
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Relating Concrete Argumentation Formalisms and
Abstract Argumentation

Michael J. Maher
School of Engineering and Information Technology

University of New South Wales, Canberra
ACT 2600, Australia

E-mail: michael.maher@unsw.edu.au

submitted 29 April 2015; accepted 5 June 2015

Abstract

There are a wide variety of formalisms for defeasible reasoning that can be seen as implementing
concrete argumentation on defeasible rules. However there has been little work on the relationship
between such languages and Dung’s abstract argumentation. In this paper we identify two small
fragments on which many concrete defeasible formalisms agree. The two fragments are closely re-
lated, as we show. The fragments arise as ways to express abstract argumentation frameworks in
the concrete formalisms. Our results enable us to transfer complexity lower bounds from abstract
argumentation to concrete formalisms.

Introduction

Argumentation and defeasible reasoning are essentially different names for the same thing:
resolving conflicting chains of reasoning in a principled way. In modern times, argumen-
tation has been structured through Dung’s introduction of abstract argumentation (Dung
1995). Nevertheless, there are very many defeasible reasoning systems that developed in
parallel but are not structured – at least not in quite the same way.

An advantage of abstract argumentation is that it abstracts away details of an argument’s
construction and how conflicting arguments are resolved. As a consequence, results proved
on abstract argumentation have the potential to be applicable to a number of concrete in-
stances. On the other hand, this advantage is largely moot for concrete defeasible reasoning
systems that are not developed within the abstract argumentation discipline. The problem
is that the relationship between abstract argumentation and the individual concrete systems
is unclear.

Indeed, there is relatively little work relating abstract argumentation to such concrete
defeasible reasoning formalisms, despite the fact that there are clear commonalities. (Di-
mopoulos and Kakas 1995) defined a logic programming-based formalism inspired by ar-
gumentation, and showed it was sound wrt their argumentation semantics. (Governatori
et al. 2004) formulated a concrete argumentation system that is equivalent to the defeasi-
ble logic DL(∂). On the other hand, some relations between abstract argumentation and
logic programming were already clear in (Dung 1995), and further detail has been added
by (Caminada et al. 2015).

In this paper we exploit the common logic programming underpinnings of abstract ar-
gumentation and a concrete framework for defeasible reasoning to identify a relationship
between the two. We extend this relationship to a wide variety of other concrete defea-
sible reasoning systems. We demonstrate the usefulness of these results by showing how
complexity results for abstract argumentation frameworks can be transferred to concrete
systems.

The paper is structured as follows. The next section provides brief background on ab-
stract argumentation, formalisms for defeasible reasoning, and semantics of logic pro-
grams. The following section introduces a small fragment of defeasible languages that
is capable of expressing abstract argumentation frameworks, and investigates its proper-
ties. It is shown that the arguments constructed from this fragment in the ASPIC-style
are isomorphic to an abstract argumentation framework. It is also shown that the fragment
represents a common core of defeasible reasoning in the sense that a wide range of for-
malisms for defeasible reasoning agree on the conclusions that should be drawn from such
fragments.

The next section establishes general relationships between abstract argumentation frame-
works under completist semantics1 and the fragment in logics in the framework DL. It fol-
lows a similar pattern to results in (Caminada et al. 2015) relating argumentation semantics
and logic programming semantics.

Then a second small fragment is introduced and shown to be equivalent to the first frag-
ment. Nevertheless, the second fragment is able to be expressed in languages that cannot
express the first fragment. It is used to show that several concrete formalisms are able to
express the stable semantics of abstract argumentation formalisms.

Finally, there is a brief discussion of the use of these results to transfer complexity re-
sults about abstract argumentation to the concrete formalisms. The paper concludes with a
summary and brief discussion of future work.

Background

This work involves abstract argumentation in the sense of (Dung 1995), which addresses
the evaluation of a set of atomic arguments. An argumentation framework A = (S,�)

consists of a finite set of arguments S and a binary relation � over S, called the attack
relation. Roughly, if A is attacked by B then accepting B as justified entails rejecting A.
The semantics of an argumentation framework is given in terms of extensions, which are
subsets of S.

