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Preface

This workshop, a follow-up to the successful first Simulated Learners workshop held
at AIED 2013, is intended to bring together researchers who are interested in simulat-
ed learners, whatever their role in the design, development, deployment, or evaluation
of learning systems. Its novel aspect is that it isn’t simply a workshop about pedagog-
ical agents, but instead focuses on the other roles for simulated learners in helping
system designers, teachers, instructional designers, etc.

As learning environments become increasingly complex and are used by growing
numbers of learners (sometimes in the hundreds of thousands) and apply to a larger
range of domains, the need for simulated learners (and simulation more generally) is
compelling, not only to enhance these environments with artificial agents, but also to
explore issues using simulation that would be otherwise be too expensive, too time
consuming, or even impossible using human subjects. While some may feel that
MOOCs provide ample data for experimental purposes, it is hard to test specific hy-
potheses about particular technological features with data gathered for another pur-
pose. Moreover, privacy concerns, ethics approval, attrition rates and platform con-
straints can all be barriers to this approach. Finally, with thousands of learners at
stake, it is wise to test a learning environment as thoroughly as possible before de-
ployment.

Since this is a follow-up to the 2013 workshop, we build on some of the ideas that
emerged there (see proceedings at: http://goo.gl/120Dji).

The workshop explores these and other issues with the goal of further understanding
the roles that simulated learners may play in advanced learning technology research
and development, and in deployed learning systems.

John Champaign and Gord McCalla
Workshop Co-Chairs



An Approach to Developing Instructional
Planners for Dynamic Open-Ended Learning
Environments

Stephanie Frost and Gord McCalla

ARIES Lab, Department of Computer Science, University of Saskatchewan, Canada
stephanie.frost@usask.ca, mccalla@cs.usask.ca

Abstract. Instructional planning (IP) technology has begun to reach
large online environments. However, many approaches rely on having
centralized metadata structures about the learning objects (LOs). For
dynamic open-ended learning environments (DOELEs), an approach is
needed that does not rely on centralized structures such as prerequisite
graphs that would need to be continually rewired as the LOs change. A
promising approach is collaborative filtering based on learning sequences
(CFLS) using the ecological approach (EA) architecture. We developed
a CFLS planner that compares a given learner’s most recent path of LOs
(of length b) to other learners to create a neighbourhood of similar learn-
ers. The future paths (of length f) of these neighbours are checked and
the most successful path ahead is recommended to the target learner,
who then follows that path for a certain length (called s). We were
interested in how well a CFLS planner, with access only to pure be-
havioural information, compared to a traditional instructional planner
that used explicit metadata about LO prerequisites. We explored this
question through simulation. The results showed that the CFLS plan-
ner in many cases exceeded the performance of the simple prerequisite
planner (SPP) in leading to better learning outcomes for the simulated
learners. This suggests that IP can still be useful in DOELEs that often
won’t have explicit metadata about learners or LOs.

Keywords: instructional planning, collaborative filtering, dynamic open-
ended learning environments, simulated learning environments, simu-
lated learners, ecological approach

1 Introduction

Online courses need to be able to personalize their interactions with their many
learners not only to help each learner overcome particular impasses but also
to provide a path through the learning objects (LOs) that is appropriate to
that particular individual. This is the role of instructional planning (IP), one of
the core AIED sub-disciplines. IP is particularly needed in open-ended learning
environments (OELEs), where learners choose their own goals, because it has
been shown that sometimes learners require an outside push to move forward
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[11]. An added challenge is what we call a dynamic open-ended learning envi-
ronment (DOELE), where both the learners and LOs are constantly changing.
Some learners might leave before finishing the course, while others may join
long after other learners have already begun. New material (LOs) may need to
be added in response to changes in the course or the material, or to learner
demand. Sometimes new material will be provided by the course developers, but
the big potential is for this to be crowd sourced to anybody, including learners
themselves. Other material may fade away over time.

Note that a DOELE is similar to, but not the same as, a “traditional” open-
eded learning environment [8,11]. A traditional open-ended environment also
gives students choice, but mostly in the problems they solve and how they solve
them, with the course itself fixed in its content, order and goals. In a DOELE
everything is open-ended and dynamic, including even what is to be learned,
how deeply, when it needs to be learned, and in what order.

An impediment to IP in a DOELE is that there is no centralized represen-
tation of knowledge about the content or the learners. Work has been done to
make IP possible in online environments, such as [7], where authors showed that
by extending the LO metadata, instructional plans could be improved to adapt
based on individual learning styles as well as a resource’s scheduling availability.
But for IP to work in DOELESs, an approach to IP is needed where centralized
course structures would not need to be continually revamped (by instructional
designers, say) as learners and LOs change.

We wish to explore how IP can be done in a DOELE. We model a DOELE
in the ecological approach (EA) architecture [14]. In the EA there is no overall
course design. Instead, courses are conceived as collections of learning objects
each of which captures usage data as learners interact with it. Over time this us-
age data accumulates and can be used for many pedagogical purposes, including
IP [2]. Drawing inspiration from work like [1, 5], we propose a new IP algorithm
based on collaborative filtering of learning sequences (CFLS). For a given learner
our planner finds other learners who have traversed a similar sequence of learn-
ing objects with similar outcomes (i.e. similar paths). Then it suggests paths to
the learner that were successful for these similar learners (peers) going forward.

To evaluate IP techniques in such an environment, one could implement a real
course with thousands of learners using the EA to capture learner interactions
with the various LOs in the course. However, after doing this it would take
several years for enough learners to build up enough interactions with each LO to
provide useful data to be used by an instructional planner. Also, in a course with
thousands of learners, there is risk of causing confusion or inconvenience to a vast
multitude if there are problems while the planner is under development. Finally,
there are unanswered design questions such as the criteria to use for identifying
an appropriate peer, how many LOs should be recommended for a learner before
re-planning occurs, and appropriate values for many other parameters that would
be used by the planner. In order to overcome these challenges and gain insight
into these questions immediately, we have thus turned to simulation.
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2 Simulation Environment

Before describing the CFLS planner and experiment in detail, we describe the
simulation environment. The simulation is low-fidelity, using very simple ab-
stractions of learners and LOs, as in our earlier work [6]. Each of the 40 LOs has
a difficulty level and possible prerequisite relationships with other LOs. Each
simulated learner has an attribute, aptitude-of-learner, a number between (0,1)
representing a learner’s basic capability for the subject and allows learners to be
divided into groups: low (< .3), medium (.4 —.7) and high aptitude (> .8).

A number called Pflearned] is used to represent the learning that occurred
when a learner visits a LO, or the probability that the learner learned the LO.
P[learned] is generated by an evaluation function, a weighted sum: 20% of the
learner’s score on a LO is attributed to aptitude-of-learner, 50% attributed to
whether the learner has mastered all of the prerequisite LOs, 20% attributed
to whether the learner had seen that LO previously, and 10% attributed to the
difficulty level of the LO. We feel this roughly captures the actual influences on
how likely it is that real learners would master a learning object.

The simulated learners move through the course by interacting with the
LOs, one after another. After each LO is encountered by a simulated learner,
the above evaluation function is applied to determine the learner’s performance
on the LO, the P[learned] for that learner on that LO. In the EA architecture,
everything that is known about a learner at the time of an interaction with a
LO (in this case, including P[learned]) is captured and associated with that LO.
The order of the LOs visited can be set to random, or it can be determined by
a planner such as the CFLS planner. To allow for the comparison of different
planning approaches without advantaging one approach, each simulated learner
halts after its 140th LO regardless of the type of planner being used.

3 Experiment

By default, the simulation starts with an empty history - no simulated learners
have yet viewed any LOs. However, because the CFLS planner relies on having
previous interaction data, it is necessary to initialize the environment. Thus,
a simple prerequisite planner (SPP) was used to initialize the case base with a
population of simulated learners. The SPP is privy to the underlying prerequisite
structure and simply delivers LOs to learners in prerequisite order. As Table 1
shows, the SPP works much better than a random planner. The data from the 65
simulated learners who used the SPP thus was used to initialize the environment
before the CFLS planner took over. This interaction data generated by the SPP
also provides a baseline for comparison with the CFLS planner. Our simulation
experiment was aimed at seeing if, with appropriate choices of b and f (described
below) the CFLS planner could work as well or better than the SPP.

We emphasize that the CFLS planner has no knowledge about the under-
lying prerequisite structure of the learning objects. This is critical for CFLS
planning to work in a DOELE. However, there are two places where clarification
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Table 1. Baseline results for each group of simulated learners (high, medium and low
aptitude) when visiting LOs randomly and following a simple prerequisite planner.

Planning Type / Aptitude low medium high
Random N=21 N=26 N=18
Average Score on Final Exam (P[learned])|0.107 0.160 0.235
Simple Prerequisite Planner (SPP) |N=21 N=26 N=18
Average Score on Final Exam (P[learned])|0.619 0.639 0.714

is required. First, while the SPP is running, the evaluation function will be used
by the simulation to calculate P[learned] values for each LO visited. This usage
data will contain implicit evidence of the prerequisite relationships. So, at a later
time when the CFLS planner is given access to the same usage data, the CFLS
planner could implicitly discover prerequisite relationships from the interaction
data. Second, during the CFLS planner execution, the underlying prerequisite
structure is still being consulted by the evaluation function. However, the CFLS
planner knows nothing about such prerequisites, only the P[learned] outcome
provided by the evaluation function. When simulated learners are replaced with
real learners, the evaluation function would disappear and be replaced with a
real world alternative, such as quizzes or other evidence to provide a value for
P[learned]. Similarly, the CFLS planner does not require knowledge of the dif-
ficulty level of each LO, nor does it require knowledge of the aptitude of each
learner; these are just stand-in values for real world attributes used by the sim-
ulation and would disappear when the planner is applied in a real world setting.

Different studies can use simulated student data in varying ways. In some
cases, low fidelity modelling is not adequate. For example, in [4] it was found that
the low fidelity method of generating simulated student data failed to adequately
capture the characteristics of real data. As a result, when the simulated student
dataset was used for training the cognitive diagnosis model, its predictive power
was worse than when the cognitive diagnosis model was trained with a simulated
student dataset that had been generated with a higher fidelity method. In our
study, using a low fidelity model is still informative. We are less concerned with
the exactness of P[learned] and are more interested in observing possible relative
changes of P[learned] for certain groups of students, as different variations of the
planner are tried on identical populations of simulated students.

The CFLS planner works as follows. For a given target learner the CFLS
planner looks backward at the b most recent learning objects traversed. Then, it
finds other learners who have traversed the same b learning objects with similar
P[learned] values. These b LOs can be in any order, a simplification necessary
to create a critical mass of similar learners. These are learners in the target
learner’s “neighbourhood”. The planner then looks forward at the f next LOs
traversed by each neighbour and picks the highest value path, where value is
defined as the average P[learned] achieved on those f LOs ahead. This path is
then recommended to the learner, who must follow it for at least s (for “sticky”)
LOs before replanning occurs. Of course, s is always less than f. In our research
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we explored various values of b and f to find which leads to the best results (we
set f = s for this experiment). “Best results” can be defined many ways, but
we focused on two measurements that were taken for each learner at the end of
each simulation: the percentage of LOs mastered, and the score on a final exam.
A LO is considered to be mastered when a score of P[learned] = 0.6 or greater
is achieved. The score on the final exam is taken as the average P[learned] on
the LOs that are the leafs of the prerequisite graph (interpreted as the ultimate
target concept, which in the real world might well be final exams).

There is still a cold start problem even after the simulation has been ini-
tialized with the interaction data from the SPP. This is because the simulated
learners who are to follow the CFLS planner have not yet viewed any LOs them-
selves as they begin the course, so there is no history to match the b LOs to
create the plan. In this situation, the CFLS planner matches the learner with
another arbitrary learner (from the interaction data from the SPP), and recom-
mends whatever initial path that the other learner took when they first arrived
in the course. While another solution to the cold start problem could be to start
the new learner with the SPP, we did this to avoid any reliance whatsoever on
knowing the underlying prerequisite structure.

The most computationally expensive part of the CFLS planner is finding the
learners in the neighbourhood, which is at worst linear on the number of learners
and linear on the amount of LO interaction history created by each learner. Each
learner’s LO interaction history must be searched to check for a match with b,
with most learners being removed from the list during this process. The forward
searching of f is then executed using only the small resulting dataset.

4 Results

We ran the CFLS planner 25 different times with all pairings of the values
of b and s ranging from 1 to 5, using a population of 65 simulated learners.
This population had the same distribution of aptitudes as the population used
to generate the baseline interaction data described above. The heat maps in
Figs. 1 and 2 show the measurements for each of the 25 simulations, for each
aptitude group, with the highest relative scores coloured red, mid-range scores
coloured white, and the lowest scores coloured blue. In general, simulated learners
achieved higher scores when following the CFLS planner than when given LOs
randomly. The CFLS planner even exceeded the SPP in many cases.

A success triangle is visible in the lower left of each aptitude group. The
success triangles can be interpreted to mean that if a path is going to be recom-
mended, never send the learner any further ahead (s) than you have matched
them in the past (b). For example if a learner’s neighbourhood was created using
their b = 2 most recent LOs, then never make the learner follow in a neighbour’s
steps further than s = 2 LOs. One reason for the eventual drop at high values
of b is that no neighbour could be found and a random match is used instead.
However, the abrupt drop at b > s was unexpected. To be sure the pattern was
real, an extended series of simulations was run. We ran b = 6 and s = 5 to see
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if there would be a drastic drop in performance, and indeed this was the case.
We also ran another row varying b with a fixed s = 6, and again found a drop

atb=1T.

\ LOW [ MEDIUM il

b=1s=1|b=2 s=1|b=3 s=1| b=4 s=1|b=5s=1| |b=1s=1|b=2 s=1|b=3 s=1|b=4 s=1|b=5 s=1
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Fig. 1. Average % Learning Objects Mastered by aptitude group
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Fig. 2. Average Score on Final Exam (P[learned]) by aptitude group

A hot spot of successful combinations of b and s appeared for each aptitude
group. For low aptitude learners, it was best to only match on the b = 1 most
recent learning objects, and to follow the selected neighbour for only s =1 LOs
ahead before replanning. This combination of b and s is the only time when
the CFLS planner outperformed the SPP for the low aptitude group. However,
for the medium and high aptitude groups, the CFLS planner outperformed the
SPP in all cases within the success triangle. Looking at final exam scores (Fig.
2), medium aptitude learners responded well to being matched with neighbours
using b = 1 or 2 and sticking with the chosen neighbour for the same distance
ahead. The high aptitude group responded very well to using neighbourhoods
created with b = 3 and recommending paths of s = 3.

Within the success triangles, the rows and columns of Fig. 2 were checked
to see if there existed an ideal b for a given s, and vice versa. Wherever there
appeared to be a large difference, Student’s t-test was used to check for statistical
significance. We are able to use paired t-tests because the simulated learners have
exactly the same characteristics in all the simulation runs, the only difference
being the order in which LOs were interacted with. For example, learner #3
always has aptitude-of-learner = .4, so, there is no difference in that learner
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between simulation runs. We used a two-tailed t-test because it was not certain
whether one distribution was going to be higher or lower than the other.

Looking along the rows, when s is held the same, there are some cases where
one value of b is better than another. For the low aptitude group, for the most
part the lower the b, the better. For the medium aptitude group, there were no
significant advantages to changing b. For the high aptitude group, when s = 3,
the t-test was used to check if b = 3 was significantly more advantageous than
using b = 2. The measurements for Score on the Final Exam for the high aptitude
learners were compared between both simulation results, (b = 2 and s = 3) and
(b =3 and s = 3). With N=19 learners in this group, the calculated p-value was
0.009, indeed a statistically significant difference.

Looking along the columns, when b is held the same there was a case where
increasing s, i.e. sticking to a longer plan ahead, was statistically advantageous.
In the medium aptitude group, when b = 1 it was statistically better to use s = 2
than to use s = 1 with a p-value of 0.011. None of the increases of s with the
same b were significant for the high aptitude group, and there were no increases
for the low aptitude group.

5 Analysis and Future Work

Through simulation, we have shown that a CFLS planner can be “launched” from
an environment that has been conditioned with interaction data from another
planner, such as an SPP, and operate successfully using only learner usage data
kept by the EA and not needing centralized metadata such as a prerequisite
graph. This is one of the key requirements for DOELESs. Like biological evolution,
the EA is harsh in that it observes how learners succeed or fail as various paths
are tried. Successful paths for particular types of learners, regardless of whether
they follow standard prerequisites, is the only criterion of success. New learners
or new learning objects will find their niche - some paths will work for some
learners but not for others, and this is discovered automatically through usage.

More experiments are needed to explore the many possibilities of the sim-
ulation environment. While this experiment was not a true test of a DOELE
because new learners and LOs were not inserted, this can be readily explored
in future work. New additions could be matched randomly a few times in or-
der to build enough data in the EA, and then automatically incorporated into
neighbourhood matches or into future plans.

Given the evaluation function that was selected, we found that planning
ahead and sticking to the plan worked best for high aptitude learners and a re-
active approach (planning ahead but sticking to the plan for only a short time)
worked best for the low aptitude learners. Would a different pattern emerge
if a different evaluation function were chosen? Would a different threshold for
mastery than P[learned] > 0.6 make any difference? In future work, would it be
worthwhile to break down the aptitude groups into six: very-high, high, medium-
high, medium-low, low, and very-low? This may assist with more easily tuning
the weights of the evaluation function, as there was not much difference in our
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results between the high and medium aptitude groups. In addition, more experi-
ments where s < f are needed to answer the question of whether the drop along
the edge of each success triangle was because of s or f. Also, in this work we
did not look at the many different types of pedagogical interactions (ex. asking
the student a question, giving a hint etc.) and focused on very abstract repre-
sentations. More work is needed to explore this approach on systems later in the
design process, when more detail about the content and the desired interactions
with learners is known.

Future work could also investigate the usage of a differential planner, where
different settings are tuned for different situations. For example, when creating
a neighbourhood for a low aptitude learner, medium aptitude learners could be
allowed into the neighbourhood if they have a matching b. Results could reveal
situations where for example a low aptitude learner is helped by following in the
steps of a medium aptitude learner. A differential planner could also dynamically
choose the values of b and s for a given individual instead of using the same values
for everyone at all times. For example, in a real world setting a CFLS planner
may try to create a plan using a neighbourhood of b = 3, knowing it is optimal,
but if for the specific case there is not enough data, it could change to b = 2
on the fly. Other aspects that could be changed are the criteria for creating
the neighbourhood: rather than filtering by aptitude, another attribute could be
chosen such as click behaviour or learning goals.

6 Conclusion

In this paper, we have described the need for instructional planning in DOE-
LEs with many LOs aimed at large numbers of learners. Instructional planners
such as [13] use AI planning technology that is based on states, actions and
events, which are difficult to infer from an unstructured online environment. In
recent years, instructional planning has been replaced by instructional design
approaches such as [3]. Advanced instructional planners from the 1990s, such as
PEPE and TOBIE [16] can blend different teaching strategies to appropriate sit-
uations. We have shown that instructional planning can still be done in the less
rigid courses envisioned by the EA architecture and likely to be commonplace
in the future, using only learner usage data kept by the EA and not needing
centralized metadata about the course.

We have shown a specific planning technique, the CFLS planner, that is ap-
propriate for DOELEs, and how to experiment in this domain. The simulation
experiment revealed the number of LOs from a target learner’s recent browsing
history should be used for creating a neighbourhood (b), a question that has
also been investigated by other researchers, such as in [18]. We have also found
recommendations for settings for how far ahead to plan (s and f) for differ-
ent groups of learners, and identified questions for future work. As is the case
with collaborative filtering and case-based approaches, the quality of the plans
created is limited to the quality of LOs within the repository and the quality
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of interactions that have previously occurred between learners and sequences of
LOs.

The bottom-up discovery of prerequisite relationships has been investigated
by others, such as [17]. When the need for centralized metadata about a course
is discarded, and when the further step is taken that different paths can be
found to work better for different learners, then a shift in thinking occurs. Each
individual learner could effectively have a unique ideal (implicit) prerequisite
graph. Whether or not a prerequisite relationship even exists between two LOs
could vary from learner to learner. The notion of prerequisite can thus be viewed
not only as a function of the content relationships, but also as a function of the
individual learner.

Making recommendations of sequences has also been identified as a task in
the recommender systems domain [9]. An approach such as a CFLS planner is
a step in the direction of building recommender systems that can use sequence
information to recommend sequences. This has also been accomplished with
standards approaches such as [15]. Simulation with the EA provides another
method for developing and testing such approaches.

Overall, the research we have done to date and the questions it raises, shows
the value of exploring these complex issues using simulation. We were able to
essentially generate some 25 different experiments exploring some issues in in-
structional planning, in a very short time when compared to what it would have
taken to explore these same issues with real learners. Others have also used sim-
ulation for developing an educational planner, such as [10] for social assessment
games. To be sure our simulation model was of low fidelity, but we suspect that
there are some properties of the CFLS planner that we have uncovered that ap-
ply in the real world (the lower triangles seem to be very strong and consistent
patterns). And, there are some very real issues that we can explore fairly quickly
going forward that might reveal other strong patterns, as discussed. We believe
that it isn’t always necessary to have simulations with high cognitive fidelity (as
in SimStudent [12]) to find out interesting things. Low fidelity simulations such
as the ones we have used in this and our earlier work [6] (and those of [2]) have a
role to play in AIED. Especially as we move into the huge questions of dynamic
open-ended learning environments with thousands of learners and big privacy is-
sues, the sharp minimalist modelling possible with low fidelity simulation should
allow quick and safe experimentation without putting too many real learners at
risk and without taking years to gain insights.
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Abstract. The help seeking and social integration needs of learners in a semi-
structured learning environment require specific support. The design and use of
educational technology has the potential to meet these needs. One difficulty in
the development of such support systems is in their validation because of the
length of time required for adequate testing. This paper explores the use of a
simulated learning environment and simulated learners as a way of studying de-
sign validation issues of such support systems. The semi-structured learning
environment we are investigating is a graduate school, with a focus on the doc-
toral program. We present a description of the steps we have taken in develop-
ing a simulation of a doctoral program. In the process, we illustrate some of the
challenges in the design and development of simulated learning environments.
Lastly, the expected contributions and our research plans going forward are de-
scribed.

Keywords: Simulated learners, Simulated learning environment, Agent-based
simulation, Help seeking, Doctoral learners, Multi-agent system.

1 Introduction

Artificial Intelligence in Education (AIED) is one of the research fields whose focus
is the use of technology to support learners of all ages and across all domains'. Al-
though, one shortcoming of AIED research is the limited research attention that very
dynamic and semi-structured domains, such as a graduate school, have received.
There is little research that investigates how technology can be used to help connect
learners (help seeker and potential help givers) in the graduate school domain. Conse-
quently, there is a gap in our understanding of how such technology may mitigate
graduate learners’ attrition rates and time-to-degree. We have suggested the use of
reciprocal recommender technology to assist in the identification of a suitable helper
[1]. However, the nature of graduate school means that validation of any education
system designed to be used in a semi-structured environment would take a long time
(measured in years). This paper aims to address this challenge by exploring the use of

! http://iaied.org/about/
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simulated learning environment and simulated learners as a potential way of validat-
ing educational technologies designed to support doctoral learners.

In this paper, we first describe the nature and the metrics used by interested
stakeholders to measure the success or lack therefore of a doctoral program. Follow-
ing this, we briefly discuss the uses of simulation as it relates to learning environment.
We then introduce the research questions we are interested in answering using simula-
tion. We go on to describe the architectural design of our simulation model. Further,
we show how data about the ‘real world’ target domain is used to inform the parame-
ters and initial conditions for the simulation model. This provides the model with a
degree of fidelity. Throughout this model development process, we illustrate some of
the challenges in the design and development of simulated learning environments. We
conclude the paper with a discussion of the expected contributions and our research
plans going forward.

2 Understanding Doctoral Program

Graduate school is a very dynamic and complex social learning environment. A doc-
toral program in particular is a dynamic, semi-structured, and complex learning envi-
ronment. Most doctoral programs have some structure in the sense that there are three
distinct stages that doctoral learners must go through: admission stage, coursework
stage, and dissertation stage. While coursework stage is fairly structured, the disserta-
tion stage is not. Further, the dissertation stage have various milestones that include:
comprehensive exam, thesis proposal, research, writing, and dissertation defense. As
time passes, learners move from one stage to the next and their academic and social
goals change. There is need for self-directed learning and individual doctoral learners
are responsible for their own learning pace and choice of what to learn especially in
the dissertation stage.

The dynamic nature of the program ensures that there is constant change; there are
new learners joining the program, other learners leaving the program either through
graduation or deciding to drop out, and still other learners proceeding from one stage
to the next. There are two key aspects that influences learners to decide whether to
persist or drop out of a learning institution: academic and social integration [2], [3]
which are impacted by learner’s initial characteristics and experiences during their
duration in the program. The various stages of the doctoral program (e.g., course-
work) and learning resources can be seen as factors that directly influence the aca-
demic integration of a doctoral learner. Peers and instructors/supervisors can be
viewed as supporting the social aspects of the doctoral program and hence, directly
impact the social integration of doctoral learners. As time passes, doctoral learners
continually interact with both the academic and social facets of the doctoral program.
As a result, there is constant change in learners’ commitment to their academic goal
and the social sides of the learning institution

Time-to-degree, completion rates, and attrition rates are important factors influenc-
ing the perception and experience of graduate education by interested stakeholders
[4], [5]- Research on doctoral attrition and time-to-completion indicates that on aver-
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age, the attrition rate is between 30% and 60% [5]-[8]. Long times to completion and
a high attrition rate are costly in terms of money to the funding institution and the
learning institution; and in terms of time and effort to the graduate student(s) and
supervisor(s) [8]. Lack of both academic and social integration (isolation) have been
shown to affect graduate learners decision to persist [2], [3], [9]. Learners facing aca-
demic and social integration challenges should be enabled to engage in a community
of peers to foster interaction and hence, encourage peer help and personalized col-
laboration [10]. Understanding the nature of learner-institution interactions that foster
doctoral learners’ persistence to degree is important to both the learning institution
and its learners. We use simulation to achieve this feat.

Simulation is an established third way of exploring research questions in addition
to qualitative and quantitative methods [11], [12]. VanLehn [13] has identified three
main uses of simulation in learning environments: 1) to provide an environment for
human teachers to practise their teaching approaches; 2) to provide an environment
for testing different pedagogical instructional design efforts; 3) to provide simulated
learners who can act as companions for human learners. Our research is mainly
focused on the first and the second uses — to enable deep insight into the complex
interaction of the factors affecting doctoral learners’ attrition and time-to-degree
leading to a better design of an educational system. Therefore, our research questions
are formulated around investigations of how various factors influence time-to-degree,
completion rates, and dropout rates of doctoral students. We are interested in answer-
ing the following research questions:

1. How does the number of classes (as a platform for social integration with peers —
potential helpers) offered by a program(s) or taken by a learner, influence learners’
time-to-degree and their propensity to persist or drop out?

2. How does the average class size (as basis of learners’ social integration) attended
by learners, impact learners’ time-to-degree and their inclination to persist or drop
out? What is the optimum class size?

3. How does the overall population size of the learners (a few learners vs many learn-
ers) influence learners’ time-to-degree and their likelihood to persist or drop out?

4. Does timely help affects doctoral learners’ time-to-degree and their decision to
persist or drop out? If so, how?

5. How does the level of reciprocation influence the formation of a ‘helpful commu-
nity’ of learners and adaptive help seeking behavior of the learners?

Use of simulation enables us to explore the aforementioned issues in a fine-grained
controlled environment. For example, it would be almost impossible in the ‘real
world’ setting to examine the impact of different number of course to take or class
size to attend. Two cohorts of learners will have different attributes. Simulation al-
lows us to tweak the number of courses or class size without touching the other char-
acteristics of learners. Hence, we are able to see the real impact of one variable at a
time. Before any exploration and insight can be gained on these issues, there is need
to design and implement the simulation model.
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3 Building an Initial Prototype of SimGrad

In this section we demonstrate the steps we have taken in the development of our
initial prototype of our simulated doctoral learning environment: SimGrad. We show
how a designer of an educational technology can develop a model of their target
learning environment and inform its initial condition with available ‘real world’ data.

3.1  SimGrad Design

We need to design a simulation model by addressing two key challenges. First, we
need to consider issues related to the modeling of the learning environment: how do
we design conceptual and computational models of a doctoral program and what
stakeholders should be included in these models? The second concern is about model-
ing of simulated learners: what doctoral learners’ features affect persistence and time-
to-degree, what factors do we model, and can we inform these features with available
‘real world’ data?

/ SimGrad \

Domain rules and assumptions (normative model)
Learning IQ <« Learner element (agent)
0 : £« . .
£- > o Social Integration (scene
D& Q(’—— / enabled by dialogic model)
~3 Academic Integration (scene)
: ‘& Instructor Element (agent)
: Stage Element (agent)
k New Semester (event)

Fig. 1. SimGrad conceptual framework, its three elements, and the possible interaction between
the elements

We have designed our conceptual model of the different aspects of simulated doc-
toral learners and doctoral learning environment based on the simulated learning envi-
ronment specifications suggested by Koper et al. in [14], and features for building an
electronic institution proposed by Esteva et al. [15]. We name our conceptual frame-
work, SimGrad. Its core elements include: normative model - specifies requirements
and constraints to guide agent actions and behavior; dialogic model — deals with inter-
action strategies and communication mechanism; events — refers to happenings in the
model that trigger (re)action by agents; scene — description of an interaction between
elements; elements (agents) — represent key stakeholders of the target domain that are
modeled. Elements are modeled as agents. Each of the agents has attributes and be-
havior which are informed by our assumptions guided by our research questions and
factors that influence learners’ decision to persist. Every element of interest is to be
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modeled within the learning environment and all possible interactions and operations
within the learning setting is guided by domain rules represented by the normative
model. See Fig. 1.

In our simulation model, we have chosen to model three types of elements: class,
instructor, and learner. In this paper, in keeping with model simplicity, both the class
and the instructor agents are passive while the learner agent is modeled to be active
and reactive to its environment. Also, the only instructor’s attributes we are interested
in are related to classes (see Table 1). We modeled only one type of instructor agent.
Another instructor type agent that can be modeled is the supervisor.

Each learner agent has the following properties: autonomy, social ability, reactiv-
ity, proactivity, and a degree of intentionality. We have also identified the following
key attributes for our agent learner model: state — (busy, available), program, stages,
course taken, peer interactions (pertaining challenges), academic integration, social
integration, and motivation (see Table 2). In our model, peer interaction and state
contribute to a learners’ social integration, while research area, stage, course taken
impact to their academic integration. Motivation combines both the social and aca-
demic integration and hence, is the main factor that determines whether an agent con-
tinues to persist or chooses to drop out of the program.

Table 1. Comparison of computed attributes of the three agent types

Attribute — data (value range) Agent Agent Agent class
learner instructor

Total number of classes take, taught, or frequency X X X

of offering within 10 years — numeric (0-20)

Grade obtained, average awarded, or average X X X

obtained by learners — numeric (0,12)

Take classes from, teach classes in, or class of- X X X

fered in various programs — textual (program id)

Instructors teaching a class — array list (instructor X - X

id)

What is the class size — numeric (1-5) X X

Number of classes taken or taught per year - X X -

numeric (0,4)

Which classes are taken or taught — textual (class X X -

id)

The main intentions of each agent is to persist through doctoral requirements to
graduation and to do so in a timely manner. However, each of these agents reacts to
the different challenges at various stages of graduate school in divergent and autono-
mous ways. At the coursework stage, agents have the goal of taking courses that are
relevant to their field and that they will perform well. When facing a course choice
challenge or any other particular challenge, we have modeled our agents to proac-
tively associate with peers to seek help. Each peer makes individual choice on
whether to or not to respond to a request for help from others. The dialogic model
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handles the agent to agent interaction and communication through a message passing
mechanism [16].

Table 2. Attributes and parameters considered for an agent learner model for learners, their
description and how each of them changes.

Attribute Value - description How it changes
Enrolment Date ( MM/YYYY) Does not change
Indicate the month a year an agent enrolled in
the program
Graduation Date MM/YYYY) Evaluated whenever an agent
Target graduation date completes a milestone
State Textual (busy, available) Changes whenever an agent
Indicates an agent availability to help others, | experiences a challenge
assigned based on the smallest time unit
model
Program Textual (program id) Does not change during a simula-
Identify an agent’s closer community within | tion run
the larger community of learners
Stage Textual (admission, coursework, dissertation, | Admission stage is like an event.
timeout, dropout) Learner move to the coursework
immediately after admission.
They more to dissertation after
completing their course load.
Courses Array [course, mark, instructor id](0-6) Every end of semester that the
taken Record courses taken by an agent and the | student took classes, this array is

marks obtain in each course

updated

Peer interac-

Array [learner id, challenge, result],

Changes whenever two agents

tion Keep track of an agent interactions with | interact

others and the outcome of the interaction
Academic Numeric (-1,1) Changes whenever an agent
integration Measures the academic satisfaction learner interacts with agent stage

(i.e., completes a milestone or
experience a challenge)

Social inte-

Numeric (-1,1)

Changes whenever an agent

gration Measures a learners sense of belonging to the | learner interacts with its peers or
learning environment agent instructors
Motivation Numeric (-1,1) Whenever there is a change in

Measures the propensity of an agent to still
want to persist. A motivation value above 0.3
indicates persistence. A value between -0.3
and 0.3 indicate help seeking needed. A value
below -0.3 means the agent drops out

the social and academic integra-
tion values. Its value is the aver-
age of the integration values.
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3.2 Informing SimGrad behavior and evaluation functions

Having identified the important agents and their key attributes, there are two sets of
important functions for each element that need to be modelled: behaviour functions
and evaluation functions [17]. Behaviour functions inform the decision making of the
active elements and dictates the interaction patterns between them and the other mod-
eled elements (e.g., how many classes a given agent takes). Evaluation functions indi-
cate whether or not various interactions between the different agents in a simulation
were successful (e.g., determine what grade a given agent attains in a class it took).
Informing such functions with ‘real world” data allows the simulation to behave in a
way consistent with reality.

Simulation model fidelity is an issues that might arise when using simulation to
study a target real world phenomenon. However, the most important issue to consider
is the research question to be answered. While Champaign [18] used a very low fidel-
ity model, Matsuda et al. [19] used a model with high cognitive fidelity to reach com-
pelling conclusion. Further yet, Erickson et al. [17] also demonstrated that is possible
to use a medium fidelity model and uncover interesting results. In some situations it
might not be possible to have a high fidelity model because of lack of data. A case in
point is our simulation scenario. Where possible, we inform our simulation functions
with data received from the U of S on their doctoral program. An investigation into
the U of S data showed that we will not be able to inform every aspect of our simula-
tion model. It would be desirable to inform every initial aspects of our simulation
model with ‘real world’ data but, we do not have data on the dissertation stage.

We are provided information on student id, years a student is registered, year of
graduation (if graduated), student’s program, classes taken and marks obtained, class
instructor, and students instructional responsibilities. From this dataset we are able to
inform the admission and coursework stages of our model (academic integration).
However, there is no information concerning the dissertation stage and the social
integration aspects. While it possible to inform various behaviour and evaluation
functions for our simulation model, in this paper we focus on describing the steps we
took to inform two functions of our simulation: learning environment admission be-
haviour function, and learners’ class interactions behaviour function.

As already mentioned, admission is an important part of a doctoral program that
contributes to it dynamic nature. The admission process is complex and involves a lot
of stakeholders and processes, but we are concerned only with determining the year to
year patterns in how many students are admitted. To provide some fidelity to our
simulated learning environment admission, we analyzed data provided to us by the U
of S University Data Warehouse”. The provided dataset contained information on
doctoral learners registered in the 10 years 2005-2014. In this time there were 2291
doctoral learners with a total of 52850 data points on class registration. The 2005
registration included learners who had joined the program earlier than 2005. In order
to get a clean admission pattern, we only considered learners who were registered
from the year 2006 onwards. This reduced the population size to 1962.

2 http://www.usask.ca/ict/services/ent-business-intelligence/university-data-warchouse.php
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We were able to identify three admission periods, September, January, and May.
We then obtained values for each of the admissions months for the years 2006-2014.
This provided a distribution for each month that we used to generate a scatter plot of
admission numbers. A sigmoidal pattern emerged. Next, we performed a non-linear
curve fitting to the scatter plot so that the admission function can be represented in the
form Y = St*(c + x), where c is a constant, S? is a variable dependent on the admission
period, and x is the admission period. We then ran a regression to find values of each
of these variables. This allowed us to model the admission patterns observed in the U
of S dataset.

Next we derived the number of classes taken. To introduce some realism to the
number classes taken behaviour, we had to further prune the data. We only considered
data for students whose cohorts would have been registered for at least 3 years by the
end of the year 2014 and hence, we considered class taking behaviour of 1466 U of S
doctoral learners.

We obtained the number of classes each of the remaining learners we registered in
and created a histogram. This histogram showed us the distribution of the number of
students registered for a certain number of classes. Next, we transformed this distribu-
tion graph into a cumulative distribution function. We then took an inverse of the
cumulative distribution function to achieve a quantile function. The quantile function,
when run over many learners, assigns learners a class count that mimics the initial
histogram. We use this quantile function to inform the number of classes a learner can
take.

In this section we have described the importance of informing a simulation model
with ‘real world’ data. We have described two functions that are informed with U of S
dataset. Other examples of functions that can be informed using the U of S dataset
include: class performance evaluation function, dropout behaviour function, time to
degree behaviour function, and flow through behavior function (main as pertains to
coursework stage). We have identified that missing data values is a major hindrance
in this endeavor. There are possible ways of informing simulation attributes where
there are no ‘real world’ data to derive from. A designer can either assign common
sense values, generate and assign random values, or refer to the research literature to
identify patterns that have been found by other researchers. Since we have the enrol-
ment dates and the graduate dates for learners who graduate, we choose to derive
common sense values with these two dates guiding the process and the value range.

4 Discussion, Expected Contributions, and Future Research
Plans

Despite the growth in the use of simulation as a method for exploration and learning
in many areas such as: engineering, nursing, medicine [20], and building design [21],
research in the used of simulation within AIED is still at an early stage. There is need
for more research to demonstrate that the outputs of simulation runs are desirable and
informative to the AIED community. In this paper, we aim at contributing to this
notion and by promoting the use of simulation in educational research and presenting

AIED 2015 Workshop Proceedings - Vol 5

18



an agent based simulation conceptual framework for building simulated learning envi-
ronment, with a focus on the semi-structured ones. Simulated learning environment
and simulated learners are important in exploring and understanding a given learning
domain. Further, it helps with the generation of system validation data.

The expected contributions to AIED include: providing a conceptual framework
for simulated graduate school learning environment — an architecture that enables
investigations into factors affecting doctoral learners progress through their program;
shedding light on learner modeling issues in dynamic learning environments; and
demonstrating the importance of simulation in exploring various AIED research do-
mains, particularly semi-structured domains.

