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Preface   

 
By encouraging interaction, exploration and experimentation in environments that 
directly represent the domain to the learner, Exploratory Learning Environments 
(ELE) adhere to constructivist theories of learning that emphasize learners' control to 
construct their own understanding. More generally, Open-ended Learning 
Environments (OLEs) offer students opportunities to take part in authentic and 
complex problem-solving and inquiry learning activities. These environments provide 
learning context and a set of tools to support learners while they engage in many 
activities, including (i) seeking and acquiring knowledge and information, (ii) 
applying that information to a problem-solving context, (iii) assessing the quality of 
the constructed solution, (iv) evaluating and reflecting on the overall approach, and 
(v) assessing and enacting cognitive and metacognitive processes.  
 
However, there are several factors that prevent appropriate learning within ELEs or 
OLEs. The structure of the activity sequences and the level of support by teachers, 
peers, technologies are crucial determinants of learning. This is particularly true in 
domains where knowledge is not a directly observable outcome of a situation under 
exploration (e.g. simulators) but is externalized by cognitive tools in the environment. 
There is a wealth of learning sciences literature about support for learning in 
exploratory environments, but developing the technology to support these still faces 
several impressive challenges that the community is only beginning to address.  
 
At the same time the migration of technology from the desktop to the wider learning 
environment provides the opportunity to collect data about learners’ interactions with 
a greater bandwidth of learning resources. Smart phones, tablets and technologies 
embedded in the fabric of the environment are now commonplace in educational set- 
tings. In parallel with these developments, there has been great progress in developing 
techniques to analyse learning interactions through the large amount of data that is 
generated by these various systems. This kind of learning analytics offers the 
potential for novel feedback and scaffolding to support project-based and experiential 
learning that involves physical computing projects and other hands-on type projects.  
 
The papers submitted to this workshop address various aspects of the above-listed 
issues, which are all at the heart of the AIED community’s interest.  
 
Summarizing the papers in brief, Chase et al. and Mazziotti et al. focus mostly on the 
design and evaluation of exploratory learning environments. Chase et al. in particular 
describe the design of an ELE to support invention activities, inspired by a model of 
naturalistic teacher guidance. Mazziotti et al. present a pedagogical intervention mod- 
el that selects and sequences exploratory learning activities and structured practice 
activities. Four papers focus more on the tools, algorithms and approaches behind the 
implementation of intelligent support in ELEs. Karkalas et al. evaluate requirements 
and present a prototype for learning analytics for constructionist mathematical e-
books. Segedy and Biswas use coherence analysis to provide measures of the quality 
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of students’ problem-solving processes. Silva et al. propose an automatic rating 
system to assess students and to sequence activities. Harpstead et al. demonstrate a 
method of accelerating model development for both knowledge and skills by applying 
a concept formation algorithm.  
 
Lastly, two papers focus specifically on Learning analytics for project based and 
experiential learning scenarios. Luckin et al. present an analysis framework for 
project-based learning situations that involve the use of technology. Spikol et al. 
present the design of a visual-based programming language for physical computing 
and mobile tools to invite learners to actively document and reflect on their projects in 
a way that creates possibilities of intelligent support and learning analytics.  
 
This workshop builds on the previous work from several editions of the Intelligent 
Support in Exploratory Environments workshop, and the Scaffolding in Open-Ended 
Learning Environments in AIED 2013. The format of the workshop is based on a 
question-oriented organisation around open problems raised by the papers accepted 
for the workshop. It also includes a posters and hands-on interactive session for 
participants to present prototypes and get or provide feedback. Our website 
(http://link.lkl.ac.uk/iseole15) provides more information as well as the current and 
previous proceedings.   
 

Manolis Mavrikis, Gautam Biswas, Sergio Gutierrez-Santos, Toby Dragon, Rose 
Luckin, Daniel Spikol, James Seged 
Workshop Co-Chairs  
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The design of an exploratory learning environment to 
support Invention 

 

Catherine C. Chase, Jenna Marks, Deena Bernett, and Vincent Aleven 

1Teachers College, Columbia University, New York, United States  
(chase, jnm2146, dlb2175) @tc.columbia.edu 

2Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, United States  
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Abstract. We describe the design of the Invention Coach, an intelligent, ex-
ploratory learning environment (ELE) to support Invention, an exploratory 
learning activity. Our design is based on a two-pronged approach. Our own 
study of naturalistic teacher guidance for paper-based Invention uncovered 
phases in the Invention process. Prior research on the mechanisms of learning 
with Invention activities revealed specific instructional strategies. These two 
sources informed the design of the guidance offered by the Invention Coach. To 
our knowledge, this is the first design of a guided environment for Invention ac-
tivities inspired by a model of naturalistic teacher guidance. Our work offers in-
sight into styles of guidance that could apply to other exploratory learning envi-
ronments.  

Keywords: intelligent learning environment, human tutoring, exploratory learn-
ing, intelligent tutors 

1 Introduction 

While exploratory tasks support the constructivist nature of learning and have the 
potential to enhance 21st century skills, there is broad agreement that learners need 
guidance in their exploration [1].  But what kind of guidance will help learners to 
engage in productive exploration without eliminating the exploratory nature of the 
task? Designers of exploratory learning environments have investigated this question 
through various lenses – types of learner feedback [2, 3], “cognitive tools” for inquiry 
[4], and participation structures [5]. We explore the question of effective guidance for 
exploration in the context of an exploratory learning task called Invention, where 
learners invent their own formulas to describe scientific phenomena. We are now in 
the process of developing an intelligent, exploratory learning environment (ELE) 
called the Invention Coach, which scaffolds students through the Invention process.   

Invention is an exploratory task that invites students to engage with deep, concep-
tual ideas by analyzing a set of data [6]. Students are asked to invent an expression of 
an underlying structure that runs throughout a set of contrasting cases. Cases are ex-
amples of phenomena with predesigned contrasts that highlight key features, provid-
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ing students with clues to the abstract, underlying concepts. After exploring the cases 
and inventing their own structures, students are told the canonical structures, through 
traditional expositions (lecture, reading). Prior work suggests that Invention creates “a 
time for telling,” preparing students to appreciate the “mathematical work” of equa-
tions [6] or “function of tools for solving relevant problems” [7].  

Figure 1 shows an Invention task our computerized Invention Coach is designed to 
support.  In this “Crowded Clowns” task, students are asked to invent a numerical 
“index” to describe how crowded the clowns are in each set of buses. Though stu-
dents do not realize it, they are inventing the equation for density (d=m/v, where den-
sity is the number of objects crowded into a space). Most students initially attempt to 
describe crowdedness using a single feature – the number of clowns.  They do not 
realize that crowdedness must consider two features related in a ratio structure (e.g. 
#clowns ÷ #boxes). The six buses in Figure 1 are contrasting cases designed to high-
light the critical features of “crowdedness.” For example, by contrasting cases A1 and 
B1 (see Figure 1), which both have 3 clowns but different-sized buses, students may 
notice that clowns alone cannot account for crowdedness, and space must be consid-
ered as well. Through an iterative process of generating and evaluating their inven-
tions, students begin to realize that a workable solution must involve both features in 
some kind of relational structure. While many students do not produce the correct 
formula, the invention process prepares them to learn from a later lecture on ratio 
structures, which is the targeted content of our instruction. 

 

  

Fig 1. Invention task, adapted from Schwartz et al., 2011.  

Invention activities are very successful in supporting transfer. In several studies, 
Invention has been more effective than traditional instruction at enhancing transfer 
and deep learning in science and math domains, both with adolescents and adults [6, 
8, 9, 10]. But in most studies, students need subtle guidance from a teacher to engage 
in productive invention. In a move towards scaling up, we are developing a computer-
based Invention Coach that will ultimately provide adaptive guidance as students 

Happy Clowns  
Index = _________!

  

Bargain Basement Clowns Index = _________!

Clowns ‘r’ Us  
Index = _________!

  

            

  

    

  

      

  

      

  

  

            

A1 

A2 

B1 B2 

C1 
C2 
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engage in Invention. Through the design of the Invention Coach, we also explore 
what types of guidance are most effective in scaffolding an exploratory task.The most 
applicable related work comes from Roll, Aleven, and Koedinger [11], who devel-
oped an ELE for Invention activities in statistics. The learning environment we pro-
pose will share some characteristics with their Invention Lab but will differ in a fun-
damental way. While Roll et al.’s technology was developed through rational analysis 
of the task and empirical study of components of the Invention process, our Invention 
Coach is modeled on guidance from a human teacher.  

To develop the Invention Coach, we are following a multi-phase approach of for-
mal empirical research interspersed with design cycles and informal user testing. We 
began with a study of naturalistic human teachers’ guidance of Invention and a review 
of the literature on learning with Invention. In the following section, we briefly re-
view the results of both. We then describe the design of our current Invention Coach, 
focusing on the pedagogical elements of our design rather than the technical aspects 
underlying it.  We are now in the process of implementing a Wizard-of-Oz version of 
the Coach, though we plan to build a fully adaptive system in the future. 

2 A Two-pronged Approach to Design 

The design of the Invention Coach was driven by a combination of our own empirical 
work and prior research and theory on Invention. Our study of naturalistic teacher 
guidance demonstrated the process of Invention by explicating the various subgoals 
teacher-student pairs tackle as they work towards a solution. The specific instructional 
strategies embedded in our Coach were drawn from research and theories on the 
mechanisms that make Invention a successful instructional paradigm.  

Our analysis of naturalistic teacher guidance uncovered a process model of guided 
Invention with four phases [12]. In the “understand the problem” phase, teachers ex-
plained the task goal and constraints to students who were confused by the ill-defined 
goal of inventing an “index.”  In the “notice features” phase, teachers guided students 
to notice key features they often overlooked (most often bus size) or to think concep-
tually about what “crowdedness” means. In the “produce and reflect on an Invention” 
phase, students generated their numerical index and teachers helped them evaluate 
whether it was correct.  There was also a “math calculation” phase, in which teachers 
and students worked to simplify and manipulate fractions or count key features. In-
formally, we noted that phases were not completed in a linear fashion; teacher-student 
pairs moved back-and-forth between them. As a result, our initial prototype Invention 
Coach supports each phase, without prescribing a specific phase order. 

While the study of naturalistic tutor guidance revealed the subgoals of solving an 
Invention problem, specific instructional strategies were derived largely from the 
existing literature on Invention. Instructional strategies were designed to scaffold 
three core components of the Invention paradigm: noticing deep features of a domain, 
monitoring errors, and withholding direct feedback. First, noticing deep features of a 
domain is a critical step for problem-solving success. For instance, novices often fo-
cus on the surface features of a problem while experts focus on the deep principles 
that underlie a problem solution [13]. An effective way to help novice learners notice 
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key features is to have them compare and contrast example cases that explicate the 
features [7]. Our carefully designed contrasting cases systematically differ on key 
features, so that certain pair-wise comparisons reveal the necessity of considering a 
not-so-obvious feature. Second, Invention helps learners to identify gaps in their un-
derstanding, which they can then seek to fill in later expository instruction [14]. 
Through the process of monitoring and reflecting on their solution attempts, learners 
often come to see that their invention is inadequate. When they later receive a lecture 
on the canonical problem solution, they are prepared to understand how it avoids the 
errors they made in their own solution attempts. We scaffold monitoring by encourag-
ing learners to explain their solutions. Related work on self-explanation suggests that 
it strongly enhances metacognitive monitoring [15]. A third critical component of 
Invention is that giving away the answer or showing students how to solve the prob-
lem cuts off learners’ exploration and hinders their ability to notice and monitor [9]. 
Thus, instead of providing direct right/wrong feedback and elaborative explanatory 
feedback, our system exposes inconsistencies in the learner’s solution.  In sum, the 
three instructional strategies our system employs are (1) encouraging learners to con-
trast cases (2) inviting learners to explain their solutions and (3) providing feedback 
that exposes inconsistencies in a learner’s solution. 

3 Design of Invention Coach Prototype 

Our research findings along with prior work on Invention informed the design of the 
Invention Coach. We designed instructional components corresponding to each phase 
of the Invention process model derived from our study. Additionally, some compo-
nents scaffold students as they engage in the core learning mechanisms of the Inven-
tion paradigm. Our initial prototype was designed to be operated by a “Wizard-of-Oz” 
(the experimenter), who can launch the student into instructional components in any 
order, based on her assessment of the student’s current knowledge state. While we 
ultimately plan to build a fully adaptive Invention Coach, the Oz configuration allows 
for flexible application of process phases across students. Perhaps more importantly, 
the Oz configuration will help us identify the trigger conditions for each type of coach 
guidance. We are now in the throes of building our first prototype Invention Coach.  
We are using the Cognitive Tutor Authoring Tools (CTAT, [16]) to build our ILE as 
an example-tracing tutor with additional custom programming.  

 In our Invention Coach, the student is initially left to work independently on his 
invention. During this independent work time, students typically inspect the cases 
provided and begin entering potential index numbers for each case. Students can also 
click the “rules tab” to re-read the rules that their index must follow, the “calculator 
tab” to display an on-screen calculator, the “notepad” tab to display an on-screen 
notepad, or the “help” or “submit” buttons to request feedback from Oz. Oz only pro-
vides guidance in response to the student’s request for feedback, or whenever the 
student has been working uninterrupted for five minutes.  