Given an argumentation framework, an argument a is said to be accepted in an extension
E if a ∈ E, and said to be rejected in E if some b ∈ E attacks a. The set of arguments
rejected in E will be denoted E−. An argument that is neither accepted nor rejected in E
is said to be undecided in E. An extension E is conflict-free if the restriction of � to E
is empty. An argument a is defended by E if every argument that attacks a is attacked by
some argument in E. An extension E ofA is complete if it is conflict free and, a ∈ E iff a
is defended byE. The smallest complete extension exists and is called the grounded exten-
sion. The maximal (under the set containment ordering) complete extensions are called the

1 Completist semantics are semantics defined in terms of complete extensions.

2

preferred extensions. An extensionE ofA is stable if it is complete and for every argument
a ∈ S\E there is an argument in E that attacks a. An extension E of A is semi-stable if it
is a complete extension such that E∪E− is maximal wrt set containment (or, equivalently,
the set of undecided arguments is minimal).

Each extension can be considered a potential outcome of evaluating an argumentation
framework: classifying arguments as accepted, rejected or undecided. Each class of exten-
sions (complete, preferred, . . .) expresses a criterion for an extension to be a “reasonable”
outcome; thus each class expresses a semantics of an argumentation framework: the set
of reasonable extensions. From these extensions, conclusions about individual arguments
can be drawn. Each of these semantics consist only of complete extensions; we call such
semantics completist.

There are several logical systems that provide for the construction of arguments, which
can then be evaluated according to one of the semantics of abstract argumentation. They
include the structured argumentation systems ASPIC (Amgoud et al. 2006), ASPIC+
(Prakken 2010) and ASPICLITE (Wu and Podlaszewski 2015), where arguments are es-
sentially proof trees constructed from rules, and assumption-based argumentation (ABA)
(Bondarenko et al. 1997), where arguments are sets of assumptions.

However, there are numerous systems for defeasible reasoning that provide concrete
mechanisms for drawing conclusions from defeasible rules, without formulating the prob-
lem as the construction and then evaluation of arguments. Among such systems are: var-
ious systems for non-monotonic inheritance (Touretzky et al. 1987), the defeasible logics
NDL and ADL (Maier and Nute 2010), the defeasible logics in the framework of (An-
toniou et al. 2000), including the DL and WFDL (Billington et al. 2010; Maher 2013)
frameworks, the extended defeasible logics of Billington (for example (Billington 2011)),
courteous logic programs (Grosof 1999) and its more recent incarnations LPDA, ASPDA
and Rulelog (Wan et al. 2009; Wan et al. 2015; Grosof and Kifer 2013), DEFLOG (Verheij
2003), FDL (Maher 2010), Ordered Logic (Laenens and Vermeir 1990), logic program-
ming without negation as failure (LPwNF) (Dimopoulos and Kakas 1995), and Defeasible
Logic Programming (DeLP) (Garcı́a and Simari 2004).

Common to most of these systems is the expression of defeasible rules and priorities
among such rules. Syntax varies in these systems, but we will use⇒ uniformly to express
defeasible rules. In general these systems support a variety of additional features such as
strict rules, defeaters, conflict sets, mutex, Furthermore, many systems admit several
variants that treat the interaction of conflicting rules and priorities differently.

Some of these systems draw only positive conclusions, but the defeasible logics draw
both positive and negative conclusions. For example, in the defeasible logic DL(∂∗) we
may derive +∂∗q, meaning that q can be proved, or derive −∂∗q, meaning that it can be
established within the proof system that q cannot be proved. Of course, it is also possible
that neither conclusion can be drawn.

The framework of (Antoniou et al. 2000), which we call DL, will play a central role in
this paper. The logics in this framework are determined by two parameters in the frame-
work: a conflict resolution mechanism that specifies the way conflicting rules and priorities
interact, and a semantics of logic programming. We will refer to individual logics in this
framework as DL(t, S), where t refers to method of conflict resolution and S refers to a
semantics, and we will use ∗ as a wildcard to express classes of logics in DL. Conflict res-

3

olution is determined by two key properties: whether ambiguity is propagated or blocked;
and whether a single rule must have a higher priority than all conflicting rules in order for
it to be applied, or rules can form “teams” that, together, may overrule conflicting rules
and allow the rules to be applied. Such issues are important in the application of defeasible
rules, but are details that are abstracted away in argumentation. For more on these variants,
see (Billington et al. 2010).

Many of the systems identified above can be seen as based on a semantics for negation
in logic programs, even though their original formulation was not in those terms. In par-
ticular, logics in the DL framework were explicitly shown to employ Kunen’s semantics
(Kunen 1987) (which, for this paper, is equivalent to Fitting’s semantics (Fitting 1985)
since we only consider propositional languages and finite theories) while ADL, NDL,
courteous logic programs, LPDA, Rulelog, and the logics in WFDL employ the well-
founded semantics (Maier and Nute 2010; Wan et al. 2009; Grosof and Kifer 2013; Maher
and Governatori 1999; Maher 2014a). Others, such as DEFLOG and ASPDA, reflect the
stable model semantics.

