
Why do process variants matter
for process monitoring?

Matthias Schrepfer1, Juliane Siegeris2, Gunnar Obst1, and Matthias Kunze1

1 Zalando SE, Mollstr. 1, 10178 Berlin, Germany
firstname.lastname@zalando.de

2 HTW Berlin, University of Applied Sciences, Germany
juliane.siegeris@htw-berlin.de

Abstract Business processes models typically serve as a specification for
a future system or as a documentation of an already existing one; it can
also serve both purposes. As precise documentation of an implemented
business process, process models provide an input to configure a pro-
cess monitoring system, enabling the specification of monitoring points
and metrics. However, complex business processes show an unexpected
quantity of potential variants, which impede the activation of process
monitoring.
In this paper, we elaborate on the impact of variants on the configuration
of a process monitoring system, and show how the number of model
variants can be significantly reduced by analyzing the syntactic and
semantic information related with decisions in a business process. Applied
to an existing business process, we identified almost 60,000 variants, which
we were able to reduce by over 65%. At the same time, we improved the
quality of the process model.

1 Introduction

Business processes management is a well-established discipline and widely used in
industry. Many companies focus on well-established methods to design, analyze,
control, and optimize their business processes to ensure high customer satisfaction
and close alignment with IT systems. Especially in the context of rapidly growing
multinational companies in the e-commerce sector, organizations must overcome
challenges in business process management in order to scale up their business
and reach ambitious business goals. Consequently, business processes in the
e-commerce sector are automated to a large extent. Setting up a consistent and
scalable process monitoring and process controlling enables the fast detection
of problems and thus allows companies to derive remediating actions to address
these problems immediately after they were detected.

1.1 Business Process Management at Zalando

At Zalando, business process management found its entrance in 2012, when
we set out to document our core processes in a structured way. Due to the

15

rapid growth of the company, we decided to develop our own ERP system
ZEOS (Zalando E-Commerce Operating System) tailored to our needs. For
the requirements specification of this system and to ensure proper business-IT-
alignment, all involved departments contributed to the precise documentation of
the relevant business processes using BPMN. Over time, more and more processes
of Zalando’s value chain were documented and integrated into the company’s
process landscape.

One year later, we began to use the documented business processes also
for operational tasks. On the one hand, we experimented with a self-developed
process engine to automate our core order processes, which led eventually to the
integration of an open source BPM engine and the first fully automated business
process going live early in 2014. Since then, we are continuously increasing the
automation of our processes.

On the other hand, we found a significant value in detecting anomalies in the
execution of our processes – including non-automated or hard-coded behavior.
We devised an approach that enables the monitoring of business processes using
realtime event data that are provided from all involved IT systems. Using a very
scalable architecture, we are able to monitor hundreds of thousands of orders
per day and provide early warnings and near realtime anomaly detection for
our end-to-end core processes. The created data remains available for ex-post
analysis as a basis for continuous improvement.

In Zalando’s endeavor to become a widely used platform that connects people
with fashion beyond our core business, BPM has become one of the driving forces
and key factors of success.

1.2 The Role of Process Monitoring

Enabling process monitoring requires that process models contain all business
logic required by underlying business scenarios and consider processes across the
entire IT landscape and organizational boundaries. This typically results in a
large number of detailed and thus complex process models capturing all possible
cases. While the creation of models of a high syntactic and semantic quality is a
very challenging task in practice, it is required not only for process monitoring,
but also bridges the gap between business and IT and therefore builds the basis
for process execution, compliance checking, and continuous improvement.

Effective process monitoring ensures that business goals are met by checking
the state and performance of business processes continuously. This includes
detecting process problems and consequently raising warnings and alarms in case
of problems or deviations. While this may sound straightforward given detailed
process models, it is subject to several constraints in practice. But what makes
process monitoring complicated?

To rapidly detect and resolve problems of a business process, all process
instances must be monitored. In an e-commerce setting, this number quickly
rises beyond 100,000 process instances per 24 hours, which is already a technical
challenge toward the scalability of the monitoring system. Furthermore, the more
complex the process is, the more complex the activation of process monitoring

16

will be, because more process variants need to be treated separately. Here, the
term process variant refers to all possible paths in a process model that need to
be monitored. Different process paths are triggered by parameters such as the
chosen shipping or payment method. Each parameter yields an individual process
flow in a way such that individual values, e.g., payment methods like credit card
and invoice, are handled properly. For business and IT users it is important to
know whether all these flows are executed properly to ensure process conformance.
However, each variant that shall be monitored needs to be treated separately,
which results in an enormous effort to set up the monitoring system.