Current research work is focused on the implementation of the simulation model
and the refinement of the various behaviour and evaluation functions. Once the im-
plementation is done, we will validate our model against the dataset we have from the
U of S before proceeding to explore the impact of various environmental factors.
Since we are informing the simulation with both common sense assumptions and U of
S dataset, the goal is to tweak the common sense assumptions such that when the
model is run we get similar results as the U of S data in terms of class performance,
dropout rate, and time-to-degree. Achieving this, would give us confidence that we
have captured reality in some measurable way. We can then start exploring the vari-
ous impact of measures we are interested in examining. As earlier indicated, we are
interested in exploring the interactions of a number of variables: number of classes
taken which will impact the availability of potential peer helpers, the effect of recip-
rocity on help seeking and help giving, and the effect of help seeking and other fac-
tors on doctoral learners’ time-to-degree and attrition rates.
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Abstract. Research in student modeling often leads to only small im-
provements in predictive accuracy of models. The importance of such
improvements is often hard to assess and has been a frequent subject of
discussions in student modeling community. In this work we use simu-
lated students to study the role of small differences in predictive accuracy.
We study the impact of such differences on behavior of adaptive educa-
tional systems and relation to interpretation of model parameters. We
also point out a feedback loop between student models and data used for
their evaluation and show how this feedback loop may mask important
differences between models.

1 Introduction

In student modeling we mostly evaluate models based on the quality of their
predictions of student answers as expressed by some performance metric. Re-
sults of evaluation often lead to small differences in predictive accuracy, which
leads some researchers to question the importance of model improvements and
meaningfulness of such results [1]. Aim of this paper is to explore the impact and
meaning of small differences in predictive accuracy with the use simulated data.
For our discussion and experiments in this work we use a single performance
metric — Root Mean Square Error (RMSE), which is a common choice (for ra-
tionale and overview of other possible metrics see [15]). The studied questions
and overall approach are not specific to this metric.

Simulated students provide a good way to study methodological issues in
student modeling. When we work with real data, we can use only proxy meth-
ods (e.g., metrics like RMSE) to evaluate quality of models. With simulated
data we know the “ground truth” so we can study the link between metrics and
the true quality of models. This enables us to obtain interesting insight which
may be useful for interpretation of results over real data and for devising exper-
iments. Similar issues are studied and explored using simulation in the field of
recommender systems [7,17].

We use a simple setting for simulated experiments, which is based on an
abstraction of a real system for learning geography [12]. We simulate an adaptive
question answering system, where we assume items with normally distributed
difficulties, students with normally distributed skills, and probability of correct
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answer given by a logistic function of the difference between skill and difficulty
(variant of a Rasch model). We use this setting to study several interrelated
question.

1.1 Impact on Student Practice

What is the impact of prediction accuracy (as measured by RMSE) on the be-
havior of an adaptive educational system and students’ learning experience?

Impact of small differences in predictive performance on student under-
practice and over-practice (7-20%) has been demonstrated using real student
data [18], but insight from a single study is limited. The relation of RMSE to
practical system behavior has been analyzed also in the field of recommender
systems [2] (using offline analysis of real data). This issue has been studied be-
fore using simulated data is several studies [5, 6,10, 13]. All of these studies use
very similar setting — they use Bayesian Knowledge Tracing (BKT) or its ex-
tensions and their focus is on mastery learning and student under-practice and
over-practice. They differ only in specific aspects, e.g., focus on setting thresh-
olds for mastery learning [5] or relation of moment of learning to performance
metrics [13]. In our previous work [16] have performed similar kind of simulated
experiments (analysis of under-practice and over-practice) both with BKT and
with student models using logistic function and continuous skill.

In this work we complement these studies by performing simulated experi-
ments in slightly different setting. Instead of using BKT and mastery learning,
we use (variants of) the Rasch model and adaptive question answering setting.
We study different models and the relation between their prediction accuracy
and the set of items used by the system.

1.2 Prediction Accuracy and Model Parameters

Can RMSE be used to identify good model parameters? What is the relation of
RMSE to the quality of model parameters?

In student modeling we often want to use interpretable models since we are
interested not only in predictions of future answers, but also in reconstructing
properties of students and educational domains. Such outputs can be used to
improve educational systems as was done for example by Koedinger at al. [9].
When model evaluation shows that model A achieves better prediction accuracy
(RMSE) then model B, results are often interpreted as evidence that model
A better reflects “reality”. Is RMSE a suitable way to find robust parameters?
What differences in metric value are meaningful, i.e., when we can be reasonably
sure that the better model really models reality in better way? Is statistical
significance of differences enough? In case of real data it is hard to answer these
question since we have no direct way to evaluate the relation of a model to
reality. However, we can study these questions with simulated data, where we
have access to the ground truth parameters. Specifically, in our experiments
we study the relation of metric values with the accuracy of reconstructing the
mapping between items and knowledge components.
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1.3 Feedback between Data Collection and Evaluation

Can the feedback loop between student models and adaptive choice of items in-
fluence evaluation of student models?

We also propose novel use of simulated students to study a feedback loop
between student models and data collection. The data that are used for model
evaluation are often collected by a system which uses some student model for
adaptive choice of items. The same model is often used for data collection and
during model evaluation. Such evaluation may be biased — it can happen that
the used model does not collect data that would show its deficiencies. Note that
the presence of this feedback loop is an important difference compared to other
forecasting domains. For example in weather forecasting models do not directly
influence the system and cannot distort collected data. In student modeling they
can.

So far this feedback has not been thoroughly studied in student modeling.
Some issues related to this feedback have been discussed in previous work on
learning curves [6, 11, 8]. When a tutoring system uses mastery learning, students
with high skill drop out earlier from the system (and thus from the collected
data), thus a straightforward interpretation of aggregated learning curves may
be misleading. In this work we report experiment with simulated data which
illustrate possible impact of this feedback loop on model evaluation.

2 Methodology

For our experiments we use a simulation of a simplified version of an adaptive
question answering systems, inspired by our widely used application for learning
geography [12]. Fig. 1 presents the overall setting of our experiments. System
asks students about items, answers are dichotomous (correct/incorrect), each
student answers each item at most once. System tries to present items of suitable
difficulty. In evaluation we study both the prediction accuracy of models and also
sets of used items. This setting is closely related to item response theory and
computerized adaptive testing, specifically to simulated experiments with Elo-
type algorithm reported by Doebler et al. [3].

Simulated Students and Items We consider a set of simulated students and
simulated items. To generate student answers we use logistic function (basically
the Rasch model, respectively one parameter model from item response theory):
P(correct|f,d;) = 1/(1 4 e~ ¥==4)) where 0, is the skill of a student s and d;
is difficulty of an item 1.

To make the simulated scenarios more interesting we also consider multiple
knowledge components. Items are divided into disjoint knowledge components
and students have different skill for each knowledge component. Student skills
and item difficulties are sampled from a normal distribution. Skills for individual
knowledge components are independent from one another.
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Fig. 1. Setting of our experiments

Item Selection Algorithm The item selection algorithm has as a parameter
a target success rate . It repeatedly presents items to a (simulated) student, in
each step it selects an item which has the best score with respect to the distance
of the predicted probability of correct answer p and the target rate ¢ (illustrated
by gray dashed line in Fig. 3). If there are multiple items with the same score,
the algorithm randomly selects one of them.

Student Models Predictions used by the item selection algorithm are provided
by a student model. For comparison we consider several simple student models:

Optimal model — Predicts the exact probability that is used to generate the
answer (i.e., a “cheating” model that has access to the ground truth student
skill and item difficulty).

Optimal with noise — Optimal model with added (Gaussian) noise to the
difference 65 — d; (before we apply logistic function).

Constant model — For all students and items it provides the same prediction
(i.e., with this model the item selection algorithm selects items randomly).

Naive model — Predicts the average accuracy for each item.

Elo model — The Elo rating system [4, 14] with single skill. The used model
corresponds to the version of the system as described in [12] (with slightly
modified uncertainty function).

Elo concepts — The Elo system with multiple skills with correct mapping of
items to knowledge components.
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— Elo wrong concepts — The Elo system with multiple skills with wrong map-
ping of items to knowledge components. The wrong mapping is the same as
the correct one, but 50 (randomly choosen) items are classified incorrectly.

Data We generated 5,000 students and 200 items. Items are divided into 2
knowledge components, each user has 2 skills corresponding to the knowledge
components and each item has a difficulty. Both skills and difficulties were sam-
pled from standard normal distribution (the data collected from the geogra-
phy application suggests that these parameters are approximately normally dis-
tributed). The number of items in a practice session is set to 50 unless otherwise
noted.

3 Experiments

We report three types of experiments, which correspond to the three types of
questions mentioned in the introduction.

3.1 Impact on Student Practice

Our first set of experiments studies differences in the behavior of the simulated
system for different models. For the evaluation of model impact we compare the
sets of items selected by the item selection algorithm. We make the assumption
that the algorithm for item selection using the optimal model generates also the
optimal practice for students. For each user we simulate practice of 50 items
(each item is practiced at most once by each student). To compare the set of
practiced items between those generated by the optimal model and other models
we look at the size of the intersection. We assume that bigger intersection with
the set of practiced items using the optimal model indicates better practice.
Since the intersection is computed per user, we take the mean.

This is, of course, only a simplified measure of item quality. It is possible that
an alternative model selects completely different set of items (i.e., the intersection
with the optimal set is empty) and yet the items are very similar and their
pedagogical contribution is nearly the same. However, for the current work this
is not probable since we are choosing 50 items from a pool of only 200 items. For
future work it would be interesting to try to formalize and study the “utility”
of items.

Noise Experiment The optimal model with noise allows us to easily manipu-
late differences in predictive accuracy and study their impact on system behavior.
Experiment reported in the left side of Fig. 2 shows both the predictive accuracy
(measured by RMSE) and the impact on system behavior (measured by the size
of the intersection with the optimal practiced set as described above) depending
on the size of noise (we use Gaussian noise with a specified standard deviation).
The impact of noise on RMSE is approximately quadratic and has a slow rise —
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Fig. 2. Size of the intersection with the optimal practiced set of items and RMSE
depending on Guassian noise in optimal model (left side). Distribution of answers over
the items based on the given model (right side).

this is a direct consequence of the quadratic nature of the metric. The impact
on used items is, however, approximately linear and rather steep. The most in-
teresting part is for noise values in the interval [0, 0.1]. In this interval the rise
in RMSE values is very small and unstable, but the impact on used items is
already high.

Model Comparison Right side of the Fig. 2 shows the distribution of the
number of answers per item for different models. The used models have similar
predictive accuracy (specific values depend on what data we use for their eval-
uation, as discussed below in Section 3.3), yet the used model can dramatically
change the form of the collected data.

When we use the optimal model, the collected data set covers almost fairly
most items from the item pool. In the case of worse models the use of items
is skewed (some items are used much more frequently than others). Obvious
exception is the constant model for which the practice is completely random.
The size of the intersection with the optimal practiced set for these models is
— Constant: 12.5; Elo: 24.2; Elo, Concepts: 30.4; Elo, Concepts (wrong): 28.5;
Naive: 12.0. Fig. 3 presents a distribution of answers according to the true prob-
ability of their correctness (given by the optimal model). Again there is a huge
difference among the given models, especially between simple models and those
based on Elo.

3.2 Prediction Accuracy and Model Parameters

Metrics of prediction accuracy (e.g., RMSE) are often used for model selection.
Model that achieves lower RMSE is assumed to have better parameters (or
more generally better “correspondence to reality”). Parameters of a selected
model are often interpreted or taken into account in improvement of educational
systems. We checked validity of this approach using experiments with knowledge
components.

We take several models with different (random) mappings of items to knowl-
edge components and evaluate their predictive accuracy. We also measure the
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quality of the used mappings — since we use simulated data, we know the ground
truth mapping and thus can directly measure the quality of each mapping. Qual-
ity is expressed as the portion of items for which the mapping agrees with the
ground truth mapping. The names of the knowledge components are irrelevant
in this setting. Therefore, we compute quality for each one-to-one mapping from
the names of the components in the model to the names of the components in the
ground truth. We select the highest quality as the quality of the model’s item-
to-component mapping. To focus only on quality of knowledge components, we
simplify other aspects of evaluation, specifically each student answers all items
and their order is selected randomly.

These experiments do not show any specific surprising result, so we provide
only general summary. Experiments show that RMSE values correlate well with
the quality of mappings. In case of small RMSE differences there may be “swaps”,
i.e., a model with slightly higher RMSE reflects reality slightly better. But such
results occur only with insufficiently large data and are unstable. Whenever
the differences in RMSE are statistically significant (as determined by t-test
over different test sets), even very small differences in RMSE correspond to
improvement in the quality of the used mappings. These results thus confirm
that it is valid (at least in the studied setting) to argue that a model A better
corresponds to reality than a model B based on the fact that the model A
achieves better RMSE than the model B (as long as the difference is statistically
significant). It may be useful to perform this kind of analysis for different settings
and different performance metrics.

3.3 Feedback between Data Collection and Evaluation

To study feedback between the used student model and collected data (as is
described in subsection 1.3) we performed the following experiment: We choose
one student model and use it as an input for adaptive choice of items. At the
same time we let all other models do predictions as well and log answers together
with all predictions.

Fig. 4 shows the resulting RMSE for each model in individual runs (data
collected using specific model). The figure shows several interesting results. When
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Fig. 4. RMSE comparison over data collected using different models.

the data are collected using the optimal model, the RMSE values are largest
and closest together; even the ordering of models is different from other cases.
In this case even the constant model provides comparable performance to other
models — but it would be very wrong to conclude that “predictive accuracy of
models is so similar that the choice of model does not matter”. As the above
presented analysis shows, different models lead to very different choice of items
and consequently to different student experience. The reason for small differences
in RMSE is not similarity between models, but characteristics of data (“good
choice of suitable items”), which make predictions difficult and even a naive
predictor comparatively good.

Another observation concerns comparison between the “Elo concepts” and
“Elo concepts (wrong)” models. When data are collected by the “Elo concepts
(wrong)” model, these two models achieve nearly the same performance, i.e.,
models seem to be of the same quality. But the other cases show that the “Elo
concepts” model is better (and in fact it is by construction a better student
model).

4 Conclusions

We have used simulated data to show that even small differences in predictive
accuracy of student models (as measured by RMSE) may have important impact
on behavior of adaptive educational systems and for interpretation of results of
evaluation. Experiments with simulated data, of course, cannot demonstrate the
practical impact of such small differences. We also do not claim that small differ-
ences in predictive accuracy are always important. However, experiments with
simulated data are definitely useful, because they clearly illustrate mechanisms
that could play role in interpretation of results of experiments with real student
data. Simulated data also provide setting for formulation of hypotheses that
could be later evaluated in experiments with real educational systems.
Simulated data also enable us to perform experiments that are not practical
for realization with actual educational systems. For example in our experiment
with the “feedback loop” we have used different student models as a basis for
item selection. Our set of models includes even a very simple “constant model”,

AIED 2015 Workshop Proceedings - Vol 5

28



which leads to random selection of practiced item. In real setting we would be
reluctant to apply such a model, as it is in contrary with the advertised intelligent
behavior of our educational systems. However, experiments with this model in
simulated setting provide interesting results — they clearly demonstrate that
differences in predictive accuracy of models do not depend only on the intrinsic
quality of used student models, but also on the way the data were collected.

Our analysis shows one particularly interesting aspect of student modeling.
As we improve student models applied in educational systems, we should expect
that evaluations of predictive accuracy performed over these data will show
worse absolute values of performance metrics and smaller and smaller differences
between models (even if models are significantly different), just because virtues
of our models enable us to collect less predictable data.
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Abstract. Classification evaluation metrics are often used to evaluate
adaptive tutoring systems— programs that teach and adapt to humans.
Unfortunately, evidence suggests that existing convention for evaluating
tutoring systems may lead to suboptimal decisions. In a companion pa-
per, we propose Teal, a new framework to evaluate adaptive tutoring. In
this paper we propose an alternative formulation of Teal using simulated
learners. The main contribution of this novel formulation is that it en-
ables approximate inference of Teal, which may useful on the cases that
Teal becomes computationally intractable. We believe that this alterna-
tive formulation is simpler, and we hope it helps as a bridge between the
student modeling and simulated learners community.

1 Introduction

Adaptive systems teach and adapt to humans and improve education by optimiz-
ing the subset of items presented to students, according to their historical per-
formance [3], and on features extracted from their activities [6]. In this context,
items are questions, or tasks that can be graded individually. Adaptive tutor-
ing may be evaluated with randomized control trials. For example, in a seminal
study [3] that focused on earlier adaptive tutors, a controlled trial measured the
time students spent on tutoring, and their performance on post-tests. The study
reported that the adaptive tutoring system enabled significantly faster teaching,
while students maintained the same or better performance on post-tests

Unfortunately, controlled trials can become extremely expensive and time
consuming to conduct: they require institutional review board approvals, ex-
perimental design by an expert, recruiting and often payment of enough par-
ticipants to achieve statistical power, and data analysis. Automatic evaluation
metrics improve the engineering process because they enable less expensive and
faster comparisons between alternative systems.

The adaptive tutoring community has tacitly adopted conventions for evalu-
ating tutoring systems [4]. Researchers often evaluate their models with classifi-
cation evaluation metrics that assess the student model component of the tutor-
ing system— student models are the subsystems that forecast whether a learner
will answer the next item correctly. However, automatic evaluation metrics are

AIED 2015 Workshop Proceedings - Vol 5

31



intended to measure an outcome of the end user. For example, the PARADISE [9]
metric used in spoken dialogue systems correlates to user satisfaction scores. We
are not aware of evidence that supports that classification metrics correlate with
learning outcomes; yet there is a growing body of evidence [2, 5] that suggests
serious problems with them. For example, classification metrics ignore that an
adaptive system may not help learners— which could happen with a student
model with a flat or decreasing learning curve [1,8]. A decreasing learning curve
implies that student performance decreases with practice; this curve is usually
interpreted as a modeling problem, because it operationalizes that learners are
better off with no teaching.

We study a novel formulation of the Theoretical Evaluation of Adaptive
Learning Systems (Teal) [5] evaluation metric. The importance of evaluation
metrics is that they help practitioners and researchers quantify the extent that
a system helps learners.

2 Theoretical Evaluation of Adaptive Learning Systems

In this section, we just briefly summarize Teal and do not compare it with a re-
lated method called ExpOppNeed [7]. Teal assumes the adaptive tutoring system
is built using a single-skill Knowledge Tracing Family model [3,6]. Knowledge
Tracing uses a Hidden Markov Model (HMM) per skill to model the student’s
knowledge as latent variables. It models whether a student applies a practice
opportunity of a skill correctly. The latent variables are used to model the latent
student proficiency, which is often modeled with a binary variable to indicated
mastery of the skill.

To use Teal on data collected from students, we first train a model using an
algorithm from the Knowledge Tracing family, then we use the learned parame-
ters to calculate the effort and outcome for each skill.

— Effort: Quantifies how much practice the adaptive tutor gives to students.
In this paper we focus on counting the number of items assigned to students
but, alternatively, amount of time could be considered.

— Outcome: Quantifies the performance of students after adaptive tutoring.
For simplicity, we operationalize performance as the percentage of items that
students are able to solve after tutoring. We assume that the performance
on solving items is aligned to the long-term interest of learners.

Algorithm 1 describes our novel formulation. Teal calculates the expected
number of practice that an adaptive tutor gives to students. We assume that the
tutor stops teaching a skill once the student is very likely to answer the next
item correctly according to a model from the Knowledge Tracing Family [6]. The
adaptive tutor teaches an additional item if two conditions hold: (i) it is likely
that the student will get the next item wrong— in other words, the probability
of answering correctly the next item is below a threshold 7; and (ii) the tutor
has not decided to stop instruction already.

The inputs of Teal are:
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— Real student performance data from m students practicing a skill. Data from
each student is encoded into a sequence of binary observations of whether
the student was able to apply correctly the skill at different points in time.

— A threshold 7 € {0...1} that indicates when to stop tutoring. We opera-
tionalize this threshold as the target probability that the student will apply
the skill correctly.

— A parameter T that indicates the number of practice opportunities each of
the simulated students will practice the skill.

Algorithm 1 Teal algorithm for models with one skill per item

Require: real student data y™ ...y™ threshold 7, # of simulated time steps T
1: function TEAL
0« Knowledge,’I‘raCing(ym e y<m))

e+~ {}

for § € get_simulated_student(#,T") do:
e + calculate_effort(y,0, 7)
if e<T then
s < calculate_score(¥, e)
else

s < imputed_value
return mean(e), mean(s)

o

—_

Teal learns a Knowledge Tracing model from the data collected from real
students interacting with a tutor. Our new formulation uses simulated learners
sampled from the Knowledge Tracing parameters. This enables us to decide how
many simulated students to generate. Our original formulation required 2™ se-
quences to be generated, which can quickly become computationally intractable.
If an approximate solution is acceptable, our novel formulation allows more ef-
ficient calculations of Teal. Teal quantifies the effort and outcomes of students
in adaptive tutoring. Even though measuring effort and outcomes is not novel
by itself, Teal’s contribution is measuring both without a randomized trial. Teal
quantifies effort as how much practice the tutor gives. For this, we count the
number of items assigned to students. For a single simulated student, this is:

calculate_effort(yy,...,yr,0,7) = argminp(ys|y1 . .. ye—1,0) > 7 (1)
t

The threshold 7 implies a trade-off between student effort and scores and re-
sponds to external expectations from the social context. Teal operationalizes the
outcome as the performance of students after adaptive tutoring as the percentage
of items that students are able to solve after tutoring:

0 t
calculate_score(yi, ..., yr,e) = Z 7(%1’1001@% ) (2)
—e

t=e
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Here, §(-,-) is the Kronecker function that returns 1 iff its arguments are equal.

3 Discussion

Simulation enables us to measure effort and outcome for a large population
of students. Previously, we required Teal to be computed exhaustively on all
student outcomes possibilities. We relax the prohibitively expensive requirement
of calculating all student outcome combinations. Our contribution is that Teal
can be calculated with a simulated dataset size that is large yet tractable.
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Abstract. Problems with many solutions and solution paths are on the
frontier of what non-programmers can author with existing tutor au-
thoring tools. Popular approaches such as Example Tracing, which al-
low authors to build tutors by demonstrating steps directly in the tutor
interface. This approach encounters difficulties for problems with more
complex solution spaces because the author needs to demonstrate a large
number of actions. By using SimStudent, a simulated learner, it is pos-
sible to induce general rules from author demonstrations and feedback,
enabling efficient support for complexity. In this paper, we present a
framework for understanding solution space complexity and analyze the
abilities of Example Tracing and SimStudent for authoring problems in
an experimental design tutor. We found that both non-programming ap-
proaches support authoring of this complex problem. The SimStudent
approach is 90% more efficient than Example Tracing, but requires spe-
cial attention to ensure model completeness. Example Tracing, on the
other hand, requires more demonstrations, but reliably arrives at a com-
plete model. In general, Example Tracing’s simplicity makes it good for a
wide range problems, a reason for why it is currently the most widely used
authoring approach. However, SimStudent’s improved efficiency makes it
a promising non-programmer approach, especially when solution spaces
become more complex. Finally, this work demonstrates how simulated
learners can be used to efficiently author models for tutoring systems.

Keywords: Tutor Authoring, Intelligent Tutoring Systems, Cognitive
Modeling, Programming-by-Demonstration

1 Introduction

Intelligent Tutoring Systems (ITSs) are effective at improving student learning
across many domains— from mathematics to experimental design [10, 13, 5]. ITSs
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also employ a variety of pedagogical approaches for learning by doing, includ-
ing intelligent novice [7], invention [12], and learning by teaching [9]. Many of
these approaches require systems that can model complex solution spaces that
accommodate multiple correct solutions to a problem and/or multiple possible
paths to each solution. Further, modeling complex spaces can be desirable ped-
agogically: student errors during problem solving can provide valuable learning
opportunities, and therefore may be desirable behaviors. Mathan and Koedingers
spreadsheet tutor provides experimental support for this view— a tutor that al-
lowed exploration of incorrect solutions led to better learning compared to one
that enforced a narrower, more efficient solution path [7]. However, building tu-
toring systems for complex solution spaces has generally required programming.
What options are available to the non-programmer? Authoring tools have radi-
cally reduced the difficulties and costs of tutor building [2, 6], and have allowed
authoring without programming. Through the demonstration of examples di-
rectly in the tutor interface, an author can designate multiple correct solutions,
and many correct paths to each solution. Yet, the capabilities of these tools for
authoring problems with complex solution spaces has never been systematically
analyzed.

In this paper, we define the concept of solution space complexity and, through
a case study, explore how two authoring approaches deal with this complexity.
Both approaches (Example Tracing and SimStudent) are part of the Cognitive
Tutor Authoring Tools (CTAT) [1]. Our case study uses the domain of introduc-
tory experimental design, as problems in this area follow simple constraints (only
vary one thing at a time), but solutions can be arbitrarily complex depending on
how many variables are in the experiment and how many values each can take.

2 Solution Space Complexity

Solution spaces have varying degrees of complexity. Our framework for examining
complexity considers both how many correct solutions satisfy a problem and how
many paths lead to each solution. Within this formulation, we discuss how easily
a non-programmer can author tutors that support many solutions and/or many
paths to a solution.

How might this formulation of complexity apply to an experimental design tu-
tor? Introductory problems in this domain teach the control of variables strategy
(only manipulating a single variable between experimental conditions to allow
for causal attribution) [3]. Due to the combinatorial nature of experiments (i.e.,
multiple conditions, variables, and variable values), the degree of complexity in
a particular problem depends on how it is presented. To illustrate, imagine that
students are asked to design an experiment to determine how increasing the heat
of a burner affects the melting rate of ice in a pot (see Figure 1). The following
tutor prompts (alternatives to the prompt in Figure 1) highlight how different
problem framings will affect the solution complexity:

One solution with one path Design an experiment to determine how increas-
ing the heat of a Bunsen burner affects the rate at which ice in a pot will
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Experimental Design Tutor

Design an experiment to test the effect of | Heat
on some dependent variable.

Variables
Heat Lid Mass
Condition 1 High v On 3 10g s

Condition 2 Low s On s 109 :

Fig. 1. Experimental design tutor interface

melt by assigning the first legal value to the variables in left to right, top
down order as they appear in the table.

One solution and many paths Design an experiment to determine how in-
creasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt by assigning the first legal value to variables.

Many solutions each with one path Design an experiment to determine how
increasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt by assigning values to variables in left to right, top down order as
they appear in the table.

Many solutions with many paths Design an experiment to determine how
increasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt.

While these examples show that solution space complexity can be qualita-
tively changed (i.e., one solution vs. many solutions) by reframing a problem,
quantitative changes are also possible. For example, adding a fourth variable to
the interface in Figure 1 would require two more steps per solution path (setting
the variable for each condition), while adding another value to each variable in-
creases the number of possible options at each step of the solution path. As this
example illustrates, solution space complexity is not an inherent property of a
domain, but rather arises from an authors design choices.

3 Tutor Authoring

Our analysis focuses on the Cognitive Tutor Authoring Tools (CTAT), as CTAT
is the most widely used tutor authoring tool and the approaches it supports are
representative of authoring tools in general [2]. CTAT supports non-programmers
in building both tutor interfaces and cognitive models (for providing feedback).
Cognitive models can be constructed with Example Tracing or SimStudent. In
this section, we step through how Example-Tracing and SimStudent approaches
would be applied by non-programmers to the experimental design task, using the
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interface shown in Figure 1. Further, we discuss the features of each approach
for handling solution space complexity in the context of this example.

3.1 Example Tracing

When building an Example-Tracing tutor in CTAT, the author demonstrates
correct solutions directly in the tutoring interface. These demonstrated steps
are recorded in a behavior graph. Each node in the behavior graph represents a
state of the tutoring interface, and each link represents an action that moves the
student from one node to another. In Example Tracing each link is produced as a
result of a single action demonstrated directly in the tutor interface; many legal
actions might be demonstrated for each state, creating branches in the behavior
graph.

Figure 2 shows an example of our experimental design tutor interface and
an associated behavior graph. The particular prompt chosen has 8 solutions and
many paths to each solution. These alternative paths correspond to different
orders in which the variables in the experimental design can be assigned. The
Example-Tracing approach allows authors to specify that groups of actions can
be executed in any order. In the context of our example, this functionality allows
the author to demonstrate one path to each of the 8 unique solutions (these
8 paths are visible in Figure 2) and then specify that the actions along that
path can be executed in any order. Unordered action groups are denoted in the
behavior graph by colored ellipsoids.

ece Student Interface
File Edit View Graph Cognitive Model Sim.Student Tools Window Help Student

Tutor Type: | Example-tracing Tutor 5 |  Author Mode: | Test Tutor + | For Java Student Interfaces, Messages

@ etgraphpibrd x Experimental Design Tutor
Pl Design an experiment to test the effect of 'Heat
ZINS on some dependent variable.
p
A/‘;‘/ . ol 235 ‘47‘\\ \;\b Variables
st (o0 Caeta] o |state29]  [state3s| [stated3] [state50) state57 Heat Lid Mass D Help
I I | | I | Condition 1 | Value1l & Valuel :| [ Vauel
T CommEan{ 23 SamnCombaRoxt Vaius TH73. \CommCambotox?. Vil 0L ICammCon 115, JCommCambotoxs. Valus
L Condition 2 Value 1 $ Value 1 $ Value 1 $
state2|  [stated] state15) state30] state37 | statedd state51 state58’
Ko 15, CommComi 3L Comme L JCommCom 75. iCommCon] 89. JC l Vai $ ‘ig "
state3 svaém statel6]  [sate3t state3s|  [stated5 state52| [state59
- © : 5 s ' r

[Ordered  [p1 [et-graph-pibrd [Example-tracing Tutor [Tinterpretation

Fig. 2. An experimental design tutor (right) and its associated behavior graph (left).
This tutor supports students in designing an experiment to test the effect of heat on
a dependet variable. The correct answer is to pick two different values for the “Heat”
variable and to hold the values constant for other variables.

Once a behavior graph has been constructed for a specific problem (e.g. de-
termine the effect of heat on ice melting), that behavior graph can be generalized
to other problems (e.g. determine the effect of sunlight on plant growth) using
mass production. The mass production feature allows the author to replace spe-
cific values in the interface with variables and then to instantiate an arbitrary
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number of behavior graphs with different values for the variables. This approach
is powerful for supporting many different problems that have identical behavior
graph structure, such as replacing all instances of “heat” with another variable,
“sunlight”. However, if a problem varies in the structure of its behavior graph,
such as asking the student to manipulate a variable in the second column instead
of the first (e.g., “lid” instead of “heat”), then a new behavior graph would need
to be built to reflect the change in the column of interest.

How efficient is Example Tracing in building a complete cognitive model for
the experimental design problem? The complete model consists of 3 behavior
graphs (one for each of the three variable columns that could be manipulated).
Each graph took 56 demonstrations and required 8 unordered action groups to be
specified. Thus, the complete cognitive model required 168 demonstrations and
24 unordered group specifications. Using estimates from a previously developed
Keystroke-Level Model [6], which approximates the time needed for an error-free
expert to perform each interface action, we estimate that this model would take
about 27 minutes to build using Example Tracing. Notably, the ability to specify
unordered action groups offers substantial efficiency gains - without it, authoring
would take almost 100 hours. Furthermore, with mass production, this model
can generalize to any set of authored variables.

3.2 SimStudent

While the Example-Tracing behavior graph creates links from user demonstra-
tions, the SimStudent system extends these capabilities by inducing production
rule models from demonstrations and feedback (for details on this rule induction
see [8]). In the experimental design tutor, SimStudent might learn a rule that
sets one of the variables to an arbitrary value when no values for that variable
have been assigned. Then, it might learn different rules for setting a variables
second value based on whether or not it is being manipulated.

Authoring with SimStudent is similar to Example Tracing in that SimStu-
dent asks for demonstrations when it does not know how to proceed. However,
when SimStudent already has an applicable rule, it fires the rule and shows the
resulting action in the tutor interface. It then asks the author for feedback on
that action. If the feedback is positive, SimStudent may refine the conditions
of its production rules before continuing to solve the problem. If the feedback
is negative, SimStudent will try firing a different rule. When SimStudent ex-
hausts all of its applicable rules, it asks the author to demonstrate a correct
action. Figure 3 shows how SimStudent asks for demonstrations and feedback.
When authoring with SimStudent, the author does not have to specify rule or-
der - as long as a rule’s conditions are satisfied, it is applicable. Authoring with
SimStudent produces both a behavior graph (of the demonstrations and actions
SimStudent took in the interface) and a production rule model.

To evaluate the efficiency of the SimStudent approach we constructed a com-
plete model for the experimental design tutor. It can be difficult to determine
when a SimStudent model is correct and complete from the authoring interac-
tions alone. In most cases the SimStudent model is evaluated with set of held-out
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Experimental Design Tutor

Design an experiment to test the effect of 'Heat
on some dependent variable.

Variables

Experimental Design Tutor

Design an experiment to test the effect of 'Heat
on some dependent variable.

Variables

Heat Lid Mass Heat Lid Mass
Condition 1 Value 1 s Value 1 s Value 1 2 |e Condition 1 Value 1 = Value 1 = Value 1
Condition 2 Value 2 + Value 1 v Value 1 $ Condition 2 Value 1 > Value 1 = Value 1
o Applying the rule v1 [ ] SimStudent is asking for a hint

I'm stuck. Idon'tknow what to do next. Please show me whatto do.
I entered "Value 1" into JCommComboBox5.

=’ Do you think that would be a good move?

=—"1] oK

No Yes

Fig. 3. SimStudent asking for feedback (left) and for a demonstration (right).

test problems (i.e., unit tests). However, in this case the learned rules were sim-
ple enough to evaluate by direct inspection. We noticed that SimStudent learned
one correct strategy, but had not explored other solutions. This is typical of Sim-
Student - once it learns a particular strategy it applies it repeatedly. Therefore,
authors must give it additional demonstrations of alternative paths. With the
experimental design tutor, we noticed that SimStudent was always choosing the
first value for non-manipulated variables, so we gave it additional demonstra-
tions where non-manipulated variables took values besides those demonstrated
on the initial run.

Ultimately, SimStudent acquired a complete model after 7 demonstrations
and 23 feedback responses. Using the same Keystroke-Level Model from [6], we
estimate that building a cognitive model using SimStudent would take an error-
free expert about 2.12 minutes — much shorter than Example Tracing. Like
Example Tracing, the model produced by SimStudent can work with arbitrary
variables. Unlike Example Tracing, the learned model can work for unauthored
variables; for example, students could define their own variables while using the
tutor. This level of generality could be useful in inquiry-based learning envi-
ronments [4]. Finally, if another variable column was added to the tutor, the
SimStudent model would be able to function without modification. For Exam-
ple Tracing, such a change would constitute a change to the behavior graph
structure, so a completely new behavior graphs would need to be authored to
support this addition.

4 Discussion

Both Example Tracing and SimStudent can create tutors for problems with
complex solution spaces. However, our analysis shows that the two approaches
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differ in terms of their efficiency and, as a result, how many solutions and paths
they can handle in practice.

First, the Example-Tracing approach worked very well, even though the ex-
perimental design problems have a combinatorial structure. In particular, un-
ordered action groups and mass production drastically reduced the number of
demonstrations needed to cover the solution space, 168 vs. 40,362. The simplic-
ity of Example Tracing combined with the power afforded by these features is
likely why Example Tracing is the most widely used authoring approach today

[2].

The SimStudent approach was more efficient than Example Tracing (approx.
2.12 vs. 27 minutes), but this comparison requires several caveats. The machine
learning mechanisms of SimStudent generalize demonstrations and feedback into
rules, which allows SimStudent to only model unique actions and the conditions
under which they apply. However, this means SimStudent may not acquire a
complete model. In the experimental design case study, SimStudent at first only
learned that non-manipulated variables take their first value (rather than any
value that is constant across conditions). In general, this problem arises when
SimStudent acquires a model that can provide at least one correct solution for
any problem. In these situations, it never prompts an author to provide alter-
native demonstrations; leading an unsuspecting author to create an incomplete
model. A related complication is determining when the SimStudent model is
complete. While determining the completeness of models in both Example Trac-
ing and SimStudent can be difficult, authors must attempt to infer completeness
from SimStudent’s problem solving performance— a method that can be rather
opaque at times. Thus, an open area for simulated learning systems is how best
to evaluate the quality of learned models.

Currently
Infeasible for
Non-Programmers
# of Paths
per Solution
SimStudent
Example

Tracing

\

# of Solutions

Fig.4. How the space of solution space complexity is handled by existing non-
programmer authoring approaches.

AIED 2015 Workshop Proceedings - Vol 5

41



Overall our findings, when paired with those of previous work [6], suggest
an interpretation depicted in Figure 4. In this figure the potential space of com-
plexity is depicted in terms of number of unique solutions and number of paths
per solution. The inner region denotes the area of the complexity space where
we believe Example Tracing will maximize non-programmers’ authoring utility.
This region is skewed towards a higher number of paths, owing to Example
Tracing’s capacity to specify unordered actions. This portion of the complexity
space contains many of the tutors that have already been built using Example
Tracing [2]. As the complexity of a problem’s solution space increases, Example
Tracing becomes less practical (though still capable) and SimStudent becomes
a more promising option, despite the caveats for using it. SimStudent’s power
of rule generalization gives it the ability to deal with more paths and unique
solutions with less author effort, however, these capabilities come with the risk
of producing incomplete models (without the author being aware).

Notably missing in the figure is any coverage of the upper right quadrant.
This area would be a fruitful place to direct future work that supports non-
programmers in authoring problems with many solutions with many paths. In
particular, simulated learning systems might be extended to give non-programmers
access to this portion of the space. One existing approach for dealing with highly
complex solution spaces is to only model the aspects of the space that students
are most likely to traverse. For example, work by Rivers and Koedinger [11] has
explored the use of prior student solutions to seed a feedback model for intro-
ductory programming tasks. As it stands this area can only be reached using
custom built approaches and would benefit from authoring tool research.

One limitation of our current approach is the assumption that there is a body
of non-programmers that wants to build tutors for more complex problems. Our
analysis here suggests that there is an open space for non-programming tools
that support highly complex solution spaces, but it is less clear that authors
have a desire to create tutors in this portion of the space. A survey of authors
interested in building complex tutors without programming would help to shed
light on what issues non-programmers are currently having in building their
tutors. It is important that such a survey also include the perspective of those
outside the normal ITS community to see if there are features preventing those
who are interested from entering the space.

From a pedagogical point of view, it is unclear how much of the solution
space needs to be modeled in a tutor. Waalkens et al. [16] have explored this
topic by implementing three versions of an Algebra equation solving tutor, each
with progressively more freedom in the number of paths that students can take
to a correct solution. They found that the amount of freedom did not have
an effect on students learning outcomes. However, there is evidence that the
ability to use and decide between different strategies (i.e. solution paths) is
linked with improved learning [14]. Further, subsequent work [15] has suggested
that students only exhibit strategic variety if they are given problems that favor
different strategies. Regardless of whether modeling the entire solution space is
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pedagogically necessary, it is important that available tools support the ability to
model complex spaces so that these research questions can be further explored.

