-bounded properties. In Uppaal,
models are constructed as a network of templates
based on timed automata. Templates are used to
represent independent entities (e.g. a sensor node).
Uppaal consists of two simulators: a symbolic and a
concrete simulator. The symbolic simulator is used to

inspect the execution of the model step by step. For
certain queries, Uppaal outputs traces which can be
viewed in the symbolic simulator. This is useful for
pin-pointing error locations and sequences of events
that lead to errors/faults. The symbolic simulator also
shows all the templates in the model and message
sequence charts (MSC) can be used to visualize
communication between different processes. The
symbolic simulator also allows interactive step-wise
simulation of the model. Along with features similar
to the symbolic simulator, the concrete simulator
has the added advantages of firing transitions at a
specified time. For extensive detail on modeling in
Uppaal, we refer to (Behrmann et al. (2004)).

3.1. Model design decisions and assumptions

We use a non-deterministic timed automata model
to verify the properties of the DMAMAC protocol.
The constructed model has several sources of non-
determinism including the delay for sending alert
messages in nodes, and the decision made by the
sink to change from the transient mode to the steady
mode. Given the design of alert messages, collisions
are possible when sending alert messages. We use
a simplified collision model, detailed later in this
section. The sink and sensor/actuator nodes have
separate timed automata models. Local clocks are
used for each automaton. A global clock is used for
a common network time reflecting the assumption
on time synchronisation between the nodes. The
main aim of the verification of the DMAMAC protocol
model is to check that the two modes of operations
are working correctly given the presence of non-
deterministic choices (like collision) during execution
and the delays that may occur.

Below, we discuss the assumptions and design
decisions made during the construction of the
Uppaal model for the DMAMAC protocol.

• Packets are abstractly modeled without pay-
load. The messages or packets exchange
mechanism is represented by channel syn-
chronization in the Uppaal model.

• A time synchronization mechanism is provided
using clock variables in Uppaal. This can be
considered as a way of implementing the time
synchronization between nodes assumed by
the DMAMAC protocol.

• An exact model of CSMA results in a
rather complex model. Instead, we use
a representative CSMA procedure, which
imitates the service and effects of actual
CSMA on the working of the protocol. The
effects include skipping packet transmission
on detection of ongoing transmission and
also collision. This makes our model and
verification independent of the particular

CSMA procedure that may be used in
conjunction with DMAMAC.

• The collision caused due to the use of CSMA
has effects on the state-switch procedure.
A simple collision model is used, where we
record collision when two or more nodes send
packets at the same time. Collision results in
failure of the packets, thus affecting the state-
switch procedure.

A channel synchronization variable choice is used
to force enabled transmissions. This is a modeling
artifact and is not part of the protocol as such. In
Uppaal, execution of models can stay in a location
indefinitely even after outgoing edges are enabled.
To force the model execution to continue via enabled
outgoing edges, an urgent channel synchronization
is required.

3.2. Sink Model

The sink model is shown in Fig. 5. We have used
colors in the automaton locations to differentiate
between states. Both the sink and the node
automata begin in an initial location Start. The
sink initiates the startup procedure of the network
using a broadcast synchronization channel startup
on the edge towards the StateController location.
The function INITIALIZE() is used to set proper values
to local and global variables. The sink reaches
the StateController location upon having executed
the startup procedure of the network. The node
automata synchronize with the channel variable
startup, and reach the StateController location.

The StateController location represents an event
handler for handling transition between different
states in the state-machine. The sink model uses
a local clock variable “x”, which is active in all
states indicated by “x′ == 1”. “x′ == 0” can be
used to pause the clock counter. This is used as
an invariant on all states to represent continuously
running time. It also includes an invariant x ≤
currentMaxSlots ∗ 10 to prevent it from being in
the state beyond the maximum timeframe of the
active superframe (transient or steady). A typical
slot time in WSANs is 10 milliseconds, and this we
use the unit “ms” for time in our model. Given the
time unit of “ms”, the variable currentMaxSlots is
multiplied by 10 to obtain the slot-time. The use of the
StateController location is also similar to the self-
message handler in the commonly used OMNeT++
(Varga and Hornig (2008)) framework for MAC
protocols. The function of this particular handler is
to check the self-message that it receives, and to
act on the message by choosing an appropriate next
state. Also, it determines the next state which is then
sent as a self-message. The automaton changes
between the different locations (states) in the model

Figure 5: Uppaal Model of the sink

based on the local variable currentSlot, and the local
clock variable x.