With regard to the enabling of process monitoring, the lower the number
of process variants in a process is, the easier is its activation. In this paper we
present approaches to analyze parameters that trigger process variants, aiming
at the reduction of process variants. By analyzing process variants, we further
show opportunities to increase the quality of process models from a semantic
point of view. Our ultimate goal is to reduce the effort and increase the efficiency
to activate process monitoring.

2 Motivating Example

We illustrate our approach using a part of an order-to-cash process of a real-word
example, depicted in Figure 1. The investigated part starts with the placement
of a customer order and ends with the decision to which warehouse the shipment
of the ordered goods is assigned. The business process is modeled using BPMN;
it consists of one parent process and three subprocesses. The process model
shows only the branching structure for our order-to-cash process, as we removed
activities and labels. The original models consist of 20 to 100 elements and
comprise basic as well as advanced process modeling structures, such as error-
handling, process hierarchy, and attached boundary events. In our case, all
process steps are executed sequentially, which becomes apparent by the absence
of concurrency in the process models.

We have annotated control flow edges with the number of different variants
that can pass through these points in the process model. In subsection 4.1, we
discuss in greater detail, how these numbers were computed. All in all, we inferred
59,244 variants. In the main process, see Figure 1a, subprocess B, cf. Figure 1d
can be executed in 736 different variants. The subprocess itself creates 80 variants,
which can be the continuation of each of the incoming variants. Hence, the number
of variants multiply when subprocesses are called. This leads to 58,880 different
variants after the subprocess completes.

Along the process, we established several measurement points for which our
monitoring system records the time and process data, when an instance passes
such a point. Our monitoring solution allows us to continuously compute the time
period between two measuring points, a so-called metric, and to compare these
with threshold values. This allows for the visualization of current and historic
performance figures of business processes. If, for a given metric, the threshold