5 Conclusion

The results of our analysis suggest that both the Example Tracing and Sim-
Student authoring approaches are promising methods for non-programmers to
create tutors even for problems with many solutions with many paths. More
specifically, we found that SimStudent was more efficient for authoring a tutor
for experimental design, but authoring with SimStudent had a number of caveats
related to ensuring that the authored model was complete. In contrast, Example
Tracing was simple to use and it was clear that the authored models were com-
plete. Overall, our analysis shows that Example Tracing is good for a wide range
of problems that non-programmers might want to build tutors for (supported
by its extensive use in the community [2]). However, the SimStudent approach
shows great promise as an efficient authoring approach, especially when the so-
lution space becomes complex. In any case, more research is needed to expand
the frontier of non-programmers’ abilities to author tutors with complex solution
spaces.

Finally, this work demonstrates the feasibility and power of utilizing a simu-
lated learning system (i.e., SimStudent) to facilitate the tutor authoring process.
In particular authoring tutors with SimStudent took only 10% of the time that it
took to author a tutor with Example-Tracing, a non-simulated learner approach.
Educational technologies with increasingly complex solution spaces are growing
in popularity (e.g. educational games and open-ended learning environments),
but current approaches do not support non-programmers in authoring tutors
for these technologies. Our results show that simulated learning systems are a
promising tool for supporting these non-programmers. However, more work is
needed to improve our understanding of how simulated learners can contribute
to the authoring process and how the models learned by these systems can be
evaluated.
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Abstract. We discuss methods for evaluating simulated learners associated
with four different scientific and practical goals for simulated learners. These
goals are to develop a precise theory of learning, to provide a formative test of
alternative instructional approaches, to automate authoring of intelligent tutor-
ing systems, and to use as a teachable agent for students to learn by teaching.
For each goal, we discuss methods for evaluating how well a simulated learner
achieves that goal. We use SimStudent, a simulated learner theory and software
architecture, to illustrate these evaluation methods. We describe, for example,
how SimStudent has been evaluated as a theory of student learning by compar-
ing, across four domains, the cognitive models it learns to the hand-authored
models. The SimStudent-acquired models generally yield more accurate predic-
tions of student data. We suggest future research into directly evaluating simu-
lated learner predictions of the process of student learning.

Keywords: cognitive models, learning theory, instructional theory

1 Introduction

When is a simulated learner a success? We discuss different approaches to evaluating
simulated learners (SLs). Some of these evaluation approaches are technical in nature,
whether or how well a technical goal has been achieved, and some are empirical,
whereby predictions from the SL are compared against data. These approaches can be
framed with respect to four goals for developing SLs (see Table 1). These goals have
been pursued in prior SL research, such as the use of “pseudo-students” [1] to test the
quality of an instructional design (#2 in Table 1). Before describing different evalua-
tion approaches appropriate for different goals, we first introduce SimStudent.

1.1  SimStudent: A Simulated Learner Theory and Software Architecture

SimStudent [2,3] is an SL system and theory in the class of adaptive production sys-
tems as defined by [4]. As such, it is similar to cognitive architectures such as ACT-R
[5], Soar [6], and Icarus [7], however, it distinctly focuses on modeling inductive
knowledge-level learning [8] of complex academic skills learning. SimStudent learns
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from a few primary forms of instruction, including examples of correct actions, skill
labels on similar actions, clues for what information in the interface to focus on to
infer a next action, and finally yes-or-no feedback on actions performed by SimStu-
dent.

Table 1. Scientific and Practical Goals for Simulated Learners (SLs)

1. Precise Theory. Use SLs to develop and articulate precise theory of learning.
a.  Cognitive Model. Create theories of domain expertise
b.  Error Model. Create theories of student domain misconceptions
c.  Prior Knowledge. Create theories of how prior knowledge changes learning
d.  Learning Process. Create theories of change in knowledge and performance
Instructional Testing. Use SLs as a “crash test” to evaluate instruction

3. Automated Authoring. Use SLs to automatically an intelligent tutoring system

4. Teachable Agent. Use SLs as a teachable agent or peer

To tutor SimStudent, a problem is entered in the tutoring interface (e.g., 2x = 8 in
row 1 of Figure 1). SimStudent attempts to solve the problem by applying productions
learned so far. If an applicable production is found, it is fired and problem interface is
updated. The author then provides correctness feedback on SimStudent’s step. If no
correct production application is found, SimStudent asks the author to demonstrate
the next step directly in the interface. When providing a demonstration, the author
first specifies the focus of attention (i.e. input fields relevant to the current step) by
double-clicking the corresponding interface elements (e.g., the cells containing 2x and
8 in Figure 1). The author takes action using the relevant information (e.g., entering
divide 2 in Figure 1). Finally, the author specifies a skill name by clicking on the
newly added edge of the behavior graph. This skill label is used to help guide Sim-
Student’s learning and to make production rule names more readable.

SimStudent uses three machine-learning mechanisms (how, where, and when) to
acquire production rules. When given a new demonstration (i.e., a positive example of
a rule), SimStudent uses its zow learner to produce a general composition of functions
that replicate the demonstrated steps and ones like it. For example, in Figure 1, when
given the demonstration “divide 2" for the problem 2x=8, SimStudent induces that
the result of the “get-first-integer-without-sign” function when applied to left side of
the problem and appended to the word “divide” explains the demonstration.

After an action sequence has been discovered, SimStudent uses its where learner to
identify a generalized path to the focus of attention in the tutor interface. In Figure 1,
the where learner discovers retrieval paths for the three cells in the first column. The-
se paths are generalized as more positive examples and are acquired for a given rule.
For example, when the author demonstrates the application of the divide rule shown
in Figure 1 to the second row of the equation table, then the production retrieval path
is generalized to work over any row in the equation table.

Finally, after learning an action sequence and general paths to relevant infor-
mation, SimStudent uses its when learner to identify the conditions under which the
learned production rule produces correct actions. For example, in Figure 1 SimStu-
dent learns that this rule can only be correctly applied when one side of the equation
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has a coefficient. In situations when SimStudent receives positive and negative feed-
back on its rule applications, it uses the when learner to update the conditions on the
rules. Note, the how and where learners primarily use positive examples.

Equation Transformation
2x p— 8
Production rule induced from
step demonstrated by author
—_ (defrule divide
{ - (problem (interface-elements??2?2?2?7?7?
F Edit View Graph Cognitive Model Sim. Student T ?tablel ?table2 ?table3 ?))
TutoNype: = Simulated St... :  Author Mode = De ?tablel <- (table (columns ?column1))

?columnl <- (column (cells ?celll 2?2 ? ?7?))
?celll <- (cell (value ?vall&™nil))
?table2 <- (table (columns ?column2))

[Confict e (Jess Console \WME Editor (Group Editor

?cell2 <- (cell (value ?val2&™nil) )

Each step performed

by author or | ?table3 <- (table (columns ?column3))
SimStudent is 1.d Table3 CIRL1, divide ?column3 <- (column (cells ?cell3??? ?7?))
displayed in CTAT divide simSt ?cell3 <- (cell (name ?selection) (value nil) )

(bind ?input (skill-divide ?val3))

associated Jabel I 1 (test (has-coefficient ?vall))
=>
3. dorminTablel CI1RZ, x
' ) (bind ?val3 (get-first-integer-without-sign ?vall))
div-typein simSt

(predict-algebra-input ?selection UpdateTable ?input)
b s iz < (modify ?cell3 (value ?Input)))

Fig. 1. After entering a problem, “2x=8” (top left), teaching of SimStudent occurs either by
giving yes-or-no feedback when SimStudent attempts a step or by demonstrating a correct step
when SimStudent cannot (e.g., “divide 27).

SimStudent is also capable of learning the representation of the chunks that make
up the production system’s working memory and are the informational basis on which
productions are learned. It does so using an unsupervised grammar induction ap-
proach [3]. This feature sets it apart from other production rule learning systems.

2 Evaluating Simulated Learners as Theories of Learning

It is helpful to distinguish a general theory of learning from a theory of student learn-
ing. We focus on student learning because of the goals of Al in Education. However,
it is worth mentioning evaluation criteria for a general learning theory, such as how
quickly and independently learning takes place and how general and accurate is re-
sulting performance. These criteria facilitate comparative evaluations. For instance,
hierarchical Bayesian models are arguably better models of learning than other classi-
fication or neural network models because they learn as well with fewer examples [9].

2.1  Good Learning Theory Should Generate Accurate Cognitive Models

A student learning theory should produce the kind of expertise that human students
acquire. In other words, the result of teaching an SL should be a cognitive model of
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what human student’s know after instruction. Thus, one way to evaluate an SL is to
evaluate the quality of the cognitive models it produces. We proposed [10] six con-
straints to evaluate the quality of a cognitive model: 1) solution sufficiency, 2) step
sufficiency, 3) choice matching, 4) computational parsimony, 5) acquirability, and 6)
transfer. The first two are empirical and qualitative: Is the cognitive model that the SL
acquires able to solve tasks and do so with steps that are consistent with human stu-
dents? The third is quantitative: Does the frequency of strategy use and common error
categories generated by the cognitive model on different tasks correspond with the
same frequencies exhibited by human students? The last three are rational in charac-
ter, involving inspection of the cognitive model.

These constraints were designed with hand-authored models in mind, so some, like
the acquirability constraint (#5), appear trivial in the SL context. There is no question
that the components of an SL-produced cognitive model are plausibly acquired be-
cause the SL does, in fact, acquire them. Similarly, the solution sufficiency constraint
(#1) is straightforwardly achieved if the SL does not indeed succeed in learning the
task domain. If the cognitive model that is produced solves problems using the kinds
of intermediate steps used in student solutions, for example, it performs its solution in
a step-based tutoring system interface, then the step sufficiency constraint (#2) is met.

How, then, can the remaining constraints be evaluated? In [11], we employed an
educational data mining approach that evaluates the accuracy of a cognitive model by
a “smooth learning curve” criteria [cf., 12,13]. Using a relatively simple statistical
model of how instructional opportunities improve the accuracy of knowledge, this
approach can measure and compare cognitive models in terms of their accuracy in
predicting learning curve data. To employ the statistical model fit, the cognitive mod-
el is simplified into a “Q matrix”, which maps each observed task performed (e.g.,
entering a step in a problem solving) to the knowledge components hypothesized to
be needed to successfully perform that task. For any appropriate dataset uploaded into
DataShop (learnlab.org/DataShop), the website allows users to edit and upload alter-
native cognitive models (in the Q matrix format), automatically performs statistical
model fits, renders learning curve visualizations, and displays a rank ordering of the
models in terms of their predictive accuracy [14].

We used this approach to evaluate the empirical accuracy of the cognitive models
that SimStudent learns as compared to hand-authored cognitive models [11]. SimStu-
dent was tutored in four domains: algebra, fractions, chemistry, and English grammar,
in which we had existing human data and existing hand-authored cognitive models. In
each domain SimStudent induced, from examples and from practice with feedback,
both new chunk structures to represent the organization (or “grammar”) of the percep-
tual input and new production rules that solve problems (e.g., add two fractions) or
make decisions (e.g., select when to use “the” or “a” in English sentences). In each
case, the production rules that SimStudent acquired were converted into the Q matrix
format. Then the DataShop cognitive model comparison was employed to compare
whether these models fit student learning curve data better than the hand-authored
cognitive models do.

In all four domains, the SimStudent-acquired cognitive models made distinctions
not present in the hand-authored models (e.g., it had two different production rules
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across tasks for which the hand-authored model had one) and thus it tended to pro-
duce models with more knowledge components (as shown in Table 2). For example,
SimStudent learned two different production rules for the typical last step in equation
solving where one production covered typical cases (e.g., from 3x = 12 the student
should “divide by 3”) and another covered a perceptually distinct special case (e.g.,
from -x = 12 the student should divide by -1).

In all four domains, at least some of these distinctions improved the predictive fit
to the learning curve data for the relevant tasks. For example, the SimStudent-
acquired cognitive model in algebra leads to better accuracy because real students had
a much higher error rate on tasks like -x=12 (where the coefficient, -1, is implicit)
than on tasks like 3x=12 (where the coefficient, 3, is explicitly visible). In one domain
(Fraction Addition,), the SimStudent-acquired cognitive model failed to make a key
distinction present in the hand-authored model and thus, while better in some cases,
its overall fit was worse. In the three other domains, the SimStudent-acquired cogni-
tive models were found to be more accurate than the hand-authored cognitive models.

Table 2. A comparison of human-generated and SimStudent-discovered models.

Number of Production Rules Cross-Validated RMSE
Human-Generated SimStudent Human-Generated SimStudent
Model Discovered Model Model Discovered Model
Algebra 12 21 0.4024 0.3999
Stoichiometry 44 46 0.3501 0.3488
Fraction Addition 8 6 0.3232 0.3343
Article selection 19 22 0.4044 0.4033

In other words, this “smooth learning curve” method of evaluation can provide ev-
idence that an SL, SimStudent in this case, is a reasonable model of student learning
in that it acquires knowledge at a grain size (as represented in the components of the
cognitive model) that is demonstrably consistent with human data.

One limitation of this approach is that it indirectly compares an SL to human learn-
ers through the process of fitting a statistical model. In the case of algebra, for exam-
ple, SimStudent’s acquisition of two different productions for tasks of the form Nx=N
versus tasks of the form -x=N gets translated into a prediction that student perfor-
mance will be different in these situations, but the not direction of the difference. The
parameter estimation in statistical model fit yields the prediction for which of these
task categories (Nx=N or -x=N) is harder. A more direct comparison would not use
an intermediate statistical model fit. It would require the SL to not only produce a
relevant distinction, but to make a prediction of student performance differences, such
as whether it takes longer to successfully learn some kinds of tasks than others. Such
an evaluation approach is discussed in section 2.3.

2.2 Matching Student Errors and Testing Prior Knowledge Assumptions

As a model of student learning, a good SL should not only produce accurate perfor-
mance with learning, but should also produce the kinds of errors that students produce
[cf.,15]. Thus, comparing SL errors to student errors is another way to evaluate an SL.
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One theory of student errors is that students learn incorrect knowledge (e.g., incor-
rect production rules or schemas) from correct example-based instruction due to the
necessary fallibility of inductive learning processes. A further hypothesis is that in-
ductive learning errors are more likely when students have “weak” (i.e., more domain
general) rather than “strong” (i.e., more domain specific) prior knowledge. With weak
prior knowledge, students may interpret examples shallowly, paying attention to more
immediately perceived surface features, rather than more deeply, by making domain-
relevant inferences from those surface features. Consider example-based instruction
where a student is given the equation “3x+5 = 7” and told that “subtract 5” from both
sides is a good next step. A novice student with weak prior knowledge might interpret
this example shallowly, as subtracting a number (i.e., 5) instead of more deeply, as
subtracting a term (i.e., +5). As a consequence, the student may induce knowledge
that produces an error on a subsequent problem, such as “4x-2=5" where they subtract
2 from both sides. Indeed, this error is common among beginning algebra students.

We evaluated SimStudent by comparing induction errors it makes with human stu-
dent errors [16]. More specifically, we evaluated the weak prior knowledge hypothe-
sis expressed above. We conducted a simulation study by having multiple instances of
SimStudent get trained by the Algebra Cognitive Tutor. We compared SimStudent
behaviors with actual student data from the Cognitive Tutor’s logs of student interac-
tions with the system. When SimStudent starts with weak prior knowledge rather than
strong prior knowledge, it learns more slowly, that is, the accuracy of learned skills is
lower given the same amount of training. More importantly, SimStudent’s ability to
predict student errors increased significantly when given weak rather than strong prior
knowledge. In fact, the errors generated by SimStudent with strong prior knowledge
were almost never the same kinds of errors commonly made by real students.

In addition to illustrating how an SL can be evaluated by comparing its error gen-
eration to human errors, this example illustrates how an SL can be used to test as-
sumptions about student prior knowledge. In particular, SimStudent provides a theo-
retical explanation of empirical results [17] showing correlations between tasks meas-
uring prior knowledge (e.g., identify the negative terms in “3x-4 = -5-2x”) and subse-
quent learning of target skills (e.g., solving algebra equations).

Some previous studies of students’ errors focus primarily on a descriptive theory to
explain why students made particular errors, for example, repair theory [15], the theo-
ry of bugs [18], and the theory of extrapolation technique [19]. With SLs, we can
better understand the process of acquiring the incorrect skills that generate errors. The
precise understanding that computational modeling facilitates provides us with in-
sights into designing better learning environments that mitigate error formation.

2.3  Good Student Learning Theory Should Match Learning Process Data

Matching an SL’s performance to learning process data is similar to the cognitive
model evaluation discussed above in section 2.1. However, as indicated above, that
approach has the limitation of being an indirect comparison with human data whereby
there the fit to human data is, in a key sense, less challenging because it is mediated
by a separate step parameter estimation of a statistical model. A more direct compari-
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son is, in simple terms, to match the behavior of multiple instances of an SL (i.e., a
whole simulated class) with the behavior of multiple students. The SLs interact with a
tutoring system (like one shown in Figure 2) just as a class of human students would
and their behavior is logged just as human student data is. Then the simulated and
human student data logs can be compared, for example, by comparing learning curves
that average across all (simulated and human) student participants.

3 Evaluating Simulated Learners as Instruction Testers

A number of projects have explored the use of an SL to compare different forms of
instruction. VanLehn was perhaps the first to suggest such a use of a “pseudo student”
[1]. A version of ACT-R’s utility learning mechanism was used to show that the SL
was more successful when given error feedback not only on target performance tasks
(e.g., solving two-step equations), but also on shorter subtasks (e.g., one-step equa-
tions) [10]. A SimStudent study showed better learning from a combination of exam-
ples and problems to solve, than just giving it examples [2]. Another showed that
interleaving problem types is better for learning than blocking problem types because
interleaving provides better opportunities correcting over-generalization errors [20].

For a general theory of instruction, it is of scientific interest to understand the ef-
fectiveness of different forms of instruction for different kinds of SL systems even if
the SL is not an accurate model of student learning. Such understanding is relevant to
advancing applications of Al and is directly relevant to using an SL for automated
ITS authoring (next section). Such theoretical demonstrations may also have rele-
vance to a theory of human instruction as they may 1) provide theoretical explana-
tions for instructional improvements that have been demonstrated with human learn-
ers or 2) generate predictions for what may work with human students.

These instructional conclusions can only be reliably extended to human learners
when the SL is an accurate model of student learning. The most reliable evaluation of
an SL as instructional tester is a follow-up random assignment experiment with hu-
man learners that demonstrates that the instructional form that was better for the SLs
is also better for students. In the examples given above, there is some evidence that
the SLs are accurate models of student learning (e.g., past relevant human experi-
ments). However, in none of them was the ideal follow-up experiment performed.

4 Evaluating Simulated Learners as ITS Authoring Tools

In addition to their use as theories of learning and for testing instructional content,
simulated learning systems can also be used to facilitate the authoring of Intelligent
Tutoring Systems (ITS). In particular, once an SL has been sufficiently trained, the
cognitive model it learns can then be used directly as an expert model. Previous work,
such as Example Tracing tutor authoring [21], has explored how models can be ac-
quired by demonstration. However, by using a simulated learning system to induce
general rules form the demonstrations more general models can be acquired more
efficiently. For example, the use of SimStudent as authoring tool is still experimental,
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but there is evidence that it may accelerate the authoring process and produce more
accurate cognitive models than hand authoring. One demonstration explored the bene-
fits of a traditional programming by demonstration approach to authoring in SimStu-
dent versus a programming by tutoring approach [2]. In the latter, SimStudent asks
for demonstrations only at steps where it has no relevant productions. Otherwise, it
performs a step and asks the author for feedback as to whether the step is correct or
not. Programming by tutoring was found to be much faster than programming by
demonstration (77 minutes vs. 238 minutes) and produced a more accurate cognitive
model whereby there were fewer productions that produced over-generalization er-
rors. Programming by tutoring is now the standard approach because of its improved
efficiency and effectiveness. Better efficiency is obtained because many author
demonstrations are replaced by SimStudent actions with a quick yes-or-no response.
Better effectiveness is obtained because these actions expose over-generalization
errors to which the author responds “no” and the system learns new if-part precondi-
tions to more appropriately narrow the generality of the modified production rule.

A second demonstration of SimStudent as an authoring tool [22] compared author-
ing in SimStudent with authoring example-tracing tutors in CTAT. Tutoring SimStu-
dent has considerable similarity with creating an example-tracing tutor except that
SimStudent starts to perform actions for the author, which can be merely checked as
desirable or not, saving the time it otherwise takes for an author to perform those
demonstrations. This study reported a potential savings of 43% in authoring time.

5 Evaluating a Simulated Learner as a Teachable Agent

Simulated learner systems can be more directly involved in helping students learn
when they are used as a teachable agent whereby students learn by teaching [cf., 23].
Evaluating the use of an SL in this form ideally involves multiple steps. One should
start with an SL that has already received some positive evaluation as a good model of
student learning (see section 2). Then incorporate it into a teachable agent architecture
and, as early and often as possible, perform pilot students with individual students
[cf., 24 on think aloud user studies) and revise the system design. Finally, for both
formative and summative reasons, use random assignment experiments to compare
student learning from the teachable agent with reasonable alternatives.

Using SimStudent, we built a teachable agent environment, called APLUS, in
which students learn to solve linear equations by teaching SimStudent [25]. To evalu-
ate the effectiveness of APLUS and advance the theory of learning by teaching, we
conducted multiple in vivo experiments [25,26,27,28]. Each of the classroom studies
have been randomized controlled trials with two conditions varying one instructional
approach. In one study [25], the self-explanation hypothesis was tested. To do so, we
developed a version of APLUS in which SimStudent occasionally asked “why” ques-
tions. For example, when a student provided negative feedback to a step SimStudent
performed, SimStudent asked, “Why do you think adding 3 here on both sides is in-
correct?” Students were asked to respond to SimStudent’s questions either by select-
ing pre-specified menu items or entering a free text response. The results showed that
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the amount and the level of elaboration of the response had a reliable correlation with
students’ learning measured by online pre- and post-tests.

6 Conclusion

We outlined four general purposes for simulated learners (see Table 1) and reviewed
methods of evaluation that align with these purposes. To evaluate an SL as a precise
theory of learning, one can evaluate the cognitive model that results from learning,
evaluate the accuracy of error predictions as well as prior knowledge assumptions
needed to produce those errors, or evaluate the learning process, that is, the changes in
student performance over time. To evaluate an SL as an instructional test, one should
not only evaluate the SL’s accuracy as a theory of student learning, but should also
perform human experiments to determine whether the instruction that works best for
SLs also works best for human students. To evaluate an SL as an automated authoring
tool, one can evaluate the speed and precision of rule production, the frequency of
over-generalization errors and the fit of the cognitive models it produces. More ambi-
tiously, one can evaluate whether the resulting tutor produces as good (or better!)
learning than an existing tutor. Similarly, to evaluate an SL as a Teachable Agent, one
can not only evaluate the system features, but also perform experiments on whether
students learn better with that system than with reasonable alternatives.

Simulated learner research is still in its infancy so most evaluation methods have
not been frequently used. We know of just one such study [29] that evaluated an SL
as an instructional tester by following up a predicted difference in instruction with a
random assignment experiment with real students. It used an extension of the ACT-R
theory of memory to simulate positive learning effects of an optimized practice
schedule over an evenly spaced practice schedule. The same experiment was then run
with human students and it confirmed the benefits of the optimized practice schedule.
Such experiments are more feasible when the instruction involved is targeting simpler
learning processes, such as memory, but will be more challenging as they target more
complex learning processes, such as induction or sense making [31].

The space of instructional choices is just too large, over 200 trillion possible forms
of instruction [32], for a purely empirical science of learning and instruction to suc-
ceed. We need parallel and coordinated advances in theories of learning and instruc-
tion. Efforts to develop and evaluate SLs are fundamental to such advancement.
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Abstract. Programming is one of the basic competences in computer
science, despite its importance, it is easy to find students with difficulties
to understand the concepts required to use this skill. Several researchers
report that the impossibility to achieve a quick and effective feedback, is
one of the motivators for the problematic scenario. The professor, even
when helped by the TAs, is not able to perform the reviews quickly, for
this activity requires a huge amount of time. Fast feedback is extremely
important to enable the learning of any concept. Some researches suggest
the use of peer assessment as a means of providing feedback. However, it
is quite common that the feedback provided by peers is not adequate. In
this paper, we propose the use of simulated learners in a peer assessment
approach as part of the teaching and learning processes of programming.
Currently a software tool is being developed to include the proposal
described in this paper.

1 Introduction

Programming is one of the basic competences in computer science, it is the basis
for the development of several other competences required for professionals in
the area. However, despite its importance, it is easy to find students who are
demotivated and with difficulties to understand the concepts required to use
this skill [7]. These difficulties causes a large number of failures, dropouts or the
approval of students without the required level of knowledge [14] [6] [5].

Many factors are identified in literature as causing the problematic scenario
related to programming courses. Several researchers report that the impossibility
to achieve a quick, effective and individualized feedback, is one of the motivators
for the problematic scenario [10] [12]. An individual follow up is impossible due
to many students enrolled in the courses. In addition, there is a great complexity
involved in the evaluation of a program, for it is necessary to understand how the
programmer has developed the algorithm, so the professor needs to comprehend
the line of reasoning adopted by the student. In this way, the professor, even
when helped by the TAs, cannot provide an adequate and fast feedback about
the solutions created by the students. This activity will require a huge amount
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of time to manually open the code, compile, run and verify the output of every
students solution for programming assignment. If the grading depends on the
structure and the quality of code, in addition to program output correctness,
the situation is a lot worse. Traditionally the real comprehension state of the
contents of a programming course is known only months after the beginning of
the course, when an evaluation activity is performed. After an evaluation it may
be too late to make any intervention.

Fast feedback is of extreme importance to enable the learning of any con-
cept [12]. Thus, some researches have been developed with the aim to propose
methods and tools to facilitate the monitoring of the activities of students in
programming courses. Some of these researches, such as [9][11][13], suggests the
use of peer assessment as a means of providing fast and effective feedback. This
solution is broadly used in Massive Open Ounline Courses (MOOCs), as described
in [3][8], where the courses are applied to hundreds or thousands of people en-
rolled in them, and just as occurs in the context of programming, it is impos-
sible for the professor to evaluate each solution. However, the peer assessment
approach as a means of providing feedback has some problems. Many times the
feedback provided by peers is not adequate, because the results are often not
similar to the analysis of an expert [8]. It is quite common to find comments
that are summarized to a phrase of congratulation or critique.

The reasons related to lack of effectiveness of feedback provided are quite
distinct, these may occur due to poor understanding of the content of the activity,
because of the student’s low motivation, or due to the short time that one has
available for the activities.

In [2] paper, it was observed the impact of learning was observed when a
student is influenced by the performance of their peers, the authors describe
that some students are encouraged to perform better, but others experiencing
the same situations end up discouraged to perform better.

In this paper is proposed the use of simulated learners in a peer assessment
approach used as part of the teaching and learning processes of programming.
Two concerns are explored in this proposal: the first is related to the search of
methods that enable a positive influence between students; the second concern
is related to an approach that allows a less costly way of testing any proposal of
applicability of peer assessment approach.

This paper is divided in five sections. In Section 2 the concept of peer assess-
ment is presented. Observations on the implementation of peer assessment in a
programming course context are shown in Section 3. The proposal of using sim-
ulated learners in the context of peer assessment for introductory programming
is presented in Section 4. Finally the conclusions and future work are shown in
the last section.

2 Peer Assessment

Peer assessment, or peer review, is an evaluation method where students have
responsibilities that traditionally belong to professors only. Among these respon-
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sibilities there are the review and the critique of the solutions proposed by their
peers. This way, they can experience the discipline as students and also from
the perspective of a TA. Usually in a peer assessment environment, students
also conduct self assessment. This way, they can reflect on their solution when
compared to other solutions, develop their critical thinking skills and improve
understanding of the concepts covered in the course.

In traditional approach, the professor, even when helped by TAs, can not
provide fast and adequate feedback for each solution proposed by the students.
The comments provided by the professor are generic observations based on ob-
servation of all students solutions.

In accordance with [9], peer review is a powerful pedagogical method, because
once students need to evaluate the work of their peers, they begin to teach and
learn from each other. Thus, the learning process becomes much more active,
making the learning qualitatively better than the traditional approach. Sstudents
can spend more time on analysis and construction of their comments, creating
more particular descriptions on a given solution and enriching discussion about
the topic studied.

Thus, the use of peer review can reduce the workload on the professor, permit-
ting the professor to focus on other pedagogical activities [9][3]. This evaluation
approach can also enable the evaluation of large-scale complex exercises, which
can not be evaluated in a automatically or semi-automatic fashion [3][8].

The success of peer assessment approach is strongly influenced by the quality
of feedback provided. However, this feedback if often not adequate, the results
are often not similar to the analysis of an expert [8]. In [8] is described that in
many cases the evaluations of the students are similar to the TAs evaluation,
however there are situations where the evaluations are graded 10% higher than
the TAs evaluation, in extreme cases the grades could be 70% higher than the
TAs evaluation. In [3] is mentioned that in general, there is a high correlation
between the grades provided by students and TAs, but often in the evaluations
from students the grades are 7% higher than the grades given by TAs.

Thus, we can conclude that peer assessment approach is a promising eval-
uation method, however there are improvements and adjusts to be applied to
obtain richer discussions and more accurate assessments.

3 Peer Assessment in introductory programing courses

Human interaction is described as an essential feature for learning in many
domains, including the introductory programming learning [13]. In classroom
programming courses the contact between students occurs on a daily basis, al-
lowing, for example, the discussion of the problems presented in the exercise
lists, the developed solutions and the formation of groups for the projects of the
course. This contact is many times inexistent in online programming courses,
interactions in this environment are the human-machine type. Thus, using the
peer assessment approach may enable human interaction on online courses, or
enhance the interaction between humans in presencial classroom courses.
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To encourage the assimilation of the topics, the use of practical exercises is
quite common in programming courses, the practice of programming skills is
crucial for learning. Many researchers also argue that the programming learn-
ing involves the reading and understanding of third-party code. Through peer
assessment approach both characteristics can be obtained. The professor can
develop new exercises, or choose problems proposed by others, while students
will have to observe, understand and evaluate the codes of their peers, as well
to compare these codes with their solution.

In [11] the use of a peer assessment approach to the context of programming
courses is described, this approach is supported by a web application. The results
described on the paper have a high correlation between the evaluations of the
TAs and students, the correlation is lowest when the complexity of the exercise
is higher.

An approach of peer assessment evaluation for the context of programming
learning, also supported by a web application is presented in [9]. Five activities
where graded using peer assessment, the occurrence of conflicts ranged from 61
% to activity with a lower incidence of conflict, up to 80 % for the activity with
the highest occurrence of conflicts. The system considers that a conflict occurs
when the student does not agree with the assessment provided.

In [9] the authors describes that if the peer reviews are conducted in an
inadequate way, the failure rates can increase. For the teaching approach used
at the programming course described in [13] there are two types of activities
that require assessment, quizzes and mini projects. Among these activities only
the mini projects are evaluated through peer assessment. Thus, students are not
overloaded and the approach can be used appropriately.

Another problem that can emerge with the use of peer review in a program-
ming context, is the increase of plagiarism. Once the assessment activity will
be distributed among the students, the similarities of self-identification of codes
can become more complicated. However, solutions are widely used to carry out
the detection automatically similarities, such as MOSS [1] e GPLAG [4].

4 Simulated learners as peers in a peer assessment
environment for introductory programing courses

In previous sections the advantages and disadvantages associated with the use
of peer assessment in a general context, and when applied to the context of
programming courses have been described. In both cases, the success of the
approach is strongly influenced by the quality of the feedback given. Therefore,
it is necessary to identify situations where there is inadequate feedback as well
as conflict situations. Situations where inadequate feedback occurs are when, for
any reason, the feedback does not help in the learning process. Conflict situations
occur when the student does not agree with the assessment provided, or when
there are huge variations on the evaluations provided. To perform a validation
of this proposal or of any proposal involving peer assessment, it is necessary to
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allocate the resources of time, physical space and adequate human resources.
Thus, it can be said that the test of this approach is a costly activity.

Two concerns are explored in this proposal: how we can achieve methods that
enable a positive influence between students in peer assessment environments,
in other words, how a student can give a high quality feedback to their peers;
and how a peer assessment approach can be tested with a lower cost, since any
validation of these assessment approaches requires a huge amount of resources.

4.1 A scenario of use of peer assessment with simulated learners

Traditionally in a peer assessment environment, the professor must create the
assignment and a set of assessment criteria. Then students develop their solutions
observing the assessment criteria and submitting the solution to be evaluated by
their peers. Each student’s evaluation must meet the assessment criteria. The
students should provide comments to peers explaining the reasons associated to
the outcome and a grade or an evaluation concept (eg. A-, B+, C). Each student
will have their code evaluated by their peers, and should assess the codes of other
students. In Figure 1, it is illustrated the scenario previously described. There are
variations in ways peer assessment approach is used, the scenario just mentioned
has many characteristics which are similar to all the variations.

06 ®

2|

Student A

Professor creates the assignment
(1) and the criteria (2) to assess
the solutions

Each student creates a
solution (3) and submits it
to receive peers evaluation

Peer B

PeerC

_ =
tdenl A oy ?ﬁ,
—m—© FRo]

“Student A” solution is evaluated
by a group of peers (4)(5)(6).

“Student A” evaluates a group
of solutions of the peers (7)(8)(9).

Fig. 1. A traditional peer assessment environment

In any peer assessment approach, it is possible to adopt pairing algorithms.
Thereby, it is assured that evaluations are conducted by students with different
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levels of knowledge. A student with low understanding of the subject will not be
allocated to evaluate the work of another student in the same situation. Students
with difficulties can clarify their doubts, while students with good understanding
of the content should provide a good argumentation about their knowledge.
However, it is not possible to ensure that a student evaluates the code that is
the ideal for his/her learning and level of knowledge. As an example, in Figure 1,
it is not possible to know if student “A” code is the best for peers “B”, “C” and
“D” .

When a student does not agree with the evaluation provided by their peers,
he/she will be able to request the intervention of the professor. This conflict
situations are identified in [9]. However, in traditional peer assessment approach
is not possible to identify incorrect evaluations provided by a student, or students
that create biased evaluations only to help their fellows. As an example, in
Figure 1, it is possible to see that different grades were given, but it is not

possible to determine if the correct evaluations were given by peer “B”, “C” or
“D” .

Student A Sim. Learner A
|Each student creates a solution (3)|

Professor creates the
assignment (1) the criteria (2)
to assess the solutions and
a reference solution (3)

and submits it to receive peers
evaluation. Each Sim. Learner
generates “N” solutions (5).

Student A @

Sim. Learner A tydent ‘.

=@ S
Student C

%-b

“Sim. Learner A" different
solutions are evaluated by
a group of peers (9)(10)(11)

“Student A” solution is evaluated
by a group of peers (7) and a
group of Sim. Learners (6)(8).

Fig. 2. A peer assessment environment using simulated learners

In a peer assessment environment that uses simulated learners, it is possible
to solve the previous problems. As in traditional approach, the professor must
create the assignment and a set of assessment criteria; in addition to that, he/she
should provide a reference solution. Then, students develop their solutions, ob-
serving the assessment criteria and submitting the solution to be evaluated by
their peers. At the same time, once a pairing algorithm can perform pairing of
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the evaluators, each simulated learner must generate a code that is ideal for the
learning and appropriate to the level of knowledge of each one of their peers,
in this case, real students. Each student will have their code evaluated by their
peers and by simulated students, and they should assess codes of other students,
and codes of simulated students. In Figure 2 it is illustrated peer assessment
environment with simulated learners. As an example, in Figure 2, it is possible
to see that the simulated learner “A” generates a set of codes that are ideal for
each student: “A”, “B” and “C”.

The identification of incorrect evaluations provided by a student, as well
as students, who perform biased evaluations, could be carried out through the
comparison of student’s evaluations and the simulated student’s evaluations.
As an example, in Figure 2, it is possible to see that student “B”, made an
evaluation that is very different from the simulated learner’s evaluations. In this
way, it is possible to verify if the student did not understand the solution, or if
the evaluation was created to help their fellows only.

Providing useful solutions to student learning A useful solution for the
student learning does not always match the presentation of a correct and efficient
code. Within the context of peer review may be more useful to display an incor-
rect code, as a way to make students to provide a set of review observations. To
identify which type of code is best for a student; simulated learners can consult
the representation of their cognitive status. In that way, it will be possible to
the simulated learner identify the student misconceptions and errors in previous
assignments, and generate variations of the reference solution that suits best for
the student. Since multiple simulated students will be used, the codes that will
be shown to students can range from efficient, correct and complete solutions to
incorrect and/or incomplete solutions. Like that, it will be possible to check if
students have different skills related to the content. To generate the variations
from the reference solution, it is possible to combine testing techniques, such as
mutant generation. Each code can be generated through the use of data related
to the most common student’s mistakes, emulating these behaviors and creating
codes that are useful to learning. Once the research is in a preliminary stage, it
is still not clear which artificial intelligence approaches should be used on the
implementation of simulated students behaviors.

Assessment of students solutions Unlike what occurs in other contexts, for
programming the evaluation of a solution can be automated or semi-automated.
Typically a set of unit tests is applied to the code proposed by a student, who
receives an indication that his/her code may be correct or incorrect, but no hint
or comment is provided. Some researchers have investigated the use of different
techniques to help assessment of codes and provide some guidance; these tech-
niques usually employ software engineering metrics. Thus, simulated learners
must be able to identify which subset of metrics can be used to perform the
evaluation of the proposed solution for a student. The simulated learner should
select the set of metrics that fits best to the objectives of the assignment and
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the level of understanding that the student has at that moment. For each level
of learning the same student can learn better if the set of metrics is properly
selected. Each simulated student will use different strategies to evaluate the so-
lutions provided by real students. Therefore, a variation between evaluations of
simulated students is expected to occur. If an evaluation provided by a student
has a very large variation in relation to the set of evaluations of simulated stu-
dents, it will be necessary to investigate the motivation of this disparity. An
acceptable variation threshold can be used to identify incorrect evaluations pro-
vided by students.

Discussing assessment criterias Once software engineering metrics were used
in the evaluation, the explanation given by the simulated learner throughout
the presentation of a set of metrics, is associated to the explanation of the
metric choice and, possibly, of the snippet of the code where the observation
is pertinent. Thereby, the simulated learner can help the professor to identify
inadequate feedback, whenever an evaluation of a student is very different from
the evaluation of a simulated learner, the professor and his tutors can then
intervene.