The logic programming semantics we will focus on can be seen to be derived from
the 3-valued stable models (Przymusinski 1990) (also known as partial stable models). In
addition to the semantics based on all partial stable models, there is the well-founded model
(Gelder et al. 1991), which is the least partial stable model; the (2-valued) stable models
(Gelfond and Lifschitz 1988); the regular models (You and Yuan 1994), which are the
maximal partial stable models under set inclusion on the positive literals; and the L-stable
models (Eiter et al. 1997), which are the maximal partial stable models under set inclusion
on positive and negative literals or, equivalently, the minimal partial stable models under
set inclusion on the undefined literals. The argumentation semantics defined above are the
counterparts of these logic programming semantics (Caminada et al. 2015).

A Small Fragment

We begin by addressing the representation of abstract argumentation frameworks in con-
crete defeasible reasoning systems. Such systems may have many features, with complex
interactions, but only a small fragment of these formalisms is needed to mimic the be-
haviour of an abstract argumentation framework.

Definition 1
For any abstract argument framework A, the corresponding set of canonical defeasible
rules CDR(A) is defined as follows:

For each argument A, there is a proposition pA, and a defeasible rule r′A:

⇒ ¬pA

For each argument A, attacked by arguments B1, . . . , Bn, there is the corresponding de-
feasible rule rA:

¬pB1 , . . . ,¬pBn ⇒ pA

Finally, we must express that each rule for ¬pA is overruled by (or has lower priority than)
the rule for pA whenever the latter is applicable. Different concrete systems may express

4

this requirement in different ways, but most commonly it is expressed directly as a relation
on rules.

A set of defeasible rules that has the formCDR(A), for someA, is canonical. Canonical
defeasible rules are a defeasible rule counterpart of the logic programs defined by (Cam-
inada et al. 2015) to represent argumentation frameworks. Intuitively, they express that A
is not accepted unless all its attackers are rejected.

The class of canonical defeasible rules is very simple, involving only defeasible rules
and a priority relation on these rules. More complex features that concrete systems might
support, such as strict rules, defeaters, conflict sets, mutex, etc. are not present. Hence, a
quite wide range of formalisms are able to express canonical defeasible rules.

We first show that a concrete argumentation system applied to arguments constructed
from CDR(A) in the ASPIC style comes to the same conclusions as the abstract system.

Define the arguments in the concrete argumentation system to be proof trees constructed
from the rules for the propositions pA and ¬pA, for all argumentsA. Hence, the proof trees
for pA are trees with root labelled pA and n children labelled ¬pB1

, . . . ,¬pBn
respectively,

and proof trees for ¬pA consist of a single node labelled by ¬pA. Thus arguments have
height of at most 1. The attack relation is defined as follows: the argument for pA is at-
tacked by the argument for pB iff the argument for ¬pB is a subargument of the argument
for pA. Such an attack relation arises in any concrete argumentation system that employs
undercutting (sometimes called undermining) attacks and can express that each argument
for pA has priority over the argument for ¬pA. If we ignore the arguments for ¬pA, which
in any case do not attack any other argument, the concrete argument system is isomorphic
to the abstract argumentation framework from which it was derived.

Proposition 2
Let A be an abstract argumentation framework and consider CDR(A). The concrete ar-
gument system derived from CDR(A), restricted to arguments for propositions pA, is
isomorphic to A.

As a result, for every common argumentation semantics,A and the argumentation frame-
work derived from CDR(A) derive the same conclusions. This result assures us that the
canonical defeasible rules accurately represent the argumentation framework.

Among the formalisms that can represent canonical defeasible rules are: the defeasible
logics NDL and ADL, the defeasible logics in the DL framework, the extended defeasible
logics of Billington, courteous logic programs and its more recent incarnations LDPA, AS-
PDA and Rulelog, Ordered Logic and LPwNF. Similarly, structured argumentation systems
in the ASPIC style and assumption-based argumentation can express canonical defeasible
rules.

Furthermore, many of these concrete systems infer the same consequences from canoni-
cal defeasible rules. Thus canonical defeasible rules form a core on which these defeasible
reasoning systems agree.