17

Main

A

B

1

1

ye
s,

 1
no

, 1

yes, 1

no, 1

yes, 1 no, 1

no
, 1

ye
s,

 1

2 3

yes, 1

no
, 1

2 no, 2

yes, 2

4 no, 4

yes, 4

ye
s,

 4

no, 4

16

1

64

72

ye
s,

 7
2

yes, 72

no
, 7

2

144 no, 144

ye
s,

 1
44

288 360

360

720

no, 72

360360
16

58880736

Main » B

C1 2 4 8

no, 8

yes, 8

no
, 8

16

32

no
, 3

2

yes, 32 48 80yes, 8no, 1

yes, 1

yes, 2

no
, 2

yes, 4

no
, 4

Main » A

C

1 1 1 1

44

8

4

4

16

1 4

no, 4

4

0yes, 4

B » C

1 no, 1

yes, 1

2

ye
s,

 2

no, 2 4

MAIN PROCESS

SUBPROCESS A SUBPROCESS C

SUBPROCESS B

(a) Main process

Main

A

B

1

1

ye
s,

 1
no

, 1

yes, 1

no, 1

yes, 1 no, 1

no
, 1

ye
s,

 1

2 3

yes, 1
no

, 1
2 no, 2

yes, 2

4 no, 4

yes, 4

ye
s,

 4

no, 4

16

1

64

72

ye
s,

 7
2

yes, 72

no
, 7

2

144 no, 144

ye
s,

 1
44

288 360

360

720

no, 72

360360
16

58880736

Main » B

C1 2 4 8

no, 8

yes, 8

no
, 8

16

32

no
, 3

2

yes, 32 48 80yes, 8no, 1

yes, 1

yes, 2

no
, 2

yes, 4

no
, 4

Main » A

C

1 1 1 1

44

8

4

4

16

1 4

no, 4

4

0yes, 4

B » C

1 no, 1

yes, 1

2

ye
s,

 2

no, 2 4

MAIN PROCESS

SUBPROCESS A SUBPROCESS C

SUBPROCESS B

(b) Subprocess A

Main

A

B

1

1

ye
s,

 1
no

, 1

yes, 1

no, 1

yes, 1 no, 1

no
, 1

ye
s,

 1

2 3

yes, 1
no

, 1
2 no, 2

yes, 2

4 no, 4

yes, 4

ye
s,

 4

no, 4

16

1

64

72

ye
s,

 7
2

yes, 72

no
, 7

2

144 no, 144

ye
s,

 1
44

288 360

360

720

no, 72

360360
16

58880736

Main » B

C1 2 4 8

no, 8

yes, 8

no
, 8

16

32

no
, 3

2

yes, 32 48 80yes, 8no, 1

yes, 1

yes, 2

no
, 2

yes, 4

no
, 4

Main » A

C

1 1 1 1

44

8

4

4

16

1 4

no, 4

4

0yes, 4

B » C

1 no, 1

yes, 1

2

ye
s,

 2

no, 2 4

MAIN PROCESS

SUBPROCESS A SUBPROCESS C

SUBPROCESS B

(c) Subprocess C

Main

A

B

1

1
ye

s,
 1

no
, 1

yes, 1

no, 1

yes, 1 no, 1

no
, 1

ye
s,

 1

2 3

yes, 1

no
, 1

2 no, 2

yes, 2

4 no, 4

yes, 4

ye
s,

 4

no, 4

16

1

64

72

ye
s,

 7
2

yes, 72

no
, 7

2

144 no, 144

ye
s,

 1
44

288 360

360

720

no, 72

360360
16

58880736

Main » B

C1 2 4 8

no, 8

yes, 8

no
, 8

16

32

no
, 3

2

yes, 32 48 80yes, 8no, 1

yes, 1

yes, 2

no
, 2

yes, 4

no
, 4

Main » A

C

1 1 1 1
44

8

4

4

16

1 4

no, 4

4

0yes, 4

B » C

1 no, 1

yes, 1

2

ye
s,

 2

no, 2 4

MAIN PROCESS

SUBPROCESS A SUBPROCESS C

SUBPROCESS B
(d) Subprocess B

Figure 1: Order to cash main process and subprocesses

value is exceeded for a minimum number of instances, the system notifies affected
personnel.

Although we may not monitor all variants, we cannot exclude any part of
the process model from monitoring a priori. Even domain experts typically do
not know, which variants are less frequent without a proper throughput analysis.
However, to do this already requires monitoring of all variants. In case variants
are excluded from monitoring, practice has proven that process problems are
detected late. This results in a drop in customer satisfaction and revenue.

As we show in the remainder of this paper, the above number of variants is
an upper bound and can be significantly reduced.

18

3 Related Work

The methods presented in this paper refer to the discovery of process variants in
business process models. In the literature, two different approaches are advocated.
The multi-model approach uses a number of related process models to capture
different variants, typically as a result of manipulating one central reference
model [3,12]. In contrast, the single-model approach consolidates all possible
variants in one process model that offers different configurations for a particular
variant [1,10]. Here, some gateways are specifically marked as configuration points,
where different variants follow different branches. Still, in both cases, a process
variant is a complete business process model, in particular including control-flow
branching structures.

In this paper, variants are understood as distinct sequences of activities and
events similar to the notion of traces in process mining [14]. Process mining
analyzes logs of business process executions and strives to discover process models
by reverse-engineering ordering relations between activities and detecting points
where a path in a process might diverge. However, in contrast to process mining,
we do not take process logs as the basis to generate a process model, but start
with the model itself to reveal all possible variants. The number of variants is
related to the cyclomatic number of programs [4,8]. However, in our case also
different numbers of iterations of the same process model fragment are considered
individual variants.

Based on the discovered variants, this work attempts to improve the quality of
the process model by reducing the number of variants and increasing consistency
within models. Model quality has been in the focus of a wide range of research
work, an overview of factors affecting process model quality is presented by
Mendling et al. [6]. With regard to this work, our primary focus is towards the
semantic and pragmatic quality of process models [9].

One particular aspect we have not found being addressed in the literature
is the consistency of the configuration of points in the business process model,
where process execution diverges. We refer to these as trigger parameters for
variants of a process model. For instance, if two distinct exclusive choice gateways
model the very same decision, they should be labeled identically. The following
sections present our approach to discovering, characterizing, and reducing process
variants, as well as normalizing choices within a process model.

Other proposals towards increasing process model quality include, for example,
Mendling’s Seven Process Modeling Guidelines [5]. This work introduces rules,
based on empirical research, to keep process models simple, consistent, and easily
comprehensible. While these guidelines improve a single model and reduce its
cognitive complexity, refactoring of process models [16] strives to increase the
consistency between several models in a collection, such as, consistent labeling of
activities across all models. Please be aware that the latter work uses the term
variants in a different meaning than we use it here.

Many of these approaches towards increasing process model quality have
already been applied during the modeling of our business processes, for instance
the labeling of objects and the extraction and linking of common subprocesses.

19

The latter can also be perceived in our example in Figure 1, where subprocess C
is linked in processes A and B. However, with regards to the number of variants
in a business process, these approaches do not change semantics of a business
process model, but rather their organization. They have, therefore, no impact on
the number of variants of process models.

4 Variants in Business Processes

Contrary to related work discussed in the previous section, where a process
variant refers to different versions of a complete business process model, we define
a process variant as a class of process instances.

A process variant is a complete and unique sequence of activities, events,
and decisions carried out in compliance with a business process model.
Every process instance of this model belongs to exactly one process variant.