The Notification location is reached when the sink
is due to send a notification message. The notifi-
cation message is sent by the sink, and received
by other nodes in the network. This is represented
by the broadcast channel regNotify[change], where
change carries a message of the status of the
Boolean variable changeSuperframe. The change-
Superframe variable is true when the sink needs to
indicate to the nodes a change in superframes to
switch the mode of operation. For both the steady to
transient switch and the transient to steady switch,
the sink uses changeSuperframe.

The switch from transient to steady is decided
by the sink. There are two separate notification
edges for transient mode and steady mode. In the
transient mode, the sink decides if it has to switch
to steady mode based on the random selection
statement (i : int[1, 10]) and the obtained change
value is sent over the channel. In the absence
of real inputs a random selection is used. The
edge with select statements (i : int[1, 10]) and
(change : int[0, 1]) is used in transient mode.
The second select statement (change : int[0, 1])
is a modeling artifact used to be able to send the
value of changeSuperframe over the channel via
the synchronization variable regNotify[change]. The
guard change == changeSuperframe makes sure
that the select statement selects the same value as
the changeSuperframe variable.

In the steady mode, a switch is based on alert
from nodes. The notification for the steady mode is

done via the edge with only one select statement
(change : int[0, 1]). As a symbolic representation, we
have used a guard x == (currentSlot ∗ 10) + 1 on
these edges, and an invariant x ≤ (currentSlot ∗
10) + 1 on location Notification to indicate a delay
of 1 ms for message transmission. Both these edges
use a function SINKRESET(), which resets the sink
variables at the beginning of a new superframe, and
implements changing of superframes.

The Sleep location is reached when the sink
or nodes do not have any active operations to
be conducted in the current slot. The edge to
Sleep is guarded by a Boolean function ISSLEEP()
which checks if the current slot is a sleep slot.
We use the urgent broadcast channel choice
(model artifact) to force this transition whenever
ISSLEEP() evaluates to true. In the absence of
this channel variable, the model can continue to
be in the location StateController forever even
when ISSLEEP() is true. The location Sleep has an
invariant x <= currentSlot ∗ 10 which indicates that
during execution, the control can be in the location
as long as the time does not exceed the value
currentSlot, which holds the value of the slot at which
the sink should wake up for its next event. This is set
by the function CALCULATEWAKEUP() when Sleep is
reached.

The location Sent is reached when the sink
sends data in its data slot. The Received location
is reached when the sink receives any sensor
data, and then sends an ACK via channel
synchronization. Location Received has an invariant
x ≤ (currentSlot ∗ 10) + 2. This invariant is used

Figure 6: Uppaal Model of a regular sensor/actuator node

to add a delay of 2 ms as a representation for the
time required for data communication. A follow up
guard on the ACK sending edge x == (currentSlot∗
10) + 2 makes sure that the delay is applied. Upon
sending or receiving of ACK synchronization, the
local variable currentSlot is incremented.

Lastly, the location ReceiveAlert is reached when
it is the sink’s turn to receive an alert. This
is determined by the alert levels defined in the
myLevel array variable represented by the guard
rxSlot[currentSlot] == myLevel[sinkId]. The sink
stays in the location for an entire slot duration (10
ms), and waits for any alerts from nodes it can
listen to. The CANLISTEN(I) function is used as a
guard to make sure that the sink listens to alerts
from only those nodes that are in its listening range
(same function used for nodes). The variable i given
as input to the function is the result of a select
statement i : nodeid t, which allows the node to
listen to any node that is transmitting. The guard
makes sure that the sink can listen to that particular
node. At the completion of the alert slot, the sink
checks if any collision has occurred via the function
CHECKCOLLISION(), and gives back the control to
the StateController.

3.3. Sensor/Actuator Node Model

The sensor/actuator node model is shown in Fig.
6. The node model is similar to the sink model
except for the notification handling procedure. Also,
the node template consists of an extra location for
sending alert messages. The notification part of the
node model is simpler, since nodes only receive
notifications. Location Notification is reached when

the node is in its notification slot (receive) in
either of the two types of superframes. The
nodes then synchronize on the channel variable
regNotify[change] from the sink, and reset the node
variables using the function NODERESET() based on
the value of the variable change.