There are two types of guidance that Oz can provide: modules and hints. A module 
is a short exchange between the computer and student focused on a particular subgoal. 
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For example, our “ranking module” (Figure 2A) asks students to rank the bus compa-
nies from most to least crowded. After the student ranks the companies, the system 
automatically provides feedback and, if needed, additional scaffolding. Once the stu-
dent has successfully ranked the companies, the module ends, and the student is left to 
work independently again. Hints represent the second type of guidance Oz can pro-
vide. Hints are much simpler than modules, consisting of a single text bubble dis-
played to the student. The system provides largely high-level hints with broad sugges-
tions and never gives a “bottom-out” hint, which would give away the answer.   

Each of the instructional components included in the Invention Coach was de-
signed to guide students through one of the four process phases revealed in our analy-
sis of teacher guidance (Table 1). Most components employ one of three instructional 
strategies that support the mechanisms of learning with Invention: encouraging stu-
dents to contrast cases, inviting students to explain their solutions, and provide feed-
back that exposes inconsistencies in the student’s inventions.  

Table 1. Invention Process Model, Instructional Strategies, and Instructional Components 

Process Phases Process Description Instructional  
Strategy 

Instructional  
Component 

Understand the 
Problem 

Explain or describe task goal 
and constraints 

Expose inconsist-
encies 

Rule-related hints 
Rules tab 

Notice Features Notice key features of the 
underlying structure (e.g. 
#objects, space) 

Contrast cases Ranking module 
Feature Contrast 
module 

Produce and Reflect 
on an Invention 

Generate a solution (e.g. in-
dex) and evaluate its correct-
ness 

Explain solution Tell-Me-How 
module 

Math Calculation  Simplify/manipulate fractions -- Calculator  

 
The two instructional components that help students through the “understand the 

problem” phase are the “rules tab” and the rule-related hints. Rule-related hints pro-
vide feedback exposing inconsistencies in students’ inventions.  For instance, if a 
student’s invention is not generalizable and only works for specific cases, Oz can 
provide the following hint: “Don’t forget: you have to use the exact same method to 
find the index for each bus!” 

The Invention Coach also supports the “notice and understand features” phase of 
the Invention process via the “ranking” (described above) and “feature contrast” 
modules. Ranking the buses from most to least crowded helps students think about 
why some companies are more crowded than others, which starts to focus them on the 
features that determine crowdedness. In the “feature contrast” module (Figure 2C), 
Oz can select two specific buses to contrast. The student is then asked to note which 
features make one bus more crowded than the other. For example, Oz could ask the 
student to contrast cases A1 and C2 in Figure 1. Since the number of clowns is held 
constant across the cases while space changes, the student may begin to notice that 
clowns alone cannot account for crowdedness, the feature of bus size is important too. 
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Both “ranking” and “feature contrast” modules employ the instructional strategy of 
comparing and contrasting cases, to scaffold learners in noticing key features of the 
problem space.   

 

Fig. 2. Prototype Interface and Modules. 

The backbone of the Invention Coach is the “tell-me-how” module (Figure 2D), 
where students are asked to enter and explain their inventions. This serves to recreate 
the “produce and reflect on an invention” phase of the process while encouraging 
students to monitor their own errors. In this module, students explain how they ar-
rived at their answer (by selecting whether they “counted,” “estimated,” or “used 
math”). Students who indicate that they “counted” are further prompted to identify 
what exactly they counted, while students who “used math” must then use a calculator 
feature to show how they derived their answers. Students are never provided with 
direct right/wrong feedback on their solutions.  Instead, the tell-me-how module en-
courages students to explain how they arrived at their solutions, right or wrong. We 
hope that in the process of explaining their answers, and connecting the math to refer-
ents in the cases, students will begin to reflect on their answers and identify gaps in 
their own understanding. Another key function of this module is to help Oz (and 
eventually the fully adaptive system) understand how a student generated her index so 
it can determine appropriate feedback. 

Finally, to enable the math calculation phase of the Invention process, students are 
provided with a calculator (Figure 2E). In our study of naturalistic teacher guidance, 
many students had difficulty engaging in simple math (e.g. 6 divided by 3), and a 

A) Main Interface! "  "B) Ranking Module!

E) Calculator! "C) Feature Contrast Module! "

Look at these two buses. Which one is 
more crowded?"

!Blue           �Green    �They are equal "

 "D) Tell-Me-How Module!

Calculator & 
Rules Tabs"

Coach 
Dialogue"

Help & "
Submit Buttons"

Index Numbers"

Contrasting Cases"
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large proportion of teacher talk focused on math calculations such as simplifying 
fractions.  The calculator enables students to off-load some of this challenging calcu-
lation work and instead focus on the larger concepts behind the math. The “calcula-
tor” tab is available in the main interface for students to call up at any time during the 
task. A calculator is also part of the “tell-me-how” module as described above.  

Throughout the phases of the Invention process, the Coach’s feedback points out 
inconsistencies in students’ problem solutions. Instead of providing right/wrong or 
elaborative feedback when students create an incorrect invention, the Coach presents 
information to contradict the wrong invention. For instance, the Coach may remind 
the student that their Invention must generalize to all cases or that it must account for 
two cases that have the same crowdedness. The coach may also present pairs of cases 
that directly contradict the student.  For instance, if a student believes that an irrele-
vant feature is important, the Coach will show two cases where the irrelevant feature 
varies but crowdedness does not. This type of feedback enables students to explore on 
their own, while encouraging them to self-monitor errors and “see” deep features. 

In our current design, several components of the Invention Coach must be selected 
by Oz, while some intelligence is built into the system. The Oz selects whether to 
respond to a request for feedback by launching a student into a module (e.g. feature 
contrast, tell-me-how, or ranking) or by giving a single hint, adapting the path through 
the Invention space based on each student’s individual needs.  However, once inside a 
module, the system largely controls the interaction by selecting appropriate feedback 
and prompting the student to take action.  

4 Discussion and Conclusion 

We have described the design of a computer-based Invention Coach, which was in-
spired by a study of naturalistic teacher guidance of paper-based Invention and by 
prior research on the mechanisms behind Invention. The Invention Coach contains 
instructional components to address each phase in the Invention process, which can 
be adaptively selected. The system employs three instructional strategies that target 
key mechanisms in learning from Invention: contrasting cases, self-explanation of 
problem solutions, and feedback that exposes inconsistencies in students’ solutions. 
While we are currently implementing a Wizard-of-Oz version of the Invention Coach, 
we ultimately aim to develop a fully adaptive system. 

This work contributes more broadly to work on Invention and exploratory learning 
environments. To the best of our knowledge, the work presented here is the first de-
sign of a guided environment for Invention activities that is based on a model of natu-
ralistic teacher guidance. Our design offers insight into possible strategies and phases 
of guidance that could be more broadly applicable in other exploratory learning envi-
ronments and tasks. Specifically, if the Invention Coach we’ve built proves success-
ful, it would argue that unguided exploration can be augmented by guidance that 
highlights inconsistencies in student work, contrasts cases to make relevant features 
salient, and invites students to explain their solutions. These forms of guidance may 
prove especially useful for developers who wish to retain the emphasis on active pro-
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cessing and construction of ideas inherent in exploratory learning environments, 
while avoiding the pitfall of unproductive aimless exploration [2, 3]. 
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Abstract. Developing models of the knowledge and skills being exercised in a 
task is an important component of the design of any instructional environment. 
Developing these models is a labor intensive process. When working in explor-
atory and open-ended environments (EOLEs) the difficulty of building a 
knowledge model is amplified by the amount of freedom afforded to learners 
within the environment. In this paper we demonstrate a way of accelerating the 
model development process by applying a concept formation algorithm called 
TRESTLE. This approach takes structural representations of problem states and 
integrates them into a hierarchical categorization, which can be used to assign 
concept labels to states at different grain sizes. We show that when applied to 
an open-ended educational game, knowledge models developed from concept 
labels using this process show a better fit to student data than basic hand-
authored models. This work demonstrates that it is possible to use machine 
learning to automatically acquire a knowledge component model from student 
data in open-ended tasks. 
 

1 Introduction 

When designing intelligent instructional support in educational learning environments 
it is important to have a model of the skills and knowledge employed during problem 
solving. A common approach to modeling skills in intelligent tutoring systems (ITSs) 
is knowledge component (KC) modeling [1]. In the KLI Framework a KC is “an ac-
quired unit of cognitive function or structure that can be inferred from performance on 
a set of related tasks” [2]. A KC model is a mapping of each problem-solving step in a 
particular educational environment to the skills necessary to solve that step.  KC 
models can be used in pedagogical software to drive feedback and hints, guide prob-
lem selection [3], and inform redesign of the interface [4]. 

While KC models are useful for a number of purposes in the development of intel-
ligent software they take significant effort to develop. The process of creating a KC 
model often employs elements of empirical and theoretical task analyses [1], solicit-
ing expert feedback and rationally constructing the skills used in a task. When work-
ing in exploratory and open-ended environments (EOLEs) this process is aggravated 
by the freedom learners experience in these environments. It can be assumed that as 
the space learners are allowed to explore grows, so too must a KC model grow to 
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continue to provide useful support and feedback to learners. In addition to providing 
large spaces for exploration, EOLEs often contain more complex representations of 
domains making it more difficult to articulate the rules defining the applicability of a 
given KC. 

To address the challenges of KC model creation in EOLEs we have developed a 
novel method for generating new KC models based only on problem states taken from 
the learning environment. Our approach uses a form of automated model discovery 
that employs a concept formation algorithm called TRESTLE [5]. This algorithm 
creates a hierarchical categorization tree based on training examples, which can then 
be used to label problem states at various grain sizes. The algorithm is designed to 
handle messy, mixed representations of data, making it ideal for application to 
EOLEs. It has previously been shown to create clusters similar to humans [5]. In this 
paper, we show how the conceptual patterns learned by TRESTLE can be used to 
discover new KC models in the open-ended educational game RumbleBlocks [6]. 
Finally, we conclude with a brief discussion of the implications of this approach and 
detail how we plan to expand it in future work. 

2 The TRESTLE Algorithm 

TRESTLE [5] is an incremental concept formation algorithm that creates a hierar-
chical categorization tree from a set of structured instances. In this section we briefly 
describe the algorithm’s major structures and categorization procedure for more de-
tails see [5]1. 

The TRESTLE algorithm produces a categorization tree and functions over a set of 
instances, each described by a set of attribute-value pairs. Instance attributes can have 
nominal, numeric, or component values that have their own sub-attributes and values. 
When integrating a new instance TRESTLE proceeds through 3 major steps: 

1. Partial Matching, which renames instance attributes to align with the algorithm’s 
current domain understanding 

2. Flattening, which converts structured attributes to unstructured ones, while pre-
serving structural information. 

3. Categorization, which incorporates the instance into the knowledge base. 

TRESTLE’s knowledge base is an evolving category structure being built from 
training examples and is organized into a hierarchical tree of concepts. In building its 
tree, the algorithm optimizes for a heuristic called category utility, which is similar to 
maximizing for the expected number of correct guesses that a given concept could 
make about the attribute-values of a given instance. During categorization new in-
stances are sorted into the tree. At each node in the categorization tree TRESTLE 
considers 4 different operations and performs whichever one would result in the high-
est category utility: (1) adding the instance to the best child, (2) creating a new node 

                                                             
1 A reference implementation is available at: https://github.com/cmaclell/concept_formation 
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for the instance, (3) merging the best 2 nodes and adding the instance to the result, or 
(4) splitting the best node by promoting its children to be children of the current node.  

After categorizing an instance into its knowledge base, TRESTLE returns a con-
cept label for the instance. Since concepts in TRESTLE are organized in a hierar-
chical tree, the cluster labels returned from categorization can be generalized if more 
coarse clusters are desired. At the coarsest, i.e. the root of the tree, everything is con-
sidered to be the same concept, while at the most specific, i.e. the leaves of the tree, 
everything is considered to be unique.  

To arrive at a KC label for a step, the problem state in which the step too place is 
categorized and label is generated based on the returned concept and a desired depth. 
For a given depth model the state is categorized down the TRESTLE tree. Once the 
state reaches the desired depth the current concept’s label is returned. If the state 
reaches a leaf of the tree before reaching the desired depth, then the label of the deep-
est node is used instead. When generating KC models this allows for the creation of 
multiple model variants that consider the domain at different levels of granularity (see 
Fig. 1). 

 

Fig. 1.  A diagram of how KC labels are attributed to problem states based on their 
categorization in the TRESTLE tree for a given depth mode. 

3 RumbleBlocks 

To demonstrate how TRESTLE can be used to aid in the process of KC modeling we 
introduce RumbleBlocks [6], an open-ended educational game. RumbleBlocks is a 
physics game designed to teach children (ages 5-8) three basic concepts of structural 
stability and balance: (1) objects with wider bases are more stable, (2) objects that are 
symmetrical are more stable, and (3) objects with lower centers of mass are more 
stable. 

In the game, players are tasked with building a tower out of blocks to help a 
stranded alien power their spaceship (see Fig. 2). The tower must be tall enough to 
reach the alien and cover a series of energy orbs that power the spaceship. Once play-
ers have finished building their tower they place the spaceship on top, which triggers 
an earthquake. If, after the earthquake, the ship is still on top of the tower, then the 
player has succeeded and advances on to the next level, otherwise they must try the 
level again. 
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Fig. 2. A screenshot of RumbleBlocks 

Each level in RumbleBlocks is designed to emphasize one of the three key concepts 
of stability. This emphasis is accomplished through the placement of energy orbs, the 
target zone for the spaceship, and the palette of available blocks. While each level is 
targeted at a particular principle, there is a wide range of variance in the kinds of solu-
tions players design to in-game challenges. Our previous analysis found that there are 
several levels where less than 10% of students actually used the solution envisioned 
by the game’s designers [7]. The variance in player behavior demonstrates the open-
endedness of the game as well as highlights the challenge inherent in defining KC 
models to measure learning in the game. 

