Concept Lattices of RDF Graphs

Jens Kotters

Abstract. The concept lattice of an RDF graph is defined. The intents
are described by graph patterns rather than sets of attributes, a view that
is supported by the fact that RDF data is essentially a graph. A sim-
ple formalization by triple graphs defines pattern closures as connected
components of graph products. The patterns correspond to conjunctive
queries, generalization of properties is supported. The relevance of the
notion of connectedness is discussed, showing the impact of ontological
considerations on the process of concept formation. Finally, definitions
are given which allow the construction of pattern closures of concept
graphs, which formalize Conceptual Graphs.
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1 Introduction

The Resource Description Framework (RDF) is an extensible standard for knowl-
edge representation which relies on the use of simple sentences, each consisting
of a subject, a predicate and an object. In RDF terminology, such a sentence
is called a triple; a collection of triples is called an RDF graph, and the entities
which occur as subjects, predicates or objects of triples (i.e.,the things being
talked about) are called resources. Figure 1 shows an RDF graph in the text-
based Turtle notation [5] (namespace declarations are omitted). Figure 2 shows
the same RDF graph, using a standard graphical notation (see e.g. [9]). Each
triple is represented by an arc. In the abundance of such data, query languages,
most notably SPARQL [1], can be used to gain access to the information con-
tained. Querying alone is however of limited use to anyone who needs information
but does not know specifically what to look for, or how to ask for it, or maybe
whether such information can be found at all. In such cases, concept lattices can
in principle guide the exploration of the data source, as they support interac-
tive and data-aware query modification. In connection with SPARQL, this has
already been demonstrated in [7]. The current paper is also motivated by data
exploration, but deliberately limits the query language to conjunctive queries. In
this case, the entire search space is obtained as a concept lattice in which each
intent is described by a single most specific query (MSQ).

Conjunctive queries can be represented as graphs, and entailment is described
by graph homomorphisms [6]. Figure 3 shows a graph representing a conjunc-
tive query — ”Someone who spoke about a sailor (in the subject)” — and its
SPARQL translation below, which can always be obtained in a straightforward
way. Graph queries are modeled after RDF graphs (Fig.2), so that solutions are
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Fig. 1. Sample RDF graph in Turtle notation
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described by homomorphisms, as well. But there are some differences to RDF
graphs. Firstly, all nodes (and all arcs) represent variables. The subject(s) of the
query are distinguished in some way (in Fig. 3, a black node represents the single
subject), whereas all other variables are implicitly understood as being existen-
tially quantified. Finally, the labels are attributes of a formal context K (for the
example, see Fig. 4), and thus represent formal concepts of its concept lattice
B(K). In practice, the formal context may encode background knowledge from
an RDF Schema file like the one in Fig. 5. The query vocabulary is restricted
to the attributes of K, the name Frank e.g. may not be used in a query for the
given example.

2% ex:said rdf:type

rdf:subj ex:Sailor

SELECT ?x WHERE { ?x ex:said ?7y. ?y rdf:subj ?z. ?z rdf:type ex:Sailor. }

Fig. 3. Conjunctive query as a graph (above) and in SPARQL (below)

For the rest of the paper, we shall refer to queries as patterns. Sect. 2 intro-
duces triple graphs as formalizations of queries without distinguished variables
(they correspond to SPARQL WHERE-clauses), and a query in one distinguished
variable is then represented by the pair (x,G) consisting of a triple graph G
and a vertex x of GG. The case of queries in several variables is not treated in
this paper, but has been treated in [11] in connection with relational structures.
Section 3 shows how the search space for conjunctive queries over an RDF graph
is obtained as a concept lattice, where concept intents are patterns rather than
sets of attributes.

Lattices of pattern concepts were introduced in [8], and although the theory
presented there does not make specific assumptions of what a pattern is, it seems
clear that graphs were meant to play a prominent role. In fact, the paper already
presents an example application where patterns are chemical compounds and
compares them by labeled graph homomorphisms. While chemical compounds
are described by connected graphs, their supremum in terms of these homo-
morphisms is not necessarily connected (ibid., pp. 139-140). Another suggestion
made in [8] is to use Conceptual Graphs (CGs) as patterns. If graph patterns
are used to describe situations (where several objects combine to a whole by
means of the way they are related to each other), we would probably expect
them to be connected. But if we formalize CGs using the same kind of labeled
graphs that was used for chemical compounds, the set of patterns is generally
not closed under suprema because, as we have seen, the supremum operation
does not preserve connectedness.
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The situation changes if graphs have a distinguished element. The supremum
is a graph product, again with a distinguished element, and although the product
of connected graphs is generally not connected, it makes sense to identify the
supremum with the connected component which holds the distinguished variable.
The relevance of connectedness is discussed in Sect. 4. In Sect. 5, the approach
is applied to concept graphs.