The node model works similar to the sink model for
sleep, sent (data), received (data), and alert receive.
This means that in locations Sleep, Sent, Received,
and ReceiveAlert the node and the sink model have
the same modeling elements. Further, the location
SendAlert which handles the crucial part of alert
message sending is required by the protocol for the
switch of operational mode from steady to transient.
Based on the protocol specification, a node can send
an alert message when the sensed data crosses the
threshold interval. This threshold interval is set by
the sink depending on the particular process being
controlled. We imitate this event using a probability
weight-based selection for sending alert messages
as reflected in the edge towards SendAlert (shown
with dashed lines). The edge with probability weight
90 represents no alert to be sent. The one with
probability weight 10 represents the choice to send
an alert. The guards on the edge make sure it is
the alert slot of the node, and that the node does
not already have an alert to be sent. When the node
chooses to send an alert, a delay is chosen within the
interval [0, 8] via the select statement i : int[0, 8]. The
chosen value is assigned to the alertDelay variable.
The node then waits in the location SendAlert
for the duration of the delay and performs carrier
sense prior to sending the alert message. This is
represented by the edge with the guard function

Figure 7: Message sequence chart for carrier sense during Alert

Listing 1: Carrier Sense trace
(Sleep, receiveAlert , ReceiveAlert , ReceiveAlert ,Sleep, StateController , StateController ,Sleep)
choice : Node(5)[][3]−> // Delay of 3 ms chosen by node 5
(Sleep, ReceiveAlert , ReceiveAlert , ReceiveAlert ,Sleep,SendAlert, StateController ,Sleep)
choice : Node(6)[][3]−> // Delay of 3 ms chosen by node 6
(Sleep, ReceiveAlert , ReceiveAlert , ReceiveAlert ,Sleep,SendAlert,SendAlert,Sleep)
ALERT[5]: Node(5)−> Node(1)[5]Node(2)[5]Node(6)[5] // Alert send by node 5 is heard by node 2 and node 6
(Sleep, ReceiveAlert , ReceiveAlert , ReceiveAlert ,Sleep, StateController , StateController ,Sleep)

CANLISTEN(I), where the node synchronizes to the
broadcast channel ALERT[i] sent by other nodes
in the vicinity (listening range) to skip sending a
message.

We use a representative carrier sense mechanism
in the model. Nodes skip sending an alert when
another node within their listening range is sending
with the same delay. In reality, carrier sense would
involve listening to the channel for a small duration
before sending the packets. Also, in a case where
two nodes start carrier sense at the same instant,
their packets would collide since they would start
sending at the same instant after the carrier sense
delay. In the carrier sense mechanism presented
here, we represent a case in which two nodes can
hear each other and have the same delay by one
of the two nodes skipping the sending the alert
message. When the nodes do not hear each other
and the receiver can hear both, the packets collide
at the receiver. An example message sequence of
carrier sense is shown in Fig. 7. In this example,
Node(5) and Node(6) are trying to send alert with
the same delay (3ms) as shown in List. 1. In the
listing, we have added comments with prefix “//” to
add more detail. When Node(5) begins to send the
alert, Node(6) senses the sending and skips sending
alert via the edge guarded by CANLISTEN(I) function.

In a case where the channel is free, the nodes send
an alert at the time instant after the chosen delay.
The sending is represented using the send part
of the broadcast channel variable ALERT[id]!. The
local variable currentSlot is updated, along with the
variable sentAlert, and function UPDATERECORD().
The variable sentAlert is used by the node to
remember that it has sent an alert. In a case where
no superframe change occurs after an alert was
sent, a node updates its local variable savedAlert.
The UPDATERECORD() function updates a global
array variable alertTimeRecord[] which stores the

delay chosen by each node in the given round.
This is used to check if a collision has occurred. In
certain cases when the alert messages fail to reach
the sink due to collision, the savedAlert variable
is used to save the alert, that is sent again in
the next round. During this, the probability edge is
not used. Instead, the nodes directly move to the
location SendAlert via the edge (solid line) with
the guard (alertReceived||savedAlert). The variable
alertReceived represents the case when nodes
have to forward an alert received from other nodes
towards the sink. The nodes then choose a new
delay value from the interval [0, 8] for sending the
alert message again.

3.4. Collision

We use a simple collision model similar to the
one used in (Tschirner et al. (2008)) and (Fehnker
et al. (2007)). In the LMAC (Fehnker et al. (2007))
protocol, when two nodes send a packet in the same
slot it is considered as a collision. In the DMAMAC
protocol model, collision is counted when a node
receives at least two alert messages with the same
delay in the same alert slot. In our model, we assume
that apart from its child nodes, the parents can
also listen to nodes in the vicinity (similar to real
networks). We define statically which other nodes a
given node can listen to. Based on the representative
carrier sense model, the collision occurs at a node
only when it receives two alert messages from nodes
(of the same rank) that cannot listen to each other,
and had chosen the same delay within the alert
slot. A message sequence chart showing a collision
occurrence at the sink is shown in Fig. 8.