Theorem 3
The positive conclusions drawn from a set of canonical defeasible rules are the same,
whether the rules are interpreted in any of the following formalisms: the defeasible logics

5

NDL and ADL, the logics in the frameworks DL and WFDL, Billington’s defeasible
logics, and the formalisms Ordered Logic, LPwNF, courteous logic programs and LPDA2.

Furthermore, for those formalisms that support negative conclusions, the negative con-
clusions drawn from a set of canonical defeasible rules are also the same.

This result is a consequence of the particularly simple form of canonical defeasible
rules: there is one rule for ¬pA and at most one rule for pA, which has the higher priority.
Consequently, the many variations in how conflicting rules and priorities interact converge
on the same behaviour.

There are some defeasible reasoning systems that seem unable to represent canonical de-
feasible rules. Traditional non-monotonic inheritance systems are unable to express rules
with multiple body atoms and rules with negative literals in the body. Logics where pri-
orities cannot be given independently have an obvious problem. Such logics include a de-
feasible logic in (Nute 1994) where priorities are determined by a specificity relation, and
FDL, where priorities are related to length of defeasible derivations. When the language
is restricted to defeasible rules (that is, without the ability to express priorities), ambiguity
propagating defeasible logics seem unable to represent priorities (Lam and Governatori
2011), but ambiguity blocking defeasible logics can represent them with auxiliary defeasi-
ble rules (Antoniou et al. 2001). Finally, DEFLOG is unable to directly express canonical
defeasible rules because the dialectical negation in that language overrules a corresponding
un-negated proposition; however, if we encode pA as×pA (the dialectical negation of pA),
and encode ¬pA as pA then DEFLOG can express these rules.

Relationships

In (Antoniou et al. 2000), logic programs are used as meta-programs to define the way con-
flicting defeasible rules and priorities on rules interact. A particular logic is characterized
by a meta-program and a semantics for logic programs. The semantics is applied to the
logic program consisting of the meta-program and facts describing the rules and priorities.
The meta-program for logics like DL(∂∗), pared down to address only defeasible rules
and priorities, consists of the following two rules.

c1 defeasibly(X):-
rule(R,X, [Y1, . . . , Yn]),
defeasibly(Y1),. . . ,defeasibly(Yn),
not overruled(R,X).

c2 overruled(R,X):-
rule(S,∼X, [U1, . . . , Un]),
defeasibly(U1),. . . ,defeasibly(Un),
not sup(R,S).

Here sup(R,S) expresses that the rule R is superior to (i.e. has priority over) the rule
S, rule(R,X, [Y1, . . . , Yn]) represents a defeasible rule called R with head X and body
Y1, . . . , Yn, and ∼ expresses negation in the object language. defeasibly(X) expresses

2 We assume that the LPDA theory has the overriding property (Wan et al. 2009).

6

that the literal X can be concluded defeasibly, that is, +∂∗X is a consequence of the
object defeasible theory. Similarly, ¬defeasibly(X) expresses −∂∗X . If D denotes a
set of rules and priorities, we use M(D) to denote the combination of the meta-program
with the representation of the rules and priorities of D.

Using this meta-program, we can establish the relationship between an abstract argu-
mentation framework and ambiguity blocking logics in the DL framework.

Theorem 4
Let M be the meta-program for DL(∂∗, ∗) or DL(∂, ∗). Let A be an abstract argumenta-
tion framework. Then there is an isomorphism between

• complete extensions of A and partial stable models of M(CDR(A))
• grounded extension of A and well-founded model of M(CDR(A))
• stable extensions of A and stable models of M(CDR(A))
• preferred extensions of A and regular models of M(CDR(A))
• semi-stable extensions of A and L-stable models of M(CDR(A))

where we restrict the models to defeasibly atoms.

In particular, the conclusions derivable from A under a semantics S are the same as those
derived in the logic DL(∂∗, S′) from CDR(A), where S′ is the semantics in the above
theorem corresponding to S.

This result is the counterpart, for defeasible rules in the DL framework, of Table 5 of
(Caminada et al. 2015) relating abstract argumentation frameworks and logic programs.
The result does not extend to ambiguity propagating logics in the DL framework; this fact
is discussed in more detail at the end of the following section.

Using the above theorem and Proposition 2, we can extend Theorem 3 to argumentation-
based formalisms under the grounded semantics.