4.2 Validation of peer assessent using simulated learners

Any validation of peer assessment approaches requires lots of physical space and
a huge amount of human resources. As an example, if a validation of a pairing
algorithm has to be done, it will be necessary to use a set of N students; this set
must allow the creation of different profiles for evaluation of the pairing alterna-
tives. The greater the possibilities of matching, the greater the amount of stu-
dents required. Through the use of simulated learners any operational proposal
of peer assessment can be tested at a much lower cost, since the physical space
and human resources are drastically reduced. The researcher can determine how
much of human resource will be available, replacing the students with simulated
students. The researcher can also specify the desired behavior of students; the
simulated students should emulate students with a high degree of understanding
of the contents or with low understanding. After obtaining initial results with
the use of simulated learners, the number of human individuals participating in
an experiment can be increased, since it may be interesting to obtain a greater
statistical power associated with the conclusions.

5 Conclusions and further work

In this paper, we have proposed the use of simulated learners in a peer assess-
ment approach adopted as a support part of a programming course. The use of
simulated learners as presented in this proposal aims to two goals: influence the
students to provide better quality feedback; and allow for a less costly validation
for peer assessment applied to programming contexts.
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The research associated with the proposal presented in this paper is in a pre-

liminary stage. Thus, the effectiveness of this proposal will be further evaluated
in controlled experiments executed in the future. An open source software tool
is being developed to include all aspects described throughout this proposal.
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Abstract. This paper proposes an approach for creating and testing
an multiagent systems based adaptive social educational game (SEG),
QuizMASter, using the concept of simulated learners to overcome exper-
imentation complexity and unpredictable student availability, as is typi-
cal with online learning environments. We show that simulated learners
can play two roles. First, it can be used for testing the game planning,
scheduling and adaptive assessment algorithms. With some degree of suc-
cess met with our initial experimentation with QuizMASter, advanced
planning and coordination algorithms are now needed to allow the game-
based assessment platform to realize its full potential. The multi-agent
system approach is suitable for modeling and developing adaptive be-
haviour in SEGs. However, as we have found with our early prototypes,
verifying and validating such a system is very difficult in an online context
where students are not always available. MAS-based assessment game
planning and coordination algorithms are complex and thus need sim-
ulated learners for testing purposes. Second, to overcome unpredictable
student availability, we modeled QuizMASter as a new class of socio-
technical system, human-agent collective (HAC). In the system, human
learners and simulated learners (smart software agents) engage in flexi-
ble relationship in order to achieve both their individual and collective
goals, while simulated learners are selected for serving as virtual team
members.

Keywords: social educational agents, multiagent systems, simulated
learners

1 Introduction

For decades, educational games have proven to be an effective means to motivate
learners and enhance learning. Social (multi-player) educational games (SEGs)
offer many opportunities to improve learning in ways that go beyond what a
single-player game can achieve because SEGs allow players to be social, compet-
itive, and collaborative in their problem solving. The presence of other players
can be used to increase playability and to help teach team-work and social skills.
SEGs promote intragroup cooperation and intergroup competition [1]. However,
existing SEGs share many of the shortcomings of classroom role-playing. Setting
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up existing SEGs is logistically challenging, expensive, and inflexible. Further-
more, players become bored after going through existing SEGs once or twice.

To test such a social educational game, we face two difficulties. One is how to
test the planning and scheduling algorithms. Another is how to meet the need
of agile team formation. In SEGs, group formation has big impact on group
learning performance. Poor group formation in social games can result to homo-
geneity in student characteristic such that the peer learning is ineffective. Thus,
there is a need to constitute a heterogeneous group SEGs that constitutes stu-
dents with different collaborative competencies and knowledge levels. However,
without empirical study it becomes difficult to conclude which group character-
istics are desirable in the heterogeneity as different game-based learning needs
may require different group orientations. Previous research has focused on var-
ious group orientation techniques and their impact on group performance like
different learning styles in group orientation [2—4]. However, there is need to in-
vestigate the impact of other group orientation techniques on group performance
like grouping students based on their collaboration competence levels. Further-
more, most of the previous research in group-formation focuses on classroom
based learning. Also, it lacks the true experiment design methodology that is
recommended when investigating learning outcomes from different game-based
learning strategies. Simulated learners methodology [5] has shown a promising
way to solve these challenges.

In this paper, we show that simulated learners can play two roles. First,
it can be used for testing the game planning, scheduling and adaptive assess-
ment algorithms. Second, working with human learners and forming human-
agent collectives (HAC), simulated learners serve as virtual team members to
enable asynchronous game-based learning in a context where student availabil-
ity is unpredictable. This paper is structured as follows: In Section 2 we discuss
recent advancements and related work. Section 3 describes QuizMASter. Section
4 presents the proposed architecture for development of QuizMASter. Section
5 explains how we intend to use simulated learners for testing QuizMASter.
Finally, Section 6 concludes.

2 Related Work

Researchers have found that learning can be more attractive if learning experi-
ences combine challenge and fun [6]. As social networks have become popular
applications, they have given rise to social games. This kind of game is played
by users of social networks as a way to interact with friends [7] and has be-
come a part of the culture for digital natives. Social games have unique features
that distinguish them from other video games. Those features are closely linked
with the features of social networks [8]. Social games can make a contribution
to social learning environments by applying game mechanics and other design
elements, ‘gamifying’ social learning environments to make them more fun and
engaging. For games to be effective as a learning tool, a delicate balance must
be maintained between playability and educational value [9,10], and between
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game design and learning principles. Methods have been proposed for making
valid inferences about what the student knows, using actions and events ob-
served during gameplay. Such methods include evidence-centered-design (ECD)
[11,12]; the learning progressions model [13], the ecological approach to design
of e-learning environments [14], stealth assessment [15], game analytics [16], and
learning analytics [17]. Most of the new concepts target an ever-changing learn-
ing environment and learner needs, as today’s education moves toward a digital,
social, personalized, and fun environment. Moreover, as is the case for all com-
petitive games, an equal match between players is essential to self-esteem and
to maintain a high degree of player interest in the game. Hence, we need mech-
anisms and models that can aggregate the current performance and preferences
of players, and accurately predict student performance in the game. Software
agents have been used to implement consistent long-term intelligent behaviour
in games [18], multi-agent collaborative team-based games [19], and adaptive
and believable non-player character agents simulating virtual students [20]. The
use of agent technologies leads to a system characterized by both autonomy
and a distribution of tasks and control [21]. This trend has two aspects. First,
game-based learning activities should be carefully orchestrated to be social and
enjoyable. Second, game scheduling and coordination should be highly adaptive
and flexible. However, nobody has yet developed models, algorithms, and mech-
anisms for planning, scheduling, and coordination that are suitable for creating
and testing SEGs.

3 QuizMASter

QuizMASter is designed to be a formative assessment tool that enables students
to be tested within a multi-player game [22]. Two or more students simultane-
ously log in remotely to the system via a Web-based interface. Each student is
represented by one avatar in this virtual world. Students are able to view their
own avatar as well as those of their opponents.

Each game has the game-show host who is also represented by an avatar
visible to all contestants [22]. The game-show host poses each of the game ques-
tions to all the contestants. The students hear the voice of the host reading each
question and view them displayed on their screens. They individually and inde-
pendently from one another answer each question by, for instance, selecting an
answer from available choices in a multiple-choice format. Each correct answer
would receive one mark. Figure 1 shows a screen shot of QuizMASter.

3.1 Characteristics of QuizMASter

The environment for QuizMASter has the following characteristics:

Flexibility. The environment for QuizMASter needs flexibility for game enact-
ment, to be able to cope with dynamic changes of user profiles, handle fragmen-
tation of playing and learning time needed to accomplish activities and tasks,
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Fig. 1. QuizMASter in Open Wonderland

adequately handle exceptional situations, predict changes due to external events,
and offer sufficient interoperability with other software systems in educational
institutions. Individual learners have particular interests, proficiency levels, and
preferences that may result in conflicting learning goals.

Social ability and interactivity. The environment for QuizMASter should
encourage interaction and collaboration among peers, and should be open to
participation of students, teachers, parents, and experts on the subjects being
taught. Web 2.0 has had a strong influence on the ways people learn and access
information, and schools are taking advantage of this trend by adopting social
learning environments. One way to engage learners in a collaborative production
of knowledge is to promote social rewards.

User control. One of the most desirable features of social education games is
to empower players with control over the problems that they solve. For example,
in QuizMASter, students, parents, and teachers can design new rules to create
their own games and modify the game elements to fit different knowledge levels.

Customization. Customization is a core principle that helps accommodate
differences among learners [23]. Teachers could build a QuizMASter that has its
own style and rules to determine the game’s level of difficulty, to gear the game
for specific goals or a specific group of learners. Some teachers may be interested
in sharing collections of rules to fit the learning and play styles of their students.
Like teachers, learners/players can be co-creators of their practice space through
building new game scenarios, creating their own rules, sharing their strategies
and making self-paced challenges [23].
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4 The Proposed Architecture

Multi-agent technologies are considered most suitable for developing SEGs as
it will lead to systems that operate in a highly dynamic, open, and distributed
environment. In an MAS-based SEG, each learner/player is represented as an
autonomous agent, called learner agent. MAS technologies, such as goal orienta-
tion and the Belief-Desire-Intention (BDI) paradigm, is used as the foundation
for the agent architecture. These learner agents are able to reason about the
learning goals, the strengths and weaknesses of learners and update the learner
models.

Repository Multi-Agent System Social

Environment Environment Educational
Game Game

Input commangs | Game Engine

(QuizMASter)
— -

Game
Feadback

Student Model

Fig. 2. Architecture for MAS-Based Social Educational Game Environment

Whenever a learner enters the system to play a social educational game, the
learner agent will retrieve her/his learner model and acquire preferences about
the current game-playing, and then send to a game management agent (GMA) of
the system. The GMA is designed for setting up and maintaining teams for the
system. The GMA will assign the learner to participate in a most suitable team
that is undermanned according to the profile and preferences of the learner. The
team will be configured in accordance with the game model by the GMA. Once
the team has been completely formed, the GMA will create a game scheduling
agent (GSA), a game host agent (GHA), and an assessment agent (AA) for
each team. The GSA will continuously generate a game sequence dynamically
adapted to the team’s knowledge level (represented as a combined learner model
[24]. The GHA will receive the game sequence from the scheduling agent and
execute game sequence with the learners in the team. It will also be responsible
for capturing data about learner/player performance. The AA will receive and
interpret game events and communicate with the learner agents to update the
learner model as necessary.

The GSA will dynamically schedule the game on the fly through interacting
with other agents with a coordination mechanism, considering both the cur-
rent world state and available resources, and solving conflicts in preferences and
learning progression between the agents. The goal of the GSA is to optimize
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the playability and educational values. We will model the game elements as
resources. To solve the distributed constraint optimization problem, we are de-
veloping multiagent coordination mechanisms and scheduling algorithms to be
used by the GSA.

Initial Experimental Scope

Evaluate Quiz ltems

Current Iteration

Quiz Items
“e
O Agent
o =
U Resource

Fig. 3. MAS-Based SEG Agent Interaction Model

4.1 Planning and Scheduling Algorithms

The planning algorithms refer to the (local) planning algorithm of learner agents.
To develop planning algorithms for learner agents, the following supporting mod-
els have been taken into consideration: (i) Learner models that accumulate and
represent beliefs about the targeted aspects of skills. They are expressed as prob-
ability distributions for competency-model variables (called nodes) describing
the set of knowledge and skills on which inferences are to be based. (ii) Evidence
models that identify what the learner says or does, and provide evidence about
those skills that express how the evidence depends on the competency-model
variables in a psychometric model. (iii) Task/action models that express situa-
tions that can evoke required evidence. To design an action model, we adopt a
model called Fuzzy Cognitive Goal Net [25] as the planning tool by combining
the planning capability of Goal Net and reasoning ability of Fuzzy Cognitive
Maps (FCMs). These FCMs give the learner agent a powerful reasoning ability
for game context and player interactions, giving the task model accurate context
awareness and learner awareness. We are developing coordination mechanisms
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for the GMA and the GSA to solve the problem of team formation, scheduling
and coordination in a highly flexible and dynamic manner. We considered the
following concepts or methods:

(i) Contract-net protocols (CNPs) are used as a coordination mechanism by
the GMA with a game model repository to timely form a team from all available
players, using mutual selection and exchanging information in a structured way
to converge on assignments. Each involved learner can delegate the negotiation
process to its agent. These agents will strive to find a compromise team-joining
decision obeying hard learning constraints while simultaneously resolving indi-
vidual conflicts of interest.

(ii) The problem of scheduling and customizing a social educational game can
be solved through social-choice-based customization. We view the SEG game-
play design as an optimization problem. Resources must be allocated through
strategically scheduling, and coordinating a group of players according to their
preferences and learning progressions. The constraints include key learning prin-
ciples that inform the design of mechanics: challenge, exploration, risk taking,
agency, and interactions [26-27]. The objective of the GSA is to maximize the
learnability and engagement of the learners in the group. Social choice theory
in MAS concerns the design and formal analysis of methods for aggregating
preferences of multiple agents and collective decision-making and optimizing for
preferences [28-29]. For example, we use a voting-based group decision-making
approach such as Single Transferable Voting [30] to aggregate learner preferences
and learning progression because it is computationally resistant to manipulation
[31]. The purpose is to take information from individuals and combine it to
produce the optimal result.

(iii) To support the need for dynamic decision making in the MAS-based
SEG architecture, our current line of investigation is the concept of social choice
Markov Decision Process (MDP) as recently proposed by Parkes and Procaccia
[32]. In a social choice MDP, each state is defined by “preference profiles”, which
contain the preferences of all agents against a set of alternatives for a given sce-
nario. The course of action from any given state is determined by a deterministic
social choice function (the policy, in the context of the MDP) that takes into
account the likelihood of transitions and their rewards. However, a preference
profile is subject to change over time, especially in a live SEG context. For ex-
ample, a learner that unexpectedly answers a question initially deemed beyond
the learner’s perceived level of comprehension would likely trigger a change of
belief in the agents and potentially alter their ranking of alternatives. And since
the number of alternatives in a SEG can be very large, the state space for any
given SEG is huge, making the computation of optimal decision-making policies
excessively difficult. We solve this problem by exploiting symmetries that exist
in certain game types (e.g. in a quiz game SEG format, using a reduced set of
question types that share common characteristics as a basis for alternatives as
opposed to individual questions).

AIED 2015 Workshop Proceedings - Vol 5

71



5 Simulated Learners

It is our view that the Belief-Desire-Intention (BDI) model is ideally suited
for modeling and simulating learner behaviour. According to Jaques and Vicari
(2007) [33], intelligent agents based on Bratman’s Belief-Desire-Intention model,
or BDI agents, are commonly used in modeling cognitive aspects, such as per-
sonality, affect, or goals. Pibil et al. (2012) claim BDI agent architecture is “a
currently dominant approach to design of intelligent agents” [34]. Wong et al.
(2012) describes the suitability of the BDI agent model for applications where
both reactive behavior and goal-directed reasoning are required [35]. Soliman
and Guetl (2012) suggest that BDI maps well onto models for pedagogically
based selection of sub plans within a hierarchical planning strategy — “appren-
ticeship learning model” given as example [36]. They also talks about advantage
of breaking plans down into smaller plans to allow for different “pedagogical
permutations” allowing the agent to adapt to different learning styles, domain
knowledge, and learning goals. Norling (2004) attributes the successful use of
BDI agents for modeling human-like behavior in virtual characters to BDI’s as-
sociation to “folk psychology” [37]. This allows for an intuitive mapping of agent
framework to common language that people use to describe the reasoning pro-
cess. Of particular importance to this study is the way that implementations of
the BDI architecture model long-term or interest goals. We have selected the
Jason™ [38] platform for providing multi-agent BDI programming in AgentS-
peak.

A shortcoming of the BDI paradigm is that although it is intended to be goal-
driven, in most implementations this means/amounts to using goals to trigger
plans, but does not support the concept of long-term goals or preferences [39],
such as a student’s long term learning goals, or the pedagogical goals of a CA.
They feel that these types of goals are difficult to represent in most BDI systems
because they signify an ongoing desire that must be maintained over a long
period of time compared to relative short goal processing cycles. It is left to the
developer to implement this type of preference goal through the belief system
of the agent, modifications to the platform or environment, or other methods of
simulating long-term goals.

Hiibner, Bordini, and Wooldridge (2007) describe plan patterns for imple-
menting declarative goals, with varying levels of commitment in AgentSpeak [40].
Bordini et al. (2007) expand on this in their chapter on advanced goal-based pro-
gramming [38]. While AgentSpeak and Jason support achievement goals, these
patterns are intended to address the lack of support for “richer goal structures”,
such as declarative goals, which they feel are essential to providing agents with
rational behaviour. Pokahr et al. (2005) point out that the majority of BDI
interpreters do not provide a mechanism for deliberating about multiple and
possibly conflicting goals [41]. It is worth noting that there are “BDI inspired”
systems that are more goal-oriented, such as Practionist and GOAL [42]. The
Jason multi-agent platform for BDI agents was selected for this project because
it is a well-established open-source project that is being actively maintained.
It supports both centralized and distributed multi-agent environments. Pibil et
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al. (2012) describes Jason as “one of the popular approaches in the group of
theoretically-rooted agent-oriented programming languages” [34]. A major ad-
vantage of Jason is that it is easy to extend the language through Java based
libraries and other components. Internal actions can allow the programmer to
create new internal functionality or make use of legacy object-oriented code [38].
However, Pibil et al. (2012) caution that the use of such extensions, if used too
heavily, can make the agent program difficult to comprehend without under-
standing the functionality of the Java code [34]. They raise the concern that
novice programmers have few guidelines for choosing how much to program in
AgentSpeak, and how much too program in Java. The usefulness of being able
to extend Jason can be demonstrated by two examples of current research into
integrating BDI with Bayesian Networks. Modeling of some student character-
istics requires a probabilistic model; Bayesian Networks (BN) being a popular
choice in recent years [43-44]. Recent work by Kieling and Vicari (2011) de-
scribes how they have extended Jason to allow a BDI agent to use a BN based
probabilistic model. Similarly, Silva and Gluz (2011) extend the AgentSpeak(L)
language to implement AgentSpeak(PL) by extending the Jason environment.
AgentSpeak(PL) integrates probabilistic beliefs into BDI agents using Bayesian
Networks [45]. Experimentation with QuizMASter to date has enabled the mod-
elling of simulated learners in virtual worlds with an initial focus on their appear-
ance, gestures, kinematics, and physical properties [46]. Recent related research
work in that area has been on the creation of engaging avatars for 3D learn-
ing environments [47]. Employing the theory of Transformed Social Interaction
(TSI) [48], simulated learners were designed with the following abilities:

(i) Self-identification: The self-identification dimension of TSI was imple-
mented using facial-identity capture with a tool called FAtiMA. Each of the
users’ face were morphed with their default avatar agent’s face to capitalize
on human beings’ disposition to prefer faces similar to their own and general
preference of appearing younger (see Fig. 4).

Fig. 4. Transformed Social Interaction — Image Morphing Technique

(ii) Sensory-abilities: Sensory-abilities dimension of TSI were implemented
using a movement and visual tracking capability. The general challenge of sensory
abilities implementation lies in two areas: the complexity of human senses and
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the processing of sensory data of different modality and historicity. For the reason
of simplicity, only visual tracking capability was exploited.

(iii) Situational-context: The situational-context dimension of TSI was im-
plemented by using the best-view feature of Open Wonderland, whereby the
temporal structure of a conversation can be altered.

The main idea of this research has been to explore the methodology for de-
veloping simulated learners for simulating and testing SEGs. That is, behind a
simulated learner is an agent. Or we can say a simulated learner is an agent’s
avatar. All avatars, including real students’ avatars and agent-based simulated
learners, live in the virtual worlds, while the agents live in the multi-agent sys-
tem. The integration of multi-agent systems with virtual worlds adds intelli-
gence to the SEG platform and opens a number of extremely interesting and
potentially useful research avenues concerning game-based learning. However,
the advanced algorithms that support game planning, coordination and execu-
tion are difficult to test with real subjects considering the overhead involved is
seeking authorization and the unpredictable availability of real life subjects in an
online environment. This where an expanded view of simulated learners comes
into play. The advantages of a simulated environment that closely approximates
human behaviour include: (1) It allows for rapid and complete testing of ad-
vanced algorithms for game based adaptive assessment as well as SEG planning,
coordination and execution in a simulated environment. The efficiency of the
algorithms can be measured without first securing the availability of students;
(2) With proper learner modeling and adaptive behaviour, simulated learners
can engage with real life learners in friendly competitive games for the purpose
of formative assessment, again working around the issue of availability of real
students in an online learning environment.

6 Conclusions

As our recent experimentation suggests, many outstanding challenges must be
addressed in developing intelligent SEGs. As we get closer to real world testing
of our experimental game based assessment framework, we are faced with the
complexity of enrolling real life learners in an e-learning environment and the
variability that human interactions introduce in the measurement of adaptive
algorithm efficiency. This is where we see the value of simulated learners. At
this stage of our research, simulated learners have been rendered as Non Person
Characters (NPCs) controlled by BDI agent running in the multi-agent system
based virtual world. Our medium term goal is to extend the existing system
to a particular learning subject (e.g., English language learning) to verify the
effectiveness of the proposed virtual assessment environment and the benefit that
students perceive from interacting with the proposed NPCs.

For simulated learners to be successful in our experimental framework, they
must closely approximate the performance of real learners. The simple, pre-
encoded behaviour we have implemented so far in the NPCs for QuizMASter
will not suffice to demonstrate the efficiency of our adaptive algorithms and
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allow for simulated learner agents to act as virtual players in our game based
assessment framework. Current outstanding research questions within our group
are:

1. How do we add intelligence and adaptive behaviour to the simulated learner
agents while preserving our ability to obtain predictable and repeatable test
results from our adaptive MAS framework?

2. How much autonomy can we afford to give to simulated learners in terms
of independent thought and action, and to which degree should a simulated
learner be able to adjust its behaviour as a function of its interactions with
other agents, including real life learners?

3. How do we incorporate modern game, learning and assessment analytics in
the supporting adaptive MAS framework in order to maximize the value of
simulated learners as a means to perform non-intrusive, formative assess-
ment?
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Abstract. Simulated data plays a central role in Educational Data Mining and
in particular in Bayesian Knowledge Tracing (BKT) research. The initial
motivation for this paper was to try to answer the question: given two datasets
could you tell which of them is real and which of them is simulated? The ability
to answer this question may provide an additional indication of the goodness of
the model, thus, if it is easy to discern simulated data from real data that could
be an indication that the model does not provide an authentic representation of
reality, whereas if it is hard to set the real and simulated data apart that might be
an indication that the model is indeed authentic. In this paper we will describe
analyses of 42 GLOP datasets that were performed in an attempt to address this
question. Possible simulated data based metrics as well as additional findings
that emerged during this exploration will be discussed.

Keywords: Bayesian Knowledge Tracing (BKT), simulated data, parameters
space.

1 Introduction

Simulated data has been increasingly playing a central role in Educational Data
Mining [1] and Bayesian Knowledge Tracing (BKT) research [1, 4]. For example,
simulated data was used to explore the convergence properties of BKT models [5], an
important area of investigation given the identifiability issues of the model [3]. In this
paper, we would like to approach simulated data from a slightly different angle. In
particular, we claim that the question “given two datasets could you tell which of them
is real and which of them is simulated?” is interesting as it can be used to evaluate the
goodness of a model and may potentially serve as an alternative metric to RMSE,
AUC, and others. In a previous work [6] we started approaching this problem by
contrasting two real datasets with their corresponding two simulated datasets with
Knowledge Tracing as the model. We found a surprising close to identity between the
real and simulated datasets. In this paper we would like to continue this investigation
by expanding the previous analysis to the full set of 42 Groups of Learning
Opportunities (GLOPs) real datasets generated from the ASSISTments platform [7].
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Knowledge Tracing (KT) models are widely used by cognitive tutors to
estimate the latent skills of students [8]. Knowledge tracing is a Bayesian model,
which assumes that each skill has 4 parameters: two knowledge parameters include
initial (prior knowledge) and learn rate, and two performance parameters include
guess and slip. KT in its simplest form assumes a single point estimate for prior
knowledge and learn rate for all students, and similarly identical guess and slip rates
for all students. Simulated data has been used to estimate the parameter space and in
particular to answer questions that relate to the goal of maximizing the log likelihood
(LL) of the model given parameters and data, and improving prediction power [7, 8,
9].

In this paper we would like to use the KT model as a framework for
comparing the characteristics of simulated data to real data, and in particular to see
whether it is possible to distinguish between the real and simulated datasets.

2 Data Sets

To compare simulated data to real data we started with 42 Groups of Learning
Opportunities (GLOPs) real datasets generated from the ASSISTments platform' from
a previous BKT study [7]. The datasets consisted of problem sets with 4 to 13
questions in linear order where all students answer all questions. The number of
students per GLOP varied from 105 to 777. Next, we generated two synthetic,
simulated datasets for each of the real datasets using the best fitting parameters that
were found for each respective real datasets as the generating parameters. The two
simulated datasets for each real one had the exact same number of questions, and
same number of students.

3 Methodology

The approach we took to finding the best fitting parameters was to calculate LL
with a grid search of all the parameters (prior, learn, guess, and slip). We
hypothesized that the LL gradient pattern of the simulated data and real data will be
different across the space. For each of the datasets we conducted a grid search with
intervals of .04 that generated 25 intervals for each parameter and 390,625 total
combinations of prior, learn, guess, and slip. For each one of the combinations LL
was calculated and placed in a four dimensional matrix. We used fastBKT [12] to
calculate the best fitting parameters of the real datasets and to generate simulated
data. Additional code in Matlab and R was generated to calculate LL and RMSE and
to put all the pieces together?.

! Data can be obtained here: http://people.csail.mit.edu/zp/
2 Matlab and R code will be available here: www rinatrosenbergkima.com/AIED2015/
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4 What are the Characteristics of the Real Datasets Parameters
Space?

Before we explored the relationships between the real and sim datasets, we were
interested to explore the BKT parameter profiles of the real datasets. We calculated
the LL with a grid search of 0.04 granularity across the four parameters resulting in a
maximum LL for each dataset and corresponding best prior, learn, guess, and slip.
Figure 1 present the best parameters for each datasets, taking different views of the
parameters space. The first observation to be made is that the best guess and slip

parameters fell into two distinct areas (see figure 1, guess x slip).
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Figure 1. Best parameters across the 42 GLOP real datasets.

AIED 2015 Workshop Proceedings - Vol 5

80



Much attention has been given to this LL space, which revealed the apparent
co-linearity of BKT with two primary areas of convergence, the upper right area
being a false, or “implausible” converging area as defined by [3]. What is interesting
in this figure is that real data also converged to these two distinct areas. To further
investigate this point, we looked for the relationships between the best parameters and
the number of students in the dataset (see figure 2). We hypothesized that perhaps the
upper right points were drawn from datasets with small number of students;
nevertheless, as figure 2 reveals, that was not the case. Another interesting
observation is that while in the upper right area (figure 1, guess x slip) most of the
prior best values were smaller that 0.5, in the lower left area most of the prior best
values were bigger than 0.5, thus revealing interrelationships between slip, guess, and
prior that can be seen in the other views. Another observation is that while prior is
widely distributed between 0 and 1, most of best learn values are smaller than 0.12.
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Figure 2. Best parameters across the 42 GLOP real datasets by number of students.
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5 Does the LL of Sim vs. Real Datasets Look Different?

Our initial thinking was that as we are using a simple BKT model, it is not
authentically reflecting reality in all its detail and therefore we will observe different
patterns of LL across the parameters space between the real data and the simulated
data. The LL space of simulated data in [5] was quite striking in its smooth surface
but the appearance of real data was left as an open research question. First, we
examined the best parameters spread across the 42 first set of simulated data we have
generated. As can be seen in figure 3, the results are very similar (although not
identical) to the results we received with the real data (see figure 1). This is not
surprising, after all, the values of learn, prior, guess, and slip were inputs to the
function generating the simulated data.

1.00 = 100 -

sli
learn P
0.75 - 4 e <=05
e <=05
05 A >05
A >05
o g = =l
=050 - -20.50 -
prior =
. guess
) <=05 ) -
0.25 . ).25 <=0.5
oo >0.5
>0.5
0.00 -
i | i i i | | i |
000 025 050 0.75 1.00 000 025 050 0.75 1.00
guess learn
1.00 = 00 -
sli
learn P
0.75 - 4 e <=05
e <=05
A >05
A >05 N
[y 5 . =
=050 - .2050-
7 . =
prior &
. guess
) <=05 ) E
0.25- . ).25 - <=0.5
LS >0.5
>0.5
0.00 -
| | i | | | i | |
000 025 050 0.75 1.00 )00 025 050 0.75 1.00
guess learn
1.00 - 00 -
sli
P learn
075 4 o <=05 — )
. e <=05
A >05
» . A >05
172 - =
% 050- S50-
°h . s guess
H prior
N . <=0.5
>l <=0.5 ).25 =
o >0.5
>0.5
0.00 - 00 -
| | i i i | | | i |
)00 025 050 075 00 000 025 050 075 )0
learn prior

Figure 3. Best parameters across 42 GLOP simulated datasets.
In order to see if the differences between real and sim were more than just

the difference between samples from the same distribution, we generated rwo
simulated versions of each real dataset (siml and sim2) using the exact same number

AIED 2015 Workshop Proceedings - Vol 5



of questions, number of students, generated with the best fitting parameters from the
real dataset. We then visualized 2D LL heatmaps looking at two parameter plots at a
time where the other two parameters were fixed to the best fitting values. For
example, when visualizing LL heatmaps for the combination of guess and slip, we
fixed learn and prior to be the best learn and the best prior from the real data grid
search. To our surprise, when we plotted heatmaps of the LL matrices of the real data
and the simulated data (the first column in figure 4 represents the real datasets, the
second column represents the corresponding siml, and the third column the
corresponding sim2) we received what appears to be extremely similar heatmaps.
Figure 4 and 5 displays a sample of 4 datasets, for each one displaying the real dataset
heatmap and the corresponding two simulated datasets heatmaps.

The guess vs. slip heatmaps (see figure 4) prompted interesting observations.
As mentioned above, the best guess and slip parameters across datasets fell into two
areas (upper right and lower left). Interestingly, these two areas were also noticeable
in the individual heatmaps. While in some of the datasets they were less clear (e.g.,
G5.198 in figure 4), most of the datasets appear to include two distinct global maxima
areas. In some of the datasets the global maxima converged to the lower left expected
area, as did the corresponding simulated datasets (e.g., G4.260 in figure 4), in other
datasets the global maxima converged to the upper right “implausible” area, as did the
corresponding simulated datasets (e.g., G6.208 in figure 4). Yet in some cases, one or
more of the simulated dataset converged to a different area than that of the real dataset
(e.g., G4.205 in figure 4). The fact that so many of the real datasets converged to the
“implausible” area is surprising and may be due to small number of students or to
other limitations of the model.

The learn vs. prior heatmaps were also extremely similar within datasets and
exhibited a similar pattern also across datasets (see figure 5), although not all datasets
had the exact pattern (e.g., G5.198 is quite different than the other 3 datasets in figure
5). While best learn values were low across the datasets, the values of best prior
varied. As with guess vs. slip, in some cases the two simulated datasets were different
(e.g., G4.205 had different best parameters also with respect to prior). Similar patterns
of similarities within datasets and similarities with some clusters across datasets were
also noticeable in the rest of the parameters space (learn vs. guess, learn vs. slip, prior
vs. guess, prior vs. slip not displayed here due to space considerations).
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Figure 4. Heatmaps of (guess vs. slip) LL of 4 sample real GLOP datasets and the
corresponding two simulated datasets that were generated with the best fitting
parameters of the corresponding real dataset.
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Figure 5. Heatmaps of (learn x prior) LL of 4 sample real GLOP datasets and the
corresponding two simulated datasets that were generated with the best fitting
parameters of the corresponding real dataset.
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6 Exploring Possible Metrics Using the Real and Sim Datasets

In natural science domains, simulated data is often used as a mean to evaluate its
underlying model. For example, simulated data is generated from a hypothesized
model of the phenomena and if the simulated data appears to be similar to the real
data observed in nature, it serves as evidence for the accuracy of the model. Then, if
the underlying is validated, simulated data is used to make predictions (e.g., in the
recent earthquake in Nepal a simulation was used to estimate the number of victims).
Can this approach be used in education as well? What would be an indication of
similarity between real and simulated data?

Figure 5 displays two preliminary approaches for comparing the level of
similarity between the simulated and real data. First, the Euclidean distance between
the real dataset parameters and the simulated data parameters was compared to the
Euclidean distance between the two simulated datasets parameters. The idea is that if
the difference between the two simulated datasets is smaller than the difference
between the real and the simulated dataset this may be an indication that the model
can be improved upon. Thus, points on the right side of the red diagonal indicate good
fit of the model to the dataset. Interestingly, most of the points were on the diagonal
and a few to the left of it. Likewise the max LL distance between the real and
simulated datasets was compared to the max LL distance of the two simulated
datasets. Interestingly, datasets with larger number of students did not result in higher
similarity between the real and simulated dataset. Also, here we did find distribution
of the points to the left and to the right of the diagonal.
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Figure 5. Using Euclidean distance and LL distance as means to evaluate the model.

7 Contribution

The initial motivation of this paper was to find whether it is possible to discern a real
dataset from a simulated dataset. If for a given model it is possible to tell apart a
simulated data from a real dataset then the authenticity of the model can be
questioned. This line of thinking is in particular typical of simulation use in Science
contexts, where different models are used to generate simulated data, and then if a
simulated data has a good fit to the real phenomena at hand, then it may be possible to
claim that the model provides an authentic explanation of the system [13]. We believe
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that finding such a metric can serve as the foundation for evaluating the goodness of a
model by comparing a simulated data from this model to real data and that such a
metric could provide much needed substance in interpretation beyond that which is
afforded by current RMSE and AUC measures. This can afford validation of the
simulated data, which can than be used to make predictions on learning scenarios;
decreasing the need to test them in reality, and at minimum, serving as an initial filter
to different learning strategies.
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Preface

This workshop, a follow-up to the successful first Simulated Learners workshop held
at AIED 2013, is intended to bring together researchers who are interested in simulat-
ed learners, whatever their role in the design, development, deployment, or evaluation
of learning systems. Its novel aspect is that it isn’t simply a workshop about pedagog-
ical agents, but instead focuses on the other roles for simulated learners in helping
system designers, teachers, instructional designers, etc.

As learning environments become increasingly complex and are used by growing
numbers of learners (sometimes in the hundreds of thousands) and apply to a larger
range of domains, the need for simulated learners (and simulation more generally) is
compelling, not only to enhance these environments with artificial agents, but also to
explore issues using simulation that would be otherwise be too expensive, too time
consuming, or even impossible using human subjects. While some may feel that
MOOCs provide ample data for experimental purposes, it is hard to test specific hy-
potheses about particular technological features with data gathered for another pur-
pose. Moreover, privacy concerns, ethics approval, attrition rates and platform con-
straints can all be barriers to this approach. Finally, with thousands of learners at
stake, it is wise to test a learning environment as thoroughly as possible before de-
ployment.

Since this is a follow-up to the 2013 workshop, we build on some of the ideas that
emerged there (see proceedings at: http://goo.gl/120Dji).

The workshop explores these and other issues with the goal of further understanding
the roles that simulated learners may play in advanced learning technology research
and development, and in deployed learning systems.

John Champaign and Gord McCalla
Workshop Co-Chairs
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An Approach to Developing Instructional
Planners for Dynamic Open-Ended Learning
Environments

Stephanie Frost and Gord McCalla

ARIES Lab, Department of Computer Science, University of Saskatchewan, Canada
stephanie.frost@usask.ca, mccalla@cs.usask.ca

Abstract. Instructional planning (IP) technology has begun to reach
large online environments. However, many approaches rely on having
centralized metadata structures about the learning objects (LOs). For
dynamic open-ended learning environments (DOELEs), an approach is
needed that does not rely on centralized structures such as prerequisite
graphs that would need to be continually rewired as the LOs change. A
promising approach is collaborative filtering based on learning sequences
(CFLS) using the ecological approach (EA) architecture. We developed
a CFLS planner that compares a given learner’s most recent path of LOs
(of length b) to other learners to create a neighbourhood of similar learn-
ers. The future paths (of length f) of these neighbours are checked and
the most successful path ahead is recommended to the target learner,
who then follows that path for a certain length (called s). We were
interested in how well a CFLS planner, with access only to pure be-
havioural information, compared to a traditional instructional planner
that used explicit metadata about LO prerequisites. We explored this
question through simulation. The results showed that the CFLS plan-
ner in many cases exceeded the performance of the simple prerequisite
planner (SPP) in leading to better learning outcomes for the simulated
learners. This suggests that IP can still be useful in DOELEs that often
won’t have explicit metadata about learners or LOs.

Keywords: instructional planning, collaborative filtering, dynamic open-
ended learning environments, simulated learning environments, simu-
lated learners, ecological approach

1 Introduction

Online courses need to be able to personalize their interactions with their many
learners not only to help each learner overcome particular impasses but also
to provide a path through the learning objects (LOs) that is appropriate to
that particular individual. This is the role of instructional planning (IP), one of
the core AIED sub-disciplines. IP is particularly needed in open-ended learning
environments (OELEs), where learners choose their own goals, because it has
been shown that sometimes learners require an outside push to move forward
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[11]. An added challenge is what we call a dynamic open-ended learning envi-
ronment (DOELE), where both the learners and LOs are constantly changing.
Some learners might leave before finishing the course, while others may join
long after other learners have already begun. New material (LOs) may need to
be added in response to changes in the course or the material, or to learner
demand. Sometimes new material will be provided by the course developers, but
the big potential is for this to be crowd sourced to anybody, including learners
themselves. Other material may fade away over time.

Note that a DOELE is similar to, but not the same as, a “traditional” open-
eded learning environment [8,11]. A traditional open-ended environment also
gives students choice, but mostly in the problems they solve and how they solve
them, with the course itself fixed in its content, order and goals. In a DOELE
everything is open-ended and dynamic, including even what is to be learned,
how deeply, when it needs to be learned, and in what order.

An impediment to IP in a DOELE is that there is no centralized represen-
tation of knowledge about the content or the learners. Work has been done to
make IP possible in online environments, such as [7], where authors showed that
by extending the LO metadata, instructional plans could be improved to adapt
based on individual learning styles as well as a resource’s scheduling availability.
But for IP to work in DOELESs, an approach to IP is needed where centralized
course structures would not need to be continually revamped (by instructional
designers, say) as learners and LOs change.

We wish to explore how IP can be done in a DOELE. We model a DOELE
in the ecological approach (EA) architecture [14]. In the EA there is no overall
course design. Instead, courses are conceived as collections of learning objects
each of which captures usage data as learners interact with it. Over time this us-
age data accumulates and can be used for many pedagogical purposes, including
IP [2]. Drawing inspiration from work like [1, 5], we propose a new IP algorithm
based on collaborative filtering of learning sequences (CFLS). For a given learner
our planner finds other learners who have traversed a similar sequence of learn-
ing objects with similar outcomes (i.e. similar paths). Then it suggests paths to
the learner that were successful for these similar learners (peers) going forward.