The trace corresponding to the Message Sequence
Chart in Fig. 8 is shown in List. 2. In the considered
scenario, Node(1) and Node(3) choose the same
delay of 7 (ms) independently. Since they cannot
listen to each other their alert packets end up

Figure 8: Message sequence chart for collision at the sink

Listing 2: Collision Trace
(ReceiveAlert , StateController , Notification , StateController ,Sleep,Sleep,Sleep ,Sleep)
choice : Node(1)[][7]−> // Delay of 7 ms chosen by node 1
(ReceiveAlert ,SendAlert, Notification , StateController ,Sleep,Sleep,Sleep ,Sleep)
choice : Node(3)[][7]−> // Delay of 7 ms chosen by node 3
(ReceiveAlert ,SendAlert, Notification ,SendAlert,Sleep,Sleep ,Sleep ,Sleep)
ALERT[1]: Node(1)−> Sink[1] // Alert sent by node 1 to the sink
(ReceiveAlert , StateController , Notification ,SendAlert,Sleep,Sleep,Sleep ,Sleep)
ALERT[3]: Node(3)−> Sink[3] // Alert sent by node 3 to the sink
(ReceiveAlert , StateController , Notification , StateController ,Sleep,Sleep,Sleep ,Sleep)

colliding at the sink. This prevents a change of
the superframe (mode of operation). Node(1) and
Node(3) detect this and save the alert. The saved
alert is used to resend the alert in the next round
(with a new delay) to make sure the superframe
changes. Note that there could be a situation where
collision occurs at lower levels (and even at the sink),
but still the change of superframe occurs because
of another alert message reaching the sink. For our
model, we have created the topology in such a way
that both cases exist in different configurations as
discussed in Sect. 5. In reality, the receiver nodes do
not detect collision: in certain cases nodes receive
parts of packets that collide (difficult to decode them)
and in other cases they receive nothing at all. In
that respect, we rely on a representative model of
collision detection designed to be consistent with the
effects of collision on the change of superframe.

3.5. Network Topology

The node topology used for the verification of the
models is shown in Fig. 9. We use 5 sensor
nodes, 2 sensor-actuator nodes, and a sink in
the tree topology considered. We consider a small
topology to keep the state-space small which is
needed in order to conduct exhaustive verification.
The current node topology has 3 ranks but since
the sink only listens (and does not send alerts),
we have 2 alert slots in the DMAMAC protocol.
This representative topology allows for both carrier
sense and collision, has both sensors and actuators
with data communication for both types of nodes,
and also has multiple hops. A topology based
assumption for listening range is that a higher level
(lower rank) node is listening to all of its children
nodes, and also sometimes to other nodes in the

vicinity. A real node has a listening range based on
its receiver sensitivity, and distance with other nodes
in the vicinity that varies with topology. Given that our
main aim is to check the working of the protocol, we
define the listening range in the topology manually
instead of calculating it dynamically based on
multiple factors like node position, path-loss, and
receiver sensitivity as is typically done in network
simulators for quantitative analysis.

In the topology used for the evaluation of the
DMAMAC protocol the functionalities that need to be
verified are covered. The DMAMAC protocol is used
for applications with offline scheduling. This means
that scheduling is done prior to deployment and all
slot allocations are known prior to deployment. The
topology in general is well-planned, and no random
deployment is used. A real topology would be much
larger than the one considered here. In the current
topology, we have 3 levels and a maximum of 2
hops. For a qualitative analysis this covers the error
scenarios that could potentially exist with multiple-
hops.

The schedule for the considered node topology
is shown in Fig. 10. The schedule shows both
sender/receiver identification (node/sink). The send-
ing part is marked by TX and receiving part is
marked by RX. For notification messages, only the
sender identification (sink) is marked. The schedule
only represents the steady superframe. In the tran-
sient superframe only the first Nt part is used with
the alert parts replaced by sleep. Note that we use
10 milliseconds (“ms”) as slot duration similar to slot
sizes used in general practise.

Figure 9: Node topology

Figure 10: Superframe structure based on the schedule
and node topology

3.6. Configurations

Multiple configurations of the DMAMAC protocol
can be analysed based on values that can be
varied in the model. Firstly, the Uppaal model can
start in either steady or transient mode and this
could have an effect on some of the verification
properties (as discussed in Sect. 5). Another
important factor affecting the configurations is the
range of possibilities for the variable alertDelay.
In the protocol, we have used the range [0,8] to
reduce collision. Due to state-space issues we use
only alertDelay[1, 1] for exhaustive queries, e.g.,
deadlock query. The alertDelay[1, 1] in itself covers
all possibilities including possibility of state-switch,
collision and CSMA, and hence all the qualitative
aspects of the protocol. For other non-exhaustive
queries, we use up to alertDelay[1, 4] configurations
to further validate the verification procedure. The
only difference between alertDelay[1, 1] and the
other considered configurations is the applicability
of property sink mode and consistent node mode of
the verification properties and is further discussed
in Sect. 5. Also, the select statement interval [1, 10]
used to decide the switch from transient to steady
mode by the sink is reduced to [1, 2] to keep the
state-space low for all the queries. The reduction of

the interval only means that in transient mode there
is a 50% probability to switch to steady mode, and
thus does not affect the qualitative results.