Corollary 5
Let A be an abstract argumentation framework. Then an argument A is accepted in the
grounded extension ofA iff the argument for pA is accepted under the grounded semantics
of CDR(A) by ABA or any of the ASPIC variants iff pA is a positive conclusion from
CDR(A) in any of the formalisms mentioned in Theorem 3.

Similarly,A is rejected in the grounded extension ofA iff the argument for pA is rejected
under the grounded semantics of CDR(A) by ABA or any of the ASPIC variants iff pA
is a negative conclusion from CDR(A) in any of the formalisms mentioned in Theorem 3
that draw negative conclusions.

Thus we see that not only can the grounded semantics can be represented by defeasible
formalisms based around the well-founded semantics, it can also be represented by those
based on the Fitting/Kunen semantics.

An Alternate Fragment

Although the canonical defeasible rules fragment provides a common core for many de-
feasible languages, there are some languages that cannot express it, while others require
significant distortions to represent it (for example, DEFLOG). This motivates the investi-
gation of a different fragment that can represent abstract argumentation frameworks.

An alternative representation of an abstract argumentation framework is as follows.

7

Definition 6

For any argument framework A, the corresponding set of alternative canonical defeasible
rules ACDR(A) is defined as follows:
For each argument A, there is a proposition pA and a rule rA:

⇒ pA

For each attack by argument B on argument A, there is the corresponding defeasible
rule rBA:

pB ⇒ ¬pA
Finally, we must express that each rule for ¬pA overrules (or has higher priority than) the
rule for pA whenever the former is applicable. Different concrete systems may express this
requirement in different ways.

This definition is similar to the mapping of argumentation frameworks to logic programs
by (Dung 1995). Intuitively, it expresses that A is accepted unless there is an attacker that
is accepted. It can be directly expressed in DEFLOG, using the dialectical negation × in
place of the usual negation. The nature of× ensures that rules for×pA overrule the rule for
pA. Indeed, (Verheij 2003) uses this formulation to model argumentation frameworks, and
states that dialectical interpretations of such rules correspond to stable extensions. Non-
monotonic inheritance networks can also express rules of this form, since the body of rules
is a single positive literal, but it is not clear whether the priority relation can be expressed.
That would depend on the individual semantics of non-monotonic inheritance.

Again we can construct ASPIC-style arguments from these rules: an argument for pA
consists of the rule rA, while there may be several arguments for ¬pA, each consisting of
rB and rBA. Every argument for ¬pA attacks the argument for pA.

However, the constructed arguments are not isomorphic to A.

Example 7

Consider an abstract argumentation framework A consisting of arguments A, B, and C,
whereA attacks bothB andC. The arguments constructed fromACDR(A) are arguments
for each of the literals pA, pB , pC , ¬pB and ¬pC . Then the argument for ¬pB attacks the
argument for pB , and similarly for C, but the argument for pA is not involved in an attack.
Furthermore, there is no single argument that attacks both pB and pC , the way A attacks
both B and C in A. Hence the constructed arguments are not isomorphic to A.

Nevertheless, the alternative canonical defeasible rules do characterize the conclusions
of an argumentation framework under the semantics we consider, as we now establish.
First, we need two lemmas.

Lemma 8

Consider the transformation of logic programs which replaces a rule

A :- not B1, . . . , notBn.

8

by the rules

A :- not C.

C :- B1.

. . .

C :- Bn.

where C is a new symbol. Let P be the original program and P ′ be the transformed pro-
gram. Then P and P ′ have the same partial stable models, ignoring C.

Applying the above transformation and other transformations to M(CDR(A)), we can
obtain M(ACDR(A)) (up to renaming of introduced symbols), where M is a meta-
program for an ambiguity blocking logic in DL. Thus

Lemma 9
Let M be the meta-program for an ambiguity blocking logic in the DL framework.
M(CDR(A)) and M(ACDR(A)) have the same partial stable models, when restricted
to literals involving defeasibly.

Consequently, Theorem 4 also applies to the alternate canonical defeasible rules.

Theorem 10
Let M be a meta-program for an ambiguity blocking logic in the DL framework. Let A
be an abstract argumentation framework. Then there is an isomorphism between

• complete extensions of A and partial stable models of M(ACDR(A))
• grounded extension of A and well-founded model of M(ACDR(A))
• stable extensions of A and stable models of M(ACDR(A))
• preferred extensions of A and regular models of M(ACDR(A))
• semi-stable extensions of A and L-stable models of M(ACDR(A))

where we restrict the models to defeasibly atoms.