To evaluate IP techniques in such an environment, one could implement a real
course with thousands of learners using the EA to capture learner interactions
with the various LOs in the course. However, after doing this it would take
several years for enough learners to build up enough interactions with each LO to
provide useful data to be used by an instructional planner. Also, in a course with
thousands of learners, there is risk of causing confusion or inconvenience to a vast
multitude if there are problems while the planner is under development. Finally,
there are unanswered design questions such as the criteria to use for identifying
an appropriate peer, how many LOs should be recommended for a learner before
re-planning occurs, and appropriate values for many other parameters that would
be used by the planner. In order to overcome these challenges and gain insight
into these questions immediately, we have thus turned to simulation.
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2 Simulation Environment

Before describing the CFLS planner and experiment in detail, we describe the
simulation environment. The simulation is low-fidelity, using very simple ab-
stractions of learners and LOs, as in our earlier work [6]. Each of the 40 LOs has
a difficulty level and possible prerequisite relationships with other LOs. Each
simulated learner has an attribute, aptitude-of-learner, a number between (0,1)
representing a learner’s basic capability for the subject and allows learners to be
divided into groups: low (< .3), medium (.4 —.7) and high aptitude (> .8).

A number called Pflearned] is used to represent the learning that occurred
when a learner visits a LO, or the probability that the learner learned the LO.
P[learned] is generated by an evaluation function, a weighted sum: 20% of the
learner’s score on a LO is attributed to aptitude-of-learner, 50% attributed to
whether the learner has mastered all of the prerequisite LOs, 20% attributed
to whether the learner had seen that LO previously, and 10% attributed to the
difficulty level of the LO. We feel this roughly captures the actual influences on
how likely it is that real learners would master a learning object.

The simulated learners move through the course by interacting with the
LOs, one after another. After each LO is encountered by a simulated learner,
the above evaluation function is applied to determine the learner’s performance
on the LO, the P[learned] for that learner on that LO. In the EA architecture,
everything that is known about a learner at the time of an interaction with a
LO (in this case, including P[learned]) is captured and associated with that LO.
The order of the LOs visited can be set to random, or it can be determined by
a planner such as the CFLS planner. To allow for the comparison of different
planning approaches without advantaging one approach, each simulated learner
halts after its 140th LO regardless of the type of planner being used.

3 Experiment

By default, the simulation starts with an empty history - no simulated learners
have yet viewed any LOs. However, because the CFLS planner relies on having
previous interaction data, it is necessary to initialize the environment. Thus,
a simple prerequisite planner (SPP) was used to initialize the case base with a
population of simulated learners. The SPP is privy to the underlying prerequisite
structure and simply delivers LOs to learners in prerequisite order. As Table 1
shows, the SPP works much better than a random planner. The data from the 65
simulated learners who used the SPP thus was used to initialize the environment
before the CFLS planner took over. This interaction data generated by the SPP
also provides a baseline for comparison with the CFLS planner. Our simulation
experiment was aimed at seeing if, with appropriate choices of b and f (described
below) the CFLS planner could work as well or better than the SPP.

We emphasize that the CFLS planner has no knowledge about the under-
lying prerequisite structure of the learning objects. This is critical for CFLS
planning to work in a DOELE. However, there are two places where clarification
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Table 1. Baseline results for each group of simulated learners (high, medium and low
aptitude) when visiting LOs randomly and following a simple prerequisite planner.

Planning Type / Aptitude low medium high
Random N=21 N=26 N=18
Average Score on Final Exam (P[learned])|0.107 0.160 0.235
Simple Prerequisite Planner (SPP) |N=21 N=26 N=18
Average Score on Final Exam (P[learned])|0.619 0.639 0.714

is required. First, while the SPP is running, the evaluation function will be used
by the simulation to calculate P[learned] values for each LO visited. This usage
data will contain implicit evidence of the prerequisite relationships. So, at a later
time when the CFLS planner is given access to the same usage data, the CFLS
planner could implicitly discover prerequisite relationships from the interaction
data. Second, during the CFLS planner execution, the underlying prerequisite
structure is still being consulted by the evaluation function. However, the CFLS
planner knows nothing about such prerequisites, only the P[learned] outcome
provided by the evaluation function. When simulated learners are replaced with
real learners, the evaluation function would disappear and be replaced with a
real world alternative, such as quizzes or other evidence to provide a value for
P[learned]. Similarly, the CFLS planner does not require knowledge of the dif-
ficulty level of each LO, nor does it require knowledge of the aptitude of each
learner; these are just stand-in values for real world attributes used by the sim-
ulation and would disappear when the planner is applied in a real world setting.

Different studies can use simulated student data in varying ways. In some
cases, low fidelity modelling is not adequate. For example, in [4] it was found that
the low fidelity method of generating simulated student data failed to adequately
capture the characteristics of real data. As a result, when the simulated student
dataset was used for training the cognitive diagnosis model, its predictive power
was worse than when the cognitive diagnosis model was trained with a simulated
student dataset that had been generated with a higher fidelity method. In our
study, using a low fidelity model is still informative. We are less concerned with
the exactness of P[learned] and are more interested in observing possible relative
changes of P[learned] for certain groups of students, as different variations of the
planner are tried on identical populations of simulated students.

The CFLS planner works as follows. For a given target learner the CFLS
planner looks backward at the b most recent learning objects traversed. Then, it
finds other learners who have traversed the same b learning objects with similar
P[learned] values. These b LOs can be in any order, a simplification necessary
to create a critical mass of similar learners. These are learners in the target
learner’s “neighbourhood”. The planner then looks forward at the f next LOs
traversed by each neighbour and picks the highest value path, where value is
defined as the average P[learned] achieved on those f LOs ahead. This path is
then recommended to the learner, who must follow it for at least s (for “sticky”)
LOs before replanning occurs. Of course, s is always less than f. In our research
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we explored various values of b and f to find which leads to the best results (we
set f = s for this experiment). “Best results” can be defined many ways, but
we focused on two measurements that were taken for each learner at the end of
each simulation: the percentage of LOs mastered, and the score on a final exam.
A LO is considered to be mastered when a score of P[learned] = 0.6 or greater
is achieved. The score on the final exam is taken as the average P[learned] on
the LOs that are the leafs of the prerequisite graph (interpreted as the ultimate
target concept, which in the real world might well be final exams).

There is still a cold start problem even after the simulation has been ini-
tialized with the interaction data from the SPP. This is because the simulated
learners who are to follow the CFLS planner have not yet viewed any LOs them-
selves as they begin the course, so there is no history to match the b LOs to
create the plan. In this situation, the CFLS planner matches the learner with
another arbitrary learner (from the interaction data from the SPP), and recom-
mends whatever initial path that the other learner took when they first arrived
in the course. While another solution to the cold start problem could be to start
the new learner with the SPP, we did this to avoid any reliance whatsoever on
knowing the underlying prerequisite structure.

The most computationally expensive part of the CFLS planner is finding the
learners in the neighbourhood, which is at worst linear on the number of learners
and linear on the amount of LO interaction history created by each learner. Each
learner’s LO interaction history must be searched to check for a match with b,
with most learners being removed from the list during this process. The forward
searching of f is then executed using only the small resulting dataset.

4 Results

We ran the CFLS planner 25 different times with all pairings of the values
of b and s ranging from 1 to 5, using a population of 65 simulated learners.
This population had the same distribution of aptitudes as the population used
to generate the baseline interaction data described above. The heat maps in
Figs. 1 and 2 show the measurements for each of the 25 simulations, for each
aptitude group, with the highest relative scores coloured red, mid-range scores
coloured white, and the lowest scores coloured blue. In general, simulated learners
achieved higher scores when following the CFLS planner than when given LOs
randomly. The CFLS planner even exceeded the SPP in many cases.

A success triangle is visible in the lower left of each aptitude group. The
success triangles can be interpreted to mean that if a path is going to be recom-
mended, never send the learner any further ahead (s) than you have matched
them in the past (b). For example if a learner’s neighbourhood was created using
their b = 2 most recent LOs, then never make the learner follow in a neighbour’s
steps further than s = 2 LOs. One reason for the eventual drop at high values
of b is that no neighbour could be found and a random match is used instead.
However, the abrupt drop at b > s was unexpected. To be sure the pattern was
real, an extended series of simulations was run. We ran b = 6 and s = 5 to see
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if there would be a drastic drop in performance, and indeed this was the case.
We also ran another row varying b with a fixed s = 6, and again found a drop
at b=17.

I LOW [ MEDIUM 1

b=1s=1|b=2 s=1|b=3 s=1{b=4 s=1|b=5 s=1| |b=1s=1|b=2 s=1|b=3 s=1|b=4 s=1|b=5 s=1

b=15=2 b=5 5=2

= s o3| [b=1o-3 =25

e DeSans ’ ’ [b=15-4]b=2 5-4| b=3 54 b=4 5=4| b="5 54

s e B=3 5=5b=4 55
68.1 63.5

Fig. 1. Average % Learning Objects Mastered by aptitude group

[ Low | MEDIUM | HIGH |
b=2 s=1{b=3 s=1|b=4 s=1|b=5s=1

0.6894
b=1s=2

b=2s=2

0.5178 | 0.4387 ) 077

b=1s=3|b=2 s=3|b=3 s=3|b=4 5=3 b=1s=3|b=2 s=3|b=3 5=3 b=1s=3
0.4051| 0.266 | 0.2256 | 0.1586 0.6942 | 0.6761 | 0.6715 0.7653 | 0.7638

b=1s=4|b=2 s=4|b=3 s=4|b=4 s=4|b=5 s=4| | b=1 s=4|b=2 s=4|b=3 s=4 b=1s=4|b=2 s=4|b=3 s=4

0.4138 | 0.2984 | 0.3016 | 0.2755 | 0.176 0.6931 | 0.6867 | 0.6874
b=15=5[b=2 s=5|b=3 s=5(b=4 s=5[b=5 s=5| |b=1 s=5|b=2 s=5|b=3 s=5
0.357 | 0.2884 | 0.2859] 0.2679 | 0.2249 | | 0.6912 | 0.6884 | 0.6924

0.768 | 0.7697 | 0.7633 | 0.7697
b=1s=5|b=2 s=5|b=3 s=5|b=4 s=5|b=5 s=5
0.7601 | 0.7612 | 0.7591 | 0.7644 | 0.7636

0.6965 | 0.6899

Fig. 2. Average Score on Final Exam (P[learned]) by aptitude group

A hot spot of successful combinations of b and s appeared for each aptitude
group. For low aptitude learners, it was best to only match on the b = 1 most
recent learning objects, and to follow the selected neighbour for only s =1 LOs
ahead before replanning. This combination of b and s is the only time when
the CFLS planner outperformed the SPP for the low aptitude group. However,
for the medium and high aptitude groups, the CFLS planner outperformed the
SPP in all cases within the success triangle. Looking at final exam scores (Fig.
2), medium aptitude learners responded well to being matched with neighbours
using b = 1 or 2 and sticking with the chosen neighbour for the same distance
ahead. The high aptitude group responded very well to using neighbourhoods
created with b = 3 and recommending paths of s = 3.

Within the success triangles, the rows and columns of Fig. 2 were checked
to see if there existed an ideal b for a given s, and vice versa. Wherever there
appeared to be a large difference, Student’s t-test was used to check for statistical
significance. We are able to use paired t-tests because the simulated learners have
exactly the same characteristics in all the simulation runs, the only difference
being the order in which LOs were interacted with. For example, learner #3
always has aptitude-of-learner = .4, so, there is no difference in that learner
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between simulation runs. We used a two-tailed t-test because it was not certain
whether one distribution was going to be higher or lower than the other.

Looking along the rows, when s is held the same, there are some cases where
one value of b is better than another. For the low aptitude group, for the most
part the lower the b, the better. For the medium aptitude group, there were no
significant advantages to changing b. For the high aptitude group, when s = 3,
the t-test was used to check if b = 3 was significantly more advantageous than
using b = 2. The measurements for Score on the Final Exam for the high aptitude
learners were compared between both simulation results, (b = 2 and s = 3) and
(b =3 and s = 3). With N=19 learners in this group, the calculated p-value was
0.009, indeed a statistically significant difference.

Looking along the columns, when b is held the same there was a case where
increasing s, i.e. sticking to a longer plan ahead, was statistically advantageous.
In the medium aptitude group, when b = 1 it was statistically better to use s = 2
than to use s = 1 with a p-value of 0.011. None of the increases of s with the
same b were significant for the high aptitude group, and there were no increases
for the low aptitude group.

5 Analysis and Future Work

Through simulation, we have shown that a CFLS planner can be “launched” from
an environment that has been conditioned with interaction data from another
planner, such as an SPP, and operate successfully using only learner usage data
kept by the EA and not needing centralized metadata such as a prerequisite
graph. This is one of the key requirements for DOELESs. Like biological evolution,
the EA is harsh in that it observes how learners succeed or fail as various paths
are tried. Successful paths for particular types of learners, regardless of whether
they follow standard prerequisites, is the only criterion of success. New learners
or new learning objects will find their niche - some paths will work for some
learners but not for others, and this is discovered automatically through usage.

More experiments are needed to explore the many possibilities of the sim-
ulation environment. While this experiment was not a true test of a DOELE
because new learners and LOs were not inserted, this can be readily explored
in future work. New additions could be matched randomly a few times in or-
der to build enough data in the EA, and then automatically incorporated into
neighbourhood matches or into future plans.

Given the evaluation function that was selected, we found that planning
ahead and sticking to the plan worked best for high aptitude learners and a re-
active approach (planning ahead but sticking to the plan for only a short time)
worked best for the low aptitude learners. Would a different pattern emerge
if a different evaluation function were chosen? Would a different threshold for
mastery than P[learned] > 0.6 make any difference? In future work, would it be
worthwhile to break down the aptitude groups into six: very-high, high, medium-
high, medium-low, low, and very-low? This may assist with more easily tuning
the weights of the evaluation function, as there was not much difference in our
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results between the high and medium aptitude groups. In addition, more experi-
ments where s < f are needed to answer the question of whether the drop along
the edge of each success triangle was because of s or f. Also, in this work we
did not look at the many different types of pedagogical interactions (ex. asking
the student a question, giving a hint etc.) and focused on very abstract repre-
sentations. More work is needed to explore this approach on systems later in the
design process, when more detail about the content and the desired interactions
with learners is known.

Future work could also investigate the usage of a differential planner, where
different settings are tuned for different situations. For example, when creating
a neighbourhood for a low aptitude learner, medium aptitude learners could be
allowed into the neighbourhood if they have a matching b. Results could reveal
situations where for example a low aptitude learner is helped by following in the
steps of a medium aptitude learner. A differential planner could also dynamically
choose the values of b and s for a given individual instead of using the same values
for everyone at all times. For example, in a real world setting a CFLS planner
may try to create a plan using a neighbourhood of b = 3, knowing it is optimal,
but if for the specific case there is not enough data, it could change to b = 2
on the fly. Other aspects that could be changed are the criteria for creating
the neighbourhood: rather than filtering by aptitude, another attribute could be
chosen such as click behaviour or learning goals.

6 Conclusion

In this paper, we have described the need for instructional planning in DOE-
LEs with many LOs aimed at large numbers of learners. Instructional planners
such as [13] use AI planning technology that is based on states, actions and
events, which are difficult to infer from an unstructured online environment. In
recent years, instructional planning has been replaced by instructional design
approaches such as [3]. Advanced instructional planners from the 1990s, such as
PEPE and TOBIE [16] can blend different teaching strategies to appropriate sit-
uations. We have shown that instructional planning can still be done in the less
rigid courses envisioned by the EA architecture and likely to be commonplace
in the future, using only learner usage data kept by the EA and not needing
centralized metadata about the course.

We have shown a specific planning technique, the CFLS planner, that is ap-
propriate for DOELEs, and how to experiment in this domain. The simulation
experiment revealed the number of LOs from a target learner’s recent browsing
history should be used for creating a neighbourhood (b), a question that has
also been investigated by other researchers, such as in [18]. We have also found
recommendations for settings for how far ahead to plan (s and f) for differ-
ent groups of learners, and identified questions for future work. As is the case
with collaborative filtering and case-based approaches, the quality of the plans
created is limited to the quality of LOs within the repository and the quality
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of interactions that have previously occurred between learners and sequences of
LOs.

The bottom-up discovery of prerequisite relationships has been investigated
by others, such as [17]. When the need for centralized metadata about a course
is discarded, and when the further step is taken that different paths can be
found to work better for different learners, then a shift in thinking occurs. Each
individual learner could effectively have a unique ideal (implicit) prerequisite
graph. Whether or not a prerequisite relationship even exists between two LOs
could vary from learner to learner. The notion of prerequisite can thus be viewed
not only as a function of the content relationships, but also as a function of the
individual learner.

Making recommendations of sequences has also been identified as a task in
the recommender systems domain [9]. An approach such as a CFLS planner is
a step in the direction of building recommender systems that can use sequence
information to recommend sequences. This has also been accomplished with
standards approaches such as [15]. Simulation with the EA provides another
method for developing and testing such approaches.

Overall, the research we have done to date and the questions it raises, shows
the value of exploring these complex issues using simulation. We were able to
essentially generate some 25 different experiments exploring some issues in in-
structional planning, in a very short time when compared to what it would have
taken to explore these same issues with real learners. Others have also used sim-
ulation for developing an educational planner, such as [10] for social assessment
games. To be sure our simulation model was of low fidelity, but we suspect that
there are some properties of the CFLS planner that we have uncovered that ap-
ply in the real world (the lower triangles seem to be very strong and consistent
patterns). And, there are some very real issues that we can explore fairly quickly
going forward that might reveal other strong patterns, as discussed. We believe
that it isn’t always necessary to have simulations with high cognitive fidelity (as
in SimStudent [12]) to find out interesting things. Low fidelity simulations such
as the ones we have used in this and our earlier work [6] (and those of [2]) have a
role to play in AIED. Especially as we move into the huge questions of dynamic
open-ended learning environments with thousands of learners and big privacy is-
sues, the sharp minimalist modelling possible with low fidelity simulation should
allow quick and safe experimentation without putting too many real learners at
risk and without taking years to gain insights.
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Abstract. The help seeking and social integration needs of learners in a semi-
structured learning environment require specific support. The design and use of
educational technology has the potential to meet these needs. One difficulty in
the development of such support systems is in their validation because of the
length of time required for adequate testing. This paper explores the use of a
simulated learning environment and simulated learners as a way of studying de-
sign validation issues of such support systems. The semi-structured learning
environment we are investigating is a graduate school, with a focus on the doc-
toral program. We present a description of the steps we have taken in develop-
ing a simulation of a doctoral program. In the process, we illustrate some of the
challenges in the design and development of simulated learning environments.
Lastly, the expected contributions and our research plans going forward are de-
scribed.

Keywords: Simulated learners, Simulated learning environment, Agent-based
simulation, Help seeking, Doctoral learners, Multi-agent system.

1 Introduction

Artificial Intelligence in Education (AIED) is one of the research fields whose focus
is the use of technology to support learners of all ages and across all domains'. Al-
though, one shortcoming of AIED research is the limited research attention that very
dynamic and semi-structured domains, such as a graduate school, have received.
There is little research that investigates how technology can be used to help connect
learners (help seeker and potential help givers) in the graduate school domain. Conse-
quently, there is a gap in our understanding of how such technology may mitigate
graduate learners’ attrition rates and time-to-degree. We have suggested the use of
reciprocal recommender technology to assist in the identification of a suitable helper
[1]. However, the nature of graduate school means that validation of any education
system designed to be used in a semi-structured environment would take a long time
(measured in years). This paper aims to address this challenge by exploring the use of

! http://iaied.org/about/
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simulated learning environment and simulated learners as a potential way of validat-
ing educational technologies designed to support doctoral learners.

In this paper, we first describe the nature and the metrics used by interested
stakeholders to measure the success or lack therefore of a doctoral program. Follow-
ing this, we briefly discuss the uses of simulation as it relates to learning environment.
We then introduce the research questions we are interested in answering using simula-
tion. We go on to describe the architectural design of our simulation model. Further,
we show how data about the ‘real world’ target domain is used to inform the parame-
ters and initial conditions for the simulation model. This provides the model with a
degree of fidelity. Throughout this model development process, we illustrate some of
the challenges in the design and development of simulated learning environments. We
conclude the paper with a discussion of the expected contributions and our research
plans going forward.

2 Understanding Doctoral Program

Graduate school is a very dynamic and complex social learning environment. A doc-
toral program in particular is a dynamic, semi-structured, and complex learning envi-
ronment. Most doctoral programs have some structure in the sense that there are three
distinct stages that doctoral learners must go through: admission stage, coursework
stage, and dissertation stage. While coursework stage is fairly structured, the disserta-
tion stage is not. Further, the dissertation stage have various milestones that include:
comprehensive exam, thesis proposal, research, writing, and dissertation defense. As
time passes, learners move from one stage to the next and their academic and social
goals change. There is need for self-directed learning and individual doctoral learners
are responsible for their own learning pace and choice of what to learn especially in
the dissertation stage.

The dynamic nature of the program ensures that there is constant change; there are
new learners joining the program, other learners leaving the program either through
graduation or deciding to drop out, and still other learners proceeding from one stage
to the next. There are two key aspects that influences learners to decide whether to
persist or drop out of a learning institution: academic and social integration [2], [3]
which are impacted by learner’s initial characteristics and experiences during their
duration in the program. The various stages of the doctoral program (e.g., course-
work) and learning resources can be seen as factors that directly influence the aca-
demic integration of a doctoral learner. Peers and instructors/supervisors can be
viewed as supporting the social aspects of the doctoral program and hence, directly
impact the social integration of doctoral learners. As time passes, doctoral learners
continually interact with both the academic and social facets of the doctoral program.
As a result, there is constant change in learners’ commitment to their academic goal
and the social sides of the learning institution

Time-to-degree, completion rates, and attrition rates are important factors influenc-
ing the perception and experience of graduate education by interested stakeholders
[4], [5]- Research on doctoral attrition and time-to-completion indicates that on aver-
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age, the attrition rate is between 30% and 60% [5]-[8]. Long times to completion and
a high attrition rate are costly in terms of money to the funding institution and the
learning institution; and in terms of time and effort to the graduate student(s) and
supervisor(s) [8]. Lack of both academic and social integration (isolation) have been
shown to affect graduate learners decision to persist [2], [3], [9]. Learners facing aca-
demic and social integration challenges should be enabled to engage in a community
of peers to foster interaction and hence, encourage peer help and personalized col-
laboration [10]. Understanding the nature of learner-institution interactions that foster
doctoral learners’ persistence to degree is important to both the learning institution
and its learners. We use simulation to achieve this feat.

Simulation is an established third way of exploring research questions in addition
to qualitative and quantitative methods [11], [12]. VanLehn [13] has identified three
main uses of simulation in learning environments: 1) to provide an environment for
human teachers to practise their teaching approaches; 2) to provide an environment
for testing different pedagogical instructional design efforts; 3) to provide simulated
learners who can act as companions for human learners. Our research is mainly
focused on the first and the second uses — to enable deep insight into the complex
interaction of the factors affecting doctoral learners’ attrition and time-to-degree
leading to a better design of an educational system. Therefore, our research questions
are formulated around investigations of how various factors influence time-to-degree,
completion rates, and dropout rates of doctoral students. We are interested in answer-
ing the following research questions:

1. How does the number of classes (as a platform for social integration with peers —
potential helpers) offered by a program(s) or taken by a learner, influence learners’
time-to-degree and their propensity to persist or drop out?

2. How does the average class size (as basis of learners’ social integration) attended
by learners, impact learners’ time-to-degree and their inclination to persist or drop
out? What is the optimum class size?

3. How does the overall population size of the learners (a few learners vs many learn-
ers) influence learners’ time-to-degree and their likelihood to persist or drop out?

4. Does timely help affects doctoral learners’ time-to-degree and their decision to
persist or drop out? If so, how?

5. How does the level of reciprocation influence the formation of a ‘helpful commu-
nity’ of learners and adaptive help seeking behavior of the learners?

Use of simulation enables us to explore the aforementioned issues in a fine-grained
controlled environment. For example, it would be almost impossible in the ‘real
world’ setting to examine the impact of different number of course to take or class
size to attend. Two cohorts of learners will have different attributes. Simulation al-
lows us to tweak the number of courses or class size without touching the other char-
acteristics of learners. Hence, we are able to see the real impact of one variable at a
time. Before any exploration and insight can be gained on these issues, there is need
to design and implement the simulation model.
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3 Building an Initial Prototype of SimGrad

In this section we demonstrate the steps we have taken in the development of our
initial prototype of our simulated doctoral learning environment: SimGrad. We show
how a designer of an educational technology can develop a model of their target
learning environment and inform its initial condition with available ‘real world’ data.

3.1  SimGrad Design

We need to design a simulation model by addressing two key challenges. First, we
need to consider issues related to the modeling of the learning environment: how do
we design conceptual and computational models of a doctoral program and what
stakeholders should be included in these models? The second concern is about model-
ing of simulated learners: what doctoral learners’ features affect persistence and time-
to-degree, what factors do we model, and can we inform these features with available
‘real world’ data?

/ SimGrad \

Domain rules and assumptions (normative model)
Learning IQ <« Learner element (agent)
0 : £« . .
£- > o Social Integration (scene
D& Q(’—— / enabled by dialogic model)
~3 Academic Integration (scene)
: ‘& Instructor Element (agent)
: Stage Element (agent)
k New Semester (event)

Fig. 1. SimGrad conceptual framework, its three elements, and the possible interaction between
the elements

We have designed our conceptual model of the different aspects of simulated doc-
toral learners and doctoral learning environment based on the simulated learning envi-
ronment specifications suggested by Koper et al. in [14], and features for building an
electronic institution proposed by Esteva et al. [15]. We name our conceptual frame-
work, SimGrad. Its core elements include: normative model - specifies requirements
and constraints to guide agent actions and behavior; dialogic model — deals with inter-
action strategies and communication mechanism; events — refers to happenings in the
model that trigger (re)action by agents; scene — description of an interaction between
elements; elements (agents) — represent key stakeholders of the target domain that are
modeled. Elements are modeled as agents. Each of the agents has attributes and be-
havior which are informed by our assumptions guided by our research questions and
factors that influence learners’ decision to persist. Every element of interest is to be
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modeled within the learning environment and all possible interactions and operations
within the learning setting is guided by domain rules represented by the normative
model. See Fig. 1.

In our simulation model, we have chosen to model three types of elements: class,
instructor, and learner. In this paper, in keeping with model simplicity, both the class
and the instructor agents are passive while the learner agent is modeled to be active
and reactive to its environment. Also, the only instructor’s attributes we are interested
in are related to classes (see Table 1). We modeled only one type of instructor agent.
Another instructor type agent that can be modeled is the supervisor.

Each learner agent has the following properties: autonomy, social ability, reactiv-
ity, proactivity, and a degree of intentionality. We have also identified the following
key attributes for our agent learner model: state — (busy, available), program, stages,
course taken, peer interactions (pertaining challenges), academic integration, social
integration, and motivation (see Table 2). In our model, peer interaction and state
contribute to a learners’ social integration, while research area, stage, course taken
impact to their academic integration. Motivation combines both the social and aca-
demic integration and hence, is the main factor that determines whether an agent con-
tinues to persist or chooses to drop out of the program.

Table 1. Comparison of computed attributes of the three agent types

Attribute — data (value range) Agent Agent Agent class
learner instructor

Total number of classes take, taught, or frequency X X X

of offering within 10 years — numeric (0-20)

Grade obtained, average awarded, or average X X X

obtained by learners — numeric (0,12)

Take classes from, teach classes in, or class of- X X X

fered in various programs — textual (program id)

Instructors teaching a class — array list (instructor X - X

id)

What is the class size — numeric (1-5) X X

Number of classes taken or taught per year - X X -

numeric (0,4)

Which classes are taken or taught — textual (class X X -

id)

The main intentions of each agent is to persist through doctoral requirements to
graduation and to do so in a timely manner. However, each of these agents reacts to
the different challenges at various stages of graduate school in divergent and autono-
mous ways. At the coursework stage, agents have the goal of taking courses that are
relevant to their field and that they will perform well. When facing a course choice
challenge or any other particular challenge, we have modeled our agents to proac-
tively associate with peers to seek help. Each peer makes individual choice on
whether to or not to respond to a request for help from others. The dialogic model
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handles the agent to agent interaction and communication through a message passing
mechanism [16].

Table 2. Attributes and parameters considered for an agent learner model for learners, their
description and how each of them changes.

Attribute Value - description How it changes
Enrolment Date ( MM/YYYY) Does not change
Indicate the month a year an agent enrolled in
the program
Graduation Date MM/YYYY) Evaluated whenever an agent
Target graduation date completes a milestone
State Textual (busy, available) Changes whenever an agent
Indicates an agent availability to help others, | experiences a challenge
assigned based on the smallest time unit
model
Program Textual (program id) Does not change during a simula-
Identify an agent’s closer community within | tion run
the larger community of learners
Stage Textual (admission, coursework, dissertation, | Admission stage is like an event.
timeout, dropout) Learner move to the coursework
immediately after admission.
They more to dissertation after
completing their course load.
Courses Array [course, mark, instructor id](0-6) Every end of semester that the
taken Record courses taken by an agent and the | student took classes, this array is

marks obtain in each course

updated

Peer interac-

Array [learner id, challenge, result],

Changes whenever two agents

tion Keep track of an agent interactions with | interact

others and the outcome of the interaction
Academic Numeric (-1,1) Changes whenever an agent
integration Measures the academic satisfaction learner interacts with agent stage

(i.e., completes a milestone or
experience a challenge)

Social inte-

Numeric (-1,1)

Changes whenever an agent

gration Measures a learners sense of belonging to the | learner interacts with its peers or
learning environment agent instructors
Motivation Numeric (-1,1) Whenever there is a change in

Measures the propensity of an agent to still
want to persist. A motivation value above 0.3
indicates persistence. A value between -0.3
and 0.3 indicate help seeking needed. A value
below -0.3 means the agent drops out

the social and academic integra-
tion values. Its value is the aver-
age of the integration values.
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3.2 Informing SimGrad behavior and evaluation functions

Having identified the important agents and their key attributes, there are two sets of
important functions for each element that need to be modelled: behaviour functions
and evaluation functions [17]. Behaviour functions inform the decision making of the
active elements and dictates the interaction patterns between them and the other mod-
eled elements (e.g., how many classes a given agent takes). Evaluation functions indi-
cate whether or not various interactions between the different agents in a simulation
were successful (e.g., determine what grade a given agent attains in a class it took).
Informing such functions with ‘real world” data allows the simulation to behave in a
way consistent with reality.

Simulation model fidelity is an issues that might arise when using simulation to
study a target real world phenomenon. However, the most important issue to consider
is the research question to be answered. While Champaign [18] used a very low fidel-
ity model, Matsuda et al. [19] used a model with high cognitive fidelity to reach com-
pelling conclusion. Further yet, Erickson et al. [17] also demonstrated that is possible
to use a medium fidelity model and uncover interesting results. In some situations it
might not be possible to have a high fidelity model because of lack of data. A case in
point is our simulation scenario. Where possible, we inform our simulation functions
with data received from the U of S on their doctoral program. An investigation into
the U of S data showed that we will not be able to inform every aspect of our simula-
tion model. It would be desirable to inform every initial aspects of our simulation
model with ‘real world’ data but, we do not have data on the dissertation stage.

We are provided information on student id, years a student is registered, year of
graduation (if graduated), student’s program, classes taken and marks obtained, class
instructor, and students instructional responsibilities. From this dataset we are able to
inform the admission and coursework stages of our model (academic integration).
However, there is no information concerning the dissertation stage and the social
integration aspects. While it possible to inform various behaviour and evaluation
functions for our simulation model, in this paper we focus on describing the steps we
took to inform two functions of our simulation: learning environment admission be-
haviour function, and learners’ class interactions behaviour function.

As already mentioned, admission is an important part of a doctoral program that
contributes to it dynamic nature. The admission process is complex and involves a lot
of stakeholders and processes, but we are concerned only with determining the year to
year patterns in how many students are admitted. To provide some fidelity to our
simulated learning environment admission, we analyzed data provided to us by the U
of S University Data Warehouse”. The provided dataset contained information on
doctoral learners registered in the 10 years 2005-2014. In this time there were 2291
doctoral learners with a total of 52850 data points on class registration. The 2005
registration included learners who had joined the program earlier than 2005. In order
to get a clean admission pattern, we only considered learners who were registered
from the year 2006 onwards. This reduced the population size to 1962.

2 http://www.usask.ca/ict/services/ent-business-intelligence/university-data-warchouse.php
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We were able to identify three admission periods, September, January, and May.
We then obtained values for each of the admissions months for the years 2006-2014.
This provided a distribution for each month that we used to generate a scatter plot of
admission numbers. A sigmoidal pattern emerged. Next, we performed a non-linear
curve fitting to the scatter plot so that the admission function can be represented in the
form Y = St*(c + x), where c is a constant, S? is a variable dependent on the admission
period, and x is the admission period. We then ran a regression to find values of each
of these variables. This allowed us to model the admission patterns observed in the U
of S dataset.

Next we derived the number of classes taken. To introduce some realism to the
number classes taken behaviour, we had to further prune the data. We only considered
data for students whose cohorts would have been registered for at least 3 years by the
end of the year 2014 and hence, we considered class taking behaviour of 1466 U of S
doctoral learners.

We obtained the number of classes each of the remaining learners we registered in
and created a histogram. This histogram showed us the distribution of the number of
students registered for a certain number of classes. Next, we transformed this distribu-
tion graph into a cumulative distribution function. We then took an inverse of the
cumulative distribution function to achieve a quantile function. The quantile function,
when run over many learners, assigns learners a class count that mimics the initial
histogram. We use this quantile function to inform the number of classes a learner can
take.

In this section we have described the importance of informing a simulation model
with ‘real world’ data. We have described two functions that are informed with U of S
dataset. Other examples of functions that can be informed using the U of S dataset
include: class performance evaluation function, dropout behaviour function, time to
degree behaviour function, and flow through behavior function (main as pertains to
coursework stage). We have identified that missing data values is a major hindrance
in this endeavor. There are possible ways of informing simulation attributes where
there are no ‘real world’ data to derive from. A designer can either assign common
sense values, generate and assign random values, or refer to the research literature to
identify patterns that have been found by other researchers. Since we have the enrol-
ment dates and the graduate dates for learners who graduate, we choose to derive
common sense values with these two dates guiding the process and the value range.

4 Discussion, Expected Contributions, and Future Research
Plans

Despite the growth in the use of simulation as a method for exploration and learning
in many areas such as: engineering, nursing, medicine [20], and building design [21],
research in the used of simulation within AIED is still at an early stage. There is need
for more research to demonstrate that the outputs of simulation runs are desirable and
informative to the AIED community. In this paper, we aim at contributing to this
notion and by promoting the use of simulation in educational research and presenting
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an agent based simulation conceptual framework for building simulated learning envi-
ronment, with a focus on the semi-structured ones. Simulated learning environment
and simulated learners are important in exploring and understanding a given learning
domain. Further, it helps with the generation of system validation data.

The expected contributions to AIED include: providing a conceptual framework
for simulated graduate school learning environment — an architecture that enables
investigations into factors affecting doctoral learners progress through their program;
shedding light on learner modeling issues in dynamic learning environments; and
demonstrating the importance of simulation in exploring various AIED research do-
mains, particularly semi-structured domains.

Current research work is focused on the implementation of the simulation model
and the refinement of the various behaviour and evaluation functions. Once the im-
plementation is done, we will validate our model against the dataset we have from the
U of S before proceeding to explore the impact of various environmental factors.
Since we are informing the simulation with both common sense assumptions and U of
S dataset, the goal is to tweak the common sense assumptions such that when the
model is run we get similar results as the U of S data in terms of class performance,
dropout rate, and time-to-degree. Achieving this, would give us confidence that we
have captured reality in some measurable way. We can then start exploring the vari-
ous impact of measures we are interested in examining. As earlier indicated, we are
interested in exploring the interactions of a number of variables: number of classes
taken which will impact the availability of potential peer helpers, the effect of recip-
rocity on help seeking and help giving, and the effect of help seeking and other fac-
tors on doctoral learners’ time-to-degree and attrition rates.

Acknowledgement

We would like to thank University of Saskatchewan University Data Warehouse team
for giving us access to 10 year dataset. Specifically, we would like to thank Mathew
Zip for processing and explaining to the first author the nature of the dataset. We also
wish to acknowledge and thank the Natural Science and Engineering Research Coun-
cil of Canada (NSERC) for funding our research.

References

[1] D. E. K. Lelei, “Supporting Lifelong Learning: Recommending Personalized
Sources of Assistance to Graduate Students,” in Artificial Intelligence in
Education, 2013, pp. 912-915.

[2] V. Tinto, “Taking student success seriously: Rethinking the first year of college.,”
Ninth Annu. Intersession Acad. Aff. Forum, vol. 19, no. 2, pp. 1-8, 2005.

[3] V. Tinto, “Dropout from higher education: A theoretical synthesis of recent
research,” Rev. Educ. Res., vol. 45, no. 1, pp. 89-125, 1975.

[4] H. Groenvynck, K. Vandevelde, and R. Van Rossem, “The Ph.D. Track: Who
Succeeds, Who Drops Out?,” Res. Eval., vol. 22, no. 4, pp. 199-209, 2013.

AIED 2015 Workshop Proceedings - Vol 5

110



(3]
(6]
(7]
(8]

(9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

F. J. Elgar, “Phd Degree Completion in Canadian Universities,” Nova Scotia,
Canada, 2003.

M. Walpole, N. W. Burton, K. Kanyi, and A. Jackenthal, “Selecting Successful
Graduate Students: In-Depth Interviews With GRE Users,” Princeton, NJ, 2002.
L. Declou, “Linking Levels to Understand Graduate Student Attrition in Canada,”
McMaster University, Hamilton, Ontario, Canada, 2014.

B. E. Lovitts, Leaving the Ivory Tower: The Causes and Consequences of
Departure from Doctoral Study, 1llustrate., vol. 32. Rowman & Littlefield
Publishers, 2001, p. 307.

A. Ali and F. Kohun, “Dealing with isolation feelings in IS doctoral programs,”
Int. J. Dr. Stud., vol. 1, no. 1, pp. 21-33, 2006.

Computing Research Association, “Grand research challenges in information
systems,” Washington, D.C, 2003.

R. Axelrod, “Advancing the Art of Simulation in the Social Sciences,” in
Proceedings of the 18th European Meeting on Cybernetics and Systems Research,
2006, pp. 1-13.

N. Gilbert and K. G. Troitzsch, “Simulation and Social Science,” in Simulation

for the Social Scientist, McGraw-Hill International, 2005, pp. 1-14.

K. VanLehn, S. Ohlsson, and R. Nason, “Applications of Simulated Students: An
Exploration,” J. Artif. Intell. Educ., vol. 5, no. 2, pp. 1-42, 1994.

R. Koper and B. Olivier, “Representing the Learning Design of Units of
Learning,” Educ. Technol. Soc., vol. 7, no. 3, pp. 97-111, 2003.