4 KC Model Discovery in RumbleBlocks 

To evaluate the application of TRESTLE to the KC modeling process we used it to 
discover a set of new KC models in RumbleBlocks. For comparison we also created a 
“hand built” KC model meant to capture the original design intent behind the game. 
This model labels each level in the game with the principle it is designed to empha-
size. Since the first 5 levels of the game are primarily a mechanical tutorial for the 
game rather than instructional levels dealing with physics principles, we relabeled 
these levels with an “Intro” KC, resulting in a hand-built model with 4 KCs. 

For this first demonstration of the use of TRESTLE to generate KC models we 
chose to focus on a broad definition of a step as solving an entire level of Rumble-
Blocks. This is in keeping when Van Lehn et al.’s definition of a step as “the smallest 
possible correct entry that a student can make” [8] because, in its current form, Rum-
bleBlocks only provides correctness feedback to players at the end of a level. In this 
context a step is then considered in terms of the initial level state given to the player 
to construct a solution in and evaluated based on their final construction. The state 
representation used for training TRESTLE contained the positions of each of the en-
ergy orbs, the target position of the spaceship, and the available number of each block 
type. The resulting categorization tree, based on the initial state data from Rumble-
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Blocks’ 47 levels, was 7 levels deep giving us 7 candidate KC models each with dif-
fering levels of granularity. 

To evaluate relative appropriateness of different candidate KC models we used the 
tool suite provided by DataShop [9]. In particular, we used AFM [10], a specialized 
form of logistic regression that fits a given KC model to student log data. The result-
ing regression model can be used to assess the fit of a particular KC to the real student 
data. DataShop provides several model fit statistics to compare KC models: AIC and 
BIC, both standard model fit statistics that penalize for model complexity and Cross 
Validated Root Mean Square Error (CV-RMSE) using 3-fold cross validation with 
different stratification schemes (i.e. student, item and un-stratified).  

The data we use in our evaluation comes from a formative evaluation of the game 
with 174 players in the target demographic. Players were allowed to play the game for 
two 20-minute sessions. 

The model fit estimates for the 7 Trestle-based models and the original Principle 
(i.e., hand-built) model can be seen in Table 1. In general, more fine grained models 
tend to fit the data better. The TRES-Depth7 model is preferred according to AIC and 
both item-stratified and un-stratified RMSE. This would suggest that an appropriate 
model for initial states in RumbleBlocks is one that treats all levels as nearly unique 
from each other.  

Table 1. Fit statistics for each KC model. Cross Validated Root Mean Square Errors (CV-
RMSE) are based on 3 fold cross validation using different forms of stratification. 

Model KCs AIC BIC CV-RMSE 
(student) 

CV-RMSE 
(item) 

CV-RMSE 
(none) 

Principle 4 6560.73 8544.74 .3856 .3883 .3869 
TRES-Depth1 1 6828.35 8771.45 .3924 .3948 NA 
TRES-Depth2 5 6737.21 8734.85 .3899 .3921 .3923 
TRES-Depth3 14 6661.67 8782.03 .3878 .3904 .3915 
TRES-Depth4 24 6530.78 8787.50 .3845 .3853 .3855 
TRES-Depth5 32 6350.50 8716.31 .3794 .3821 .3826 
TRES-Depth6 39 6152.75 8614.01 .3734 .3761 .3739 
TRES-Depth7 41 6152.28 8640.81 .3736 .3754 .3732 

5 Discussion 

We can see from the results that KC models based on depth cuts of a TRESTLE cate-
gorization tree better fit student data than a model based on the original design of the 
game in terms of AIC and cross-validation. According to these statistics, we find that 
a more specific KC model better fits student data than more general models. This 
would make it appear that there is little transfer going on within the game. However, 
this is likely due to our unit of analysis. An approach that employs a more fine 
grained definition of a correct step (e.g., steps defined at the transaction level) might 
reach a different conclusion with regards to transfer because there is likely to be some 
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common application of knowledge components used across building towers in differ-
ent levels. 

The approach presented here deals with concept granularity at a holistic level. By 
this we mean that all KCs in a model are being considered at the same depth of the 
concept tree. There is some evidence that suggests human learners will employ con-
cepts at different levels of granularity based on their expertise [11]. It is possible that 
the most appropriate KC model uses a combination of specific and general concepts 
depending on the context of the task at hand. Rather than creating KC labels as uni-
form cuts of a concept hierarchy, where concepts all exist at the same depth, we could 
instead start all problem states at their coarsest label and iteratively split concept 
nodes into more specific labels. After each split the resulting KC model could be test-
ed for fit using student data until an optimal model is found. This is similar to the 
Learning Factors Analysis search algorithm [12] but it would not require human de-
veloped models as seeds. Exploring this process is something we look forward to in 
future work. 

Our current analysis defined steps to be the complete solution to each level. This 
follows with Van Lehn et al.’s definition of a step in KC analysis as the smallest 
amount of action that a student can perform correctly [8]. This definition still assumes 
that all possible solutions to a level exercise the same skill, which may not be the case 
in practice. One way of going beyond this assumption in analyzing RumbleBlocks is 
to create a TRESTLE model based on the solutions players make to each in-game 
level rather than the initial conditions of the level. Such an approach would allow for 
analysis according to different kinds of solutions rather than the constraints under 
which problem solving took place. One issue with taking into account the content of 
students’ solutions is how to handle the assignment of KC labels when there are mul-
tiple valid solutions to a level, as is the case with RumbleBlocks [7]. In the case of 
correct solutions it is simple to state that each unique correct solution embodies the 
use of a different KC. When looking at incorrect solutions, however, the question of 
attribution becomes more difficult as it is hard to know which of the possible correct 
approaches the student failed to execute correctly. A standard modeling approach 
would assign an incorrect step with the labels of all possible correct solutions; using a 
variant to AFM’s statistical formula to allow for the disjunction of KCs [10]. A 
TRESTLE based approach could go beyond this by categorizing incorrect solutions 
into a knowledge base trained on correct solutions and assigning a KC label based on 
which correct solution the error most closely resembles. This is similar to the ap-
proach taken by Rivers and Koedinger to create next step feedback in programing 
tasks [3] but has the potential to be domain general. Exploring this approach to KC 
modeling with TRESTLE remains a topic of our future work. 

Ideally, we would like to go beyond the final state definition of a step to a transac-
tion-level model. Having a full transaction-level model would allow for the inclusion 
of targeted feedback to players while they are playing rather than providing feedback 
only at the end of building. Additionally, more detailed understanding of player prob-
lem solving could better inform adaptive sequencing. The challenge in taking this 
approach in RumbleBlocks is that that evaluation of player performance is currently 
only performed at the end of a level. This creates similar correctness attribution chal-
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lenges in deciding whether a particular build step is a good or bad example of a given 
concept. Again we could turn to TRESTLE to aid in this analysis by having it perform 
categorization on whole solution paths rather than final solutions. There are several 
open questions with this analysis in terms of how best to represent a solution path for 
categorization but we hope to resolve these issues in future work. 

6  Conclusion 

This paper presents a preliminary use of TRESTLE as a way to discover new KC 
models in an open-ended game. The models automatically discovered by TRESTLE 
better fit student data than one hand-built to capture the design intent of the game. 
This demonstrates the promise of concept formation based approaches to KC model 
creation. In future work we plan to further explore the implications of TRESTLE-
based KC models including discovering transaction-level models and exploring mod-
els that capture mixed grain sizes. We hope other researchers can find utility in these 
methods and apply them to their own exploratory and open-ended environments. 
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Abstract. This paper presents emerging requirements for learning an-
alytics on interactive mathematical e-books and a framework that can
be used for the seamless integration of complex learning objects with e-
book platforms. We describe the opportunities that this approach opens
up regarding interoperability and configurability of learning analytics
and intelligent support. The framework is generic and can be used for
any type of system with similar requirements. In this paper we present
a case that covers configuration of learning analytics for teachers and
intelligent support for students in constructionist mathematical e-books.

1 Introduction

The emergence of authoring software for e-books means that digital books with
text, images and other interactive elements are increasingly being used on per-
sonal computers and other electronic devices for educational purposes. However,
most of these e-books are simple transformations of traditional textbooks into
a digital format and do not take advantage of the dynamic and computational
affordances offered by this emerging technology. The MCSquared project1 is in-
vestigating whether the affordances of state-of-the-art e-books can be exploited
to support the learning of abstract mathematical concepts. We are looking into
the design of highly interactive constructionist e-book widgets, and exploring
their potential for providing learners with opportunities to construct mathemat-
ical artefacts in order to engage creatively with mathematical problems.

Within this context the increase of both process and product data collected
provides unprecedented opportunities for knowledge discovery through state-of-
the-art data analysis and visualization techniques. However, despite the fact that
in the past two decades intelligent technology has become increasingly feasible,
the power of these methods has not reached its full potential in education. For
example, although it is now possible for intelligent pedagogical agents to monitor
learners’ interactions within educational applications and provide individualised
support, only a handful of intelligent tools are employed in practice, yet they
are tied to particular instructional approaches, domains and context.

1 The Mathematical Creativity Squared project is funded by the EU, under FP7 ICT-
2013.8.1 Project #610467. For more details see http://www.mc2-project.eu
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We believe that one of the reasons that the promises of ubiquitous, individ-
ualised and adaptive technology has had a very small impact in education is
that learning environments are often rigid and limited to specific learning con-
texts and pedagogical approaches. Our previous research [6, 7] and that of others
(e.g., [9]) has primarily enabled the rapid revision and management of content.
In line with previous research in the field (e.g. [8]), our vision is that teachers
and educational organizations will be able to also mould the nature and type
of support provided to a learner (cf. [2, 10]) and the information they want to
glean from their interaction. Then the unrealised potential of the technology
could begin to be exploited.

This paper presents our preliminary efforts towards this vision: a prototype
where e-book pages and the widgets that they contain can be configured. First,
we present below a set of emerging requirements for Learning Analytics in the
context of constructionist mathematical e-books.

2 Emerging Requirements for Configurable Learning
Analytics

With the advent of data science and analytics in general, there are several ‘an-
alytics’ tools that have appeared. While we have looked into a large subset of
them, we cannot review them all in detail here. However, we have been unable
to find a tool that focuses on providing information from constructionist, ex-
ploratory mathematical environments (with the exception of our previous work
in [3] where we also review related work in more detail).

In the context of commercial e-books in particular publishers and authors
are interested in (and to some extent only have access to) high level information
such the number of pages read, average reading times, exit rates and other details
that reveal reading patterns that can correlate with, for example, sales figures.
However, from an educational point of view teachers, designers and even students
require a more in-depth analysis of learners’ interaction with the e-books.

The MCSquared project comprises four Communities of Interest (COI) across
4 EU countries (France, Greece, Spain, UK) and engaged their members in re-
quirements elicitation and stakeholders’ analysis. Through several face-to-face
workshops and sustained online interaction and communication between mem-
bers of the COI we have identified many scenarios in which e-books are being
used in teaching and other requirements of learning analytics tools and data
visualisation that are emerging.

Digital resources like e-books are being used either directly in the classroom
or in ‘blended’ learning scenarios (e.g. for practice exercises at home) or in
a ‘flipped’ learning model where students read and interact with the e-book
content online (e.g. at home) and complete other parts of the e-book in the
classroom with the help of other students or the teacher. So neither context can
be excluded. We present below high-level categories of the themes around which
requirements have emerged:

– Usage and other book-level descriptive statistics
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• the order of pages
• time spent on each page/activity
• how quickly students read a page
• the percentage of coverage of particular pages from a book

– Structured answer and related descriptive statistics

• Student answers and performance in structured questions
• Number of attempts to answer a question
• Repeated wrong answers across students

– Constructionist Analytics

• Constructionist descriptive statistics (i.e. number of objects constructed,
moved, deleted, etc.)

• Data regarding construction operations (achievements of key ’landmarks’)
• Specific patterns of interaction within a widget

While the first and second category of data analytics are interesting in their
own right, we are focusing mostly on the third type of data that we refer to
as ’deep’ analytics of constructionist e-books for learning. This is particularly
interesting because it goes beyond the ‘low-hanging fruit’ of descriptive statis-
tics (which, in principle, are technically and conceptually well understood) and
looks into extracting some meaningful information that could support decision
making. Constructionist analytics opens up the door to real-time formative and
summative assessment (as discussed in [1]). In our previous work, we found that
even a simple traffic-light system could satisfy the teacher’s need for finding out
which students are progressing satisfactorily towards completing the task and
which ones may be in difficulty [3].

In addition, a requirement across all the types of analysis mentioned above, is
the availability of a generic, interoperable framework that enables configurability
of learning analytics and intelligent support. We present a prototype of this in
the next section.

