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Abstract. Classification evaluation metrics are often used to evaluate
adaptive tutoring systems— programs that teach and adapt to humans.
Unfortunately, evidence suggests that existing convention for evaluating
tutoring systems may lead to suboptimal decisions. In a companion pa-
per, we propose Teal, a new framework to evaluate adaptive tutoring. In
this paper we propose an alternative formulation of Teal using simulated
learners. The main contribution of this novel formulation is that it en-
ables approximate inference of Teal, which may useful on the cases that
Teal becomes computationally intractable. We believe that this alterna-
tive formulation is simpler, and we hope it helps as a bridge between the
student modeling and simulated learners community.

1 Introduction

Adaptive systems teach and adapt to humans and improve education by optimiz-
ing the subset of items presented to students, according to their historical per-
formance [3], and on features extracted from their activities [6]. In this context,
items are questions, or tasks that can be graded individually. Adaptive tutor-
ing may be evaluated with randomized control trials. For example, in a seminal
study [3] that focused on earlier adaptive tutors, a controlled trial measured the
time students spent on tutoring, and their performance on post-tests. The study
reported that the adaptive tutoring system enabled significantly faster teaching,
while students maintained the same or better performance on post-tests

Unfortunately, controlled trials can become extremely expensive and time
consuming to conduct: they require institutional review board approvals, ex-
perimental design by an expert, recruiting and often payment of enough par-
ticipants to achieve statistical power, and data analysis. Automatic evaluation
metrics improve the engineering process because they enable less expensive and
faster comparisons between alternative systems.

The adaptive tutoring community has tacitly adopted conventions for evalu-
ating tutoring systems [4]. Researchers often evaluate their models with classifi-
cation evaluation metrics that assess the student model component of the tutor-
ing system— student models are the subsystems that forecast whether a learner
will answer the next item correctly. However, automatic evaluation metrics are
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intended to measure an outcome of the end user. For example, the PARADISE [9]
metric used in spoken dialogue systems correlates to user satisfaction scores. We
are not aware of evidence that supports that classification metrics correlate with
learning outcomes; yet there is a growing body of evidence [2, 5] that suggests
serious problems with them. For example, classification metrics ignore that an
adaptive system may not help learners— which could happen with a student
model with a flat or decreasing learning curve [1, 8]. A decreasing learning curve
implies that student performance decreases with practice; this curve is usually
interpreted as a modeling problem, because it operationalizes that learners are
better off with no teaching.

We study a novel formulation of the Theoretical Evaluation of Adaptive
Learning Systems (Teal) [5] evaluation metric. The importance of evaluation
metrics is that they help practitioners and researchers quantify the extent that
a system helps learners.

2 Theoretical Evaluation of Adaptive Learning Systems

In this section, we just briefly summarize Teal and do not compare it with a re-
lated method called ExpOppNeed [7]. Teal assumes the adaptive tutoring system
is built using a single-skill Knowledge Tracing Family model [3, 6]. Knowledge
Tracing uses a Hidden Markov Model (HMM) per skill to model the student’s
knowledge as latent variables. It models whether a student applies a practice
opportunity of a skill correctly. The latent variables are used to model the latent
student proficiency, which is often modeled with a binary variable to indicated
mastery of the skill.

To use Teal on data collected from students, we first train a model using an
algorithm from the Knowledge Tracing family, then we use the learned parame-
ters to calculate the effort and outcome for each skill.

– Effort: Quantifies how much practice the adaptive tutor gives to students.
In this paper we focus on counting the number of items assigned to students
but, alternatively, amount of time could be considered.

– Outcome: Quantifies the performance of students after adaptive tutoring.
For simplicity, we operationalize performance as the percentage of items that
students are able to solve after tutoring. We assume that the performance
on solving items is aligned to the long-term interest of learners.

Algorithm 1 describes our novel formulation. Teal calculates the expected
number of practice that an adaptive tutor gives to students. We assume that the
tutor stops teaching a skill once the student is very likely to answer the next
item correctly according to a model from the Knowledge Tracing Family [6]. The
adaptive tutor teaches an additional item if two conditions hold: (i) it is likely
that the student will get the next item wrong— in other words, the probability
of answering correctly the next item is below a threshold τ ; and (ii) the tutor
has not decided to stop instruction already.

The inputs of Teal are:
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– Real student performance data from m students practicing a skill. Data from
each student is encoded into a sequence of binary observations of whether
the student was able to apply correctly the skill at different points in time.

– A threshold τ ∈ {0 . . . 1} that indicates when to stop tutoring. We opera-
tionalize this threshold as the target probability that the student will apply
the skill correctly.

– A parameter T that indicates the number of practice opportunities each of
the simulated students will practice the skill.

Algorithm 1 Teal algorithm for models with one skill per item
Require: real student data y(1) . . .y(m), threshold τ , # of simulated time steps T
1: function Teal
2: θ ← Knowledge Tracing(y(1) . . .y(m))
3: e← { }
4: s← { }
5: for ŷ ∈ get simulated student(θ, T ) do:
6: e← calculate effort(ŷ, θ, τ)
7: if e < T then
8: s← calculate score(ŷ, e)
9: else

10: s← imputed value
return mean(e), mean(s)

Teal learns a Knowledge Tracing model from the data collected from real
students interacting with a tutor. Our new formulation uses simulated learners
sampled from the Knowledge Tracing parameters. This enables us to decide how
many simulated students to generate. Our original formulation required 2m se-
quences to be generated, which can quickly become computationally intractable.
If an approximate solution is acceptable, our novel formulation allows more ef-
ficient calculations of Teal. Teal quantifies the effort and outcomes of students
in adaptive tutoring. Even though measuring effort and outcomes is not novel
by itself, Teal’s contribution is measuring both without a randomized trial. Teal
quantifies effort as how much practice the tutor gives. For this, we count the
number of items assigned to students. For a single simulated student, this is:

calculate effort(y1, . . . , yT , θ, τ) ≡ arg min
t

p(yt|y1 . . . yt−1, θ) > τ (1)

The threshold τ implies a trade-off between student effort and scores and re-
sponds to external expectations from the social context. Teal operationalizes the
outcome as the performance of students after adaptive tutoring as the percentage
of items that students are able to solve after tutoring:

calculate score(y1, . . . , yT , e) ≡
∑
t=e

δ(yt, correct)
T − e

(2)

AIED 2015 Workshop Proceedings - Vol 5 33



Here, δ(·, ·) is the Kronecker function that returns 1 iff its arguments are equal.

3 Discussion

Simulation enables us to measure effort and outcome for a large population
of students. Previously, we required Teal to be computed exhaustively on all
student outcomes possibilities. We relax the prohibitively expensive requirement
of calculating all student outcome combinations. Our contribution is that Teal
can be calculated with a simulated dataset size that is large yet tractable.
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