M. Esteva, J.-A. Rodriquez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos, “On the
Formal Specification of Electronic Institutions,” in Agent Mediated Eectronic
Commerce, 2001, pp. 126-147.

H.J. C. Berendsen, D. Van Der Spoel, and R. Van Drunen, “GROMACS: A
message-passing parallel molecular dynamics implementation,” Comput. Phys.
Commun., vol. 91, no. 1, pp. 43-56, 1995.

G. Erickson, S. Frost, S. Bateman, and G. Mccalla, “Using the Ecological
Approach to Create Simulations of Learning Environments,” in In Artificial
Intelligence in Education, 2013, pp. 411-420.

J. Champaign, “Peer-Based Intelligent Tutoring Systems: A Corpus-Oriented
Approach,” University of Waterloo, 2012.

N. Matsuda, W. W. Cohen, K. R. Koedinger, V. Keiser, R. Raizada, E.
Yarzebinski, S. P. Watson, and G. Stylianides, “Studying the Effect of Tutor
Learning Using a Teachable Agent that Asks the Student Tutor for Explanations,”
in 2012 IEEE Fourth International Conference On Digital Game And Intelligent
Toy Enhanced Learning, 2012, pp. 25-32.

A. L. Baylor and Y. Kim, “Simulating Instructional Roles Through Pedagogical
Agents,” Int. J. Artif. Intell. Educ., vol. 15, no. 2, pp. 95-115, 2005.

G. Augenbroe, “Trends in Building Simulation,” Build. Environ., vol. 37, no. 8,
pp- 891-902, 2002.

AIED 2015 Workshop Proceedings - Vol 5

111



Exploring the Role of Small Differences in
Predictive Accuracy using Simulated Data

Juraj Niznan, Jan Papousek, and Radek Pelanek

Faculty of Informatics, Masaryk University Brno
{niznan, jan.papousek, xpelanek}@mail .muni.cz

Abstract. Research in student modeling often leads to only small im-
provements in predictive accuracy of models. The importance of such
improvements is often hard to assess and has been a frequent subject of
discussions in student modeling community. In this work we use simu-
lated students to study the role of small differences in predictive accuracy.
We study the impact of such differences on behavior of adaptive educa-
tional systems and relation to interpretation of model parameters. We
also point out a feedback loop between student models and data used for
their evaluation and show how this feedback loop may mask important
differences between models.

1 Introduction

In student modeling we mostly evaluate models based on the quality of their
predictions of student answers as expressed by some performance metric. Re-
sults of evaluation often lead to small differences in predictive accuracy, which
leads some researchers to question the importance of model improvements and
meaningfulness of such results [1]. Aim of this paper is to explore the impact and
meaning of small differences in predictive accuracy with the use simulated data.
For our discussion and experiments in this work we use a single performance
metric — Root Mean Square Error (RMSE), which is a common choice (for ra-
tionale and overview of other possible metrics see [15]). The studied questions
and overall approach are not specific to this metric.

Simulated students provide a good way to study methodological issues in
student modeling. When we work with real data, we can use only proxy meth-
ods (e.g., metrics like RMSE) to evaluate quality of models. With simulated
data we know the “ground truth” so we can study the link between metrics and
the true quality of models. This enables us to obtain interesting insight which
may be useful for interpretation of results over real data and for devising exper-
iments. Similar issues are studied and explored using simulation in the field of
recommender systems [7,17].

We use a simple setting for simulated experiments, which is based on an
abstraction of a real system for learning geography [12]. We simulate an adaptive
question answering system, where we assume items with normally distributed
difficulties, students with normally distributed skills, and probability of correct

AIED 2015 Workshop Proceedings - Vol 5

112



answer given by a logistic function of the difference between skill and difficulty
(variant of a Rasch model). We use this setting to study several interrelated
question.

1.1 Impact on Student Practice

What is the impact of prediction accuracy (as measured by RMSE) on the be-
havior of an adaptive educational system and students’ learning experience?

Impact of small differences in predictive performance on student under-
practice and over-practice (7-20%) has been demonstrated using real student
data [18], but insight from a single study is limited. The relation of RMSE to
practical system behavior has been analyzed also in the field of recommender
systems [2] (using offline analysis of real data). This issue has been studied be-
fore using simulated data is several studies [5, 6,10, 13]. All of these studies use
very similar setting — they use Bayesian Knowledge Tracing (BKT) or its ex-
tensions and their focus is on mastery learning and student under-practice and
over-practice. They differ only in specific aspects, e.g., focus on setting thresh-
olds for mastery learning [5] or relation of moment of learning to performance
metrics [13]. In our previous work [16] have performed similar kind of simulated
experiments (analysis of under-practice and over-practice) both with BKT and
with student models using logistic function and continuous skill.

In this work we complement these studies by performing simulated experi-
ments in slightly different setting. Instead of using BKT and mastery learning,
we use (variants of) the Rasch model and adaptive question answering setting.
We study different models and the relation between their prediction accuracy
and the set of items used by the system.

1.2 Prediction Accuracy and Model Parameters

Can RMSE be used to identify good model parameters? What is the relation of
RMSE to the quality of model parameters?

In student modeling we often want to use interpretable models since we are
interested not only in predictions of future answers, but also in reconstructing
properties of students and educational domains. Such outputs can be used to
improve educational systems as was done for example by Koedinger at al. [9].
When model evaluation shows that model A achieves better prediction accuracy
(RMSE) then model B, results are often interpreted as evidence that model
A better reflects “reality”. Is RMSE a suitable way to find robust parameters?
What differences in metric value are meaningful, i.e., when we can be reasonably
sure that the better model really models reality in better way? Is statistical
significance of differences enough? In case of real data it is hard to answer these
question since we have no direct way to evaluate the relation of a model to
reality. However, we can study these questions with simulated data, where we
have access to the ground truth parameters. Specifically, in our experiments
we study the relation of metric values with the accuracy of reconstructing the
mapping between items and knowledge components.
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1.3 Feedback between Data Collection and Evaluation

Can the feedback loop between student models and adaptive choice of items in-
fluence evaluation of student models?

We also propose novel use of simulated students to study a feedback loop
between student models and data collection. The data that are used for model
evaluation are often collected by a system which uses some student model for
adaptive choice of items. The same model is often used for data collection and
during model evaluation. Such evaluation may be biased — it can happen that
the used model does not collect data that would show its deficiencies. Note that
the presence of this feedback loop is an important difference compared to other
forecasting domains. For example in weather forecasting models do not directly
influence the system and cannot distort collected data. In student modeling they
can.

So far this feedback has not been thoroughly studied in student modeling.
Some issues related to this feedback have been discussed in previous work on
learning curves [6, 11, 8]. When a tutoring system uses mastery learning, students
with high skill drop out earlier from the system (and thus from the collected
data), thus a straightforward interpretation of aggregated learning curves may
be misleading. In this work we report experiment with simulated data which
illustrate possible impact of this feedback loop on model evaluation.

2 Methodology

For our experiments we use a simulation of a simplified version of an adaptive
question answering systems, inspired by our widely used application for learning
geography [12]. Fig. 1 presents the overall setting of our experiments. System
asks students about items, answers are dichotomous (correct/incorrect), each
student answers each item at most once. System tries to present items of suitable
difficulty. In evaluation we study both the prediction accuracy of models and also
sets of used items. This setting is closely related to item response theory and
computerized adaptive testing, specifically to simulated experiments with Elo-
type algorithm reported by Doebler et al. [3].

Simulated Students and Items We consider a set of simulated students and
simulated items. To generate student answers we use logistic function (basically
the Rasch model, respectively one parameter model from item response theory):
P(correct|f,d;) = 1/(1 4 e~ ¥==4)) where 0, is the skill of a student s and d;
is difficulty of an item 1.

To make the simulated scenarios more interesting we also consider multiple
knowledge components. Items are divided into disjoint knowledge components
and students have different skill for each knowledge component. Student skills
and item difficulties are sampled from a normal distribution. Skills for individual
knowledge components are independent from one another.
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Fig. 1. Setting of our experiments

Item Selection Algorithm The item selection algorithm has as a parameter
a target success rate . It repeatedly presents items to a (simulated) student, in
each step it selects an item which has the best score with respect to the distance
of the predicted probability of correct answer p and the target rate ¢ (illustrated
by gray dashed line in Fig. 3). If there are multiple items with the same score,
the algorithm randomly selects one of them.

Student Models Predictions used by the item selection algorithm are provided
by a student model. For comparison we consider several simple student models:

Optimal model — Predicts the exact probability that is used to generate the
answer (i.e., a “cheating” model that has access to the ground truth student
skill and item difficulty).

Optimal with noise — Optimal model with added (Gaussian) noise to the
difference 65 — d; (before we apply logistic function).

Constant model — For all students and items it provides the same prediction
(i.e., with this model the item selection algorithm selects items randomly).

Naive model — Predicts the average accuracy for each item.

Elo model — The Elo rating system [4, 14] with single skill. The used model
corresponds to the version of the system as described in [12] (with slightly
modified uncertainty function).

Elo concepts — The Elo system with multiple skills with correct mapping of
items to knowledge components.
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— Elo wrong concepts — The Elo system with multiple skills with wrong map-
ping of items to knowledge components. The wrong mapping is the same as
the correct one, but 50 (randomly choosen) items are classified incorrectly.

Data We generated 5,000 students and 200 items. Items are divided into 2
knowledge components, each user has 2 skills corresponding to the knowledge
components and each item has a difficulty. Both skills and difficulties were sam-
pled from standard normal distribution (the data collected from the geogra-
phy application suggests that these parameters are approximately normally dis-
tributed). The number of items in a practice session is set to 50 unless otherwise
noted.

3 Experiments

We report three types of experiments, which correspond to the three types of
questions mentioned in the introduction.

3.1 Impact on Student Practice

Our first set of experiments studies differences in the behavior of the simulated
system for different models. For the evaluation of model impact we compare the
sets of items selected by the item selection algorithm. We make the assumption
that the algorithm for item selection using the optimal model generates also the
optimal practice for students. For each user we simulate practice of 50 items
(each item is practiced at most once by each student). To compare the set of
practiced items between those generated by the optimal model and other models
we look at the size of the intersection. We assume that bigger intersection with
the set of practiced items using the optimal model indicates better practice.
Since the intersection is computed per user, we take the mean.

This is, of course, only a simplified measure of item quality. It is possible that
an alternative model selects completely different set of items (i.e., the intersection
with the optimal set is empty) and yet the items are very similar and their
pedagogical contribution is nearly the same. However, for the current work this
is not probable since we are choosing 50 items from a pool of only 200 items. For
future work it would be interesting to try to formalize and study the “utility”
of items.

Noise Experiment The optimal model with noise allows us to easily manipu-
late differences in predictive accuracy and study their impact on system behavior.
Experiment reported in the left side of Fig. 2 shows both the predictive accuracy
(measured by RMSE) and the impact on system behavior (measured by the size
of the intersection with the optimal practiced set as described above) depending
on the size of noise (we use Gaussian noise with a specified standard deviation).
The impact of noise on RMSE is approximately quadratic and has a slow rise —
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Fig. 2. Size of the intersection with the optimal practiced set of items and RMSE
depending on Guassian noise in optimal model (left side). Distribution of answers over
the items based on the given model (right side).

this is a direct consequence of the quadratic nature of the metric. The impact
on used items is, however, approximately linear and rather steep. The most in-
teresting part is for noise values in the interval [0, 0.1]. In this interval the rise
in RMSE values is very small and unstable, but the impact on used items is
already high.

Model Comparison Right side of the Fig. 2 shows the distribution of the
number of answers per item for different models. The used models have similar
predictive accuracy (specific values depend on what data we use for their eval-
uation, as discussed below in Section 3.3), yet the used model can dramatically
change the form of the collected data.

When we use the optimal model, the collected data set covers almost fairly
most items from the item pool. In the case of worse models the use of items
is skewed (some items are used much more frequently than others). Obvious
exception is the constant model for which the practice is completely random.
The size of the intersection with the optimal practiced set for these models is
— Constant: 12.5; Elo: 24.2; Elo, Concepts: 30.4; Elo, Concepts (wrong): 28.5;
Naive: 12.0. Fig. 3 presents a distribution of answers according to the true prob-
ability of their correctness (given by the optimal model). Again there is a huge
difference among the given models, especially between simple models and those
based on Elo.

3.2 Prediction Accuracy and Model Parameters

Metrics of prediction accuracy (e.g., RMSE) are often used for model selection.
Model that achieves lower RMSE is assumed to have better parameters (or
more generally better “correspondence to reality”). Parameters of a selected
model are often interpreted or taken into account in improvement of educational
systems. We checked validity of this approach using experiments with knowledge
components.

We take several models with different (random) mappings of items to knowl-
edge components and evaluate their predictive accuracy. We also measure the
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Fig. 3. Distribution of answers according to the true probability of correct answer. The
gray dashed line stands for the score function used by the algorithm for item selection.

quality of the used mappings — since we use simulated data, we know the ground
truth mapping and thus can directly measure the quality of each mapping. Qual-
ity is expressed as the portion of items for which the mapping agrees with the
ground truth mapping. The names of the knowledge components are irrelevant
in this setting. Therefore, we compute quality for each one-to-one mapping from
the names of the components in the model to the names of the components in the
ground truth. We select the highest quality as the quality of the model’s item-
to-component mapping. To focus only on quality of knowledge components, we
simplify other aspects of evaluation, specifically each student answers all items
and their order is selected randomly.

These experiments do not show any specific surprising result, so we provide
only general summary. Experiments show that RMSE values correlate well with
the quality of mappings. In case of small RMSE differences there may be “swaps”,
i.e., a model with slightly higher RMSE reflects reality slightly better. But such
results occur only with insufficiently large data and are unstable. Whenever
the differences in RMSE are statistically significant (as determined by t-test
over different test sets), even very small differences in RMSE correspond to
improvement in the quality of the used mappings. These results thus confirm
that it is valid (at least in the studied setting) to argue that a model A better
corresponds to reality than a model B based on the fact that the model A
achieves better RMSE than the model B (as long as the difference is statistically
significant). It may be useful to perform this kind of analysis for different settings
and different performance metrics.

3.3 Feedback between Data Collection and Evaluation

To study feedback between the used student model and collected data (as is
described in subsection 1.3) we performed the following experiment: We choose
one student model and use it as an input for adaptive choice of items. At the
same time we let all other models do predictions as well and log answers together
with all predictions.

Fig. 4 shows the resulting RMSE for each model in individual runs (data
collected using specific model). The figure shows several interesting results. When
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Fig. 4. RMSE comparison over data collected using different models.

the data are collected using the optimal model, the RMSE values are largest
and closest together; even the ordering of models is different from other cases.
In this case even the constant model provides comparable performance to other
models — but it would be very wrong to conclude that “predictive accuracy of
models is so similar that the choice of model does not matter”. As the above
presented analysis shows, different models lead to very different choice of items
and consequently to different student experience. The reason for small differences
in RMSE is not similarity between models, but characteristics of data (“good
choice of suitable items”), which make predictions difficult and even a naive
predictor comparatively good.

Another observation concerns comparison between the “Elo concepts” and
“Elo concepts (wrong)” models. When data are collected by the “Elo concepts
(wrong)” model, these two models achieve nearly the same performance, i.e.,
models seem to be of the same quality. But the other cases show that the “Elo
concepts” model is better (and in fact it is by construction a better student
model).

4 Conclusions

We have used simulated data to show that even small differences in predictive
accuracy of student models (as measured by RMSE) may have important impact
on behavior of adaptive educational systems and for interpretation of results of
evaluation. Experiments with simulated data, of course, cannot demonstrate the
practical impact of such small differences. We also do not claim that small differ-
ences in predictive accuracy are always important. However, experiments with
simulated data are definitely useful, because they clearly illustrate mechanisms
that could play role in interpretation of results of experiments with real student
data. Simulated data also provide setting for formulation of hypotheses that
could be later evaluated in experiments with real educational systems.
Simulated data also enable us to perform experiments that are not practical
for realization with actual educational systems. For example in our experiment
with the “feedback loop” we have used different student models as a basis for
item selection. Our set of models includes even a very simple “constant model”,
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which leads to random selection of practiced item. In real setting we would be
reluctant to apply such a model, as it is in contrary with the advertised intelligent
behavior of our educational systems. However, experiments with this model in
simulated setting provide interesting results — they clearly demonstrate that
differences in predictive accuracy of models do not depend only on the intrinsic
quality of used student models, but also on the way the data were collected.

Our analysis shows one particularly interesting aspect of student modeling.
As we improve student models applied in educational systems, we should expect
that evaluations of predictive accuracy performed over these data will show
worse absolute values of performance metrics and smaller and smaller differences
between models (even if models are significantly different), just because virtues
of our models enable us to collect less predictable data.
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Abstract. Classification evaluation metrics are often used to evaluate
adaptive tutoring systems— programs that teach and adapt to humans.
Unfortunately, evidence suggests that existing convention for evaluating
tutoring systems may lead to suboptimal decisions. In a companion pa-
per, we propose Teal, a new framework to evaluate adaptive tutoring. In
this paper we propose an alternative formulation of Teal using simulated
learners. The main contribution of this novel formulation is that it en-
ables approximate inference of Teal, which may useful on the cases that
Teal becomes computationally intractable. We believe that this alterna-
tive formulation is simpler, and we hope it helps as a bridge between the
student modeling and simulated learners community.

1 Introduction

Adaptive systems teach and adapt to humans and improve education by optimiz-
ing the subset of items presented to students, according to their historical per-
formance [3], and on features extracted from their activities [6]. In this context,
items are questions, or tasks that can be graded individually. Adaptive tutor-
ing may be evaluated with randomized control trials. For example, in a seminal
study [3] that focused on earlier adaptive tutors, a controlled trial measured the
time students spent on tutoring, and their performance on post-tests. The study
reported that the adaptive tutoring system enabled significantly faster teaching,
while students maintained the same or better performance on post-tests

Unfortunately, controlled trials can become extremely expensive and time
consuming to conduct: they require institutional review board approvals, ex-
perimental design by an expert, recruiting and often payment of enough par-
ticipants to achieve statistical power, and data analysis. Automatic evaluation
metrics improve the engineering process because they enable less expensive and
faster comparisons between alternative systems.

The adaptive tutoring community has tacitly adopted conventions for evalu-
ating tutoring systems [4]. Researchers often evaluate their models with classifi-
cation evaluation metrics that assess the student model component of the tutor-
ing system— student models are the subsystems that forecast whether a learner
will answer the next item correctly. However, automatic evaluation metrics are
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intended to measure an outcome of the end user. For example, the PARADISE [9]
metric used in spoken dialogue systems correlates to user satisfaction scores. We
are not aware of evidence that supports that classification metrics correlate with
learning outcomes; yet there is a growing body of evidence [2, 5] that suggests
serious problems with them. For example, classification metrics ignore that an
adaptive system may not help learners— which could happen with a student
model with a flat or decreasing learning curve [1,8]. A decreasing learning curve
implies that student performance decreases with practice; this curve is usually
interpreted as a modeling problem, because it operationalizes that learners are
better off with no teaching.

We study a novel formulation of the Theoretical Evaluation of Adaptive
Learning Systems (Teal) [5] evaluation metric. The importance of evaluation
metrics is that they help practitioners and researchers quantify the extent that
a system helps learners.

2 Theoretical Evaluation of Adaptive Learning Systems

In this section, we just briefly summarize Teal and do not compare it with a re-
lated method called ExpOppNeed [7]. Teal assumes the adaptive tutoring system
is built using a single-skill Knowledge Tracing Family model [3,6]. Knowledge
Tracing uses a Hidden Markov Model (HMM) per skill to model the student’s
knowledge as latent variables. It models whether a student applies a practice
opportunity of a skill correctly. The latent variables are used to model the latent
student proficiency, which is often modeled with a binary variable to indicated
mastery of the skill.

To use Teal on data collected from students, we first train a model using an
algorithm from the Knowledge Tracing family, then we use the learned parame-
ters to calculate the effort and outcome for each skill.

— Effort: Quantifies how much practice the adaptive tutor gives to students.
In this paper we focus on counting the number of items assigned to students
but, alternatively, amount of time could be considered.

— Outcome: Quantifies the performance of students after adaptive tutoring.
For simplicity, we operationalize performance as the percentage of items that
students are able to solve after tutoring. We assume that the performance
on solving items is aligned to the long-term interest of learners.

Algorithm 1 describes our novel formulation. Teal calculates the expected
number of practice that an adaptive tutor gives to students. We assume that the
tutor stops teaching a skill once the student is very likely to answer the next
item correctly according to a model from the Knowledge Tracing Family [6]. The
adaptive tutor teaches an additional item if two conditions hold: (i) it is likely
that the student will get the next item wrong— in other words, the probability
of answering correctly the next item is below a threshold 7; and (ii) the tutor
has not decided to stop instruction already.

The inputs of Teal are:
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— Real student performance data from m students practicing a skill. Data from
each student is encoded into a sequence of binary observations of whether
the student was able to apply correctly the skill at different points in time.

— A threshold 7 € {0...1} that indicates when to stop tutoring. We opera-
tionalize this threshold as the target probability that the student will apply
the skill correctly.

— A parameter T that indicates the number of practice opportunities each of
the simulated students will practice the skill.

Algorithm 1 Teal algorithm for models with one skill per item

Require: real student data y™ ...y™ threshold 7, # of simulated time steps T
1: function TEAL
0« Knowledge,’I‘raCing(ym e y<m))

e+~ {}

for § € get_simulated_student(#,T") do:
e + calculate_effort(y,0, 7)
if e<T then
s < calculate_score(¥, e)
else

s < imputed_value
return mean(e), mean(s)

o

—_

Teal learns a Knowledge Tracing model from the data collected from real
students interacting with a tutor. Our new formulation uses simulated learners
sampled from the Knowledge Tracing parameters. This enables us to decide how
many simulated students to generate. Our original formulation required 2™ se-
quences to be generated, which can quickly become computationally intractable.
If an approximate solution is acceptable, our novel formulation allows more ef-
ficient calculations of Teal. Teal quantifies the effort and outcomes of students
in adaptive tutoring. Even though measuring effort and outcomes is not novel
by itself, Teal’s contribution is measuring both without a randomized trial. Teal
quantifies effort as how much practice the tutor gives. For this, we count the
number of items assigned to students. For a single simulated student, this is:

calculate_effort(yy,...,yr,0,7) = argminp(ys|y1 . .. ye—1,0) > 7 (1)
t

The threshold 7 implies a trade-off between student effort and scores and re-
sponds to external expectations from the social context. Teal operationalizes the
outcome as the performance of students after adaptive tutoring as the percentage
of items that students are able to solve after tutoring:

0 t
calculate_score(yi, ..., yr,e) = Z 7(%1’1001@% ) (2)
—e

t=e
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Here, §(-,-) is the Kronecker function that returns 1 iff its arguments are equal.

3 Discussion

Simulation enables us to measure effort and outcome for a large population
of students. Previously, we required Teal to be computed exhaustively on all
student outcomes possibilities. We relax the prohibitively expensive requirement
of calculating all student outcome combinations. Our contribution is that Teal
can be calculated with a simulated dataset size that is large yet tractable.
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Abstract. Problems with many solutions and solution paths are on the
frontier of what non-programmers can author with existing tutor au-
thoring tools. Popular approaches such as Example Tracing, which al-
low authors to build tutors by demonstrating steps directly in the tutor
interface. This approach encounters difficulties for problems with more
complex solution spaces because the author needs to demonstrate a large
number of actions. By using SimStudent, a simulated learner, it is pos-
sible to induce general rules from author demonstrations and feedback,
enabling efficient support for complexity. In this paper, we present a
framework for understanding solution space complexity and analyze the
abilities of Example Tracing and SimStudent for authoring problems in
an experimental design tutor. We found that both non-programming ap-
proaches support authoring of this complex problem. The SimStudent
approach is 90% more efficient than Example Tracing, but requires spe-
cial attention to ensure model completeness. Example Tracing, on the
other hand, requires more demonstrations, but reliably arrives at a com-
plete model. In general, Example Tracing’s simplicity makes it good for a
wide range problems, a reason for why it is currently the most widely used
authoring approach. However, SimStudent’s improved efficiency makes it
a promising non-programmer approach, especially when solution spaces
become more complex. Finally, this work demonstrates how simulated
learners can be used to efficiently author models for tutoring systems.

Keywords: Tutor Authoring, Intelligent Tutoring Systems, Cognitive
Modeling, Programming-by-Demonstration

1 Introduction

Intelligent Tutoring Systems (ITSs) are effective at improving student learning
across many domains— from mathematics to experimental design [10, 13, 5]. ITSs
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also employ a variety of pedagogical approaches for learning by doing, includ-
ing intelligent novice [7], invention [12], and learning by teaching [9]. Many of
these approaches require systems that can model complex solution spaces that
accommodate multiple correct solutions to a problem and/or multiple possible
paths to each solution. Further, modeling complex spaces can be desirable ped-
agogically: student errors during problem solving can provide valuable learning
opportunities, and therefore may be desirable behaviors. Mathan and Koedingers
spreadsheet tutor provides experimental support for this view— a tutor that al-
lowed exploration of incorrect solutions led to better learning compared to one
that enforced a narrower, more efficient solution path [7]. However, building tu-
toring systems for complex solution spaces has generally required programming.
What options are available to the non-programmer? Authoring tools have radi-
cally reduced the difficulties and costs of tutor building [2, 6], and have allowed
authoring without programming. Through the demonstration of examples di-
rectly in the tutor interface, an author can designate multiple correct solutions,
and many correct paths to each solution. Yet, the capabilities of these tools for
authoring problems with complex solution spaces has never been systematically
analyzed.

In this paper, we define the concept of solution space complexity and, through
a case study, explore how two authoring approaches deal with this complexity.
Both approaches (Example Tracing and SimStudent) are part of the Cognitive
Tutor Authoring Tools (CTAT) [1]. Our case study uses the domain of introduc-
tory experimental design, as problems in this area follow simple constraints (only
vary one thing at a time), but solutions can be arbitrarily complex depending on
how many variables are in the experiment and how many values each can take.

2 Solution Space Complexity

Solution spaces have varying degrees of complexity. Our framework for examining
complexity considers both how many correct solutions satisfy a problem and how
many paths lead to each solution. Within this formulation, we discuss how easily
a non-programmer can author tutors that support many solutions and/or many
paths to a solution.

How might this formulation of complexity apply to an experimental design tu-
tor? Introductory problems in this domain teach the control of variables strategy
(only manipulating a single variable between experimental conditions to allow
for causal attribution) [3]. Due to the combinatorial nature of experiments (i.e.,
multiple conditions, variables, and variable values), the degree of complexity in
a particular problem depends on how it is presented. To illustrate, imagine that
students are asked to design an experiment to determine how increasing the heat
of a burner affects the melting rate of ice in a pot (see Figure 1). The following
tutor prompts (alternatives to the prompt in Figure 1) highlight how different
problem framings will affect the solution complexity:

One solution with one path Design an experiment to determine how increas-
ing the heat of a Bunsen burner affects the rate at which ice in a pot will
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Experimental Design Tutor

Design an experiment to test the effect of | Heat
on some dependent variable.

Variables
Heat Lid Mass
Condition 1 High v On 3 10g s

Condition 2 Low s On s 109 :

Fig. 1. Experimental design tutor interface

melt by assigning the first legal value to the variables in left to right, top
down order as they appear in the table.

One solution and many paths Design an experiment to determine how in-
creasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt by assigning the first legal value to variables.

Many solutions each with one path Design an experiment to determine how
increasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt by assigning values to variables in left to right, top down order as
they appear in the table.

Many solutions with many paths Design an experiment to determine how
increasing the heat of a Bunsen burner affects the rate at which ice in a pot
will melt.

While these examples show that solution space complexity can be qualita-
tively changed (i.e., one solution vs. many solutions) by reframing a problem,
quantitative changes are also possible. For example, adding a fourth variable to
the interface in Figure 1 would require two more steps per solution path (setting
the variable for each condition), while adding another value to each variable in-
creases the number of possible options at each step of the solution path. As this
example illustrates, solution space complexity is not an inherent property of a
domain, but rather arises from an authors design choices.

3 Tutor Authoring

Our analysis focuses on the Cognitive Tutor Authoring Tools (CTAT), as CTAT
is the most widely used tutor authoring tool and the approaches it supports are
representative of authoring tools in general [2]. CTAT supports non-programmers
in building both tutor interfaces and cognitive models (for providing feedback).
Cognitive models can be constructed with Example Tracing or SimStudent. In
this section, we step through how Example-Tracing and SimStudent approaches
would be applied by non-programmers to the experimental design task, using the
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interface shown in Figure 1. Further, we discuss the features of each approach
for handling solution space complexity in the context of this example.

3.1 Example Tracing

When building an Example-Tracing tutor in CTAT, the author demonstrates
correct solutions directly in the tutoring interface. These demonstrated steps
are recorded in a behavior graph. Each node in the behavior graph represents a
state of the tutoring interface, and each link represents an action that moves the
student from one node to another. In Example Tracing each link is produced as a
result of a single action demonstrated directly in the tutor interface; many legal
actions might be demonstrated for each state, creating branches in the behavior
graph.

Figure 2 shows an example of our experimental design tutor interface and
an associated behavior graph. The particular prompt chosen has 8 solutions and
many paths to each solution. These alternative paths correspond to different
orders in which the variables in the experimental design can be assigned. The
Example-Tracing approach allows authors to specify that groups of actions can
be executed in any order. In the context of our example, this functionality allows
the author to demonstrate one path to each of the 8 unique solutions (these
8 paths are visible in Figure 2) and then specify that the actions along that
path can be executed in any order. Unordered action groups are denoted in the
behavior graph by colored ellipsoids.

ece Student Interface
File Edit View Graph Cognitive Model Sim.Student Tools Window Help Student

Tutor Type: | Example-tracing Tutor 5 |  Author Mode: | Test Tutor + | For Java Student Interfaces, Messages

@ etgraphpibrd x Experimental Design Tutor
Pl Design an experiment to test the effect of 'Heat
ZINS on some dependent variable.
p
A/‘;‘/ . ol 235 ‘47‘\\ \;\b Variables
st (o0 Caeta] o |state29]  [state3s| [stated3] [state50) state57 Heat Lid Mass D Help
I I | | I | Condition 1 | Value1l & Valuel :| [ Vauel
T CommEan{ 23 SamnCombaRoxt Vaius TH73. \CommCambotox?. Vil 0L ICammCon 115, JCommCambotoxs. Valus
L Condition 2 Value 1 $ Value 1 $ Value 1 $
state2|  [stated] state15) state30] state37 | statedd state51 state58’
Ko 15, CommComi 3L Comme L JCommCom 75. iCommCon] 89. JC l Vai $ ‘ig "
state3 svaém statel6]  [sate3t state3s|  [stated5 state52| [state59
- © : 5 s ' r

[Ordered  [p1 [et-graph-pibrd [Example-tracing Tutor [Tinterpretation

Fig. 2. An experimental design tutor (right) and its associated behavior graph (left).
This tutor supports students in designing an experiment to test the effect of heat on
a dependet variable. The correct answer is to pick two different values for the “Heat”
variable and to hold the values constant for other variables.

Once a behavior graph has been constructed for a specific problem (e.g. de-
termine the effect of heat on ice melting), that behavior graph can be generalized
to other problems (e.g. determine the effect of sunlight on plant growth) using
mass production. The mass production feature allows the author to replace spe-
cific values in the interface with variables and then to instantiate an arbitrary
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number of behavior graphs with different values for the variables. This approach
is powerful for supporting many different problems that have identical behavior
graph structure, such as replacing all instances of “heat” with another variable,
“sunlight”. However, if a problem varies in the structure of its behavior graph,
such as asking the student to manipulate a variable in the second column instead
of the first (e.g., “lid” instead of “heat”), then a new behavior graph would need
to be built to reflect the change in the column of interest.

How efficient is Example Tracing in building a complete cognitive model for
the experimental design problem? The complete model consists of 3 behavior
graphs (one for each of the three variable columns that could be manipulated).
Each graph took 56 demonstrations and required 8 unordered action groups to be
specified. Thus, the complete cognitive model required 168 demonstrations and
24 unordered group specifications. Using estimates from a previously developed
Keystroke-Level Model [6], which approximates the time needed for an error-free
expert to perform each interface action, we estimate that this model would take
about 27 minutes to build using Example Tracing. Notably, the ability to specify
unordered action groups offers substantial efficiency gains - without it, authoring
would take almost 100 hours. Furthermore, with mass production, this model
can generalize to any set of authored variables.

3.2 SimStudent

While the Example-Tracing behavior graph creates links from user demonstra-
tions, the SimStudent system extends these capabilities by inducing production
rule models from demonstrations and feedback (for details on this rule induction
see [8]). In the experimental design tutor, SimStudent might learn a rule that
sets one of the variables to an arbitrary value when no values for that variable
have been assigned. Then, it might learn different rules for setting a variables
second value based on whether or not it is being manipulated.

Authoring with SimStudent is similar to Example Tracing in that SimStu-
dent asks for demonstrations when it does not know how to proceed. However,
when SimStudent already has an applicable rule, it fires the rule and shows the
resulting action in the tutor interface. It then asks the author for feedback on
that action. If the feedback is positive, SimStudent may refine the conditions
of its production rules before continuing to solve the problem. If the feedback
is negative, SimStudent will try firing a different rule. When SimStudent ex-
hausts all of its applicable rules, it asks the author to demonstrate a correct
action. Figure 3 shows how SimStudent asks for demonstrations and feedback.
When authoring with SimStudent, the author does not have to specify rule or-
der - as long as a rule’s conditions are satisfied, it is applicable. Authoring with
SimStudent produces both a behavior graph (of the demonstrations and actions
SimStudent took in the interface) and a production rule model.

To evaluate the efficiency of the SimStudent approach we constructed a com-
plete model for the experimental design tutor. It can be difficult to determine
when a SimStudent model is correct and complete from the authoring interac-
tions alone. In most cases the SimStudent model is evaluated with set of held-out
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I'm stuck. Idon'tknow what to do next. Please show me whatto do.
I entered "Value 1" into JCommComboBox5.

=’ Do you think that would be a good move?

=—"1] oK

No Yes

Fig. 3. SimStudent asking for feedback (left) and for a demonstration (right).

test problems (i.e., unit tests). However, in this case the learned rules were sim-
ple enough to evaluate by direct inspection. We noticed that SimStudent learned
one correct strategy, but had not explored other solutions. This is typical of Sim-
Student - once it learns a particular strategy it applies it repeatedly. Therefore,
authors must give it additional demonstrations of alternative paths. With the
experimental design tutor, we noticed that SimStudent was always choosing the
first value for non-manipulated variables, so we gave it additional demonstra-
tions where non-manipulated variables took values besides those demonstrated
on the initial run.

Ultimately, SimStudent acquired a complete model after 7 demonstrations
and 23 feedback responses. Using the same Keystroke-Level Model from [6], we
estimate that building a cognitive model using SimStudent would take an error-
free expert about 2.12 minutes — much shorter than Example Tracing. Like
Example Tracing, the model produced by SimStudent can work with arbitrary
variables. Unlike Example Tracing, the learned model can work for unauthored
variables; for example, students could define their own variables while using the
tutor. This level of generality could be useful in inquiry-based learning envi-
ronments [4]. Finally, if another variable column was added to the tutor, the
SimStudent model would be able to function without modification. For Exam-
ple Tracing, such a change would constitute a change to the behavior graph
structure, so a completely new behavior graphs would need to be authored to
support this addition.

4 Discussion

Both Example Tracing and SimStudent can create tutors for problems with
complex solution spaces. However, our analysis shows that the two approaches
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differ in terms of their efficiency and, as a result, how many solutions and paths
they can handle in practice.

First, the Example-Tracing approach worked very well, even though the ex-
perimental design problems have a combinatorial structure. In particular, un-
ordered action groups and mass production drastically reduced the number of
demonstrations needed to cover the solution space, 168 vs. 40,362. The simplic-
ity of Example Tracing combined with the power afforded by these features is
likely why Example Tracing is the most widely used authoring approach today

[2].

The SimStudent approach was more efficient than Example Tracing (approx.
2.12 vs. 27 minutes), but this comparison requires several caveats. The machine
learning mechanisms of SimStudent generalize demonstrations and feedback into
rules, which allows SimStudent to only model unique actions and the conditions
under which they apply. However, this means SimStudent may not acquire a
complete model. In the experimental design case study, SimStudent at first only
learned that non-manipulated variables take their first value (rather than any
value that is constant across conditions). In general, this problem arises when
SimStudent acquires a model that can provide at least one correct solution for
any problem. In these situations, it never prompts an author to provide alter-
native demonstrations; leading an unsuspecting author to create an incomplete
model. A related complication is determining when the SimStudent model is
complete. While determining the completeness of models in both Example Trac-
ing and SimStudent can be difficult, authors must attempt to infer completeness
from SimStudent’s problem solving performance— a method that can be rather
opaque at times. Thus, an open area for simulated learning systems is how best
to evaluate the quality of learned models.

Currently
Infeasible for
Non-Programmers
# of Paths
per Solution
SimStudent
Example

Tracing

\

# of Solutions

Fig.4. How the space of solution space complexity is handled by existing non-
programmer authoring approaches.
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Overall our findings, when paired with those of previous work [6], suggest
an interpretation depicted in Figure 4. In this figure the potential space of com-
plexity is depicted in terms of number of unique solutions and number of paths
per solution. The inner region denotes the area of the complexity space where
we believe Example Tracing will maximize non-programmers’ authoring utility.
This region is skewed towards a higher number of paths, owing to Example
Tracing’s capacity to specify unordered actions. This portion of the complexity
space contains many of the tutors that have already been built using Example
Tracing [2]. As the complexity of a problem’s solution space increases, Example
Tracing becomes less practical (though still capable) and SimStudent becomes
a more promising option, despite the caveats for using it. SimStudent’s power
of rule generalization gives it the ability to deal with more paths and unique
solutions with less author effort, however, these capabilities come with the risk
of producing incomplete models (without the author being aware).

Notably missing in the figure is any coverage of the upper right quadrant.
This area would be a fruitful place to direct future work that supports non-
programmers in authoring problems with many solutions with many paths. In
particular, simulated learning systems might be extended to give non-programmers
access to this portion of the space. One existing approach for dealing with highly
complex solution spaces is to only model the aspects of the space that students
are most likely to traverse. For example, work by Rivers and Koedinger [11] has
explored the use of prior student solutions to seed a feedback model for intro-
ductory programming tasks. As it stands this area can only be reached using
custom built approaches and would benefit from authoring tool research.

One limitation of our current approach is the assumption that there is a body
of non-programmers that wants to build tutors for more complex problems. Our
analysis here suggests that there is an open space for non-programming tools
that support highly complex solution spaces, but it is less clear that authors
have a desire to create tutors in this portion of the space. A survey of authors
interested in building complex tutors without programming would help to shed
light on what issues non-programmers are currently having in building their
tutors. It is important that such a survey also include the perspective of those
outside the normal ITS community to see if there are features preventing those
who are interested from entering the space.