3 Prototype

In this section, using an example of an e-book page, we demonstrate a basic but
complete integration scenario. The page is part of a mathematics e-book devel-
oped by the Greek COI and features a learning activity developed in Geogebra.
The page is integrated in a prototype that has a local in-memory database that
stores data generated from the student activities and a rule-based reasoner that
provides real-time intelligent support to the students (fig. 1). The purpose of
the activity is to get the student select an appropriate combination of vari-
ables in order to get both parts of the ladder to the same level. Converging
the two parts can then display a single heart at the top (join the two halves).
All of these heterogeneous components are pluggable widgets that operate in
their own secure environment (sandbox). They are hosted in their own domains
and they are executed concurrently without interfering with one another. In-
tegration with the host page takes place through a lightweight set of mediator
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Fig. 1. The ’Ladders’ Activity from Geogebra Tube

wrappers that enable full two-way communication over a simple and common
interface. Each widget is allowed to expose its own functionality (or part of it)
and make it available to the platform through a wrapper interface. This scheme
allows better performance (multithreading), security (sandboxing), controllable
interoperability (widget interface exposed through the wrapper) and seamless
integration (common wrapper interface) [5].

This e-book page demonstrates an example of an activity that offers real-time
intelligent support to students through visual controls and real-time formative
and summative feedback to teachers through graphs. The activity widget of-
fers interactivity through sliders and a checkbox. As the student interacts with
the widget, action indicators are generated and sent to the page. The platform
populates the local (in-memory) database which in turn incrementally synchro-
nises with the back-end database through REST 2 web-service endpoints (fig.
2). These updates are asynchronous for better performance. The local database
serves as a buffer for data that needs to be immediately available and thus
enables fast and more reliable responses. The local data is then sent to the rule-
based reasoner for processing. If the reasoner identifies a case that justifies a
discreet intervention, a message is displayed in the textbox and/or some visual
indicator is presented in the activity frame (heart). The latter presupposes that
messages are sent to the activity widget through the platform. This process may
also be initiated by the student. If the student asks for help or wants the system
to evaluate the work that has been submitted so far, then the reasoner responds
with an appropriate message in the textbox. In parallel, the data generated from
both the activity and the reasoner is sent to the database.

2 http://en.wikipedia.org/wiki/Representational state transfer
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Fig. 2. The Architecture

The page that hosts the teacher tools has a similar structure. It also con-
tains a local database widget and a reasoner. As the back-end database gets
updated with student actions and reasoner findings, the local database incre-
mentally retrieves the changes. Some of this data is used as a direct feed to
other widgets that host learning analytics visualisations. In this particular ex-
ample we have visualisations that measure student activity and performance
(fig. 4). Both measurements are presented as histograms and provide real-time
feedback to the teacher. The first visualisation measures what has been used in
the activity and how much. For example the elements n, m, k and are numeric
variables that correspond to sliders in the construction. The visualisation shows
which of these sliders and how many times have been used by the student. The
second visualisation presents a comparative measurement of effort and levels of
achievement. Some of the local data is then processed by the reasoner and new
data may be inserted into the database. This data may be used to populate other
visualisations or provide some intelligent support to the teacher.

The teacher tool is both an authoring and a monitoring environment. The
teacher has the ability to dynamically configure the system to log actions per-
formed by specific widget elements. Widget instances can be dynamically in-
serted into the authoring environment in the same way they can be integrated
with a c-book page. The widget communicates with its host through the wrap-
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pers and makes available its internal structure to it. The metadata extracted
from the widget is then used by the host to dynamically construct an authoring
graphical user interface that is presented to the teacher (fig. 3). The teacher
can then select the widget elements deemed necessary to log their actions. This
information is sent to the database along with the id of the c-book the widget
belongs to. When the widget is invoked in a c-book, the page uses this informa-
tion to dynamically register event handlers in the widget in order to intercept
student actions for the selected elements.

Fig. 3. Authoring Applet for the Teacher

4 Conclusion and Future Work

In this paper we presented a prototype authoring environment that enables con-
figurable learning analytics and intelligent support in educational e-books. The
specific example used in this presentation focuses on constructionist mathemat-
ical learning activities and the configuration of appropriate analytics for them.
The system has been implemented and used by members of COIs and prelim-
inary results show that it meets its original design objectives. It can be used
effectively for rapid integration of learning objects and dynamic configuration of
learning analytics and intelligent support. The next step is to specify how this
data will be processed by the reasoner in order to provide effective support to
the students. This part requires the use of a rule editor by a domain expert.
Preliminary work towards this aspect has been undertaken in [4].

A distinguishing characteristic of the prototype presented here is the ability
to dynamically generate user interfaces that enable the configuration of learning
analytics on heterogeneous learning objects. Heterogeneity is hidden behind the
mediator wrappers. A possible future enhancement would be to analyse a number
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Fig. 4. Teacher Visualisations. In this example the x axis represents the different as-
pects that the teacher selected to log and the y-axis the number of logged cases.

of representative learning objects and create a learning component description
language that can be used as a standard description of the construction that
represents an activity. This language could then be used to semantically enhance
the component in the wrapper in a standardised way.

References

1. Berland, M., Baker, R., Blikstein, P.: Educational data mining and learning analyt-
ics: Applications to constructionist research. Technology, Knowledge, and Learning
(19), 205–220 (2014)

2. Bokhove, C.: Implementing feedback in a digital tool for symbol sense. Interna-
tional Journal for Technology in Mathematics Education 17(3), 121–126 (2010)

3. Gutierrez-Santos, S., Mavrikis, M., Geraniou, E., Poulovassilis, A.: Usage scenarios
and evaluation of teacher assistance tools for exploratory learning environments.
Computers and Education (in press)

4. Karkalas, S., Gutierrez-Santos, S.: Enhanced javascript learning using code quality
tools and a rule-based system in the flip exploratory learning environment. In: Ad-
vanced Learning Technologies (ICALT), 2014 IEEE 14th International Conference
on. pp. 84–88. IEEE (2014)

5. Karkalas, S., Mavrikis, M., Charlton, P.: Turning web content into learning content.
a lightweight integration and interoperability technique (2015), under review

AIED 2015 Workshop Proceedings - Vol 2 23
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Abstract. Project Based Learning is a complex concept that is related to Prob-
lem Based Learning and Collaborative Problem Solving. These latter concepts 
are well represented in the literature by models and frameworks that can useful-
ly be adapted to develop a framework for the analysis of Project Based Learn-
ing. We present such a framework that has been designed for learning situations 
that involve the use of technology. This technology can be used to capture data 
about learners’ interactions as well as to support their learning. We suggest that 
this data can be combined with data collated by human observers and analysed 
using the framework.  

Introduction 

The literature on Project Based Learning is complex with many related concepts, 
for example: Practice Based Learning, Problem Based Learning, Collaborative Prob-
lem Solving and Inquiry Learning. In this paper we explore the frameworks for two of 
these concepts: Problem Based Learning (PBL) and Collaborative Problem Solving 
(CPS) in an attempt to identify a framework for the analysis of Project Based Learn-
ing activities to inform the design of Learning Analytics. We have selected these two 
concepts, because they are well supported by existing models and frameworks. 

1.1 Problem Based Learning 

Problem based approaches encourage learners to become actively engaged in 
meaningful real-world problems that often require practical as well as intellectual 
activity. The premise is that the students who participate in a PBL approach will learn 
through solving problems together and then reflecting upon their experience (Barrows 
and Tamblyn, 1980). Problem-based approaches to learning (PBL) are not new, they 
date back to the early 20th century in the work of Dewey (1938) for example (Hmelo-
Silver, 2004). Whilst they were initially part of medical education and law schools; 
they have recently gained more popularity with educators in schools and universities 
for teaching STEM subjects. A key element of PBL is that the students work collabo-
ratively, learning from each other and solving the problem together. The teacher’s 

AIED 2015 Workshop Proceedings - Vol 2 25



role is that of facilitator, but the students are very much self-directed. The PBL ap-
proach therefore requires that participating students have good collaborative skills and 
sufficient metacognitive awareness to steer them through the problem space in a man-
ner that enables their learning. As a result the potential outcomes for the students are 
not merely cognitive in terms of their increased understanding of the subject matter of 
the problem, but also there are advances in the transferable twenty first century skills 
of communication, collaboration and critical thinking.  

 
Hmelo-Silver (2004) uses a stepwise model to describe the PBL process from the 

teacher’s perspective (see Figure 1). Students start by identifying relevant facts about 
the problem, which increases their understanding and enables them to generate their 
hypotheses about potential solutions. The teacher or potentially a more able peer 
helps the student to recognize what are referred to as knowledge deficiencies that will 
become the goals of their self-directed study. Once these knowledge deficiencies have 
been addressed the student can re-evaluate their hypotheses and learn through a pro-
cess of reflection and application. 

 

 
Fig. 1. PBL Tutorial Model (Hmelo-Silver, 2004) 
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1.2 Collaborative Problem Solving 

More recently, and in preparation for the 2015 PISA assessments, the OECD has 
developed a framework for the assessment of collaborative problem solving (CPS) 
that is complementary to the traditional PBL approach outlined above (OECD, 2013). 
The OECD defines CPS as: 

 
Collaborative problem solving competency is the capacity of an in-

dividual to effectively engage in a process whereby two or more agents 
attempt to solve a problem by sharing the understanding and effort re-
quired to come to a solution and pooling their knowledge, skills and ef-
forts to reach that solution.  

(OECD, 2013, p.6) 
 

There are three core competencies that are fundamental to this definition of CPS:  
 

1. Establishing and maintaining shared understanding;  
2. Taking appropriate action to solve the problem;  
3. Establishing and maintaining team organisation.  

 
These are combined with a set of problem solving competencies that are similar to 

those outlined by Hmelo-Silver (2004), although there is no explicit reference to 
knowledge deficiencies. This is not surprising because the PBL model is one of tui-
tion, whereas the OECD CPS model is one of assessment: 

 

1. Exploring and Understanding 
2. Representing and Formulating 
3. Planning and Executing 
4. Monitoring and Reflecting 

The OECD framework for CPS also includes three further elements: 
 

1. Three conceptual dimensions for the assessment of problem solving. These are the 
problem context, the nature of the problem situation, and the problem solving pro-
cess; 

2. Two aspects of the problem solving context: the setting (whether or not it is based 
on technology) and the focus (whether it is personal or social); 

3. Two problem presentation types: static problem situations in which the information 
about the problem situation is complete, and interactive problem situations, where 
it is necessary for the problem solver to explore the problem situation in order to 
obtain additional information. 
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These additional elements highlight the complexity of CPS activities and are pulled 
together in Figure 2 below. 

 
 

Fig. 2. Overview of factors and processes for Collaborative Problem Solving in PISA 2015 

 
 

In addition to this overview the four problem solving processes and the three major 
collaborative problem solving competencies are merged to form a matrix of specific 
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skills, see Table 1. In the resulting matrix, the skills have associated actions, process-
es, and strategies. These specify what it means for the student to be competent.  

 
 
 

 (1) Establish-
ing and main-
taining shared 
understanding 

(2) Taking 
appropriate 

action to solve 
the problem 

(3) Establish-
ing and main-
taining team 
organisation 

(A) Exploring 
and Under-

standing 

(A1) Discovering 
perspectives and 
abilities of team 
members 

(A2) Discovering 
the type of col-
laborative inter-
action to solve 
the problem, 
along with goals 

(A3) Understanding 
roles to solve prob-
lem 

(B) Repre-
senting and 
Formulating 

(B1) Building a 
shared representa-
tion and negotiating 
the meaning of the 
problem (common 
ground) 

(B2) Identifying 
and describing 
tasks to be com-
pleted 

(B3) Describe roles 
and team organisa-
tion (communica-
tion protocol/rules 
of engagement)  

(C) Planning 
and Executing 

(C1) Communi-
cating with team 

members about the 
actions to be/ being 

performed 

(C2) Enacting 
plans 

(C3) Following 
rules of engage-
ment, (e.g., prompt-
ing other team 
members to perform 
their tasks.) 

(D) Monitor-
ing and Reflect-

ing 

(D1) Monitoring 
and repairing the 
shared understand-
ing 

(D2) Monitoring 
results of actions 
and evaluating 
success in solving 
the problem 

D3) Monitoring, 
providing feedback 
and adapting the 
team organisation 
and roles 

Table 1. Matrix of Collaborative Problem Solving skills for PISA 2015 
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Learning from Problem Based and Collaborative Problem Solving 

The type of matrix in Fig. 1 has the potential for use when analyzing data of collabo-
rative activity, but for a PBL approach, the missing component of knowledge defi-
ciency requires attention. In Table 2, we add the PBL tutorial stages to the matrix to 
address this limitation. In this way we combine a tuition model with an evaluation 
model and in so doing address both aspects of the teaching learning process. 

 
 (1) Establish-

ing and main-
taining shared 
understanding 

(2) Taking ap-
propriate action to 
solve the problem 

(3) Establish-
ing and main-
taining team 
organisation 

(A) Identi-
fying facts 

(A1) Discovering 
perspectives and 
abilities of team 
members, making 
knowledge explicit 

(A2) Discovering the 
type of collaborative 
interaction to solve the 
problem, along with 
goals 

(A3) Understanding 
roles to solve problem 

(B) Repre-
senting and 
Formulating 

(B1) Building a 
shared representation 
and negotiating the 

meaning of the prob-
lem (common ground) 

(B2) Identifying and 
describing tasks to be 
completed 

(B3) Describe roles 
and team organisation 
(communication 
protocol/rules of 
engagement)  

(C) Gener-
ating Hy-
potheses 

(C1) Critically analys-
ing the problem repre-
sentation 

(C2) Generating and 
Communicating poten-
tial solution paths 

(C3) Present Hypoth-
esis, encourage feed-
back from others and 
offer feedback on 
others’ hypotheses 

(D) Plan-
ning and Ex-

ecuting 

(D1) Communicating 
with team members 
about the actions to 
be/ being performed 

(D2) Enacting plans (D3) Following rules 
of engagement, (e.g., 
prompting other team 
members to perform 
their tasks.) 