4. MODEL VALIDATION

We first validate the constructed Uppaal model of
the DMAMAC protocol by checking some basic
behavioural properties related to the operation of the
model. The purpose is to obtain a high degree of
confidence in the constructed model prior to verifying
key properties of the protocol in the next section.
During construction of the DMAMAC protocol, we
validated the operation of the model via MSCs
obtained from step-by-step execution of the model
in the Uppaal simulator. These properties were
related to data transmission between nodes, data
transmission between the nodes and the sink,
sending/receiving of alert message, possibility of
collision, and carrier sense when sending alert
messages.

Below we validate properties of the model related
to data communication and collisions using the
verification engine of Uppaal. For this, we express
the properties to be validated in the form of Uppaal
queries. Queries in Uppaal are written in a restricted
variant of Computation Tree Logic (CTL) in which
path formulas cannot be nested. Specifically, the
following path formulae are supported by Uppaal:
A� (always globally), A♦ (always eventually), E♦
(reachable), and E� (exists globally).

For validation purposes, we first check the operation
of the model with respect to data communication
between neighbouring nodes and between the
sink and its neighbouring nodes. We check that
if two nodes i and j are such that the parent
node of node j is i, then these will eventually
communicate. Furthermore, it should be such that

any child node of the sink node should eventually
communicate with the sink. Formally, these two
properties can be expressed as the set of queries
below. Here, nodeid t is the type used to represent
node identifiers in the model, parent[i] is used to
obtain the parent node of node i, and sinkId denotes
the identity of the sink. The property is expressed by
reference to the location Sent and location Received
which are reached by the communicating nodes
upon synchronization over the channel DATA.

Node data communication
∀ i,j ∈ nodeid t such that parent[j]==i:
A♦ (Node(i).Sent && Node(j).Received)

Sink data communication
∀ i ∈ nodeid t such that parent[i]==sinkId:
A♦ (Node(i).Sent && Sink.Received)

It should be noted that we do not check the
property that two neighbouring nodes always have
the possibility to communicate. This is due to the fact
that Uppaal does not support nesting of CTL path
formulae.

The second property that we validate is related
to collisions which play an important role in the
DMAMAC protocol in relation to the sending of
alert messages. In this case, we check that it is
possible to have collision happening on all nodes
and on the sink. Collision cannot be guaranteed to
happen and hence we verify only the possibility of
collision occurring. Formally, these two properties
are expressed as the following set of queries:

Node collisions ∀ i ∈ nodeid t : E♦ Node(i).collision

Sink collisions E♦ Sink.collision

Finally, we also validate that there are no deadlocks
in the model. In Uppaal, this can be expressed via
the query below where deadlock is a built-in state
property in Uppaal.

No deadlock A� !deadlock

The above queries related to data communication,
collision, and deadlocks were all verified on both the
transient and the steady variant of the model. This in
turn increased confidence in the proper operation of
the model.

5. PROTOCOL VERIFICATION

We now consider verification of the key functional
properties of the DMAMAC protocol. As explained
earlier, the constructed model comes in two variants:
one variant with the protocol starting in the transient
mode and one variant with the protocol starting in the
steady mode. We first consider common properties
that are independent of whether the protocol starts
in the transient or in the steady mode. Then we

consider properties specific for the transient mode
case followed by properties specific for the steady
mode case. Finally, we verify two real-time properties
of the protocol related to upper bounds on mode
switch delay and data transmission delay.