Similarly, we can obtain a counterpart of Theorem 3 for ACDR.
Furthermore, we can establish a similar result for the stable semantics. Relatively few

concrete defeasible languages support the stable semantics, although the DL framework
supported this semantics and recently further proposals have been made (Maier 2013; Wan
et al. 2015). ASPDA (Wan et al. 2015), like LPDA, allows the interaction between con-
flicting rules to be defined in the theory. We restrict attention to theories satisfying the
overriding property (Wan et al. 2009) to avoid some nonsensical theories. (Maier 2013)
extends ADL and NDL in the style of the stable model semantics to give α-stable sets
(extending ADL) and β-stable sets (extending NDL).

Theorem 11
Let M be a meta-program for an ambiguity blocking logic in the DL framework. Let A
be an abstract argumentation framework. Then there are isomorphisms between

• stable extensions of A
• dialectical interpretations of ACDR(A) in DEFLOG

• stable models of M(ACDR(A)) restricted to defeasibly atoms
• stable models of M(CDR(A)) restricted to defeasibly atoms

9

• stable models of CDR(A) in ASPDA
• stable models of ACDR(A) in ASPDA
• β-stable sets of CDR(A)
• β-stable sets of ACDR(A)

where we assume that the ASPDA theory has the overriding property.

The proof uses results of (Verheij 2003; Dung 1995; Wan et al. 2015) and Theorems 4
and 10.

Theorem 4 and the results in this section apply only to the ambiguity blocking logics
in DL; they do not extend to the ambiguity propagating logics. The following example
demonstrates the situation.

Example 12
Consider an argumentation framework A with two arguments, A and B, where A attacks
B and B attacks A. Under the stable semantics there are two stable extensions: one in
which A is accepted and B is rejected, and one in which B is accepted and A is rejected.

The canonical defeasible rules corresponding to A are

⇒ ¬pA
¬pB ⇒ pA

⇒ ¬pB
¬pA ⇒ pB

After substantial simplification, the application of the meta-program for DL(δ∗, ∗) – an
ambiguity propagating logic – results in the following rules, among others:

defeasibly(pA) : − not support(pB)

defeasibly(pB) : − not support(pA)

support(pA) : − not defeasibly(pB)

support(pB) : − not defeasibly(pA)

These rules admit a stable model containing {defeasibly(pA), defeasibly(pB)}. Con-
sequently, the stable models of M(CDR(A)) are not isomorphic to the stable extensions
of A.

For comparison, the corresponding logic program for DL(∂∗, ∗) contains

defeasibly(pA) : − not defeasibly(pB)

defeasibly(pB) : − not defeasibly(pA)

which has the two stable models corresponding the stable extensions of A.

The isomorphism fails because, in the meta-program for ambiguity propagating logics in
DL, two mutually recursive predicates – defeasibly and support – are used, rather than
a single predicate. As a result, there is no dependency relation between defeasibly(pA)

and defeasibly(pB) corresponding to the attack relation between A and B.

Complexity

The results in this paper allow us to transfer complexity lower bounds for problems on
abstract argumentation frameworks to the corresponding concrete formalisms.

10

For example, consider the problem of adding additional arguments to an argumentation
framework (called expansion by (Baumann and Brewka 2010)) so that a specified argument
is accepted under the grounded semantics of the revised argumentation framework. This
is a form of abduction (Booth et al. 2014; Maher 2014b), and it arises in strategic argu-
mentation (Governatori et al. 2014). This problem can be shown to be NP-hard for abstract
argumentation frameworks by reduction of 3SAT. It then follows that the corresponding
abduction problem is also NP-hard in all the formalisms mentioned in Theorem 3 and
Corollary 5. This shortcuts proofs of results in (Governatori et al. 2014; Maher 2014b;
Governatori et al. 2014), and establishes several new results.

In general, concrete systems have extra features – beyond defeasible rules and priorities
– that can add extra complexity to inference in those systems. Consequently, tight complex-
ity lower bounds at the abstract level do not necessarily imply tight bounds for a concrete
system.

Conclusions and Future Work

We have identified two complementary fragments of defeasible rule systems that are each
capable of representing abstract argumentation frameworks. We showed that canonical de-
feasible rules represent a core of defeasible reasoning in that a wide variety of concrete
formalisms agree on the meaning of this fragment. In doing so, we demonstrated that the
majority of concrete formalisms for defeasible reasoning reflect the grounded semantics of
argumentation.