(E) Identi-
fying 

Knowledge 
and Skill De-

ficiencies 

(E1) Comparing the 
team’s knowledge and 
skills with the pro-
posed actions 

(E2) Identifying and 
specifying individual 
deficiencies 

(E3) Identifying and 
specifying team defi-
ciencies 

(F) Moni-
toring, Re-

flecting and 
Applying 

(F1) Monitoring and 
repairing the shared 
understanding 

(F2) Monitoring results 
of actions and evaluat-
ing success in solving 
the problem 

(F3) Monitoring, 
providing feedback 
and adapting the team 
organisation and roles 

Table 2. Combined Matrix that merges PBL and CPS concepts adapted from PISA 2015 
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Each of the 18 cells can be associated with different levels of learner proficiency. 
For example;  

Low — the student responds to or generates information that has little relevance to 
the task.  

Medium — the student responds to most requests for information and prompts for 
action, and generally selects actions that contribute to achieving group goals.  

High — the student responds to requests for information and prompts for action, 
and selects actions that contribute to achieving group goals (OECD, 2013).  

 
The contents of the cells C1 to C3 and E1 to E3 have been generated by the authors 

informed by Hmelo-Silver (2004). 

Final Remarks and Further Research 

Frameworks such as this offer a flexible approach to the analysis of data collected 
from project based learning scenarios. This analysis may be that completed by hu-
mans as we strive to understand whether and how learning happens, but could it also 
be useful for data collected and analysed by machine? It needs to be acknowledged 
that PBL activity may not be captured completely through technology and that there 
will be aspects of the activity that take place away from any current technology. It 
may therefore be necessary for any analytics to use a combination of human and ma-
chine generated data. Our next steps are to test the framework empirically with a pro-
ject based data set and to consider what appropriate learning analytic requirements 
might be extracted. At the workshop we will bring some examples of data and associ-
ated analysis to support further discussion of the framework.  
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Abstract.  
Robust knowledge consists of both conceptual and procedural knowledge. In 
order to address both types of knowledge, offering students opportunities to ex-
plore target concepts in an exploratory learning environment (ELE) is insuffi-
cient. Instead, we need to combine exploratory learning environments, to sup-
port students acquisition of conceptual knowledge, with more structured learn-
ing environments that allow students to practice problem-solving procedures 
step-by-step, to support students’ acquisition of procedural knowledge. Howev-
er, how best to combine both kinds of learning environments and thus both 
types of learning activities is an open question. We have developed a pedagogi-
cal intervention model that selects and sequences learning activities, explorato-
ry learning activities and structured practice activities, that are appropriate for 
the individual learner. Technically, our intervention model is implemented as a 
rule-based system in a learning platform about fractions. The model’s decision-
making process relies on the detection of each individual student’s level of 
challenge (i.e. whether they were under-, appropriately or over-challenged by 
the previous learning activity). Thus, our model adapts flexibly to each individ-
ual student’s needs and provides them with a unique sequence of learning activ-
ities. Our formative evaluation trials suggest that single components of the in-
tervention model, such as the ELE, mostly achieve their aims. The interplay be-
tween the different components of the intervention model (i.e. the outcomes of 
sequencing and selecting exploratory and structured practice activities) is cur-
rently being evaluated. 
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1 Introduction  

Exploratory Learning Environments (ELEs), that include intelligent support, facilitate 
constructivist learning by offering opportunities for student self-determined explora-
tion of a virtual environment [1]. The exploration of an ELE allows for sense-making 
activities which in turn promote the student’s conceptual knowledge [2]. However, 
when integrating ELEs into the classroom, conceptual knowledge alone is insuffi-
cient. We need to move beyond this and enable students to achieve robust knowledge. 
Robust knowledge is deep, connected and comprehensive knowledge about a domain 
that lasts over time, accelerates future learning, transfers easily to new situations and 
is thus a very desirable learning goal [2–4]. It consists of both conceptual knowledge 
(understanding ‘why’) and procedural knowledge (knowing ‘how’) [5]. Thus, in addi-
tion to exploratory learning opportunities, we also need to provide students with 
learning opportunities that foster procedural knowledge [5] – opportunities for prac-
ticing problem-solving procedures, in structured learning environments such as that 
offered by some Intelligent Tutoring Systems (ITSs) [2] [6].  

While prior work in the learning sciences and educational technology has mostly 
focused on fostering either procedural knowledge with structured practice activities 
(SPA) within ITSs or conceptual knowledge with exploratory learning activities 
(ELA) within ELEs, we aim to extend the existing literature by combining both types 
of learning activities – exploratory and structured – in order to help students acquire 
robust knowledge. This novel approach, combining both types of learning activities in 
one learning environment, also exploits the fact that conceptual and procedural 
knowledge evolve both iteratively and simultaneously [5].  

Here, we report on a pedagogical intervention model (Figure 1), that specifies how 
to intelligently combine and sequence both ELA and SPA in order to promote com-
plete robust knowledge. In doing so, we followed a theory and a data driven approach 
and thus iteratively improved our pedagogical model [7]. For example, our pedagogi-
cal intervention model builds on the cognitive psychology literature and, as such, is 
domain-neutral and thus transferable to other domains. However, as learning always 
depends on a target domain, the model also builds on previous work in the field of 
mathematics education, particularly fractions learning. The intervention model focus-
es on the individual student’s level of challenge (categorized as either under-, appro-
priately or over-challenged) and selects the next learning activity accordingly. The 
model further specifies when students should receive cognitive support, so called 
task-dependent-support (TDS) , and emotional support, so called task-independent-
support (TIS) [8]. The technical implementation of the intervention model is based on 
a rule-based system that, in order to determine each individual student’s level of chal-
lenge, evaluates various input indicators (for example the student’s response to the 
activity and the amount of feedback the system has provided).  

A speech-enabled learning platform about fractions represents our intervention 
model and is embedded in the larger context of the 7th grant European research project 
“iTalk2Learn”. In the following sections, we explain the rationale behind the inter-
vention model in more detail, in particular describing how we determine each stu-
dent’s level of challenge, and we finish by discussing future steps.   
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2 The pedagogical intervention model  

When combining ELA and SPA, the first question we have to address is which should 
come first? We argue that students should first start with an ELA rather than an SPA. 
The benefits of beginning with an ELA are evident in findings from Kapur [9]. He 
was able to show that students who started with an ill-structured task (cf. ELA) and 
continued with a well-structured task (cf. SPA) gained significantly more conceptual 
knowledge than students learning in the reverse order. This research was extended by 
Kapur in his work on Productive Failure [10] which replicated the finding that explor-
ing concepts first fosters conceptual knowledge without hampering the acquisition of 
procedural knowledge. The choice to start with an ELA was also rooted in a domain-
specific reason. From more than 20 years of research, the Rational Number Project 
[11] elicited four essential beliefs about how best to support students learning frac-
tions [12]. One of these essential beliefs is that “teaching materials for fractions 
should focus on the development of conceptual knowledge prior to formal work with 
symbols and algorithms” [13].  

The next question to be addressed when combining ELAs and SPAs is what activi-
ty comes after the initial ELA? The answer depends on the individual student’s level 
of challenge. Students who are over-challenged with the initial ELA should continue 
with another less challenging ELA, in order to prevent them applying rules without 
prior reasoning [14]. On the other hand, students who are under-challenged should be 
given a more challenging ELA, in order to extend their learning. Finally, for students 
who are appropriately challenged by the ELA, switching from the exploratory to a 
structured activity is useful because the acquisition of conceptual and procedural 
knowledge mutually depend upon each other: changes in one type of knowledge lead 
to changes in the other type of knowledge which in turn lead to changes in the first 
type [5]. For example, when a student is appropriately challenged by an ELA, an SPA 
that is mapped to the ELA allows the student to elaborate and consolidate the concep-
tual knowledge that was acquired during the ELA. 

A third question to be addressed is once a student has engaged with a SPA, what 
activity comes next? In light of ACT-R theory [15] and the power law of practice [16] 
students should be provided with more than a single SPA because they need sufficient 
practice in order to become fluent in the application of a problem-solving procedure. 
Accordingly, the student should engage with more than a single SPA. In addition to 
providing students with opportunities to become fluent with a given procedure, we 
also aim to facilitate students’ flexible retrieval of different procedures by providing 
them with interleaved practice of SPAs, rather than simple blocked practice [17, 18].  
However, once the student has become fluent with a given procedure, then additional 
practice does not lead to better learning [17]. Therefore, students are switched back to 
the ELE. In this way, the student starts a new learning cycle, which (in the context of 
our project) is embedded in a particular coarse grain goal of fractions learning (e.g. 
equivalence of fractions). Here again, depending on the student’s level of challenge, 
the new learning cycle focuses either on the same coarse grain goal, and thus provides 
the student with additional learning opportunities for that goal, or moves to another 
coarse grain goal (e.g. adding fractions).   
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3 Determining a student’s level of challenge 

Determining a student’s current level of challenge is a complex affair, because it is a 
function of characteristics both of the student and of the activity. For example, an 
ELA is likely to be less challenging for a student with high prior knowledge than for 
another student with low prior knowledge. Based on our pedagogical intervention 
model and a student model (i.e. considering the various input variables) the analytical 
engine (that we call the Students Needs Analysis or SNA) determines the student’s 
level of challenge and thus the learner’s appropriate next activity (i.e. output deci-
sion). For example, the SNA draws on the student’s response to previous activities 
and to the current activity (using as a proxy the amount of task-dependent support, 
TDS [19], and the amount of task-independent support, TIS [8], delivered by the sys-
tem), and the affective state inferred from the student’s speech. Combining all these 
various inputs, each of which is assigned a weighting based on expert pedagogy, pro-
vides the SNA with a level of redundancy: a decision about the next appropriate activ-
ity can still be reached even if one of the inputs does not give any useful information 
or gives contradictory information.  

3.1 Student Needs Analysis for exploratory learning activities  

After each ELA, the SNA determines whether the student was under-, appropriately 
or over-challenged, based on the following input variables:  

 
• the student’s response to the current activity (using as a proxy the amount of 

TDS and TIS delivered by the system);  
• the student’s affect state inferred from prosodic cues in the student’s speech; 
• the student’s affect state inferred from their screen and mouse behavior. 

 
Based on these data, the SNA makes an output decision, selecting the next activity 

that is appropriate for the learner. If, for example, the system has had to deliver a 
large amount of TDS and the student’s affective state has been calculated as frustrat-
ed, the SNA will determine that the student was over-challenged by the ELA and will 
sequence to a less challenging ELA. If, on the other hand, few TDS prompts have 
been delivered and the student’s affect is inferred from speech to be bored, the SNA 
will determine that the student was under-challenged by the ELA and will sequence to 
a more challenging ELA.  

Finally, if the SNA infers the student is appropriately challenged (for example, if 
there has been a minimal number of TDS and the affect has been categorized as en-
joyment), the SNA switches to the structured practice environment. To ensure that 
students are provided opportunities to build upon and consolidate their conceptual 
knowledge, by applying it during structured practice, the SPA are mapped as closely 
as possible to the just-explored ELA. The close mapping of activities also aims to 
keep the individual student in their zone of proximal development, that is “the dis-
tance between the actual developmental level as determined by independent problem 
solving and the level of potential development as determined through problem solving 
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under adult [or an Intelligent Tutor’s] guidance, or in collaboration with more capable 
peers” [20].  

3.2 Student Needs Analysis for structured practice activities  

After students have completed a SPA, the SNA determines what the next activity 
should be based on the following input indicators (a future implementation will also 
take account of the number of SPAs the student has completed and the time taken): 
 

• performance prediction, based on a machine-learning model that uses a stu-
dent’s past activity performance to predict future activity performance [21]; 

• the student’s affect state inferred from prosodic cues; 
• the TIS previously delivered. 

  
Here, again, the SNA determines whether the student is under-, appropriately or 

over-challenged. If the SNA detects that a student was over-challenged by a SPA and 
the student’s affect is categorized as frustrated, the SNA will deliver a less challeng-
ing SPA. By providing over-challenged students with a less challenging SPA we aim 
to enable the student to become fluent with a less challenging procedure, before re-
exposing him to the more challenging procedure that they had not managed before. 
On the other hand, if the SNA detects that the student is appropriately challenged, he 
will be assigned a more challenging SPA. A machine-learning-based performance 
prediction model is used to determine how challenging activities are to the student. It 
takes into account data about the student’s performance on previous tasks and data 
from other students working on these tasks from a historic dataset. Finally, if the SNA 
detects that the student is under-challenged, the SNA will switch back to the ELE and 
will assign a new ELA that is more challenging than the last ELA that they explored. 

4 Summary and outlook  

Our intervention model, currently implemented within the context of learning frac-
tions, combines exploratory learning activities (ELA) with structured practice activi-
ties (SPA) according to each individual student’s level of challenge, in order to 
achieve robust knowledge. In addition to the adaptive selection of the next activity, 
our intervention model also provides adaptive support in the form of TDS and TIS 
during each learning activity. Accordingly, students are provided with both cognitive 
and emotional support as they learn about fractions. Although our intervention model 
evolved within the domain of fractions learning, it is transferable to other domains as 
the rationale behind the intervention model is domain-neutral.  