5.1. Common Properties

Given the dual-mode operation of the DMAMAC
protocol, the important properties relate to the
nodes operating in different modes, and switching
between them. Firstly, we check the operating mode
properties. We make sure that the sink is exclusively
either in the steady mode or in the transient mode
at all times. Following this, we check that all nodes
follow the operating mode of the sink consistently.
Formally, these properties are expressed as follows:

Sink mode
A� (Sink.steady && !Sink.transient) ||
(!Sink.Steady && Sink.transient)

Consistent node mode
∀ i ∈ nodeid t:
A� (Node(i).transient == Sink.transient ||
Node(i).steady == Sink.steady)

Next, we investigate properties of the protocol
related to collision and its effect on the change
of operational modes. The queries refer to the
changeSuperframe variable which indicates whether
the network should change mode in the next
superframe. Collisions may have different effects
depending on the configuration under consideration.
For configurations with alertDelay[1, 1] where all
the nodes will pick the same delay, collision
at the sink should not result in a change of
superframe or operational modes. For configuration
with alertDelay[1, 2], we may have both collision
and change of superframe since, e.g., two nodes
may pick a delay of 1 (which will result in a
collision) while a single third node picks a delay
of 2. The latter choice will result in the sink being
notified of a required change of mode. Formally,
properties related to collisions and change of mode
are specified as follows:

Collision and mode switch
E♦(Sink.collision && Sink.changeSuperframe)

Collision and no mode switch
E♦(Sink.collision && !Sink.changeSuperframe)

Following the discussion above, we expect that the
first property is false in configurations where all
nodes must choose the same delay while it is true
in configurations where different alert delays can
be chosen. This implies that the protocol design
ensures that the DMAMAC protocol can change
mode even in the presence of collisions. The second
property is expected to be true as we may (in all
configurations) have the situation that the choice

Listing 3: Collision and change of superframe together
(ReceiveAlert , StateController , StateController , StateController ,Sleep,Sleep,Sleep,Sleep)
choice : Node(1)[][1]−> // Node 1 chose delay of 1 ms
(ReceiveAlert ,SendAlert, StateController , StateController ,Sleep,Sleep,Sleep ,Sleep)
choice : Node(3)[][1]−> // Node 3 chose delay of 1 ms
(ReceiveAlert ,SendAlert, StateController ,SendAlert,Sleep,Sleep,Sleep ,Sleep)
choice : Node(2)[][2]−> // Node 2 chose delay of 2 ms
(ReceiveAlert ,SendAlert,SendAlert,SendAlert,Sleep,Sleep ,Sleep ,Sleep)
ALERT[3]: Node(3)−>Sink[3] // Node 3 sends alert
(ReceiveAlert ,SendAlert,SendAlert, StateController ,Sleep,Sleep,Sleep ,Sleep)
ALERT[1]: Node(1)−>Sink[1] // Node 1 sends alert
(ReceiveAlert , StateController ,SendAlert, StateController ,Sleep,Sleep,Sleep ,Sleep)
ALERT[2]: Node(2)−>Sink[2] // Lastly, Node 2 sends alert with a delay of 2 ms (higher than others two)
(ReceiveAlert , StateController , StateController , StateController ,Sleep,Sleep,Sleep,Sleep)

of delay (alert) causes collisions such that the sink
may not be notified of the required change of mode
in the current superframe. Of course, the sink may
be notified via retransmission of the alert in a later
superframe, eventually causing a mode switch (see
below).

An example trace demonstrating co-existence of
collisions and change of superframe is shown in List.
3. In this example, the nodes 1 and 3 choose the
same delay (1 ms) and cannot listen to each other.
The transmissions therefore collide at the sink. But
node 2 which has chosen a different delay (2 ms)
successfully alerts the sink thus inducing change
of superframe. This delay choice is done when the
model changes location from StateController to
SendAlert.

Finally, we verify a property related to the critical
change of state in the protocol from steady to
transient. When the data requirement is higher,
the protocol should be able to detect and switch
accordingly. Also, when a switch fails due to
collisions, there should be a possibility to re-use the
failed alert to induce change of operational modes.
The failed alert is used as a saved alert in the next
alert round. We use the query which searches for
one example where this occurs.

Critical change of state
∃ i ∈ nodeid t:
E♦ Node(i).savedAlert && Sink.steady &&
Sink.changeSuperframe

It should be noted that given the nature of the model,
the collisions could occur forever preventing the
change of superframe. This means that we cannot
show that a state switch will eventually happen.

5.2. Transient model variant

We now consider properties specific for the variant
of the model where the sink and nodes starts
in transient mode. In the model, transient and
steady are boolean variables. In the case where
the controller process stays in the transient state
permanently, the protocol needs to stay in transient
mode of operation to suit the application needs. The

given query below checks if there is a path where the
system invariantly is in the transient mode.

Remain transient E� transient

The second property represents the reachability of
steady mode from the starting state, i.e., that it
is possible for the system to change mode from
transient to steady.

Steady switch E♦ steady

5.3. Steady model variant

For the variant of the model that starts in the steady
mode, we verify the dual properties of the variant that
starts in the transient mode. These two properties
are listed below:

Remain steady E� steady

Transient switch E♦ transient

The two properties check that it is possible to remain
in steady mode and that it is possible to switch to
transient mode.