From a pedagogical point of view, it is unclear how much of the solution
space needs to be modeled in a tutor. Waalkens et al. [16] have explored this
topic by implementing three versions of an Algebra equation solving tutor, each
with progressively more freedom in the number of paths that students can take
to a correct solution. They found that the amount of freedom did not have
an effect on students learning outcomes. However, there is evidence that the
ability to use and decide between different strategies (i.e. solution paths) is
linked with improved learning [14]. Further, subsequent work [15] has suggested
that students only exhibit strategic variety if they are given problems that favor
different strategies. Regardless of whether modeling the entire solution space is
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pedagogically necessary, it is important that available tools support the ability to
model complex spaces so that these research questions can be further explored.

5 Conclusion

The results of our analysis suggest that both the Example Tracing and Sim-
Student authoring approaches are promising methods for non-programmers to
create tutors even for problems with many solutions with many paths. More
specifically, we found that SimStudent was more efficient for authoring a tutor
for experimental design, but authoring with SimStudent had a number of caveats
related to ensuring that the authored model was complete. In contrast, Example
Tracing was simple to use and it was clear that the authored models were com-
plete. Overall, our analysis shows that Example Tracing is good for a wide range
of problems that non-programmers might want to build tutors for (supported
by its extensive use in the community [2]). However, the SimStudent approach
shows great promise as an efficient authoring approach, especially when the so-
lution space becomes complex. In any case, more research is needed to expand
the frontier of non-programmers’ abilities to author tutors with complex solution
spaces.

Finally, this work demonstrates the feasibility and power of utilizing a simu-
lated learning system (i.e., SimStudent) to facilitate the tutor authoring process.
In particular authoring tutors with SimStudent took only 10% of the time that it
took to author a tutor with Example-Tracing, a non-simulated learner approach.
Educational technologies with increasingly complex solution spaces are growing
in popularity (e.g. educational games and open-ended learning environments),
but current approaches do not support non-programmers in authoring tutors
for these technologies. Our results show that simulated learning systems are a
promising tool for supporting these non-programmers. However, more work is
needed to improve our understanding of how simulated learners can contribute
to the authoring process and how the models learned by these systems can be
evaluated.
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Abstract. We discuss methods for evaluating simulated learners associated with four different scientific
and practical goals for simulated learners. These purposes are to develop a precise theory of learning, to
provide a formative test of alternative instructional approaches, to automate authoring of intelligent tu-
toring systems, and to use as a teachable agent for students to learn by teaching. For each purpose, we
discuss methods for evaluating how well a simulated learner achieves that purpose. We use SimStudent,
a simulated learner theory and software architecture, to illustrate these evaluation methods. We de-
scribe, for example, how SimStudent has been evaluated as a theory of student learning by comparing,
across four domains, the cognitive models it learns to the hand-authored models. The SimStudent-
acquired models yield more accurate predictions of student data in the three of the four domains. We
suggest future research into more directly evaluating simulated learner predictions of the process of
student learning.

Keywords: simulated learners, cognitive models, learning theory, instructional theory

1 Introduction

When is a simulated learner a success? We discuss different approaches to evaluating simulated learners.
Some of these evaluation approaches are technical in nature, whether or how well a technical goal has been
achieved, and some are empirical, whereby predictions from the simulated learner are compared against
data. These approaches can be framed within the different goals and uses for simulated learners. Table 1
summarizes four purposes for developing simulated learners.

Table 1. Scientific and Practical Goals for Simulated Learners (SLs)

1. Precise Theory. Use SLs to develop and articulate precise theory of student learning in a replicable and un-
ambiguous computational form.
a.  Cognitive Model. Create theories of domain expertise
b.  Error Model. Create theories of student domain misconceptions
c.  Prior Knowledge. Create theories of how different prior knowledge changes the nature and effective-

ness of learning

d.  Learning Process. Create theories of change in student knowledge and performance

2. Instructional Testing. Use SLs as a “crash test” to evaluate and compare different instructional approaches
on how well they facilitate learning.

3. Automated Authoring. Use SLs to automate the development of the expert component or cognitive model of
an intelligent tutoring system.

4. Teachable Agent. Use SLs as a teachable agent or peer learner inside an instructional system to directly aid
student learning.

Some of these goals have been pursued in prior simulated learner research. For example, [1] proposed

the use of a simulated learner for instructional testing (#2 in Table 1). More specifically, he used “pseudo-
students” during the design process for a formative evaluation of instruction to detect design defects.
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Different evaluation approaches are appropriate for the different goals indicated in Table 1. In later sec-
tions, we discuss these evaluation approaches for each of the four main goals. But first, we introduce, Sim-
Student, the simulated learner system we have developed.

1.1  SimStudent: A Simulated Learner Theory and Software Architecture

We use SimStudent [2,3] as a running example to illustrate the evaluation techniques we discuss. SimStu-
dent is a simulated learner system and theory in the class of adaptive production systems as defined by [4].
As such, it is similar to cognitive architectures such as ACT-R [5], Soar [6], and Icarus [7]. It is distinctive
in its focus on modeling learning of complex academic topics, such as math, science, and language learn-
ing, and in its focus on inductive knowledge level learning [8]. SimStudent learns from a few primary
forms of instruction, including examples of correct actions, skill labels on similar actions (which cue, but
do not guarantee, learning and use of the same production rule), clues for what information in the interface
to focus on to infer a next action, and finally yes-or-no feedback on actions performed by SimStudent.

To tutor SimStudent, the author first enters a problem in the tutoring interface (e.g., the “2x = 8” in the
first row of Figure 1). SimStudent then attempts to solve the problem by applying productions learned so
far. If an applicable production is found, the production application is visualized as a step in the behavior
recorder represented as a new state-edge pair like the one shown in the bottom left of Figure 1. The author
then provides correctness feedback on the step performed by SimStudent. When there are multiple applica-
ble productions SimStudent shows the author all corresponding production applications and obtains cor-
rectness feedback on each.

Equation Transformation

Production rule induced from
— (defrule divide by

{ - (problem (interface-elements ??2?2?2?7??
F Edit View Graph Cognitive Model Sim. Student T ?tablel ?table2 ?table3 ?))

?tablel <- (table (columns ?column1))
?columnl <- (column (cells ?celll 2?2 ? ??))
?celll <- (cell (value ?vall&™nil))

?table2 <- (table (columns ?column2))

TutoMype Simulated St : Author Mode ~ De : )8

se “(WME Editor (Group Editor (Variable Viev

?2cell2 <- (cell (value ?val2&™nil) )

Each step performed

by author or 1 ?table3 <- (table (columns ?column3))
SimStudent is 1. dorminTable3_C1R1, divide : ?column3 <- (column (cells ?cell3? 2 ? ? ?))
displayed in CTAT divide simst ?cell3 <- (cell (name ?selection) (value nil) )
behavior graph with

associated skill label = (test (has-coefficient ?vall) )
=>
dorminTablel_CIRZ, x
— 1 = (bind ?val3 (get-first-integer-without-sign ?vall))
— ”$ = (bind ?input (skill-divide ?val3))

(predict-algebra-input ?selection UpdateTable ?input)
1 — (modify ?cell3 (value ?Input)))

5. dorminTable2 ¢

Fig. 1. After creating an interface (shown at top) and entering a problem (“2x=8"), teaching of SimStudent occurs
either by giving yes-or-no feedback when SimStudent attempts a step or by demonstrating a correct step when SimStu-
dent cannot (e.g., “divide 2”). SimStudent induces production rules from demonstrations (example shown on right) for
each skill label (e.g., “divide” or “div-typein” shown on left). It refines productions based on subsequent positive
(demo or yes feedback) or negative (no feedback) examples.

If no correct production application is found, then SimStudent asks the author to demonstrate the next
step directly in the interface. When providing a demonstration, the author first specifies the focus of atten-
tion (i.e. input fields relevant to the current step) by double-clicking the corresponding interface elements,
for example, the cells containing “2x” and “8” in Figure 1. The author then takes action using the relevant
information (e.g., entering “divide 2” in Figure 1). The demonstrated step is visualized in the behavior
graph. Finally, the author specifies the skill name by clicking on the newly added edge of the behavior
graph. A small dialogue box appears to enter a skill name. This skill label is used to guide SimStudent’s
learning and to make the models acquired by SimStudent more interpretable (i.e., to give them human read-
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able names). Generally speaking, authors could model a single observable step (i.e., an edge in the behavior
graph) with a chain of production-rule applications. However, when using SimStudent to author an expert
model, SimStudent generates a single production rule per each observable step.

SimStudent learns production rules from the author’s demonstrations and feedback using three machine-
learning mechanisms: how, where, and when learning. When given a new demonstration (i.e., a positive
example of a rule), SimStudent uses its sow learner to explain the demonstration and produces a general
composition of functions that replicate the demonstrated steps and ones like it. For example, in Figure 1,
when given the demonstration “divide 2” for the problem 2x=8, SimStudent induces (or “guesses”) that the
result of the “get-first-integer-without-sign” function when applied to left side of the problem and appended
to the word “divide” explains the demonstration. This general sequence can then be used on novel problems
(e.g., 4x=12 -> divide 4).

After an action sequence has been discovered, SimStudent uses its where learner to identify a general-
ized path to the focuses of attention in the tutor interface; e.g., to the left and right sides of the equation or
to the next step input field. For the example in Figure 1, the where learner discovers retrieval paths for the
three cells in the first column. These paths are generalized as more positive examples are acquired for a
given rule. For example, when the author demonstrates the application of the divide rule shown in Figure 1
to the second row of the equation table, then the production’s retrieval path might be generalized to func-
tion over any row in the equation table (rather than just the first two rows).

Finally, after learning an action sequence and general paths to relevant information, SimStudent uses its
when learning to identify the conditions under which the learned production rule produces correct actions.
For the example in Figure 1, SimStudent learns that this rule can only be correctly applied when one side of
the equation has a coefficient. In situations when SimStudent receives positive and negative feedback on its
rule applications, it uses the when learner to update the conditions on the rules. Thus, the how and where
learners primarily use positive examples and the when learner uses both positive and negative examples.

SimStudent is also capable of learning the representation of the chunks (object attribute structures) that
make up the production system working memory and are the informational basis on which productions are
learned. It does so using an unsupervised grammar induction approach [3]. This feature particularly sets it
apart from the other production rule learning systems mentioned above.

2 Evaluating Simulated Learners as Theories of Learning

It is helpful to distinguish a general theory of learning from a human-specific theory of student learning.
We focus primarily on a theory of human student learning as it is most relevant to the education goals of
the field of Al in Education. However, it is worth mentioning that there are evaluation criteria for a general
learning theory, such as how quickly (e.g., in number of examples or time) and independently (e.g., with
less supervision) learning takes and how general and accurate is the performance (e.g., problem solving or
inference capability) of the resulting expert system. These criteria, then, provide guidance for comparative
evaluations of general theories of learning. It is reasonable to consider as a better theory of learning one
that produces improvements over a competing theory on any of speed, independence, generality, or accura-
cy without harming any of the others. In [9], for instance, Tenenbaum, Griffiths and Kemp have argued that
hierarchical Bayesian models are better models of learning than other classification or neural network mod-
els because they can learn as well with fewer examples. (Note: If one suggests that a model is better be-
cause humans are able to learn with fewer examples, then one is moving into the realm of a human-specific
theory of learning.)

While not necessary to evaluate general theories of learning, to evaluate the validity of theories of stu-
dent learning, it is critical that the simulated learner be compared with student data. This data may involve
student correct performance, incorrect performance, performance across tasks, and changes in performance
over time. The data may be qualitative or quantitative.

2.1 Good Student Learning Theory Should Generate Accurate Cognitive Models

A student learning theory should produce the kind of expertise that human students acquire. In other
words, the result of teaching a simulated learner should be a cognitive model of what a human student
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knows after instruction and should behave as a human student does after instruction. For this kind of eval-
uation of a simulated learner, the issue reduces to the question of how to evaluate a cognitive model. In
[10], we proposed six constraints to evaluate the quality of a cognitive model. These were labeled 1) solu-
tion sufficiency, 2) step sufficiency, 3) choice matching, 4) computational parsimony, 5) acquirability, and
6) transfer. The first two are empirical and qualitative: Is the cognitive model that the SL acquires able to
solve tasks in the domain of interest and does it do so with steps that are consistent with human students?
The third is quantitative: Does the frequency of strategy use and common error categories generated by the
cognitive model on different tasks correspond with the frequency of strategy use and common error catego-
ries exhibited by human students on those tasks? The last three are rational in character, involving inspec-
tion of the cognitive model (or contrasting models) to judge whether it is (they are) not unnecessarily com-
plex (#4), can be plausibly learned (#5), and implies transfer through overlap in knowledge components
that apply across tasks (#6).

These constraints were designed to evaluate cognitive models developed by hand (e.g., by a scientist
writing an expert system), but in the case that the model is generated by a simulated learner, the acquirabil-
ity constraint (#5) is naturally achieved. The components of the cognitive models can be plausible because
the SL does, in fact, learn them. If the cognitive model that is produced can solve tasks in the domain, for
example, a simulated learner trained on algebra equations can solve equations, then the solution sufficiency
constraint (#1) is met. If it solves them using the kinds of intermediate steps that match the kinds of steps
in student solutions, for example, it performs its solution in a step-based tutoring system interface, then the
step sufficient constraint (#2) is met.

How, then, can the remaining choice matching (#3), parsimony (#4), and transfer (#6) constraints be
evaluated? In [11], we employed an approach that provides much of what is needed. This approach em-
ploys educational data mining and, in particular, evaluates the accuracy of a cognitive model by the so-
called “smooth learning curve” criteria [cf., 12,13]. Using a relatively simple statistical model of how in-
structional opportunities improve the accuracy of knowledge, this approach can measure and compare cog-
nitive models in terms of their accuracy in predicting learning curve data. To employ the statistical model
fit, the cognitive model is simplified into a “Q matrix”, which encodes a mapping from each observed task
students perform (e.g., answering a question or entering a step in a problem solving) to the knowledge
components that are hypothesized to be needed to successfully perform that task. Different cognitive mod-
els produce different Q matrices and different levels of predictive accuracy in fitting student learning curve
data (measured, for example, by the root mean squared error on held-out data in cross validation). For any
appropriate dataset uploaded into DataShop (learnlab.org/DataShop), the website allows users to edit and
upload alternative cognitive models (in the Q matrix format), automatically performs statistical model fits,
renders learning curve visualizations, and displays a ranking ordering of the models in terms of their pre-
dictive accuracy [14].

In [11], this approach was used to evaluate the empirical accuracy of the cognitive models that SimStu-
dent learns as compared to hand-authored cognitive models. SimStudent was tutored in four domains:
algebra, fractions, chemistry, and English grammar, in which we had existing human data and existing
hand-authored cognitive models (see Figure 2). In each domain SimStudent induced, from examples and
from practice with feedback, both new chunk structures to represent the organization (or “grammar”) of the
perceptual input in each domain and new production rules that solve problems (e.g., add two fractions) or
make decisions (e.g., select when to use “the” or “a” in English sentences) in each domain. In each case,
the production rules that SimStudent acquired were converted into the Q matrix format whereby a produc-
tion (the columns of the Q matrix) is indicated as needed (entering a 1 rather than a 0 in the matrix) for a
task (the rows of the Q matrix) if SimStudent uses that production to succeed on that task. Then the
DataShop cognitive model comparison was employed to compare whether these models fit student learning
curve data better than the hand-authored cognitive models do.

In all four domains, the SimStudent-acquired cognitive models made distinctions not present in the
hand-authored models (e.g., it had two different production rules across tasks for which the hand-authored
model had one) and thus it tended to produce models with more knowledge components (as shown in Table
2). For example, SimStudent learned two different production rules for the typical last step in equation
solving where one production covered typical cases (e.g., from 3x = 12 the student should “divide by 3”)
and another covered a perceptually distinct special case (e.g., from -x = 12 the student should divide by -1).
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Fig. 2. Four domains in which SimStudent has been tutored and for which we have student learning data.

In all four domains, at least some of these distinctions improved the accuracy of fit to the learning curve
data for the relevant tasks. Continuing the example, the SimStudent-acquired cognitive model in algebra
leads to better accuracy because real students had a much higher error rate on tasks like -x=12 (where the
coefficient, -1, is implicit) than on tasks like 3x=12 (where the coefficient, 3, is explicitly visible). More
generally, in one domain (Fraction Addition, see Table 2), the SimStudent-acquired cognitive model failed
to make a key distinction present in the hand-authored model and thus, while better in some cases, its over-
all fit was worse. In the three other domains (see Table 2), the SimStudent-acquired cognitive models were
all found to be more accurate than the hand-authored cognitive models.

Table 2. A comparison of human-generated and SimStudent-discovered models. The columns on the left show the
number of productions rules in the cognitive models and the columns on the right show the root mean squared error of
the models for predicting held-out student learning data in cross validation.

Number of Production Rules Cross-Validated RMSE
Human- SimStudent Human- SimStudent
Generated Discovered Generated Discovered
Model Model Model Model
Algebra 12 21 0.4024 0.3999
Stoichiometry 44 46 0.3501 0.3488
Fraction Addition 8 6 0.3232 0.3343
Atrticle selection 19 22 0.4044 0.4033

In other words, this “smooth learning curve” method of evaluation can provide evidence that a simulated
learner, SimStudent in this case, is a reasonable model of student learning in that it acquires knowledge at a
grain size (as represented in the components of the cognitive model) that is demonstrably consistent with
human data.

One limitation of this approach is that it indirectly compares a simulated learner to human learners
through the process of fitting a statistical model. In the case of algebra, for example, SimStudent’s acquisi-
tion of two different productions for tasks of the form Nx=N versus tasks of the form -x=N gets translated
into a prediction that student performance will be different in these situations, but the not direction of the
difference. It is process of estimating the parameters of the statistical model that yields the prediction for
which of these task categories (Nx=N or -x=N) will be harder. A more direct comparison would not use an
intermediate statistical model fit. It would require the simulated learner to not only produce a relevant
distinction, but to make a prediction of student performance differences, such as whether it takes longer to
successfully learn some kinds of tasks than others. Such an evaluation approach is discussed in section 2.3.
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2.2 Good Student Learning Theory Should Generate Errors that Match Student Errors and Test
Prior Knowledge Assumptions

As a model of student learning, a good simulated learner should not only produce accurate performance
with learning, but should also produce the kinds of errors that students produce [cf.,15]. Thus, another way
to evaluate a simulated learner is compare the errors it generates with student errors.

One theory of student errors is that students learn incorrect knowledge (e.g., incorrect production rules
or schemas) from correct example-based instruction due to the necessary fallibility of inductive learning
processes. A further hypothesis is that inductive learning errors are more likely when students have “weak”
(i.e., more domain general) rather than “strong” (i.e., more domain specific) prior knowledge. With weak
prior knowledge, students may interpret examples shallowly, paying attention to more immediately per-
ceived surface features, rather than more deeply, by making domain-relevant inferences from those surface
features. Consider example-based instruction where a student is given the equation “3x+5 = 7” and told that
“subtract 5” from both sides is a good next step. A novice student with weak prior knowledge might inter-
pret this example shallowly, as subtracting a number (i.e., 5) instead of more deeply, as subtracting a term
(i.e., ¥5). As a consequence, the student may induce knowledge that produces an error on a subsequent
problem, such as “4x-2=5" where they subtract 2 from both sides. Indeed, this error is a common one
among beginning algebra students.

In [16], we evaluated SimStudent by comparing induction errors it makes with human student errors.
More specifically, we evaluated the weak prior knowledge hypothesis expressed above. We conducted a
simulation study by having multiple instances of SimStudent get trained by Cognitive Tutor Algebra . We
compared SimStudent behaviors with actual student data from the Cognitive Tutor’s logs of student inter-
actions with the system. When SimStudent starts with weak prior knowledge rather than strong prior
knowledge, we found that it learns more slowly, that is, the accuracy of learned skills is lower given the
same amount of training or the amount of training needed to reach the same level of accuracy is greater.
More importantly, we found that SimStudent’s ability to predict student errors increased significantly when
given weak rather than strong prior knowledge. In fact, the errors generated by SimStudent with strong
prior knowledge were almost never the same kinds of errors commonly made by real students.

In addition to illustrating how a simulated learner can be evaluated by comparing its error generation to
human errors, the above example illustrates how a simulated learner can be used to test assumptions about
what prior knowledge students bring to their learning environments. The study above showed that novice
algebra students do not have strong prior knowledge, particularly of the grammatical elements of equations,
such as terms and coefficients. Thus, the SimStudent provides a theoretical explanation not only of com-
mon student error patterns, but also of empirical results (e.g., Booth and Koedinger, 2008) showing correla-
tions between tasks measuring prior knowledge (e.g., identify the negative terms in “3x - 4 = -5 - 2x”) and
subsequent learning of target skills (e.g., solving algebra equations).

Some previous studies of students’ errors focus primarily on a descriptive theory to explain why students
made particular errors, for example, repair theory [15], the theory of bugs [18], and the theory of extrapola-
tion technique [19]. With simulated learners [cf., 15], we can better understand the process of acquiring the
incorrect skills that generate errors. The precise understanding that computational modeling of learning
facilitates provides us with insights into designing better learning environments that anticipate and prevent
or quickly remedy error formation.

2.3  Good Student Learning Theory Should Match Learning Process Data

Matching a simulated learners performance to learning process data is similar to the cognitive model evalu-
ation discussed above in section 2.1. However, as indicated above, that approach has the limitation of being
an indirect comparison with human data whereby there the fit to human data is, in a key sense, less chal-
lenging because it is mediated by a separate step parameter estimation of a statistical model. A more direct
comparison is, in simple terms, to match the behavior of multiple instances of a simulated learner (i.c., a
whole simulated class) with the behavior of multiple students. The simulated learners interact with a tutor-
ing system (like one shown in Figure 2) just as a class of human students would and their behavior is
logged just as human student data is. Then the simulated and human student data logs can be compared, for
example, by comparing learning curves that average across all (simulated and human) student participants.
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3 Evaluating Simulated Learners as Instruction Testers

A number of projects have explored the use of a simulated learner to compare different forms of instruc-
tion. VanLehn was perhaps the first to suggest such a use of a “pseudo student” [1]. MacLaren &
Koedinger used a version of ACT-R’s utility learning mechanism to show that the simulated learner was
often successful when given error feedback not only on target performance tasks (e.g., solving two-step
equations), but also on shorter subtasks (e.g., one-step equations) [10]. Matsuda, Cohen & Koedinger used
SimStudent to show better learning from giving it a combination of examples and problems to solve, than
just giving it examples [2]. Li, Cohen & Koedinger showed that interleaving problem types is as good, or
better, for learning than blocking problem types because interleaving provides better opportunities for de-
tecting and correcting generalization errors [20].

Recall the distinction mentioned above between general learning theory and human learning theory.
This distinction can be extended to separate a general theory of instruction from a theory of instruction
relevant to human students. For a general theory of instruction, it is of scientific interest to understand the
effectiveness of different forms of instruction for different kinds of SL systems even if the SL is not (or not
known to be) an accurate model of student learning. Such understanding may be relevant to advancing
applications of Al and is directly relevant to the issue of how an SL can be easily trained for purposes of
automated ITS authoring, the topic of the next section. Such theoretical demonstrations may also have rele-
vance to a theory of human instruction as they may 1) provide theoretical explanations for instructional
improvements that have been demonstrated with human learners or 2) generate predictions for what may
(or may not) work (but has not yet been tried) with human students.

However, these instructional conclusions can only be reliably extended to human learners when there is
existing evidence that the simulated learner is an accurate model of student learning (see the prior section
2). And ideally, the most reliable evaluation of a simulated learner as instructional tester is a follow-up
random assignment experiment with human learners that demonstrates that the instructional form that was
better for the simulated learners is also better for students. In the examples given above, there is some rea-
sonable evidence that the simulated learners (or learning mechanisms) applied are accurate models of stu-
dent learning. In many cases, there are past relevant human experiments. However, in none of these cases
was the ideal follow-up experiment performed.

4 Evaluating Simulated Learners as ITS Authoring Tools

In addition to their use as theories of learning and for testing instructional content, simulated learning sys-
tems can also be used to facilitate the authoring of Intelligent Tutoring Systems (ITS). In particular, once a
simulated learner has been sufficiently trained, the cognitive model it learns can then be used directly as an
expert model. Previous work, such as Example Tracing tutor authoring [21], has explored how models can
be acquired by demonstration. However, by using a simulated learning system to induce general rules form
the demonstrations more general models can be acquired more efficiently. For example, the use of SimStu-
dent as authoring tool is still experimental, but there is evidence that it may accelerate the authoring process
and that it may produce more accurate cognitive models than hand authoring. In one demonstration, [2]
explored the benefits of a traditional programming by demonstration approach to authoring in SimStudent
versus a programming by tutoring approach, whereby SimStudent asks for demonstrations only at steps in a
problem/activity where it has no relevant productions and otherwise it performs a step (firing a relevant
production) and asks the author for feedback as to whether the step is correct/desirable or not. They found
that programming by tutoring is much faster, 13 productions learned with 20 problems in 77 minutes versus
238 minutes in programming by demonstration. They also found that programming by tutoring produced a
more accurate cognitive model whereby there were fewer productions that produced over-generalization
errors. Programming by tutoring is now the standard approach used in SimStudent and its improved effi-
ciency and effectiveness over programming by demonstration follow from having SimStudent start per-
forming its own demonstrations. Better efficiency is obtained because the author need only respond to each
of SimStudent’s step demonstrations with a single click, on a yes or no button, which is much faster than
demonstrating that step. Better effectiveness is obtained because these demonstrations better expose over-
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generalization errors to which the author responds “no” and the system learns new IF-part preconditions to
more appropriately narrow the generality of the modified production rule.

In a second demonstration of SimStudent as an authoring tool, [22] compared authoring in SimStudent
(by tutoring) with authoring example-tracing tutors in CTAT. Tutoring SimStudent has considerable simi-
larity with creating an example-tracing tutor except that SimStudent starts to perform actions for the author,
which can be merely checked as desirable or not, saving the time it otherwise takes for an author to perform
those demonstrations. That study reported a potential savings of 43% in authoring time by using SimStu-
dent to aid in creating example-tracing tutors. As mentioned before, the work by [11] has shown that the
models acquired using SimStudent better fit the student data. Thus, using the SimStudent system to author
a tutoring system allows for the efficient construction of empirically better models.

5 Evaluating a Simulated Learner as a Teachable Agent

Simulated learner systems can be more directly involved in helping students learn when they are used as a
teachable agent whereby students learn by teaching [cf., 23]. Evaluating the use of a simulated learner in
this form ideally involves multiple steps. One should start with a simulated learner that has already re-
ceived some positive evaluation as a good model of student learning (see section 2). Then incorporate it
into a teachable agent architecture and, as early and often as possible, perform pilot students with individu-
al students [cf., 24 on think aloud user studies) and revise the system design. Finally, for both formative
and summative reasons, use random assignment experiments to compare student learning from the teacha-
ble agent with reasonable alternatives.

Using SimStudent, we built a teachable agent learning environment, called APLUS, in which students
learn to solve linear equations by teaching SimStudent [25] . To evaluate the effectiveness of APLUS and
advance the theory of learning by teaching, we conducted multiple in vivo experiments each with a specific
hypotheses to test [25,26,27,28].

Each of the classroom studies have been randomized controlled trials with two conditions controlling a
single study variable. For example, in one study [25], the self-explanation hypothesis was tested by having
students justify their tutoring activities and decision making. To test this hypothesis, we developed a ver-
sion of APLUS in which SimStudent occasionally asked “why” questions. For example, when a student
provided negative feedback to a step SimStudent performed, SimStudent asked, “Why do you think adding
3 here on both sides is incorrect?” Students were asked to respond to SimStudent’s questions either by
selecting pre-specified menu items or entering a free text response. The results showed that the amount and
the level of elaboration of the response had a reliable correlation with students’ learning measured by
online pre- and post-tests.

We also compared learning by teaching with other forms of instruction [28]. In this in vivo study, half
of the students used APLUS and half used Cognitive Tutor Algebra I [29]. The results showed an aptitude-
treatment interaction such that students scoring in the low half on the pre-test may not be ready to benefit
from learning by teaching -- they learned better using the Cognitive Tutor than using APLUS -- whereas
students scoring in the high half of the pre-test learned more from APLUS (i.e., by teaching) than from the
Cognitive Tutor (i.e., by being tutored).

6 Conclusion

We outlined four general purposes for simulated learners (see Table 1) and reviewed methods of evaluation
that align with these purposes. To evaluate a simulated learner as a precise theory of learning, one can
evaluate the cognitive model that results from learning, evaluate the accuracy of error predictions as well as
prior knowledge assumptions needed to produce those errors, or evaluate the learning process, that is, the
opportunity by opportunity changes in student performance over time. To evaluate a simulated learner as
an instructional test, one should not only evaluate the systems accuracy as a precise theory of student learn-
ing, but should also perform human experiment to determine whether the instruction that works best for
simulated learners also works best for human students. To evaluate a simulated learner as an automated
authoring tool, one can evaluate the speed and precision of rule production, the frequency of over-
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generalization errors and the fit of the cognitive models it produces. More ambitiously, one can evaluate
whether the resulting tutor produces as good (or better!) learning than an existing tutor. Similarly, to eval-
uate a simulated learner as a Teachable Agent, one can not only evaluate the features of a Teachable Agent
system, but also perform experiments on whether students learn better with that system than with reasona-
ble alternatives.

Simulated learner research is still in its infancy so most evaluation methods have not been frequently
used. There have been very few studies that have evaluated a simulated learner as an instructional tester by
following up a predicted difference in instruction with a random assignment experiment using the same
forms of instruction with real students. We know of just one such study in which [29] first used an exten-
sion of the ACT-R theory of memory to simulate positive learning effects of an optimized practice schedule
over a (highly recommended) spaced practice schedule. Next, he ran the same experiment with human stu-
dents and confirmed the benefits of the optimized practice schedule. Such experiments are more feasible
when the instruction involved is targeting simpler learning processes, such as memory, but will be more
challenging as they target more complex learning processes, such as induction or sense making [cf., 31]

As far as we know, there have been no studies evaluating the learning process of a simulated learner as
we recommended in section 2.3. Such evaluations would be particularly compelling demonstrations of the
power of the simulated learner approach!

As we argued in [32], the space of instructional choices is just too large, over 200 trillion possible forms
of instruction, for a purely empirical science of learning and instruction to succeed. We need parallel and
coordinated advances in theories of learning and instruction and efforts to develop and evaluate simulated
learners are fundamental to such advancement.
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Abstract. Programming is one of the basic competences in computer
science, despite its importance, it is easy to find students with difficulties
to understand the concepts required to use this skill. Several researchers
report that the impossibility to achieve a quick and effective feedback, is
one of the motivators for the problematic scenario. The professor, even
when helped by the TAs, is not able to perform the reviews quickly, for
this activity requires a huge amount of time. Fast feedback is extremely
important to enable the learning of any concept. Some researches suggest
the use of peer assessment as a means of providing feedback. However, it
is quite common that the feedback provided by peers is not adequate. In
this paper, we propose the use of simulated learners in a peer assessment
approach as part of the teaching and learning processes of programming.
Currently a software tool is being developed to include the proposal
described in this paper.

1 Introduction

Programming is one of the basic competences in computer science, it is the basis
for the development of several other competences required for professionals in
the area. However, despite its importance, it is easy to find students who are
demotivated and with difficulties to understand the concepts required to use
this skill [7]. These difficulties causes a large number of failures, dropouts or the
approval of students without the required level of knowledge [14] [6] [5].

Many factors are identified in literature as causing the problematic scenario
related to programming courses. Several researchers report that the impossibility
to achieve a quick, effective and individualized feedback, is one of the motivators
for the problematic scenario [10] [12]. An individual follow up is impossible due
to many students enrolled in the courses. In addition, there is a great complexity
involved in the evaluation of a program, for it is necessary to understand how the
programmer has developed the algorithm, so the professor needs to comprehend
the line of reasoning adopted by the student. In this way, the professor, even
when helped by the TAs, cannot provide an adequate and fast feedback about
the solutions created by the students. This activity will require a huge amount
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of time to manually open the code, compile, run and verify the output of every
students solution for programming assignment. If the grading depends on the
structure and the quality of code, in addition to program output correctness,
the situation is a lot worse. Traditionally the real comprehension state of the
contents of a programming course is known only months after the beginning of
the course, when an evaluation activity is performed. After an evaluation it may
be too late to make any intervention.

Fast feedback is of extreme importance to enable the learning of any con-
cept [12]. Thus, some researches have been developed with the aim to propose
methods and tools to facilitate the monitoring of the activities of students in
programming courses. Some of these researches, such as [9][11][13], suggests the
use of peer assessment as a means of providing fast and effective feedback. This
solution is broadly used in Massive Open Ounline Courses (MOOCs), as described
in [3][8], where the courses are applied to hundreds or thousands of people en-
rolled in them, and just as occurs in the context of programming, it is impos-
sible for the professor to evaluate each solution. However, the peer assessment
approach as a means of providing feedback has some problems. Many times the
feedback provided by peers is not adequate, because the results are often not
similar to the analysis of an expert [8]. It is quite common to find comments
that are summarized to a phrase of congratulation or critique.

The reasons related to lack of effectiveness of feedback provided are quite
distinct, these may occur due to poor understanding of the content of the activity,
because of the student’s low motivation, or due to the short time that one has
available for the activities.

In [2] paper, it was observed the impact of learning was observed when a
student is influenced by the performance of their peers, the authors describe
that some students are encouraged to perform better, but others experiencing
the same situations end up discouraged to perform better.

In this paper is proposed the use of simulated learners in a peer assessment
approach used as part of the teaching and learning processes of programming.
Two concerns are explored in this proposal: the first is related to the search of
methods that enable a positive influence between students; the second concern
is related to an approach that allows a less costly way of testing any proposal of
applicability of peer assessment approach.

This paper is divided in five sections. In Section 2 the concept of peer assess-
ment is presented. Observations on the implementation of peer assessment in a
programming course context are shown in Section 3. The proposal of using sim-
ulated learners in the context of peer assessment for introductory programming
is presented in Section 4. Finally the conclusions and future work are shown in
the last section.

2 Peer Assessment

Peer assessment, or peer review, is an evaluation method where students have
responsibilities that traditionally belong to professors only. Among these respon-
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sibilities there are the review and the critique of the solutions proposed by their
peers. This way, they can experience the discipline as students and also from
the perspective of a TA. Usually in a peer assessment environment, students
also conduct self assessment. This way, they can reflect on their solution when
compared to other solutions, develop their critical thinking skills and improve
understanding of the concepts covered in the course.

In traditional approach, the professor, even when helped by TAs, can not
provide fast and adequate feedback for each solution proposed by the students.
The comments provided by the professor are generic observations based on ob-
servation of all students solutions.

In accordance with [9], peer review is a powerful pedagogical method, because
once students need to evaluate the work of their peers, they begin to teach and
learn from each other. Thus, the learning process becomes much more active,
making the learning qualitatively better than the traditional approach. Sstudents
can spend more time on analysis and construction of their comments, creating
more particular descriptions on a given solution and enriching discussion about
the topic studied.

Thus, the use of peer review can reduce the workload on the professor, permit-
ting the professor to focus on other pedagogical activities [9][3]. This evaluation
approach can also enable the evaluation of large-scale complex exercises, which
can not be evaluated in a automatically or semi-automatic fashion [3][8].

The success of peer assessment approach is strongly influenced by the quality
of feedback provided. However, this feedback if often not adequate, the results
are often not similar to the analysis of an expert [8]. In [8] is described that in
many cases the evaluations of the students are similar to the TAs evaluation,
however there are situations where the evaluations are graded 10% higher than
the TAs evaluation, in extreme cases the grades could be 70% higher than the
TAs evaluation. In [3] is mentioned that in general, there is a high correlation
between the grades provided by students and TAs, but often in the evaluations
from students the grades are 7% higher than the grades given by TAs.

Thus, we can conclude that peer assessment approach is a promising eval-
uation method, however there are improvements and adjusts to be applied to
obtain richer discussions and more accurate assessments.

3 Peer Assessment in introductory programing courses

Human interaction is described as an essential feature for learning in many
domains, including the introductory programming learning [13]. In classroom
programming courses the contact between students occurs on a daily basis, al-
lowing, for example, the discussion of the problems presented in the exercise
lists, the developed solutions and the formation of groups for the projects of the
course. This contact is many times inexistent in online programming courses,
interactions in this environment are the human-machine type. Thus, using the
peer assessment approach may enable human interaction on online courses, or
enhance the interaction between humans in presencial classroom courses.
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To encourage the assimilation of the topics, the use of practical exercises is
quite common in programming courses, the practice of programming skills is
crucial for learning. Many researchers also argue that the programming learn-
ing involves the reading and understanding of third-party code. Through peer
assessment approach both characteristics can be obtained. The professor can
develop new exercises, or choose problems proposed by others, while students
will have to observe, understand and evaluate the codes of their peers, as well
to compare these codes with their solution.

In [11] the use of a peer assessment approach to the context of programming
courses is described, this approach is supported by a web application. The results
described on the paper have a high correlation between the evaluations of the
TAs and students, the correlation is lowest when the complexity of the exercise
is higher.

An approach of peer assessment evaluation for the context of programming
learning, also supported by a web application is presented in [9]. Five activities
where graded using peer assessment, the occurrence of conflicts ranged from 61
% to activity with a lower incidence of conflict, up to 80 % for the activity with
the highest occurrence of conflicts. The system considers that a conflict occurs
when the student does not agree with the assessment provided.

In [9] the authors describes that if the peer reviews are conducted in an
inadequate way, the failure rates can increase. For the teaching approach used
at the programming course described in [13] there are two types of activities
that require assessment, quizzes and mini projects. Among these activities only
the mini projects are evaluated through peer assessment. Thus, students are not
overloaded and the approach can be used appropriately.

Another problem that can emerge with the use of peer review in a program-
ming context, is the increase of plagiarism. Once the assessment activity will
be distributed among the students, the similarities of self-identification of codes
can become more complicated. However, solutions are widely used to carry out
the detection automatically similarities, such as MOSS [1] e GPLAG [4].

4 Simulated learners as peers in a peer assessment
environment for introductory programing courses

In previous sections the advantages and disadvantages associated with the use
of peer assessment in a general context, and when applied to the context of
programming courses have been described. In both cases, the success of the
approach is strongly influenced by the quality of the feedback given. Therefore,
it is necessary to identify situations where there is inadequate feedback as well
as conflict situations. Situations where inadequate feedback occurs are when, for
any reason, the feedback does not help in the learning process. Conflict situations
occur when the student does not agree with the assessment provided, or when
there are huge variations on the evaluations provided. To perform a validation
of this proposal or of any proposal involving peer assessment, it is necessary to
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allocate the resources of time, physical space and adequate human resources.
Thus, it can be said that the test of this approach is a costly activity.

Two concerns are explored in this proposal: how we can achieve methods that
enable a positive influence between students in peer assessment environments,
in other words, how a student can give a high quality feedback to their peers;
and how a peer assessment approach can be tested with a lower cost, since any
validation of these assessment approaches requires a huge amount of resources.