Repeated formative evaluation trials across the UK and Germany have tested the 
effectiveness of all the separate components of the intervention model. For example, 
various Wizard-of-Oz studies have delivered first empirical evidence that our ELE 
and its TDS supports students’ exploratory behavior and fosters their conceptual un-
derstanding of fractions. Meanwhile, the interplay between different components of 
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the intervention model is currently being evaluated. To test the effectiveness of the 
intervention model we have created different versions of our learning platform. For 
example, in two quasi-experimental studies in the UK and Germany, we are compar-
ing a full version of the learning platform representing our intervention model with a 
version that is without the ELE (but has all the other components). We expect differ-
ential effects in terms of students’ knowledge acquisition (full version, complete ro-
bust knowledge, vs. the version without the ELE, procedural knowledge only) and 
user experiences. The initial results of these evaluation studies will be presented dur-
ing the AIED workshop.  

Once the learning platform is evaluated we will intensify our effort to facilitate the 
use of the platform for teachers by providing guidelines about how best to prepare for 
students’ interaction with the platform. Additionally, for when working with the plat-
form in class, we aim to provide teachers with a tool (e.g., a teacher dashboard) which 
will allow them to monitor individual student’s use of the learning platform [22]. A 
further promising approach would be to enable students to learn collaboratively with 
the platform, as collaborative learning might further support students exploratory 
behavior and hence additionally support students’ learning. From a more technical 
perspective, our next step is to develop a Bayesian network that is able to predict 
more precisely the learner-appropriate next activity. However, this first requires the 
collection of training data for the network from our current rule-based implementation 
of the SNA.  
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Abstract. The work approaches theoretical and implementation issues
of a framework aimed at supporting human knowledge acquisition of
mathematical concepts. We argue that the problem solving tasks to be
carried out by a learner should be ordered according to the matching of
two parameters: (1) human skill level and (2) solution difficulty. Both
are formally defined here as algebraic expressions based on fundamental
principles derived from extensive consultations with experts in peda-
gogy and cognition. Our general definition of skill level is a rating-based
measure that resembles the ones of game mastery scales. Likewise, the
solution difficulty includes valuations based on a calibration method that
computes mistakes and successes of learners’ attempts to deal with the
problem. The framework is instantiated by implemented software tools
for the domain of logarithmic properties. Finally, we draw conclusions
about the suitability of the claims based on a four-highschool-class ex-
periment.

Keywords: rating, exercises calibration, Intelligent Tutoring Systems

1 Introduction

The student’s expertise is usually developed by solving exercises that require
a set of assessed skills. This is done in both conventional education schools
and when applying advanced learning technologies, such as Intelligent Tutoring
Systems (ITS). Normally, human teachers detect students’ misconceptions when
marking tests and exercises. Depending on how much the answer of a question
departs from its correct version, two students that missed the same question
could be scored different grades for that specific question.

Another aspect that can be used to compose the score is how difficult the
question is. The difficulty degree of a question can be measured by the number of
students that have skipped or made a mistake in that question. Thus, a student
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who finds the correct answer of a question that many missed, probably has more
skills than others and the score should reflect that. Conversely, a student who
makes a mistake in a question that many were successful to answer, might possess
fewer skills. Therefore, when posing questions to a student, it’s desirable that an
ITS calibrates the difficulties of such questions properly in order to match them
against the expertise level of the student.

The student models have become a key element in ITS, supporting the de-
velopment of individual help and detecting off-task behaviour [1]. The more
recent approaches of student displacement behaviour from what is expected are
influenced by the other students’ behaviour. In this sense, a larger sampling of
learners should provide better automatic assessments of a specific learner.

In the construction of student models, an important issue is weather just
one or multiple skills will be considered. Some of the proposed models are based
on the IRT (Item Response Theory), which is a classical model in psicometrics
that assumes that success in every item of a test is determinated by one ability,
named θ, referred to as latent trait.

Another desirable aspect in ITS is predicting or prospecting if a learner will
be able to answer a question correctly or not before it is actually showed to
him or her. This feature allows the exercises to be presented according to the
student’s skills or rating.

2 Literature Review

Champaign and Cohen propose an algorithm [3] for content sequencing that
selects the appropriate learning object to present to a student, based on previous
learning experiences of like-minded users. The granularity of sequencing is on the
LO level, not exercises or issues. A limitation of the work is that the algorithm
was validated only by using simulated students.

Ravi and Sosnovsky [14] propose a calibration method for solution difficulty
in ITS based on applying data mining techniques to a student’s interaction log.
Using the classical bayesian Knowledge Tracing (KT) method [5], the probability
that a student has acquired a skill is calculated on the basis of a tentative
sequence of exercises for which the soluctions involve a given concept. The logged
events are grouped by exercises and classified according to the student’s skills.
All the data generated by the process is then used to match the sigmoid curve
of IRT to connect different students using the standard clustering algorithm
k-means.

Schatten and Schmidt-Thieme [15] present the Vygotski Policy Sequencer
(VPS), based on the concept of Zone of Proximal Development devised by Vy-
gotski. In this approach, the matrix factorization, which is a method for predict-
ing user rating, is combined with a sequencing policy. This is done in order to
select at each time step the content according to the predicted score.

Clement et al. [4] propose two algorithms for the tutoring model of ITS. The
first, named RiARiT (Right Activity at Right Time), is based on multi-arm ban-
dit techniques [2] such that each activity involves different skills, referred to as
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Knowledge Components (KCs). The student model is a generalization of the one
used in the bayesian KT method, representing the student’s competence level
(ci) by a Real number in the range [0..1]. Furthermore, a reward representing
the learning progress is defined by the difference between required KC and ci.
The second algorithm, ZPDES (Zone of Proximal Development and Empirical
Success) [4] is a modified version of RiARiT where the calculation of the reward
is changed in order to remove the dependence of the student’s estimated compe-
tence level. The reward becomes a measure of how the success rate is increasing,
providing a more predictive choice of activities.

Guzmán and Conejo [10] propose a cognitive assessment model based on IRT
for ITS that calibrates the items of a topic (or concept). The method of item
calibration is based on the kernel smoothing statistical technique that requires
a reduced number of prior students sessions compared to conventional methods.
In their approach, each possible answer has a characteristic curve that expresses
the probability that a student with a certain knowledge level will more than
likely select this answer.

There are several works about rating prediction techniques. Desmarais et al.
[7] presented a comparative study between different linear models of student
skill based on matrix factorization, IRT model and the k-nearest-neighbours
approach. The linear models based on matrix factorization make predictions
using a subset of the observed performance data for each student to predict the
remaining subset, and measure the prediction accuracy. For other works, see [9],
[6] and [16].

3 Automatic Calculation of Rating

Rating systems are frequently used in games to measure the players skills and
to rank them. Usually, the rating is a number in a range [minRank,maxRank]
such that it is very unlikely that a player falls on the extremes. Inspired by game
rating systems and taking the performance of other learners, this study proposes
Equation 1 to assess iteratively a student’s ability.

The following guidelines were adopted:(1) each question is scored a difficulty
degree with a value in the range [0..10] and the student is rated in the range
[1..10] to express his or her expertise level in the subject matter;(2) the easier
the question, the greater the likelyhood that students will answer it correctly (in
this case, a student’s rating should have just a small increase if he or she enters
the correct answer and should have a large decrease in the case of failure);(3)
students that are successful in the first attempt to solve a question are scored
a higher increment in their expertise level compared to those who need several
attempts;(4) skipped questions are considered wrong.

Consider Equation 1.The details of its parameters are as follows:

Rq
J = Rq−1

J +Ak1α(10 −
9T q

J

T q
med

) − Ek2β × 10
T q
J

T q
med

(1)

– Rq
J : student J ’s rating after answering question q;
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– Rq−1
J : previous student J ’s rating. R0

J = 5.5 (initial rating);
– A = 1 and E = 0 if the student is successful in answering q, otherwise A = 0

and E = 1;
– T q

J : number of unsuccessful attempts of student J to answer question q;
– T q

med: median of wrong attempts on question q during classroom time;
– Nq

a : number of students that were successful in answering question q;
– Nq

e : number of students that were unsuccessful in answering question q;
– α = 1

Nq
a

: weight factor to increase rating;

– β = 1
Nq

e
: weight factor to decrease rating;

– k1 and k2: multiplier factors of rating increase and decrease, respectively,

calculated by k1 = 1 − Rq−1
J

10 and k2 =
Rq−1

J −1

10 .

Furthermore, 10− 9T q
J

T q
med

and 10
T q
J

T q
med

represent the score of student J in ques-

tion q in case the answer is correct and incorrect, respectively. There is no limit
to the number of attempts T q

J a student can make to answer a question. How-
ever, if there are more than 10 trials, then 10 is taken as the maximum value
for calculation purposes. Factors k1 and k2 avoid results of the expression in
Equation 1 to reach upper and lower bounds of the range [1..10].

Using only the number of attempts and considering that the student usually
tries until he or she gets the correct answer, the difficulty degree of a question q
can be defined by Equation 2 and its parameters as follows:

Dq =

∑J=n
J=0 T

q
J

Nq
e +Nq

a
(2)

– Dq: difficulty degree of the question q after an exercise session;
– T q

J : number of unsuccessful attempts of student J to answer question q. If
the number of attempts is greater than 10 trials, then 10 is taken as T q

J ;
– Nq

e and Nq
a are the same as in Equation 1

4 The ADAPTFARMA environment

The ADAPTFARMA (Adaptive Authoring Tool for Remediation of errors with
Mobile Learning) prototype software tool is a modified version of FARMA[12], an
authoring shell for building mathematical learning objects. In ADAPTFARMA,
a learning object (LO) consists of a sequence of exercises following their intro-
duction. The introduction is the theoretical part of a LO where concepts are
defined through text, images, sounds and videos. The ADAPTFARMA imple-
mentation was carried out aiming its use on the web, either through personal
computers or mobile devices.

To build an introduction and its corresponding exercise statements, ADAPT-
FARMA offers a WYSIWYG (What you See Is What You Get) interface, similar
to those of highly interactive word processors. The teacher defines the number
of questions related to each exercise. For each question, the teacher-author must
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set a reference solution, which is the correct response to the question. ADAPT-
FARMA allows arithmetic and algebraic expressions to be entered as the refer-
ence solution. Under the learner’s functioning mode, the tool deals automatically
with the equivalence between the learners response and the reference solution.

A feature of ADAPTFARMA is the capability of backtracking the teacher to
the exact context in which the learner made a mistake. This gives the opportunity
to the teacher to identify the wrong steps performed by the learner and, thus, deal
with the causes of the error accordingly. In addition, ADAPTFARMA allows the
teacher to view a learner’s complete interaction with the tool in a chronological
order, in the form of a timeline. The teacher can make a closer monitoring of
problem solution from other classrooms, as long as system permission is given
through the collaboration mechanisms.

Likewise, learners can backtrack to the context of any of their right or wrong
answers in order to reflect about their own solution steps. Additionally, on the
collaborative side, it is possible for the teacher to carry out a review of students’
responses and then provide them with non-automatic feedback, which can be
done by exchanging remote messages through the system.

5 Algorithm for Exercises Sequencing

An important aspect in ITS is how the exercises should be sequenced after they
are calibrated in order to match them to the expertise level of the student. At
the beginning, the system doesn’t have any information about the student. We
propose an algorithm for sequencing exercises to be shown in ascending order of
difficulty, combined with a mechanism similar to numerical interpolation:

– a minimal sequence of exercises is defined such that always begins with the
easiest exercise and finishes with the most difficult one;

– the intermediate level exercises in the minimal sequence are distributed
evenly among the easiest and most difficult exercises such that the number

of exercises is
⌈

n
stepsize

⌉
where n is the total of exercises and the stepsize

refers to the number of exercises that may be skipped when the student is
successful. The stepsize can be set by the LO’s author;

– the exercises are presented in the minimal sequence order;
– the number of attempts is limited to the average number of attempts ob-

tained in the calibration phase. When the number of attempts is exceeded,
the next exercise presented to the student is of a mid range difficulty con-
sidering the last exercise correctly answered and the current one.

For example, consider a LO with 30 exercises in ascending order of diffi-
culty [e1, e2, ..., e30] and stepsize = 4. The minimal sequence of exercises will
be min seq =< e1, e5, e9, e13, e17, e21, e25, e29, e30 >, and the exercises will be
presented to the student in that order at first. For example, if the student misses
e9 until the attempts are over, then e7 (of mid range difficulty between e5 e
e9) is presented. Unlike the calibration phase, the student cannot skip exercises
and if he/she continually misses the correct answer, the presentation becomes
sequential.
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6 Experiment

In order to evaluate the learning effectiveness of the four sequencing strategies,
we carried out an experiment with four different classes of highschool students,
aging fifteen to seventeen. The same LO about logarithms was applied to all four
classes. It was created with the ADAPTFARMA enviroment to include thirty
exercises. For each class, the LO was applied with a different sequencing method
to order the exercises as follows:

– class A: random sequencing method (RSM);

– class B: teacher-defined sequencing method (TSM);

– class C: difficulty-biased sequencing method (DSM), where the difficulty de-
gree was calculated by Equation 2 using outcome data from the calibration
phase of class A;

– Class D: adaptive sequencing method (ASM), using the algorithm described
in the previous section

The same pre- and post-tests were applied to all four classes. Students who
did not participate in any step have been excluded from the analysis, resulting
119 participants. For the RSM, TSM and DSM methods, there was no limit to
the solution attempts while in ASM, the average of attempts in class A was
used. The Shapiro-Wilk test was applied to all samples to check for normality.
Because only the DSM data passed the normality test (p-value = 0.0827), the
pairwise T Student test was applied to it (p-value = 0.532). For the other three,
the choice was the Wilcoxon test in order to evaluate the individual sequencing
methods. The p-value of RSM, TSM and ASM were 0.0007, < 0.0001 and 0.0037,
respectively. All methods, except for DSM, had a significant increase in scores.