We showed that several completist semantics for abstract argumentation are represented
in the DL framework under various corresponding logic programming semantics. Several
concrete formalisms, including DL(∂∗) under the stable model semantics, were shown to
reflect the stable semantics of argumentation.

Some formalisms, notably non-monotonic inheritance, have no obvious way to repre-
sent abstract argumentation frameworks. Despite the introduction of the second fragment,
which is more amenable to the syntactic restrictions of these formalisms, there is no di-
rect way to represent priorities. Some semantics of inheritance might permit the encoding
of priorities so it would be interesting, for completeness, to understand the status of the
different semantics of non-monotonic inheritance.

Theorem 3 and Corollary 5 apply to both ambiguity blocking and ambiguity propagating
formalisms. However, Theorems 4 and 10 apply only to the ambiguity blocking logics in
the DL framework. These results do not extend to the ambiguity propagating logics in the
framework, but this appears to be a consequence of how they are represented in the DL

framework, rather than a reflection of ambiguity propagation. Similarly, the formalisms in
Theorem 11 are ambiguity blocking. It will be interesting to see whether the α-stable sets
(the extension of ADL, an ambiguity propagating logic) (Maier 2013) participate in the
isomorphisms of Theorem 11.

It seems likely that semantics of logic programs can be designed to correspond to other
completist argumentation semantics, such as the ideal (Dung et al. 2007) and eager (Cam-
inada 2007) semantics. In that case, Theorems 4 and 10 will extend to such semantics.

11

References

AMGOUD, L., BODENSTAFF, L., CAMINADA, M., MCBURNEY, P., PARSONS, S., PRAKKEN, H.,
VAN VEENEN, J., AND VREESWIJK, G. 2006. Final review and report on formal argumentation
system. Tech. rep.

ANTONIOU, G., BILLINGTON, D., GOVERNATORI, G., AND MAHER, M. J. 2000. A flexible
framework for defeasible logics. In AAAI/IAAI. AAAI Press / The MIT Press, 405–410.

ANTONIOU, G., BILLINGTON, D., GOVERNATORI, G., AND MAHER, M. J. 2001. Representation
results for defeasible logic. ACM Trans. Comput. Log. 2, 2, 255–287.

BAUMANN, R. AND BREWKA, G. 2010. Expanding argumentation frameworks: Enforcing and
monotonicity results. In COMMA. 75–86.

BILLINGTON, D. 2011. A defeasible logic for clauses. In AI 2011: Advances in Artificial Intelli-
gence. Lecture Notes in Computer Science, vol. 7106. Springer, 472–480.

BILLINGTON, D., ANTONIOU, G., GOVERNATORI, G., AND MAHER, M. J. 2010. An inclusion
theorem for defeasible logics. ACM Trans. Comput. Log. 12, 1, 6.

BONDARENKO, A., DUNG, P. M., KOWALSKI, R. A., AND TONI, F. 1997. An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101.

BOOTH, R., GABBAY, D. M., KACI, S., RIENSTRA, T., AND VAN DER TORRE, L. W. N. 2014.
Abduction and dialogical proof in argumentation and logic programming. In ECAI 2014 - 21st
European Conference on Artificial Intelligence. 117–122.

CAMINADA, M. 2007. Comparing two unique extension semantics for formal argumentation: Ideal
and eager. In Proc. of the 2007 Benelux Conf. on Artificial Intelligence. 81–87.

CAMINADA, M., SÁ, S., ALCÂNTARA, J., AND DVORÁK, W. 2015. On the equivalence between
logic programming semantics and argumentation semantics. Int. J. Approx. Reasoning 58, 87–111.

DIMOPOULOS, Y. AND KAKAS, A. C. 1995. Logic programming without negation as failure. In
Proceedings of the 1995 International Symposium on Logic Programming. 369–384.

DUNG, P. M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77, 2, 321–358.

DUNG, P. M., MANCARELLA, P., AND TONI, F. 2007. Computing ideal sceptical argumentation.
Artif. Intell. 171, 10-15, 642–674.

EITER, T., LEONE, N., AND SACCÀ, D. 1997. On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell. 19, 1-2, 59–96.

FITTING, M. 1985. A Kripke-Kleene semantics for logic programs. J. Log. Program. 2, 4, 295–312.

GARCÍA, A. J. AND SIMARI, G. R. 2004. Defeasible logic programming: An argumentative ap-
proach. TPLP 4, 1-2, 95–138.