5.4. Real-time properties

We now consider real-time properties related to
mode switch delay and data communication delay.
In order to verify these properties, we use a modified
version of the Uppaal model where we have included
the use of two watch templates (Watch1 and Watch2)
in order to record elapsed time.

The first real-time property that we consider is the
switch delay, i.e., the time difference between a
detection of threshold breach and the mode switch
happening. This switch is required to happen within
the duration of a superframe (transient superframe
length). This property is specified as follow:

Switch delay
A� Watch1.switchDelay ≤ superframeLength

We verified the switch delay property by considering
a single node farthest from the sink. By symmetry,
the property applies to other nodes at the same level,
and also to the parent nodes which (by the tree
topology) will have a smaller maximum switch delay.

The second real-time property concerns the data
communication delay. It is the time elapsed between
the first data sent in the superframe until the last
data received. This is required to be within the same
superframe. The property is expressed as follows:

Data delay
A� Watch2.dataDelay ≤ superframeLength

All properties listed above evaluate to the expected
results. Details on the execution time for the
queries based on different configurations of the
model are shown in table 1. The verification was
conducted on a PC with 4 GB RAM, 2.30 GHz
2-core processor. The query Collision and mode
switch could be verified only on the configuration
with alertDelay[1, 1] and resulted in memory
exhaust in other configurations. Other queries were
verified also on configuration alertDelay[1, 2], and
alertDelay[1, 4] with i : int[1, 2].

6. CONCLUSION AND PERSPECTIVES

In this article, we have detailed the modelling and
verification process of the DMAMAC protocol. The
DMAMAC protocol is designed for process control
applications and we have used the Uppaal model-
checking tool for modelling and verification. The
model consists of a network of timed automata with
multiple nodes and a sink operating according to the
DMAMAC protocol.

We have explained the model in Uppaal including
its modelling elements and templates in detail. The
constructed timed automata model includes generic
MAC slot operations including data sending and
receiving, notification, and sleep. This means that
the model can be extended to represent other MAC
protocols with similar (and extra) slotting within
their superframe. To illustrate the generality of the
constructed model, the finite state machine for the
protocol model and the possible extensions are
shown in Fig. 11. The diagram is divided into
three parts: the generic part, DMAMAC extensions,
and other possible extensions. The generic part
consists of notification and data transfer, which is
generally part of a wide range of MAC protocols
for WSANs. The DMAMAC extensions with alert
sending and receiving parts are specifically relevant
for DMAMAC. Given the generic structure, the model
can be extended to include other MAC protocol
slot types or state types including Channel Sense,
Backoff and Link establishment. S-MAC (Ye et al.
(2002)) is a one such MAC protocol that uses
Request To Send (RTS), Clear To Send (CTS),
and carrier sense. The current model can be easily
extended to model S-MAC with re-use of generic
parts.

We have validated the basic operation of the
constructed model using message sequence charts
highlighting the most important features, and
operations of the protocol including data transfer,
alert message functioning, carrier sense, and
possibility of collision. Further, we validated the
proper operation of the model using the verification
engine of Uppaal. The validated model was
then verified for the switch procedure and safety
properties, including absence of deadlock and other
faulty states. The key real-time properties in the
form of upper bounds on switch delay and data
delay were also verified. Two variants of the model
were used for verification and validation, one starting
with the transient mode of operation and the other
starting with steady mode. Different configurations
of the model with varying alert delay were used as
a basis for the verification. For the verification, we
used a representative node topology that covers all
important features of the protocol including existence
of sensors and actuators, multi-hop, alert messages,
and possibility of collision. The DMAMAC protocol
model in Uppaal satisfied the properties considered
which increases confidence on the design of the
protocol. As a proposed future work, a stochastic
model of the DMAMAC protocol to verify the
quantitative properties including collision probability,
expected switch delay, and energy consumption
could provide further insights to the working of the
protocol.

Currently, we are also in the process of developing a
prototype implementation of the DMAMAC protocol
on real hardware. The Uppaal model constructed
in this paper serve as an important specification
in terms of ensuring the proper and correct
implementation of the protocol logic and frame
processing.

REFERENCES

Akyildiz, I. F. and Kasimoglu, I. H. (2004),
‘Wireless Sensor and Actor Networks: Research
challenges’, Ad Hoc Networks 2(4), 351–367.

Behrmann, G., David, A. and Larsen, K. (2004), A
tutorial on Uppaal, in M. Bernardo and F. Corradini,
eds, ‘Formal Methods for the Design of Real-Time
Systems’, Vol. 3185 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 200–236.