The ANOVA method was applied to the pre-test data that showed normal-
ity whereas the Kruskal-Wallis, to the others, both to the post-test and to the
average difference between pre- and post-tests. The results indicate that there
is no significant difference among the four classes in the pre-test scores (p-value
= 0.2539). However, there is significant difference in the post-test scores (p-value
= 0.00579) and in the average difference between pre- and post-tests scores (p-
value = 0.0307), suggesting that RSM, TSM and ASM led to better student
performance than DSM. Besides, student performances among the three (RSM,
TSM and ASM) were similar. Surprisingly, RSM led to the best performance
while DSM, to the worst. This contradicts quite a large proportion of litera-
ture research on pedagogic practice, machine-led [8] or otherwise, for developing
problem solving skills. Some reasons might explain such a phenomenon:

– the problem-statement ordering is a relevant issue that should be whatched
more carefully to verify the influence of tacit knowledge contained in the
textual organization of the statement;

– the lack of significant differences between RSM, TSM and ASM is also sup-
ported by evidence based on past research findings [11, 13];
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– the DSM may have connected some sort of subject matters that caused an
increase in the cognitive load, resulting in problem solutions that diverted
from the correct ones;

– although most students have participated in the experiment, only the scores
of pre- and post-tests accounted for the final student score in the official
school records.

7 Conclusion and Future Work

Usually the student’s expertise is developed by solving exercises that require a
set of assessed skills, including ITS. We proposed an automatic rating system
that can be used as an additional tool to assess students. Depending on the
number of attempts and the difficulty degree of a question, students can get
different scores for the same question.

Also, we proposed an algorithm, referred as ASM, for sequencing exercises
that uses difficulty degree combined with a mechanism similar to numerical in-
terpolation. It composes the ADAPTFARMA environment, a web authoring tool
with WYSIWYG interface for creating and executing LOs. Taking advantage of
it is very easy to change the strategy for exercises sequencing, we carried out
a four-highschool-class experiment to test different sequences strategies: RSM,
TSM, DSM and ASM. Only DSM had not a significant increase in the students’
scores and the RSM had the best performance, demonstrating that problem-
statement ordering is a relevant issue that should be researched more carefully
in the near future. The ASM had also better performance compared to DSM.

Future research concentrates in adding new features to FARMA in two ways.
Firstly, we are working in a deeper approach to user adaptation that includes
more dimensions than just the matching between problem difficulty and student
skill. One such new feature will be a function for generating problem statements
based on teacher-defined problem statement parameters. Secondly, on the in-
terface side, more interaction modes will be available to improve collaboration
tasks for monitoring student performance progress.
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Abstract. Scaffolding students in open-ended learning environments (OELEs) 
is a difficult challenge. The open-ended nature of OELEs allows students to 
simultaneously pursue, modify, and abandon any of a large number of both 
short-term and long-term approaches to completing their tasks. To overcome 
these challenges, we have recently developed coherence analysis, which focus-
es on students’ ability to interpret and apply the information available in the 
OELE. This approach has yielded valuable dividends: by characterizing stu-
dents according to the coherence of their behavior, teachers and researchers 
have access to easily-calculated, intuitive, and actionable measures of the quali-
ty of students’ problem-solving processes. The next step in this line of research 
is to develop a framework for using coherence analysis to adaptively scaffold 
students in OELEs. In this paper, we present our initial ideas for this work and 
propose guidelines for the construction of a scaffolding framework. 

Keywords: Open-ended learning environments, metacognition, coherence 
analysis, scaffold 

1 Introduction 

Open-ended computer-based learning environments (OELEs) [1-2] are learner-
centered; they present students with a challenging problem-solving task, information 
resources, and tools for completing the task. Students must use the resources and tools 
to construct and verify problem solutions, and in this process learn about the problem 
domain and develop their general problem-solving abilities. In OELEs, students have 
to distribute their time and effort between exploring and organizing their knowledge, 
creating and testing hypotheses, and using their learned knowledge to create solutions. 
Since there are no prescribed solution steps, students may have to discover the solu-
tion process over several hours. For example, learners may be given the following: 
 

Use the provided simulation software to investigate which properties relate 
to the distance that a ball will travel when rolled down a ramp, and then 
use what you learn to design a wheelchair ramp for a community center. 

 

AIED 2015 Workshop Proceedings - Vol 2 49



Whereas OELEs support a constructivist approach to learning, they also place sig-
nificant cognitive demands on learners. To solve problems, students must simultane-
ously wrestle with their emerging understanding of complex topics, develop and uti-
lize skills to support their learning, and employ self-regulated learning (SRL) pro-
cesses to manage the open-ended nature of the task. SRL is a theory of learning that 
describes how learners actively set goals, create plans for achieving those goals, con-
tinually monitor their progress, and revise their plans when necessary to continue to 
make progress [3]. As such, OELEs can prepare students for future learning [4] by 
developing their ability to independently investigate and develop solutions for com-
plex open-ended problems. 

However, research with OELEs has produced mixed results. While some students 
with higher levels of prior knowledge and SRL skills show large learning gains as a 
result of using OELEs, many of their less capable counterparts experience significant 
confusion and frustration [5-7]. Research examining the activity patterns of those 
students indicates that they typically make ineffective, suboptimal learning choices 
when they independently work toward completing open-ended tasks [7-10]. 

The strong self-regulatory component of OELEs makes them an ideal environment 
for studying SRL. The open-ended nature of the environment forces students to make 
choices about how to proceed, and these choices reveal information about students’ 
understanding of: (i) the problem domain; (ii) the problem-solving task; and (iii) 
strategies for solving the problem. By studying these choices, we can gain a better 
understanding of how students regulate their learning and how best to design scaf-
folds to support students who struggle to succeed. 

Recently, we have introduced coherence analysis (CA) [11], a technique for study-
ing students’ problem-solving behaviors in OELEs. CA analyzes learners’ behaviors 
in terms of their demonstrated ability to seek out, interpret, and apply information 
encountered while working in the OELE. By characterizing behaviors in this manner, 
CA provides insight into students’ problem-solving strategies as well as the extent to 
which they understand the nuances of the learning and problem solving tasks they are 
currently completing. 

In this paper, we present an overview of our findings with coherence analysis as 
applied to the Betty’s Brain OELE (REF) and present our plans on extending this 
research. Our goal with CA is to empower both human and virtual tutors to more 
powerfully support students as they learn complex open-ended problem solving. 

2 Betty’s Brain 

Betty’s Brain [11] presents the task of teaching a virtual agent, Betty, about a science 
phenomenon (e.g., climate change) by constructing a causal map that represents that 
phenomenon as a set of entities connected by directed links representing causal rela-
tionships. Once taught, Betty can use the map to answer causal questions. The goal 
for students is to construct a causal map that matches an expert model of the domain.  

In Betty’s Brain, students acquire domain knowledge by reading resources that in-
clude descriptions of scientific processes (e.g., shivering) and information pertaining 
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to each concept that appears in the expert map (e.g., friction). As students read, they 
need to identify causal relations such as “skeletal muscle contractions create friction 
in the body.” Students can then apply this information by adding the entities to the 
map and creating a causal link between them (which “teaches” the information to 
Betty). Learners are provided with the list of concepts, and link definitions may be 
either increase (+) or decrease (-). 

Learners can assess their causal map by asking Betty to answer questions and ex-
plain her answers. To answer questions, Betty applies qualitative reasoning to the 
causal map (e.g., the question said that the hypothalamus response increases. This 
causes skin contraction to increase. The increase in skin contraction causes…). After 
Betty answers a question, learners can ask Mr. Davis, another pedagogical agent that 
serves as the student’s mentor, to evaluate her answer. If Betty’s answer and explana-
tion match the expert model (i.e., in answering the question, both maps utilize the 
same causal links), then Betty’s answer is correct. 

Learners can also have Betty take quizzes (by answering sets of questions). Quiz 
questions are selected dynamically by comparing Betty’s current causal map to the 
expert map such that a portion of the chosen questions, in proportion to the complete-
ness of the current map, will be answered correctly by Betty. The rest of her quiz 
answers will be incorrect or incomplete, helping the student identify areas for correc-
tion or further exploration. When Betty answers a question correctly, students know 
that the links she used to answer that question are correct. Otherwise, they know that 
at least one of the links she used to answer the question is incorrect. Students may 
keep track of correct links by annotating them as such. 

3 Coherence Analysis 

The Coherence Analysis (CA) approach analyzes learners’ behaviors by combining 
information from sequences of student actions to produce measures of action coher-
ence. CA interprets students’ behaviors in terms of the information they encounter in 
the OELE and whether or not this information is utilized during subsequent actions. 
When students take actions that put them into contact with information that can help 
them improve their current solution, they have generated potential that should moti-
vate future actions. The assumption is that if students can recognize relevant infor-
mation in the resources and quiz results, then they should act on that information. If 
they do not act on information that they encountered previously, CA assumes that 
they did not recognize or understand the relevance of that information. This may stem 
from incomplete or incorrect understanding of the domain under study, the learning 
task, and/or strategies for completing the learning task. Additionally, when students 
add to or edit their problem solution when they have not encountered any information 
that could motivate that edit, CA assumes that they are guessing1. These two notions 
come together in the definition of action coherence: 
 
                                                             
1  Students may be applying their prior knowledge, but the assumption is that they are novices 

to the domain and should verify their prior knowledge during learning. 
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Two ordered actions (𝑥 → 𝑦) taken by a student in an OELE are action co-
herent if the second action, 𝑦, is based on information generated by the first 
action, 𝑥. In this case, 𝑥 provides support for 𝑦, and 𝑦 is supported by 𝑥. 
Should a learner execute 𝑥 without subsequently executing 𝑦, the learner 
has created unused potential in relation to 𝑦. Note that actions 𝑥 and 𝑦 
need not be consecutive. 

 
CA assumes that learners with higher levels of action coherence possess stronger 

metacognitive knowledge and task understanding. Thus, these learners will perform a 
larger proportion of supported actions and take advantage of a larger proportion of the 
potential that their actions generate. In the analyses performed to date, we have incor-
porated the following coherence relations: 

• Accessing a resource page that discusses two concepts provides support for adding, 
removing, or editing a causal link that connects those concepts. 

• Viewing assessment information (usually quiz results) that proves that a specific 
causal link is correct provides support for adding that causal link to the map (if not 
present) and annotating it as being correct (if not annotated). 

• Viewing assessment information (usually quiz results) that proves that a specific 
causal link is incorrect provides support for deleting it from the map (if present). 

Using these coherence relations, we derived six primary measures describing stu-
dents’ problem solving processes: 

1. Edit Frequency: The number of causal link edits and annotations made by the stu-
dent per minute on the system. 

2. Unsupported edit percentage: the percentage of causal link edits and annotations 
not supported by information encountered within 5 minutes of the edit/annotation. 

3. Information viewing time: the amount of time spent viewing either the science re-
sources or Betty’s graded answers. Information viewing percentage is the percent-
age of the student’s time on the system classified as information viewing time. 

4. Potential generation time: the amount of information viewing time spent viewing 
information that could support causal map edits that would improve the map. To 
calculate this, we annotated each hypertext resource page with information about 
the concepts and links discussed on that page. Potential generation percentage is 
the percentage of information viewing time classified as potential generation time. 

5. Used potential time: the amount of potential generation time associated with in-
formation viewing that both occurs within a prior five minute window of and also 
supports an ensuing causal map edit. Used potential percentage is the percentage 
of potential generation time classified as used potential time. 

6. Disengaged time: the sum of all periods of time, at least five minutes long, during 
which the student neither viewed a source of information for at least 30 seconds 
nor edited the map. Disengaged percentage is the percentage of the student’s time 
on the system classified as disengaged time. 
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Metrics one and two capture the quantity and quality of a student’s causal link edits 
and annotations, where supported edits and annotations are considered to be of higher 
quality. Metrics three, four, and five capture the quantity and quality of the student’s 
time viewing either the resources or Betty’s graded answers. These metrics speak to 
the student’s ability to seek and identify information that may help them build or re-
fine their map (potential generation percentage) and then utilize information from 
those pages in future map editing activities (used potential percentage). Metric 6 rep-
resents periods of time during which the learner is not measurably engaged with the 
system. 

3.1 Summary of Findings with Coherence Analysis 

Coherence analysis has proved to be a valuable tool for understanding how students 
learn as they solve open-ended problems. Thus far, we have investigated it with one 
group of 98 6th-grade students (11 year olds). Thus, we interpret our findings with 
cautious optimism. We have identified the following relationships: 

• CA predicts learning and performance: in general, students with higher levels of 
coherent behaviors have shown significantly higher levels of success in teaching 
Betty. Moreover, these learners have shown a better understanding of the science 
domain they were learning [11]. 