2 Triple Graphs

A triple graph over K is a triple (V,T, k), where V is a set of vertices, T C
VXV xVand k:V — B(K).

A morphism ¢ : (V1,T41, k1) — (Va, Tz, ko) of triple graphs is a map ¢ : V; —
V5 with

(z,y,2) € Ty = (pz, 0y, pz) € Tp, (1)
k1(z) > Ka(pr) (2)

for all z,y,z € V1.
The product of a family of triple graphs G; = (V;, T}, k4), @ € I, is the triple
graph
[[Gi =XV, {t"|te X T}, \/ ki), (3)
i€l iel iel i€l
where t* := ((tio)icr, (tin )ier, (tiz)ier) and (Ve ki) (v) := Vg fi(vi).
Finally, an RDF graph with the set T of triples is represented by the triple
graph (R, T,~*), where R is the set of resources (properties and classes are
duplicated so that they appear in only one triple) and

“(g) = (9", 9") it g €@, ()
T T = (G, G") otherwise
A pattern is a pair (v, H), where H =: (V,T, k) is a triple graph and v € V.
A pattern morphism ¢ : (v1, H1) — (va, Ha) is a morphism ¢ : H; — Hy with
p(v1) = va. A solution is a pattern in the data graph. Pattern morphisms can
thus describe solutions as well as entailment.
The product of a family of patterns is given by

[T, H:) == ((vi)ier, [ [ H)- (5)
il iel
The definitions above follow a category theoretical approach. Queries (minus
distinguished variable(s)) and the data source have representations in the same
category (using A for the data source), and morphisms A : G — A can be under-
stood as solutions of the respective query. Query entailment is then described
by morphisms, and if the category has products, then so has the category of
structured arrows (these are the pairs (v, G), cf. [2]), which model queries with
distinguished variables. The pattern closures (MSQs) arise as products from the
set of possible solutions (A, A). For convenience, we write (x, G) instead of (v, G)
if the domain of v is a one-element set (z being the image of that element).
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3 Example RDF Graph and Concept Lattice

In this section, we will walk through the process of generating a concept lattice
for the RDF graph in Fig. 1. To keep the example small (and perhaps meaning-
ful), only person concepts will be created, i.e. concepts with extents in the set
{Tom, Frank, Mary, Rowan, Liam, Aideen}.

As a first step, we determine the object intent for each person, i.e. its most
complete description. For each person, its connected component in Fig. 2 dou-
bles as a most complete description if we reinterpret the nodes and arcs as
(distinct) variables, reinterpret the labels beside them as concept names (rather
than resource names), and mark the variable corresponding to that person as
distinguished. Let GG; and G2 denote, top to bottom, the components in Fig. 2
after reinterpretation, and let T, F', M, R, L and A denote the variables which re-
place Tom, Frank, Mary, Rowan, Liam and Aideen. Then the pairs (T, G1), (F, G1),
(M,G1), (R,G2), (L,G2) and (A, G2) formalize the object intents. These pairs
are considered patterns; each pattern consists of a distinguished variable and a
triple graph (formalized in Sect. 2).

The person concepts are obtained from graph products of the six base pat-
terns. Many concept intents have the same underlying triple graph (consider e.g.
the base patterns), so there would be a lot of redundancy in the concept lattice
if we were to draw intents next to each concept. A different kind of diagram
avoids this redundancy while still showing all concepts and their intents : Fig. 6
shows all triple graphs which occur in the intents of person concepts, ordered by
homomorphism. Choosing any of the nodes as a distinguished variable gives rise
to a pattern intent, and this way concepts can be identified with triple graph
nodes. The gray nodes in Fig. 6 are the person concepts (the white nodes are
non-person concepts which occur in the descriptions of person concepts). The
concept extents for the person concepts are drawn next to the gray nodes. The
person concept lattice itself can be easily obtained from the diagram in Fig. 6
by connecting the gray nodes according to their extents.