GELDER, A. V., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general
logic programs. J. ACM 38, 3, 620–650.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In
Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle,
Washington, August 15-19, 1988 (2 Volumes). 1070–1080.

GOVERNATORI, G., MAHER, M. J., ANTONIOU, G., AND BILLINGTON, D. 2004. Argumentation
semantics for defeasible logic. J. Log. Comput. 14, 5, 675–702.

GOVERNATORI, G., MAHER, M. J., OLIVIERI, F., SCANNAPIECO, S., AND ROTOLO, A. 2014.
The complexity of strategic argumentation under grounded semantics. In Proc. European Conf.
on Multi-Agent Systems. 379–387.

GOVERNATORI, G., OLIVIERI, F., SCANNAPIECO, S., ROTOLO, A., AND CRISTANI, M. 2014.
Strategic argumentation is NP-complete. In Proc. European Conf. on Artificial Intelligence. 399–
404.

12

GROSOF, B. AND KIFER, M. 2013. Rulelog: Syntax and semantics.
http://ruleml.org/rif/rulelog/spec/Rulelog.html. Accessed: April 2015.

GROSOF, B. N. 1999. Compiling prioritized default rules into ordinary logic programs. Tech. rep.,
IBM.

KUNEN, K. 1987. Negation in logic programming. J. Log. Program. 4, 4, 289–308.
LAENENS, E. AND VERMEIR, D. 1990. A fixpoint semantics for ordered logic. J. Log. Comput. 1, 2,

159–185.
LAM, H.-P. AND GOVERNATORI, G. 2011. What are the necessity rules in defeasible reasoning? In

LPNMR. Lecture Notes in Computer Science, vol. 6645. Springer, 187–192.
MAHER, M. J. 2010. Human and unhuman commonsense reasoning. In LPAR (Yogyakarta). 16–29.
MAHER, M. J. 2013. Relative expressiveness of well-founded defeasible logics. In Proc. Aus-

tralasian Joint Conf. on Artificial Intelligence. 338–349.
MAHER, M. J. 2014a. Comparing defeasible logics. In Proc. European Conf. on Artificial Intelli-

gence. 585–590.
MAHER, M. J. 2014b. Complexity of exploiting privacy violations in strategic argumentation. In

Proc. Pacific Rim International Conf. on Artificial Intelligence. 523–535.
MAHER, M. J. AND GOVERNATORI, G. 1999. A semantic decomposition of defeasible logics. In

AAAI/IAAI. AAAI Press, 299–305.
MAIER, F. 2013. Interdefinability of defeasible logic and logic programming under the well-founded

semantics. TPLP 13, 107–142.
MAIER, F. AND NUTE, D. 2010. Well-founded semantics for defeasible logic. Synthese 176, 2,

243–274.
NUTE, D. 1994. Defeasible logic. In Handbook of Logic in Artificial Intelligence and Logic Pro-

gramming, Vol. III, D. Gabbay, C. Hogger, and J. Robinson, Eds. Oxford University Press, 353–
395.

PRAKKEN, H. 2010. An abstract framework for argumentation with structured arguments. Argument
and Computation 1, 93–124.

PRZYMUSINSKI, T. C. 1990. The well-founded semantics coincides with the three-valued stable
semantics. Fundam. Inform. 13, 4, 445–463.

TOURETZKY, D. S., HORTY, J. F., AND THOMASON, R. H. 1987. A clash of intuitions: The current
state of nonmonotonic multiple inheritance systems. In IJCAI. 476–482.

VERHEIJ, B. 2003. DefLog: on the logical interpretation of prima facie justified assumptions. J.
Log. Comput. 13, 3, 319–346.

WAN, H., GROSOF, B. N., KIFER, M., FODOR, P., AND LIANG, S. 2009. Logic programming with
defaults and argumentation theories. In ICLP, P. M. Hill and D. S. Warren, Eds. Lecture Notes in
Computer Science, vol. 5649. Springer, 432–448.

WAN, H., KIFER, M., AND GROSOF, B. N. 2015. Defeasibility in answer set programs with defaults
and argumentation rules. Semantic Web 6, 1, 81–98.

WU, Y. AND PODLASZEWSKI, M. 2015. Implementing crash-resistance and non-interference in
logic-based argumentation. J. Log. Comput. 25, 2, 303–333.

YOU, J. AND YUAN, L. 1994. A three-valued semantics for deductive databases and logic programs.
J. Comput. Syst. Sci. 49, 2, 334–361.

13