• Prior skill levels predict CA: students who were better able to identify causal links 
in abstract text passages (e.g., A decrease in Ticks leads to an increase in Tacks) 
exhibited higher levels of coherence while using Betty’s Brain [11]. 

• CA identifies common problem solving profiles across students: we clustered stu-
dents by describing them with the six CA metrics described above, and we identi-
fied five common profiles among students: researchers and careful editors; strate-
gic experimenters; confused guessers; disengaged students; engaged and efficient 
students. Interestingly, there were few differences in learning and performance 
among the clusters. Engaged and efficient students showed higher learning and 
performance than the other clusters, but there were not any other meaningful dif-
ferences, suggesting that CA allows us to understand how different learning ap-
proaches lead to similar learning outcomes [11]. 

• CA identifies common day-to-day problem solving profiles and transitions among 
them: we clustered students as before, but this time the unit of analysis was a single 
day of using the system instead of the entire time using the system. We found a set 
of behavior profiles quite similar to those identified in the previous analysis. In an-
alyzing day-to-day transitions, we found that many students performed fairly con-
sistently while several other students performed inconsistently (that is, they have 
days of high coherence and days of low coherence). We also identified common 
transitions among days, which allowed us to find a potentially at-risk behavior pro-
file. Students who behave like researchers and careful editors are far more likely 
than chance to transition to confused or disengaged behavior in subsequent days 
[12]. 
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4 An Initial Coherence-Based Scaffolding Framework 

Given the previous findings with CA, we aim to utilize the power of the analysis in 
real time as students use the system in order to detect non-coherent behavior, diag-
nose the cause of it, and take steps to support students in overcoming the difficulties 
they are experiencing. The core idea behind CA is that when students work in OELEs, 
they have two primary sets of tasks: information seeking tasks related to identifying 
and interpreting important information and information application tasks related to 
applying that information to improving the problem solution. All coherence metrics 
are based on identifying relationships between activities related to these two sets of 
tasks. By analyzing student behaviors with CA, we can identify problems related to 
information seeking and information application. 

4.1 Diagnosing Problems with CA Metrics 

The initial framework for diagnosing problems using CA metrics appears in Figure 1. 
This framework maps CA metrics to the problems they may indicate. For example, 
low levels of potential generation indicate that the learner is spending a large portion 
of their information viewing time on non-helpful information. This indicates that they 
may be struggling to identify relevant vs. non-relevant information in the environ-
ment. Problems with information seeking may also manifest as high levels of unused 
potential (i.e., not applying viewed information), a high proportion of unsupported 
edits, and a low rate of editing the solution. Problems with information application are 
indicated by high unused potential and a low rate of editing the solution. 

CA metrics may also be used to identify behaviors associated with effort avoid-
ance. Specifically, low levels of information viewing, a low rate of editing the solu-
tion, a high unsupported edit percentage, and high levels of disengagement indicate 
that the learner may be purposefully avoiding effort. This may be due to a number of 
reasons, including low self-efficacy and low skill understandings. 

Using this framework, our initial plan for using CA to scaffold students is as fol-
lows: 

1. Observe the student for a period of time (e.g., 10 minutes) and calculate their co-
herence metrics for that period. Identify any problematic behaviors (e.g., high un-
used potential). 

2. Form hypotheses about the sources of these behaviors. This involves looking at the 
combination of problematic behaviors observed and the student’s previous activi-
ties in the system. For example, if the problematic behaviors are high unused po-
tential and a low editing rate, the system may hypothesize that the student is strug-
gling to apply information. 
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Fig. 1. Initial Problem Diagnosis Framework 

3. Perform active diagnosis of the student to resolve competing hypotheses and gain 
additional information. For example, if the student has a high unsupported edit 
rate, this may be due to effort avoidance or a misunderstanding related to infor-
mation seeking. The system can have the student answer questions and complete 
short problems in order to gain additional evidence as to which of these is the actu-
al problem. 

4. Once the system is confident that the student is struggling to understand some-
thing, it can use guided practice scaffolds [13] to help the student learn the 
knowledge and skills that they are missing or about which they are confused. 
Throughout guided practice, the system should provide encouragement, feedback, 
and scaffolding. It should also reinforce the relevance of the targeted knowledge 
and skills to the primary problem solving task, problem solving in general, and ac-
ademic success. 

5. If the system is confident that the student is exhibiting effort avoidance, then it 
should offer to help the student. If the behavior continues after the offer (and po-
tential scaffolding related to that offer), then the system should provide guided 
practice scaffolds on the important knowledge and skills they need to understand to 
be successful. Hopefully, the student’s abilities will improve during guided prac-
tice, and that will re-engage them with the learning task. As in the previous step, 
the system should provide the student with encouragement, feedback, and scaffold-
ing and it should reinforce the relevance of the targeted knowledge and skills. 

5 Conclusion 

In this paper, we have provided an overview of coherence analysis (CA), an analysis 
approach that provides insight into how students behavior in open-ended computer-
based learning environments (OELEs). Additionally, we have presented an initial 
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scaffolding framework that describes how CA might be leveraged to provide adaptive 
scaffolds to students who are struggling. As we move forward, we will continue de-
veloping this scaffolding framework, build it into Betty’s Brain, and test its effective-
ness with students.  
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3 Linnæus University, Växjö, 351 95 Sweden

Abstract. This poster discusses work on the design of a visual-based
programming language for physical computing and mobile tools for the
learners to actively document and reflect on their projects. These are
parts of a European project that is investigating how to generate, an-
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learning activities. Our aim is to raise a discussion about how learning
analytics, intelligence, and the role of learners’ documenting their work
can provide richer opportunities for supporting learning and teaching.
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1 Introduction

Educators, researchers, business leaders, and politicians are working to initi-
ate new modes of education to provide 21st Century skills that focus on the
following: creativity, innovation, critical thinking, problem solving, communica-
tion, and collaboration [4]. Recently, researchers and practitioners have provided
strong cases for the value of hands-on activities like digital fabrication than could
be part of the toolbox to bring powerful ideas, literacies, and expressive tools to
learners [1]. This poster presents on-going work in the Practice-based Experien-
tial Learning Analytics Research And Support project (PELARS) that aims to
generate, analyze, use and provide feedback for analytics derived from hands-on
these project-based learning activities. The focus of the PELARS project ac-
tivities is on learning and making things with physical computing that provide
learners with opportunities to build and experiment with tangible technologies
and digital fabrication. One of the key research aims of the PELARS project can
be summarised as: How can physical learning environments that use hands-on
digital fabrication technologies be better designed for ambient and active data
collection for learning analytics? The project addresses three different learning
contexts (university interaction design, engineering courses, and high school sci-
ence) across multiple settings in Europe. The goals of the project are first to
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define learning (skills, knowledge, competencies) that is developing, and how we
can assess it in the frame of learning analytics. Then to determine what elements
of this learning we can capture by designing the physical environment and ac-
tivities around digital fabrication technologies. Then to identify what patterns
of data we collect can tell us about learning, collaboration and how the system
can help support the learning activities.

The PELARS project approach has been to develop an intelligent system
for collecting activity data (moving image-based and embedded sensing) for
diverse learning analytics (data-mining, reasoning, visualisation) with active
user-generated material from practice-based and experiential activities. This rich
range of data is used to create learning analytics tools for learners and teach-
ers that range from assessment to exploring intelligent tutoring. The PELARS
system carries forwards the ideas of knowledge communities and inquiry [7] and
provide conceptualising, representing, and analysing distributed interaction [8].
However, there are multiple challenges for designing learning analytics and intel-
ligent support for these types of tangible activities. Learning situations in these
contexts include open-ended projects, small group work, and the use of physical
computing components that require construction and programming. Therefore,
these types of activities present difficulties for collecting meaningful data for
learning analytics.

This poster specifically discusses our work on the development of a visually
based programming platform for the physical computing hardware and the mo-
bile tools for the learners to actively document and reflect on their projects.
These two parts of the PELARS project provide opportunities for discussion
on the relationships between intelligent support, active learner engagement, and
analytics. Our aim for the workshop is to raise a discussion about how learn-
ing analytics, intelligence, and the role of learner documenting their work can
provide richer opportunities for supporting learning.

2 Methodological Approach

The PELARS project has a design-centric approach that includes the use of
low-fidelity prototyping and “wizard of oz” scenarios [5]. These methods that
include paper prototypes and technology sketches to investigate how to find
the best way to get the design right [2]. The goal of the two cases below is
to investigate how we can better understand the needs of the users. The need
to develop a visually based programming experience to support students and
supply data for analysis and lack of student documentation were identified as
challenges through literature and own contextual user research in the project.

For the visual programming platform, a kit was created that contained foam
core versions of hardware blocks with strings and pins to act as the cables to
connect them. A small magnetic board with paper-based magnets acted as the
computer screen that represented what blocks were connected. A set of simple
tasks were provided to pairs of testers (recruited students from Interaction De-
sign and Computer Science) while one of the researchers acted as the computer
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in a “wizard of oz” scenario. Figure 1 illustrates how the students connected
the hardware blocks of sensors and actuators (the paper blocks and strings) on
the table and then the researcher put on a magnetic board (computer screen)
the associated blocks (printed magnets). The researcher acted as the wizard
representing the smart system that recognised which blocks the students had
connected and represented the computer screen showing the visual program-
ming interface. This prototyping system allowed the teams to discuss and adjust
the inputs to generate the hypothetical outcome for the different tasks.

Fig. 1. Visual programming platform prototyping

For the mobile reporting part of the PELARS system we adopted a web-based
system developed by colleagues [9] that allowed us to create a series of forms that
could be accessed by students in an Interaction Design course where they have a
4 week block in physical computing. The students needed to fill in three forms,
the first form asks them to briefly describe their plan for solving the task, the
second form allows them to document their progress with text and photos, and
the final form asks them to reflect on the outcome, did the project succeed as
planned. Figure 2 shows the different screens of the mobile system. The intention
of our prototyping effort has been to explore the similarities between practice-
, problem-, and inquiry-based learning [3] and the challenges in student self-
documentation practices in physical computing.

In addition to the forms, the students were also asked to complete a lightweight
pre-survey and post-survey to evaluate the usability of the mobile documentation
tool. The surveys were inspired by Read and MacFarlane’s [6] work on surveys
for children in computer interaction and designed to take a few minutes to fill
out. The survey results were intended to supplement the submissions received
through the mobile system. The pre-survey intended to cover their general ex-
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perience with documenting their work and the post-survey their views on the
usefulness of the tool. Additionally, the pairs of students were interviewed in a
semi-structured after the prototyping session.

Fig. 2. Mobile system screen captures

3 Initial Results

3.1 Visual Programming

The initial results for the visual programming platform points towards the less
experienced programmers finding the visual programming system easier for solv-
ing the different tasks. The less experienced students were more open to explor-
ing how to solve the open-ended tasks. While the experienced programmers were
frustrated by their perceived limitations of the system, for example not being
able to code a loop statement to blink an LED. During the post activity inter-
view, the experienced programmers did however see the system as useful both
for learning programming but also for communicating ideas in a prototype stage.
Importantly to note, that these perceptions may reflect that design students are
more used to open-ended tasks and familiar with throw-away prototyping.

In some cases, the designers worked with more experienced programmers and
in these cases communication between the team members helped the program-
mer shift metaphors to a more visual style of programming. After the initial
tasks the more experienced programmers felt they had a better understanding
of the concept. Additionally, in the follow-up interviews, they expressed that
they liked the idea of visual coding, but primarily saw it as a teaching tool or
a communication tool rather than something that they would use to build their
projects.
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3.2 Documentation Tools

The mobile tools initially seemed to have the right balance of short text entries
and the uploading of rich media. The aim was to allow the students to plan easily,
document and reflect via smartphones or laptops. Our initial findings suggest
that the structure of planning, documenting the process and then reflecting on
the project was utilised by the students. The students reported in the post-
survey that it is easy to forget to document, to ignore it, or do it later. While
the submitted documentation captured the students progress, it was also often
submitted the day after or when they were finishing their work, rather than at
the end of each session. Our thoughts for these results are that students faced
the combination of not seeing the relevance of documenting the projects was
important and not having practiced documenting their work.

Students reported in the post survey that the usability of the system needs
to be improved. For example, they pointed out that the system did not let them
go back to add, or amend their documentation. The need for better clarity what
happens with the data after they submit it could help with the students. Con-
necting the documenting tools to their normal work practices and digital tools,
like blogs or online portfolios need to be explored. Additionally while document-
ing some students appeared were frustrated when submitting as a group. The
data shows that when students used a personal device they choose to submit
individually. This suggests that the group submissions are useful, the students
desire to submit individual reports as well.

4 Discussion

We feel that that the low-fidelity and sketching the technology for the PELARS
project are important means to design better intelligent support while engaging
with the needs of the different users. The PELARS project has been influenced
by inquiry-science learning. However, the nature of making and solving problems
with physical computing in interaction design courses can be more dynamic and
open-ended than more traditional classwork. Prototyping both the programming
interface and the documentation tool as parts of the same project, rather than
as separate entities gives a broader design approach. This allows us to explore
different aspects of the learning environment and test out ideas in pseudo-real
world situations. One of the design goals is to support the visual programming
activities with intelligent tutoring and means for teachers and students to anal-
yse of time how they programmed and built the different projects. Additionally,
the documentation tool provides a different perspective to the ambient data col-
lection and a process framework for the learning activity. We feel that using these
different design approaches provides us with a means to explore the complexity
of project-based experiential learning scenarios.
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