Note however that some concepts have multiple representations in Fig. 6.
These may occur in the same triple graph, which indicates symmetry (i.e., a
triple graph automorphism). An example is the pair of lovers on the right side
of Fig. 6. The other case is where the same concept occurs in different triple
graphs. An example would be the Mary concept, which occurs in the lower left
triple graph as well as in the triple graph above it on the left side of Fig. 6. In
such cases, there is always a most specific triple graph containing that concept; it
describes that concept’s pattern intent. Other triple graphs containing the same
concept can be folded onto the most specific triple graph (which is contained as
a subgraph). But the fact that triple graphs may reappear as subgraphs of other
triple graphs translates into another redundancy problem when drawing the
hierarchy of triple graph product components. In Fig. 6, this kind of redundancy
has been avoided by cutting those subgraphs out and indicate the glue nodes
(for the gluing operation which inverts the cutting operation) with an asterisk.
The glue nodes are only marked in the upper triple graph, not in the lower
triple graph, because the lower triple graph can be considered self-contained (a
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glue node’s counterpart in the lower graph can be identified by its extent). To
put this differently: in every triple graph, the asterisk concepts are part of the
description of the non-asterisk concepts, but not vice versa.

The extent of a concept reveals how its pattern intent can be obtained.
Consider for example the concept with extension {R, F, T}, which is part of the
top left triple graph. The extension tells us that the pattern intent is the (core
graph of the) component of the pattern product (R, G2) X (F, G1)x (T, G1), which
contains the vertex (R, F,T), and (R, F,T) becomes the designated variable. The
diagram also shows that {R, T} is a generating set for this extent, because it
is not contained in a concept extent of the triple graph’s lower neighbors, and
so (R,G3) x (T,Gy) already produces the same pattern. As was described in
[8], Ganter’s NextConcept algorithm can be used to systematically generate all
extents (and thus all concepts), computing pattern products in the process. It is
advisable to use graph folding to obtain minimal equivalent patterns, for output
as well as inbetween computational steps.

Product patterns could also be computed directly from the triples in Turtle
notation (Fig. 1), by combining triples with each other. Informally, we could
write triple graphs as sets of triples (z : k(z),p : K(p),y : £(y)) (borrowing from
RDF and CG notation), and compute the product triples by taking suprema
componentwise, like so:

(F:T,p: type,y; : Englishman)
vV (T :T,p:type,ys : Gentleman)
= ([7]: T[]« type, [§3] : Man).

However, one would still have to identify and minimize connected components.

Note that the property and class hierarchies in our example are trees. So the
attribute concepts of K are closed under suprema, and each concept label can
be expressed by a single attribute. The suprema of properties may be of type
"Resource”. Such arcs are removed from the patterns; it can be shown (using
the product property) that the resulting patterns can still be considered MSQs.

4 Connectedness

We have identified two components of the RDF graph in Fig. 1, and this cor-
responds to our understanding that objects are ”connected” if they contribute
to the same instance of a situation. The notion of connectedness deserves closer
examination, however. Let us first observe that the notion of strong connectivity
is not the right one, because the second to top concepts in Fig. 6 (we might
name them ”"Lover” and ”Beloved”) would not have been created under this
notion. But also, we can in general not rely on weak connectivity alone. If it had
been stated explicitly that all persons are of type ”Person”, all persons would
be connected through that class node.

Clearly, objects do not contribute to the same situation just on the basis of
belonging to the same class, or having equal property values, like being of the
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same age. So connectedness of patterns should not rely on properties, classes
or values. In this paper, no further requirements have been made, but if Liam
liked lobscouse (a traditional sailors’ dish), this would have not been sufficient
because all objects would be connected through the lobscouse node. From a
machine perspective, there is no indication in the RDF data (or the schema)
that ”ex:lobscouse” is of a different quality than ”ex:Tom” or ”"ex:Mary”. A sys-
tem that generates patterns from automatically acquired data without proper
preprocessing would possibly generate a large number of meaningless (and un-
necessarily large) concepts because of such insubstantial connections, unless it
can be guaranteed that some standard for making such distinctions is applied
on the level of the ontology language.

Further questions may include if and how real-world objects should be con-
nected through objects of spoken language; on what basis we could allow a
pattern like the one describing the set of all wifes older than their husband,
and at the same time keep meaningless comparison of values from having an
impact on concept formation; or if pattern connection should be described in
terms of edges rather than nodes, and if we can classify or characterize the kind
of relations which contribute to pattern formation. It seems that, when dealing
with pattern concepts, questions of philosophical ontology may have (at least
subjectively) measurable impact through the notion of connectedness.