4.1 A scenario of use of peer assessment with simulated learners

Traditionally in a peer assessment environment, the professor must create the
assignment and a set of assessment criteria. Then students develop their solutions
observing the assessment criteria and submitting the solution to be evaluated by
their peers. Each student’s evaluation must meet the assessment criteria. The
students should provide comments to peers explaining the reasons associated to
the outcome and a grade or an evaluation concept (eg. A-, B+, C). Each student
will have their code evaluated by their peers, and should assess the codes of other
students. In Figure 1, it is illustrated the scenario previously described. There are
variations in ways peer assessment approach is used, the scenario just mentioned
has many characteristics which are similar to all the variations.

06 ®

2|

Student A

Professor creates the assignment
(1) and the criteria (2) to assess
the solutions

Each student creates a
solution (3) and submits it
to receive peers evaluation

Peer B

PeerC

_ =
tdenl A oy ?ﬁ,
—m—© FRo]

“Student A” solution is evaluated
by a group of peers (4)(5)(6).

“Student A” evaluates a group
of solutions of the peers (7)(8)(9).

Fig. 1. A traditional peer assessment environment

In any peer assessment approach, it is possible to adopt pairing algorithms.
Thereby, it is assured that evaluations are conducted by students with different
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levels of knowledge. A student with low understanding of the subject will not be
allocated to evaluate the work of another student in the same situation. Students
with difficulties can clarify their doubts, while students with good understanding
of the content should provide a good argumentation about their knowledge.
However, it is not possible to ensure that a student evaluates the code that is
the ideal for his/her learning and level of knowledge. As an example, in Figure 1,
it is not possible to know if student “A” code is the best for peers “B”, “C” and
“D” .

When a student does not agree with the evaluation provided by their peers,
he/she will be able to request the intervention of the professor. This conflict
situations are identified in [9]. However, in traditional peer assessment approach
is not possible to identify incorrect evaluations provided by a student, or students
that create biased evaluations only to help their fellows. As an example, in
Figure 1, it is possible to see that different grades were given, but it is not

possible to determine if the correct evaluations were given by peer “B”, “C” or
“D” .

Student A Sim. Learner A
|Each student creates a solution (3)|

Professor creates the
assignment (1) the criteria (2)
to assess the solutions and
a reference solution (3)

and submits it to receive peers
evaluation. Each Sim. Learner
generates “N” solutions (5).

Student A @

Sim. Learner A tydent ‘.

=@ S
Student C

%-b

“Sim. Learner A" different
solutions are evaluated by
a group of peers (9)(10)(11)

“Student A” solution is evaluated
by a group of peers (7) and a
group of Sim. Learners (6)(8).

Fig. 2. A peer assessment environment using simulated learners

In a peer assessment environment that uses simulated learners, it is possible
to solve the previous problems. As in traditional approach, the professor must
create the assignment and a set of assessment criteria; in addition to that, he/she
should provide a reference solution. Then, students develop their solutions, ob-
serving the assessment criteria and submitting the solution to be evaluated by
their peers. At the same time, once a pairing algorithm can perform pairing of
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the evaluators, each simulated learner must generate a code that is ideal for the
learning and appropriate to the level of knowledge of each one of their peers,
in this case, real students. Each student will have their code evaluated by their
peers and by simulated students, and they should assess codes of other students,
and codes of simulated students. In Figure 2 it is illustrated peer assessment
environment with simulated learners. As an example, in Figure 2, it is possible
to see that the simulated learner “A” generates a set of codes that are ideal for
each student: “A”, “B” and “C”.

The identification of incorrect evaluations provided by a student, as well
as students, who perform biased evaluations, could be carried out through the
comparison of student’s evaluations and the simulated student’s evaluations.
As an example, in Figure 2, it is possible to see that student “B”, made an
evaluation that is very different from the simulated learner’s evaluations. In this
way, it is possible to verify if the student did not understand the solution, or if
the evaluation was created to help their fellows only.

Providing useful solutions to student learning A useful solution for the
student learning does not always match the presentation of a correct and efficient
code. Within the context of peer review may be more useful to display an incor-
rect code, as a way to make students to provide a set of review observations. To
identify which type of code is best for a student; simulated learners can consult
the representation of their cognitive status. In that way, it will be possible to
the simulated learner identify the student misconceptions and errors in previous
assignments, and generate variations of the reference solution that suits best for
the student. Since multiple simulated students will be used, the codes that will
be shown to students can range from efficient, correct and complete solutions to
incorrect and/or incomplete solutions. Like that, it will be possible to check if
students have different skills related to the content. To generate the variations
from the reference solution, it is possible to combine testing techniques, such as
mutant generation. Each code can be generated through the use of data related
to the most common student’s mistakes, emulating these behaviors and creating
codes that are useful to learning. Once the research is in a preliminary stage, it
is still not clear which artificial intelligence approaches should be used on the
implementation of simulated students behaviors.

Assessment of students solutions Unlike what occurs in other contexts, for
programming the evaluation of a solution can be automated or semi-automated.
Typically a set of unit tests is applied to the code proposed by a student, who
receives an indication that his/her code may be correct or incorrect, but no hint
or comment is provided. Some researchers have investigated the use of different
techniques to help assessment of codes and provide some guidance; these tech-
niques usually employ software engineering metrics. Thus, simulated learners
must be able to identify which subset of metrics can be used to perform the
evaluation of the proposed solution for a student. The simulated learner should
select the set of metrics that fits best to the objectives of the assignment and
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the level of understanding that the student has at that moment. For each level
of learning the same student can learn better if the set of metrics is properly
selected. Each simulated student will use different strategies to evaluate the so-
lutions provided by real students. Therefore, a variation between evaluations of
simulated students is expected to occur. If an evaluation provided by a student
has a very large variation in relation to the set of evaluations of simulated stu-
dents, it will be necessary to investigate the motivation of this disparity. An
acceptable variation threshold can be used to identify incorrect evaluations pro-
vided by students.

Discussing assessment criterias Once software engineering metrics were used
in the evaluation, the explanation given by the simulated learner throughout
the presentation of a set of metrics, is associated to the explanation of the
metric choice and, possibly, of the snippet of the code where the observation
is pertinent. Thereby, the simulated learner can help the professor to identify
inadequate feedback, whenever an evaluation of a student is very different from
the evaluation of a simulated learner, the professor and his tutors can then
intervene.

4.2 Validation of peer assessent using simulated learners

Any validation of peer assessment approaches requires lots of physical space and
a huge amount of human resources. As an example, if a validation of a pairing
algorithm has to be done, it will be necessary to use a set of N students; this set
must allow the creation of different profiles for evaluation of the pairing alterna-
tives. The greater the possibilities of matching, the greater the amount of stu-
dents required. Through the use of simulated learners any operational proposal
of peer assessment can be tested at a much lower cost, since the physical space
and human resources are drastically reduced. The researcher can determine how
much of human resource will be available, replacing the students with simulated
students. The researcher can also specify the desired behavior of students; the
simulated students should emulate students with a high degree of understanding
of the contents or with low understanding. After obtaining initial results with
the use of simulated learners, the number of human individuals participating in
an experiment can be increased, since it may be interesting to obtain a greater
statistical power associated with the conclusions.

5 Conclusions and further work

In this paper, we have proposed the use of simulated learners in a peer assess-
ment approach adopted as a support part of a programming course. The use of
simulated learners as presented in this proposal aims to two goals: influence the
students to provide better quality feedback; and allow for a less costly validation
for peer assessment applied to programming contexts.
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The research associated with the proposal presented in this paper is in a pre-

liminary stage. Thus, the effectiveness of this proposal will be further evaluated
in controlled experiments executed in the future. An open source software tool
is being developed to include all aspects described throughout this proposal.
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Abstract. This paper proposes an approach for creating and testing
an multiagent systems based adaptive social educational game (SEG),
QuizMASter, using the concept of simulated learners to overcome exper-
imentation complexity and unpredictable student availability, as is typi-
cal with online learning environments. We show that simulated learners
can play two roles. First, it can be used for testing the game planning,
scheduling and adaptive assessment algorithms. With some degree of suc-
cess met with our initial experimentation with QuizMASter, advanced
planning and coordination algorithms are now needed to allow the game-
based assessment platform to realize its full potential. The multi-agent
system approach is suitable for modeling and developing adaptive be-
haviour in SEGs. However, as we have found with our early prototypes,
verifying and validating such a system is very difficult in an online context
where students are not always available. MAS-based assessment game
planning and coordination algorithms are complex and thus need sim-
ulated learners for testing purposes. Second, to overcome unpredictable
student availability, we modeled QuizMASter as a new class of socio-
technical system, human-agent collective (HAC). In the system, human
learners and simulated learners (smart software agents) engage in flexi-
ble relationship in order to achieve both their individual and collective
goals, while simulated learners are selected for serving as virtual team
members.

Keywords: social educational agents, multiagent systems, simulated
learners

1 Introduction

For decades, educational games have proven to be an effective means to motivate
learners and enhance learning. Social (multi-player) educational games (SEGs)
offer many opportunities to improve learning in ways that go beyond what a
single-player game can achieve because SEGs allow players to be social, compet-
itive, and collaborative in their problem solving. The presence of other players
can be used to increase playability and to help teach team-work and social skills.
SEGs promote intragroup cooperation and intergroup competition [1]. However,
existing SEGs share many of the shortcomings of classroom role-playing. Setting
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up existing SEGs is logistically challenging, expensive, and inflexible. Further-
more, players become bored after going through existing SEGs once or twice.

To test such a social educational game, we face two difficulties. One is how to
test the planning and scheduling algorithms. Another is how to meet the need
of agile team formation. In SEGs, group formation has big impact on group
learning performance. Poor group formation in social games can result to homo-
geneity in student characteristic such that the peer learning is ineffective. Thus,
there is a need to constitute a heterogeneous group SEGs that constitutes stu-
dents with different collaborative competencies and knowledge levels. However,
without empirical study it becomes difficult to conclude which group character-
istics are desirable in the heterogeneity as different game-based learning needs
may require different group orientations. Previous research has focused on var-
ious group orientation techniques and their impact on group performance like
different learning styles in group orientation [2—4]. However, there is need to in-
vestigate the impact of other group orientation techniques on group performance
like grouping students based on their collaboration competence levels. Further-
more, most of the previous research in group-formation focuses on classroom
based learning. Also, it lacks the true experiment design methodology that is
recommended when investigating learning outcomes from different game-based
learning strategies. Simulated learners methodology [5] has shown a promising
way to solve these challenges.

In this paper, we show that simulated learners can play two roles. First,
it can be used for testing the game planning, scheduling and adaptive assess-
ment algorithms. Second, working with human learners and forming human-
agent collectives (HAC), simulated learners serve as virtual team members to
enable asynchronous game-based learning in a context where student availabil-
ity is unpredictable. This paper is structured as follows: In Section 2 we discuss
recent advancements and related work. Section 3 describes QuizMASter. Section
4 presents the proposed architecture for development of QuizMASter. Section
5 explains how we intend to use simulated learners for testing QuizMASter.
Finally, Section 6 concludes.

2 Related Work

Researchers have found that learning can be more attractive if learning experi-
ences combine challenge and fun [6]. As social networks have become popular
applications, they have given rise to social games. This kind of game is played
by users of social networks as a way to interact with friends [7] and has be-
come a part of the culture for digital natives. Social games have unique features
that distinguish them from other video games. Those features are closely linked
with the features of social networks [8]. Social games can make a contribution
to social learning environments by applying game mechanics and other design
elements, ‘gamifying’ social learning environments to make them more fun and
engaging. For games to be effective as a learning tool, a delicate balance must
be maintained between playability and educational value [9,10], and between
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game design and learning principles. Methods have been proposed for making
valid inferences about what the student knows, using actions and events ob-
served during gameplay. Such methods include evidence-centered-design (ECD)
[11,12]; the learning progressions model [13], the ecological approach to design
of e-learning environments [14], stealth assessment [15], game analytics [16], and
learning analytics [17]. Most of the new concepts target an ever-changing learn-
ing environment and learner needs, as today’s education moves toward a digital,
social, personalized, and fun environment. Moreover, as is the case for all com-
petitive games, an equal match between players is essential to self-esteem and
to maintain a high degree of player interest in the game. Hence, we need mech-
anisms and models that can aggregate the current performance and preferences
of players, and accurately predict student performance in the game. Software
agents have been used to implement consistent long-term intelligent behaviour
in games [18], multi-agent collaborative team-based games [19], and adaptive
and believable non-player character agents simulating virtual students [20]. The
use of agent technologies leads to a system characterized by both autonomy
and a distribution of tasks and control [21]. This trend has two aspects. First,
game-based learning activities should be carefully orchestrated to be social and
enjoyable. Second, game scheduling and coordination should be highly adaptive
and flexible. However, nobody has yet developed models, algorithms, and mech-
anisms for planning, scheduling, and coordination that are suitable for creating
and testing SEGs.

3 QuizMASter

QuizMASter is designed to be a formative assessment tool that enables students
to be tested within a multi-player game [22]. Two or more students simultane-
ously log in remotely to the system via a Web-based interface. Each student is
represented by one avatar in this virtual world. Students are able to view their
own avatar as well as those of their opponents.

Each game has the game-show host who is also represented by an avatar
visible to all contestants [22]. The game-show host poses each of the game ques-
tions to all the contestants. The students hear the voice of the host reading each
question and view them displayed on their screens. They individually and inde-
pendently from one another answer each question by, for instance, selecting an
answer from available choices in a multiple-choice format. Each correct answer
would receive one mark. Figure 1 shows a screen shot of QuizMASter.

3.1 Characteristics of QuizMASter

The environment for QuizMASter has the following characteristics:

Flexibility. The environment for QuizMASter needs flexibility for game enact-
ment, to be able to cope with dynamic changes of user profiles, handle fragmen-
tation of playing and learning time needed to accomplish activities and tasks,
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Fig. 1. QuizMASter in Open Wonderland

adequately handle exceptional situations, predict changes due to external events,
and offer sufficient interoperability with other software systems in educational
institutions. Individual learners have particular interests, proficiency levels, and
preferences that may result in conflicting learning goals.

Social ability and interactivity. The environment for QuizMASter should
encourage interaction and collaboration among peers, and should be open to
participation of students, teachers, parents, and experts on the subjects being
taught. Web 2.0 has had a strong influence on the ways people learn and access
information, and schools are taking advantage of this trend by adopting social
learning environments. One way to engage learners in a collaborative production
of knowledge is to promote social rewards.

User control. One of the most desirable features of social education games is
to empower players with control over the problems that they solve. For example,
in QuizMASter, students, parents, and teachers can design new rules to create
their own games and modify the game elements to fit different knowledge levels.

Customization. Customization is a core principle that helps accommodate
differences among learners [23]. Teachers could build a QuizMASter that has its
own style and rules to determine the game’s level of difficulty, to gear the game
for specific goals or a specific group of learners. Some teachers may be interested
in sharing collections of rules to fit the learning and play styles of their students.
Like teachers, learners/players can be co-creators of their practice space through
building new game scenarios, creating their own rules, sharing their strategies
and making self-paced challenges [23].
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4 The Proposed Architecture

Multi-agent technologies are considered most suitable for developing SEGs as
it will lead to systems that operate in a highly dynamic, open, and distributed
environment. In an MAS-based SEG, each learner/player is represented as an
autonomous agent, called learner agent. MAS technologies, such as goal orienta-
tion and the Belief-Desire-Intention (BDI) paradigm, is used as the foundation
for the agent architecture. These learner agents are able to reason about the
learning goals, the strengths and weaknesses of learners and update the learner
models.

Repository Multi-Agent System Social

Environment Environment Educational
Game Game

Input commangs | Game Engine

(QuizMASter)
— -

Game
Feadback

Student Model

Fig. 2. Architecture for MAS-Based Social Educational Game Environment

Whenever a learner enters the system to play a social educational game, the
learner agent will retrieve her/his learner model and acquire preferences about
the current game-playing, and then send to a game management agent (GMA) of
the system. The GMA is designed for setting up and maintaining teams for the
system. The GMA will assign the learner to participate in a most suitable team
that is undermanned according to the profile and preferences of the learner. The
team will be configured in accordance with the game model by the GMA. Once
the team has been completely formed, the GMA will create a game scheduling
agent (GSA), a game host agent (GHA), and an assessment agent (AA) for
each team. The GSA will continuously generate a game sequence dynamically
adapted to the team’s knowledge level (represented as a combined learner model
[24]. The GHA will receive the game sequence from the scheduling agent and
execute game sequence with the learners in the team. It will also be responsible
for capturing data about learner/player performance. The AA will receive and
interpret game events and communicate with the learner agents to update the
learner model as necessary.

The GSA will dynamically schedule the game on the fly through interacting
with other agents with a coordination mechanism, considering both the cur-
rent world state and available resources, and solving conflicts in preferences and
learning progression between the agents. The goal of the GSA is to optimize
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the playability and educational values. We will model the game elements as
resources. To solve the distributed constraint optimization problem, we are de-
veloping multiagent coordination mechanisms and scheduling algorithms to be
used by the GSA.

Initial Experimental Scope

Evaluate Quiz ltems

Current Iteration

Quiz Items
“e
O Agent
o =
U Resource

Fig. 3. MAS-Based SEG Agent Interaction Model

4.1 Planning and Scheduling Algorithms

The planning algorithms refer to the (local) planning algorithm of learner agents.
To develop planning algorithms for learner agents, the following supporting mod-
els have been taken into consideration: (i) Learner models that accumulate and
represent beliefs about the targeted aspects of skills. They are expressed as prob-
ability distributions for competency-model variables (called nodes) describing
the set of knowledge and skills on which inferences are to be based. (ii) Evidence
models that identify what the learner says or does, and provide evidence about
those skills that express how the evidence depends on the competency-model
variables in a psychometric model. (iii) Task/action models that express situa-
tions that can evoke required evidence. To design an action model, we adopt a
model called Fuzzy Cognitive Goal Net [25] as the planning tool by combining
the planning capability of Goal Net and reasoning ability of Fuzzy Cognitive
Maps (FCMs). These FCMs give the learner agent a powerful reasoning ability
for game context and player interactions, giving the task model accurate context
awareness and learner awareness. We are developing coordination mechanisms
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for the GMA and the GSA to solve the problem of team formation, scheduling
and coordination in a highly flexible and dynamic manner. We considered the
following concepts or methods:

(i) Contract-net protocols (CNPs) are used as a coordination mechanism by
the GMA with a game model repository to timely form a team from all available
players, using mutual selection and exchanging information in a structured way
to converge on assignments. Each involved learner can delegate the negotiation
process to its agent. These agents will strive to find a compromise team-joining
decision obeying hard learning constraints while simultaneously resolving indi-
vidual conflicts of interest.

(ii) The problem of scheduling and customizing a social educational game can
be solved through social-choice-based customization. We view the SEG game-
play design as an optimization problem. Resources must be allocated through
strategically scheduling, and coordinating a group of players according to their
preferences and learning progressions. The constraints include key learning prin-
ciples that inform the design of mechanics: challenge, exploration, risk taking,
agency, and interactions [26-27]. The objective of the GSA is to maximize the
learnability and engagement of the learners in the group. Social choice theory
in MAS concerns the design and formal analysis of methods for aggregating
preferences of multiple agents and collective decision-making and optimizing for
preferences [28-29]. For example, we use a voting-based group decision-making
approach such as Single Transferable Voting [30] to aggregate learner preferences
and learning progression because it is computationally resistant to manipulation
[31]. The purpose is to take information from individuals and combine it to
produce the optimal result.

(iii) To support the need for dynamic decision making in the MAS-based
SEG architecture, our current line of investigation is the concept of social choice
Markov Decision Process (MDP) as recently proposed by Parkes and Procaccia
[32]. In a social choice MDP, each state is defined by “preference profiles”, which
contain the preferences of all agents against a set of alternatives for a given sce-
nario. The course of action from any given state is determined by a deterministic
social choice function (the policy, in the context of the MDP) that takes into
account the likelihood of transitions and their rewards. However, a preference
profile is subject to change over time, especially in a live SEG context. For ex-
ample, a learner that unexpectedly answers a question initially deemed beyond
the learner’s perceived level of comprehension would likely trigger a change of
belief in the agents and potentially alter their ranking of alternatives. And since
the number of alternatives in a SEG can be very large, the state space for any
given SEG is huge, making the computation of optimal decision-making policies
excessively difficult. We solve this problem by exploiting symmetries that exist
in certain game types (e.g. in a quiz game SEG format, using a reduced set of
question types that share common characteristics as a basis for alternatives as
opposed to individual questions).
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5 Simulated Learners

It is our view that the Belief-Desire-Intention (BDI) model is ideally suited
for modeling and simulating learner behaviour. According to Jaques and Vicari
(2007) [33], intelligent agents based on Bratman’s Belief-Desire-Intention model,
or BDI agents, are commonly used in modeling cognitive aspects, such as per-
sonality, affect, or goals. Pibil et al. (2012) claim BDI agent architecture is “a
currently dominant approach to design of intelligent agents” [34]. Wong et al.
(2012) describes the suitability of the BDI agent model for applications where
both reactive behavior and goal-directed reasoning are required [35]. Soliman
and Guetl (2012) suggest that BDI maps well onto models for pedagogically
based selection of sub plans within a hierarchical planning strategy — “appren-
ticeship learning model” given as example [36]. They also talks about advantage
of breaking plans down into smaller plans to allow for different “pedagogical
permutations” allowing the agent to adapt to different learning styles, domain
knowledge, and learning goals. Norling (2004) attributes the successful use of
BDI agents for modeling human-like behavior in virtual characters to BDI’s as-
sociation to “folk psychology” [37]. This allows for an intuitive mapping of agent
framework to common language that people use to describe the reasoning pro-
cess. Of particular importance to this study is the way that implementations of
the BDI architecture model long-term or interest goals. We have selected the
Jason™ [38] platform for providing multi-agent BDI programming in AgentS-
peak.

A shortcoming of the BDI paradigm is that although it is intended to be goal-
driven, in most implementations this means/amounts to using goals to trigger
plans, but does not support the concept of long-term goals or preferences [39],
such as a student’s long term learning goals, or the pedagogical goals of a CA.
They feel that these types of goals are difficult to represent in most BDI systems
because they signify an ongoing desire that must be maintained over a long
period of time compared to relative short goal processing cycles. It is left to the
developer to implement this type of preference goal through the belief system
of the agent, modifications to the platform or environment, or other methods of
simulating long-term goals.

Hiibner, Bordini, and Wooldridge (2007) describe plan patterns for imple-
menting declarative goals, with varying levels of commitment in AgentSpeak [40].
Bordini et al. (2007) expand on this in their chapter on advanced goal-based pro-
gramming [38]. While AgentSpeak and Jason support achievement goals, these
patterns are intended to address the lack of support for “richer goal structures”,
such as declarative goals, which they feel are essential to providing agents with
rational behaviour. Pokahr et al. (2005) point out that the majority of BDI
interpreters do not provide a mechanism for deliberating about multiple and
possibly conflicting goals [41]. It is worth noting that there are “BDI inspired”
systems that are more goal-oriented, such as Practionist and GOAL [42]. The
Jason multi-agent platform for BDI agents was selected for this project because
it is a well-established open-source project that is being actively maintained.
It supports both centralized and distributed multi-agent environments. Pibil et
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al. (2012) describes Jason as “one of the popular approaches in the group of
theoretically-rooted agent-oriented programming languages” [34]. A major ad-
vantage of Jason is that it is easy to extend the language through Java based
libraries and other components. Internal actions can allow the programmer to
create new internal functionality or make use of legacy object-oriented code [38].
However, Pibil et al. (2012) caution that the use of such extensions, if used too
heavily, can make the agent program difficult to comprehend without under-
standing the functionality of the Java code [34]. They raise the concern that
novice programmers have few guidelines for choosing how much to program in
AgentSpeak, and how much too program in Java. The usefulness of being able
to extend Jason can be demonstrated by two examples of current research into
integrating BDI with Bayesian Networks. Modeling of some student character-
istics requires a probabilistic model; Bayesian Networks (BN) being a popular
choice in recent years [43-44]. Recent work by Kieling and Vicari (2011) de-
scribes how they have extended Jason to allow a BDI agent to use a BN based
probabilistic model. Similarly, Silva and Gluz (2011) extend the AgentSpeak(L)
language to implement AgentSpeak(PL) by extending the Jason environment.
AgentSpeak(PL) integrates probabilistic beliefs into BDI agents using Bayesian
Networks [45]. Experimentation with QuizMASter to date has enabled the mod-
elling of simulated learners in virtual worlds with an initial focus on their appear-
ance, gestures, kinematics, and physical properties [46]. Recent related research
work in that area has been on the creation of engaging avatars for 3D learn-
ing environments [47]. Employing the theory of Transformed Social Interaction
(TSI) [48], simulated learners were designed with the following abilities:

(i) Self-identification: The self-identification dimension of TSI was imple-
mented using facial-identity capture with a tool called FAtiMA. Each of the
users’ face were morphed with their default avatar agent’s face to capitalize
on human beings’ disposition to prefer faces similar to their own and general
preference of appearing younger (see Fig. 4).

Fig. 4. Transformed Social Interaction — Image Morphing Technique

(ii) Sensory-abilities: Sensory-abilities dimension of TSI were implemented
using a movement and visual tracking capability. The general challenge of sensory
abilities implementation lies in two areas: the complexity of human senses and
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the processing of sensory data of different modality and historicity. For the reason
of simplicity, only visual tracking capability was exploited.

(iii) Situational-context: The situational-context dimension of TSI was im-
plemented by using the best-view feature of Open Wonderland, whereby the
temporal structure of a conversation can be altered.

The main idea of this research has been to explore the methodology for de-
veloping simulated learners for simulating and testing SEGs. That is, behind a
simulated learner is an agent. Or we can say a simulated learner is an agent’s
avatar. All avatars, including real students’ avatars and agent-based simulated
learners, live in the virtual worlds, while the agents live in the multi-agent sys-
tem. The integration of multi-agent systems with virtual worlds adds intelli-
gence to the SEG platform and opens a number of extremely interesting and
potentially useful research avenues concerning game-based learning. However,
the advanced algorithms that support game planning, coordination and execu-
tion are difficult to test with real subjects considering the overhead involved is
seeking authorization and the unpredictable availability of real life subjects in an
online environment. This where an expanded view of simulated learners comes
into play. The advantages of a simulated environment that closely approximates
human behaviour include: (1) It allows for rapid and complete testing of ad-
vanced algorithms for game based adaptive assessment as well as SEG planning,
coordination and execution in a simulated environment. The efficiency of the
algorithms can be measured without first securing the availability of students;
(2) With proper learner modeling and adaptive behaviour, simulated learners
can engage with real life learners in friendly competitive games for the purpose
of formative assessment, again working around the issue of availability of real
students in an online learning environment.

6 Conclusions

As our recent experimentation suggests, many outstanding challenges must be
addressed in developing intelligent SEGs. As we get closer to real world testing
of our experimental game based assessment framework, we are faced with the
complexity of enrolling real life learners in an e-learning environment and the
variability that human interactions introduce in the measurement of adaptive
algorithm efficiency. This is where we see the value of simulated learners. At
this stage of our research, simulated learners have been rendered as Non Person
Characters (NPCs) controlled by BDI agent running in the multi-agent system
based virtual world. Our medium term goal is to extend the existing system
to a particular learning subject (e.g., English language learning) to verify the
effectiveness of the proposed virtual assessment environment and the benefit that
students perceive from interacting with the proposed NPCs.

For simulated learners to be successful in our experimental framework, they
must closely approximate the performance of real learners. The simple, pre-
encoded behaviour we have implemented so far in the NPCs for QuizMASter
will not suffice to demonstrate the efficiency of our adaptive algorithms and
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allow for simulated learner agents to act as virtual players in our game based
assessment framework. Current outstanding research questions within our group
are:

1. How do we add intelligence and adaptive behaviour to the simulated learner
agents while preserving our ability to obtain predictable and repeatable test
results from our adaptive MAS framework?

2. How much autonomy can we afford to give to simulated learners in terms
of independent thought and action, and to which degree should a simulated
learner be able to adjust its behaviour as a function of its interactions with
other agents, including real life learners?

3. How do we incorporate modern game, learning and assessment analytics in
the supporting adaptive MAS framework in order to maximize the value of
simulated learners as a means to perform non-intrusive, formative assess-
ment?
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Abstract. Simulated data plays a central role in Educational Data Mining and
in particular in Bayesian Knowledge Tracing (BKT) research. The initial
motivation for this paper was to try to answer the question: given two datasets
could you tell which of them is real and which of them is simulated? The ability
to answer this question may provide an additional indication of the goodness of
the model, thus, if it is easy to discern simulated data from real data that could
be an indication that the model does not provide an authentic representation of
reality, whereas if it is hard to set the real and simulated data apart that might be
an indication that the model is indeed authentic. In this paper we will describe
analyses of 42 GLOP datasets that were performed in an attempt to address this
question. Possible simulated data based metrics as well as additional findings
that emerged during this exploration will be discussed.

Keywords: Bayesian Knowledge Tracing (BKT), simulated data, parameters
space.

1 Introduction

Simulated data has been increasingly playing a central role in Educational Data
Mining [1] and Bayesian Knowledge Tracing (BKT) research [1, 4]. For example,
simulated data was used to explore the convergence properties of BKT models [5], an
important area of investigation given the identifiability issues of the model [3]. In this
paper, we would like to approach simulated data from a slightly different angle. In
particular, we claim that the question “given two datasets could you tell which of them
is real and which of them is simulated?” is interesting as it can be used to evaluate the
goodness of a model and may potentially serve as an alternative metric to RMSE,
AUC, and others. In a previous work [6] we started approaching this problem by
contrasting two real datasets with their corresponding two simulated datasets with
Knowledge Tracing as the model. We found a surprising close to identity between the
real and simulated datasets. In this paper we would like to continue this investigation
by expanding the previous analysis to the full set of 42 Groups of Learning
Opportunities (GLOPs) real datasets generated from the ASSISTments platform [7].
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Knowledge Tracing (KT) models are widely used by cognitive tutors to
estimate the latent skills of students [8]. Knowledge tracing is a Bayesian model,
which assumes that each skill has 4 parameters: two knowledge parameters include
initial (prior knowledge) and learn rate, and two performance parameters include
guess and slip. KT in its simplest form assumes a single point estimate for prior
knowledge and learn rate for all students, and similarly identical guess and slip rates
for all students. Simulated data has been used to estimate the parameter space and in
particular to answer questions that relate to the goal of maximizing the log likelihood
(LL) of the model given parameters and data, and improving prediction power [7, 8,
9].

In this paper we would like to use the KT model as a framework for
comparing the characteristics of simulated data to real data, and in particular to see
whether it is possible to distinguish between the real and simulated datasets.

2 Data Sets

To compare simulated data to real data we started with 42 Groups of Learning
Opportunities (GLOPs) real datasets generated from the ASSISTments platform' from
a previous BKT study [7]. The datasets consisted of problem sets with 4 to 13
questions in linear order where all students answer all questions. The number of
students per GLOP varied from 105 to 777. Next, we generated two synthetic,
simulated datasets for each of the real datasets using the best fitting parameters that
were found for each respective real datasets as the generating parameters. The two
simulated datasets for each real one had the exact same number of questions, and
same number of students.

3 Methodology

The approach we took to finding the best fitting parameters was to calculate LL
with a grid search of all the parameters (prior, learn, guess, and slip). We
hypothesized that the LL gradient pattern of the simulated data and real data will be
different across the space. For each of the datasets we conducted a grid search with
intervals of .04 that generated 25 intervals for each parameter and 390,625 total
combinations of prior, learn, guess, and slip. For each one of the combinations LL
was calculated and placed in a four dimensional matrix. We used fastBKT [12] to
calculate the best fitting parameters of the real datasets and to generate simulated
data. Additional code in Matlab and R was generated to calculate LL and RMSE and
to put all the pieces together?.

! Data can be obtained here: http://people.csail.mit.edu/zp/
2 Matlab and R code will be available here: www rinatrosenbergkima.com/AIED2015/
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4 What are the Characteristics of the Real Datasets Parameters

Space?

Before we explored the relationships between the real and sim datasets, we were
interested to explore the BKT parameter profiles of the real datasets. We calculated
the LL with a grid search of 0.04 granularity across the four parameters resulting in a
maximum LL for each dataset and corresponding best prior, learn, guess, and slip.
Figure 1 present the best parameters for each datasets, taking different views of the
parameters space. The first observation to be made is that the best guess and slip

parameters fell into two distinct areas (see figure 1, guess x slip).
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Much attention has been given to this LL space, which revealed the apparent
co-linearity of BKT with two primary areas of convergence, the upper right area
being a false, or “implausible” converging area as defined by [3]. What is interesting
in this figure is that real data also converged to these two distinct areas. To further
investigate this point, we looked for the relationships between the best parameters and
the number of students in the dataset (see figure 2). We hypothesized that perhaps the
upper right points were drawn from datasets with small number of students;
nevertheless, as figure 2 reveals, that was not the case. Another interesting
observation is that while in the upper right area (figure 1, guess x slip) most of the
prior best values were smaller that 0.5, in the lower left area most of the prior best
values were bigger than 0.5, thus revealing interrelationships between slip, guess, and
prior that can be seen in the other views. Another observation is that while prior is
widely distributed between 0 and 1, most of best learn values are smaller than 0.12.
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Figure 2. Best parameters across the 42 GLOP real datasets by number of students.
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5 Does the LL of Sim vs. Real Datasets Look Different?

Our initial thinking was that as we are using a simple BKT model, it is not
authentically reflecting reality in all its detail and therefore we will observe different
patterns of LL across the parameters space between the real data and the simulated
data. The LL space of simulated data in [5] was quite striking in its smooth surface
but the appearance of real data was left as an open research question. First, we
examined the best parameters spread across the 42 first set of simulated data we have
generated. As can be seen in figure 3, the results are very similar (although not
identical) to the results we received with the real data (see figure 1). This is not
surprising, after all, the values of learn, prior, guess, and slip were inputs to the
function generating the simulated data.
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Figure 3. Best parameters across 42 GLOP simulated datasets.
In order to see if the differences between real and sim were more than just

the difference between samples from the same distribution, we generated rwo
simulated versions of each real dataset (siml and sim2) using the exact same number
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of questions, number of students, generated with the best fitting parameters from the
real dataset. We then visualized 2D LL heatmaps looking at two parameter plots at a
time where the other two parameters were fixed to the best fitting values. For
example, when visualizing LL heatmaps for the combination of guess and slip, we
fixed learn and prior to be the best learn and the best prior from the real data grid
search. To our surprise, when we plotted heatmaps of the LL matrices of the real data
and the simulated data (the first column in figure 4 represents the real datasets, the
second column represents the corresponding siml, and the third column the
corresponding sim2) we received what appears to be extremely similar heatmaps.
Figure 4 and 5 displays a sample of 4 datasets, for each one displaying the real dataset
heatmap and the corresponding two simulated datasets heatmaps.

The guess vs. slip heatmaps (see figure 4) prompted interesting observations.
As mentioned above, the best guess and slip parameters across datasets fell into two
areas (upper right and lower left). Interestingly, these two areas were also noticeable
in the individual heatmaps. While in some of the datasets they were less clear (e.g.,
G5.198 in figure 4), most of the datasets appear to include two distinct global maxima
areas. In some of the datasets the global maxima converged to the lower left expected
area, as did the corresponding simulated datasets (e.g., G4.260 in figure 4), in other
datasets the global maxima converged to the upper right “implausible” area, as did the
corresponding simulated datasets (e.g., G6.208 in figure 4). Yet in some cases, one or
more of the simulated dataset converged to a different area than that of the real dataset
(e.g., G4.205 in figure 4). The fact that so many of the real datasets converged to the
“implausible” area is surprising and may be due to small number of students or to
other limitations of the model.

The learn vs. prior heatmaps were also extremely similar within datasets and
exhibited a similar pattern also across datasets (see figure 5), although not all datasets
had the exact pattern (e.g., G5.198 is quite different than the other 3 datasets in figure
5). While best learn values were low across the datasets, the values of best prior
varied. As with guess vs. slip, in some cases the two simulated datasets were different
(e.g., G4.205 had different best parameters also with respect to prior). Similar patterns
of similarities within datasets and similarities with some clusters across datasets were
also noticeable in the rest of the parameters space (learn vs. guess, learn vs. slip, prior
vs. guess, prior vs. slip not displayed here due to space considerations).
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Figure 4. Heatmaps of (guess vs. slip) LL of 4 sample real GLOP datasets and the
corresponding two simulated datasets that were generated with the best fitting
parameters of the corresponding real dataset.
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Figure 5. Heatmaps of (learn x prior) LL of 4 sample real GLOP datasets and the
corresponding two simulated datasets that were generated with the best fitting
parameters of the corresponding real dataset.
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6 Exploring Possible Metrics Using the Real and Sim Datasets

In natural science domains, simulated data is often used as a mean to evaluate its
underlying model. For example, simulated data is generated from a hypothesized
model of the phenomena and if the simulated data appears to be similar to the real
data observed in nature, it serves as evidence for the accuracy of the model. Then, if
the underlying is validated, simulated data is used to make predictions (e.g., in the
recent earthquake in Nepal a simulation was used to estimate the number of victims).
Can this approach be used in education as well? What would be an indication of
similarity between real and simulated data?

Figure 5 displays two preliminary approaches for comparing the level of
similarity between the simulated and real data. First, the Euclidean distance between
the real dataset parameters and the simulated data parameters was compared to the
Euclidean distance between the two simulated datasets parameters. The idea is that if
the difference between the two simulated datasets is smaller than the difference
between the real and the simulated dataset this may be an indication that the model
can be improved upon. Thus, points on the right side of the red diagonal indicate good
fit of the model to the dataset. Interestingly, most of the points were on the diagonal
and a few to the left of it. Likewise the max LL distance between the real and
simulated datasets was compared to the max LL distance of the two simulated
datasets. Interestingly, datasets with larger number of students did not result in higher
similarity between the real and simulated dataset. Also, here we did find distribution
of the points to the left and to the right of the diagonal.
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Figure 5. Using Euclidean distance and LL distance as means to evaluate the model.

7 Contribution

The initial motivation of this paper was to find whether it is possible to discern a real
dataset from a simulated dataset. If for a given model it is possible to tell apart a
simulated data from a real dataset then the authenticity of the model can be
questioned. This line of thinking is in particular typical of simulation use in Science
contexts, where different models are used to generate simulated data, and then if a
simulated data has a good fit to the real phenomena at hand, then it may be possible to
claim that the model provides an authentic explanation of the system [13]. We believe
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that finding such a metric can serve as the foundation for evaluating the goodness of a
model by comparing a simulated data from this model to real data and that such a
metric could provide much needed substance in interpretation beyond that which is
afforded by current RMSE and AUC measures. This can afford validation of the
simulated data, which can than be used to make predictions on learning scenarios;
decreasing the need to test them in reality, and at minimum, serving as an initial filter
to different learning strategies.
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