David, A., Larsen, K. G., Legay, A., Mikucionis, M.,
Poulsen, D. B., Vliet, J. and Wang, Z. (2011),
Statistical Model Checking for networks of Priced
Timed Automata, in ‘Proceedings of the 9th
International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS)’, Vol.
6919 of LNCS, Springer Berlin Heidelberg, pp. 80–
96.

Figure 11: Generic model with possible extensions

Fehnker, A., van Glabbeek, R., Hfner, P., McIver,
A., Portmann, M. and Tan, W. (2012), Automated
analysis of AODV using Uppaal, in ‘Tools and
Algorithms for the Construction and Analysis of
Systems’, Vol. 7214 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 173–187.

Fehnker, A., van Hoesel, L. and Mader, A. (2007),
Modelling and Verification of the LMAC protocol
for Wireless Ssensor Networks, in J. Davies and
J. Gibbons, eds, ‘Integrated Formal Methods’,
Vol. 4591 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 253–272.

Hespanha, J. P., Naghshtabrizi, P. and Xu, Y. (2007),
A survey of recent results in Networked Control
Systems, Vol. 95, pp. 138–162.

Kumar S., A. A., Øvsthus, K. and M. Kristensen, L.
(2014), Towards a Dual-Mode Adaptive Mac Pro-
tocol (DMA-MAC) for feedback-based Networked
Control Systems, in ‘The 2nd International Work-
shop on Communications and Sensor Networks’.

Suriyachai, P., Brown, J. and Roedig, U. (2010),
Time-critical data delivery in Wireless Sensor
Networks, in ‘Proceedings of DCOSS’, pp. 216–
229.

Tschirner, S., Xuedong, L. and Yi, W. (2008), Model-
based Validation of QoS properties of Biomedical
Sensor Networks, in ‘Proceedings of the 8th ACM
International Conference on Embedded Software’,
EMSOFT ’08, ACM, New York, NY, USA, pp. 69–
78.

Varga, A. and Hornig, R. (2008), An overview
of the OMNeT++ simulation environment, in
‘SIMUTOOLS’, pp. 60:1–60:10.

Ye, W., Heidemann, J. and Estrin, D. (2002), An
energy-efficient mac protocol for wireless sensor
networks, in ‘INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE’,
Vol. 3, pp. 1567–1576 vol.3.

Property / Query Result CPU Time (s) Resident Mem. (KB) Virtual Mem. (KB)

Configuration : alertDelay[1,1], i:[1,2]
Common queries
Sink mode Not Satisfied 718.837 1,795,596 3,595,148
Consistent node mode Satisfied 876.586 1,772,436 3,573,820
Collision and mode switch Not Satisfied 711.287 1,797,488 3,599,136
Collision and no mode switch Satisfied 3.214 21,044 49,512
Critical change of state Satisfied 33.868 113,084 238,116
Transient specific queries
Remain transient Satisfied 0.015 13,820 56,924
Steady switch Satisfied 0.64 13,888 40,168
Steady specific queries
Remain steady Satisfied 0.032 17,424 58,892
Transient switch Satisfied 1.965 19,308 48,796
Real-time queries
Switch delay Satisfied 273.048 440,676 891,152
Data delay Satisfied 231.302 450,664 905,284

Configuration: alertDelay[1,2], i:[1,2]
Common queries
Sink mode N/A N/A Memory exhausted Memory exhausted
Consistent node mode N/A N/A Memory exhausted Memory exhausted
Collision and mode switch Satisfied 8.331 62,292 128,008
Collision and no mode switch Satisfied 8.346 61,616 129,064
Critical change of state N/A N/A Memory exhausted Memory exhausted
Transient specific queries
Remain transient Satisfied 0.02 13,836 40,092
Steady switch Satisfied 0.562 13,848 57,012
Steady specific queries
Remain steady Satisfied 0.046 36,596 82,700
Transient switch Satisfied 16.708 66,116 137,096
Real-time queries
Switch delay Satisfied 1200.225 1,799,596 3,601,164
Data delay Satisfied 1068.014 1,799,624 3,622,604

Table 1: Performance of the protocol verification using Uppaal

	Introduction
	Related Work
	Outline

	DMAMAC Protocol
	Transient mode
	Steady Mode
	Change of superframes
	Alert Message

	The DMAMAC Uppaal Model
	Model design decisions and assumptions
	Sink Model
	Sensor/Actuator Node Model
	Collision
	Network Topology
	Configurations

	Model Validation
	Protocol Verification
	Common Properties
	Transient model variant
	Steady model variant
	Real-time properties

	Conclusion and Perspectives