5 Related Work

In Sect. 2, the category theoretical framework for lattices of pattern concepts has
been applied to triple graphs, and we will now show how it is applied to simple
concept graphs. In [15], a simple concept graph over a power context family
K = (Ko, K1, Ks,...) is defined as a 5-tuple (V, E,v, k,p). We may interpret
the 4-tuple (V, E,v, k) as a query, K as a data source and the map p as a set
of solutions. The map x assigns concepts of the contexts K; to the vertices and
edges in V' and E, respectively. The definition of queries should be independent
from any particular data source, so it makes sense to interpret K as a power
context family describing schema information (background knowledge) instead,
the contexts could describe attribute implications, like the one in Fig. 4. The
map p will however not be part of the query. For the rest of the exposition, we
shall call the 4-tuple (V, E, v, k) an abstract concept graph over K, after a term
used in the first paper on concept graphs [14, p.300].

In [15], the triple (V, E,v) is called a relational graph. The morphisms in
the category of abstract concept graphs over K are relational graph morphisms
(which replaces condition (1) for triple graphs) satisfying (2). The product is de-
fined in analogy to (3) (cartesian products of edges have to be taken individually
for each arity k).

A datasource for the schema K is a power context family D = (Do, Dy, Do, ...)
for which the attribute implications described by K; =: (H;, N;, J;) are satisfied
in D; =: (G, M;, I;), i = 0,1,2,..., and N; C M; holds. We can represent D
by an abstract concept graph ® = (Go, ;> Gi,id,vp) with yp(u) := ((u’* N
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Ni)75 ulk N Ny) € B(Ky) for u € Gy. Let us furthermore define Extg (r(u)) :=
Ext(k(u))”’*!* for u € VUE. If we define a realization of & =: (V, E, k, v) over ®
as a map with p(u) € Exta(k(u)) for allu € VUE and p(e) = (p(v1), ..., p(vi)),
we obtain that the realizations p of & over ® are precisely the morphisms p :
® — 9. This means that product patterns for abstract concept graphs can be
interpreted as MSQs, as was mentioned at the end of Sect. 1.

Triple graphs are now obtained as a special case of concept graphs: We define
a power context family D where Dy is a supercontext of Ky which in addition
contains all objects (having only the ”Resource” attribute), and where D3 =
(T,0,0) represents the set of triples.

In Relational Concept Analysis, concept lattices for different kinds of inter-
related objects are generated by an iterative algorithm and, as in Fig. 6, illus-
trations displaying graphs of concepts have been given [4,10]. Computational
aspects of generating pattern structures are covered e.g. in [13,12]. In [3], con-
cept lattices are generated from Conceptual Graphs, but the approach seems to
be tailored towards a more specific case where edges (and thus paths) express
dependencies. A comparison with Relational Semantic Systems [16] still has to
be made.

6 Conclusion

In [11], a lattice of closures of database queries, which links products of query
patterns to the join operation on result tables, has been introduced. The queries
and database were formalized by relational structures. The fact that the method
could be applied again, first to RDF graphs and then to abstract concept graphs,
suggests that the underlying category theoretical notions provide a recipe that
could be applied to still different formalizations of queries, allowing in every case
the mathematical description of lattices of most specific queries. Combinatorial
explosion is a computational problem that quickly turns up when computing the
concept lattices. From a practical perspective, the lattices are useless if complex-
ity problems can not be solved. However, in order to support data exploration,
patterns must be understandable, thus also limited in size, and a solution to this
problem may entail a solution to the problem of computational complexity.

In the section on connectedness, we have seen that ontological considerations
stand in a direct relation to the quality of computed concepts. As a first con-
sequence, although the idea of treating all kinds of resources in a homogeneous
way seemed appealing, triple graphs must be replaced by some other formal-
ization which reflects the importance of the distinction between instances and
classes/properties. While such questions naturally arise in the setting of pattern
concepts, they seem to have no obvious analogy for standard FCA, where intents
are sets of attributes. Pattern concepts have thus the potential to further and
substantiate a perspective on FCA as a branch of mathematical modeling, where
the entities to be modeled are not ”real world” systems but rather systems of
concepts. Future work may be concerned with extensions of RDF/RDFS which
support this perspective.
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