The order-to-cash process above is executed among a number of independent
and distributed software systems, each of which adds fragments and execution
alternatives to the process itself. Our definition of a business process variant
embraces this aspect and captures one variant of the overall process as a particular
ordering scenario. Variants need to be complete with regard to the start and end
of a business process.

4.1 Identification of Process Variants

Having defined the term process variant, the question arises, how variants can
be identified. Business process mining offers a straightforward solution to the
identification of unique variants by examining a process log. However, in our
scenario, such a log is not available, as we aim at setting up a monitoring solution
prior to the rollout of a business process.

It is, nevertheless, possible to derive process variants from a process model, if
it is normative and sufficiently detailed, i.e., on an executable level. Essentially,
all model constructs that yield alternative outcomes lead to a set of process
variants – each alternative adds another process variant. In the case of BPMN,
such constructs are, for instance, exclusive gateways and interrupting boundary
events.

Our approach to computing the number of variants in a process model is
based on Sadiq and Orlowska [11]. The authors present an approach to identify
behavioral anomalies in sequential process models, by iteratively eliminating
paths in the model that are correct. For instance a set of n alternative paths that
are split and joined in a well-structured fashion are reduced to a single path. If
the remaining model is trivial, then the original model was correct. Models that
show deadlocks or lack of synchronization cannot be reduced completely.

In our case, the process models underwent a verification process a priori and
hence are considered to be correct. However, we reused the iterative reduction

20

technique to identify variants in process models. For every reduction, we counted
the number of variants that were created by the reduced fragment. In case of
the aforementioned set of alternatives, we would infer n variants. The number
of variants is then annotated to the outgoing control flow sequence and fuels
into the next fragment to be reduced. In Figure 1c, we see two fragments, each
with two alternatives, which results in an overall count of 4 variants. Similarly,
hierarchical decomposition in process models, i.e., the use of subprocesses, adds
significantly to the number of variants of the business process.

Note that the above method to derive process variants is applicable only for
well-structured, sequential process models as is pointed out in [15]. Furthermore,
the interleaved execution of parallel paths quickly leads to an explosion of the
number of process variants [13]. In our case these prerequisites apply, because all
parts of the end-to-end business process are carried out in a sequential fashion
by different IT systems.

4.2 Characterizing Process Variants

A small number of process variants – in our experience around 500 – is not
problematic for process monitoring, as not every activity, event, or decision is
tracked by a monitoring system. In our example, we have computed the number
of variants according to the above method for the first part of our end-to-end
business process, which resulted in 59,244 process variants; a number that becomes
unmanageable provided that our monitoring system is configured manually. The
high number of variants was not expected but confirmed our initial concerns of
process complexity.

As shown in Figure 1, only 360 variants are successful, i.e., lead to the
continuation of the order-to-cash process towards the next subprocess – often
referred to as the happy path. Comparing this number with the overall number of
variants demonstrates that most variants address deviations from the happy path.
A semantic analysis shows that indeed almost all other variants cover process parts
for error-handling and customer-interaction, e.g., order cancellations triggered
by customers. Yet, for a complete monitoring of the business process, it is not
sufficient to just focus on the happy path. As an early requirement we stated
that 100% of all process variants must be monitored.

One important observation we made during the identification of process vari-
ants is that one cannot distinguish between important and less-important variants
from a business point of view. One must treat all variants equally important,
because the process is executed fully automated. There are no knowledge workers
performing any activities. Even the ratio of instances per variant would not help
to judge on the importance of process variants.

5 Reducing Process Variants

Having experienced a vast number of 59,244 process variants for only a part of
an end-to-end business process, we aimed at analyzing why different variants are

21

triggered. To this end, one goal is to remove variants whenever possible as this is
the most effective way to ease the activation of process monitoring. Moreover,
such a large number of variants may also be a sign of the potential to increase
the quality of our process model. In this section, we report on various approaches
to reduce variants that we identified by carefully studying the process model and
related information.

5.1 Zero Variants

One of the first reasons triggering process variants are paths in the process
model that can never occur, which we therefore call zero variants. Although all
of our process models underwent careful reviews prior to the variant analysis,
this behavior turned out to be a flaw from a semantic point of view. An example
from subprocess (d) in Figure 1 is shown in detail in Figure 2 that internally
handles an error before escalating that error to the parent scope.zero var

Task

Error escalated

Task

Error escalated

(a) Original model

zero var

Task

Error escalated

Task

Error escalated

(b) Refactored model

Figure 2: Zero variants

The process path identified by the outgoing blank end event of the subprocess
is unreachable because the subprocess always terminates with an error event.
Analyzing this path, we concluded that it increases the effort to understand the
model and may lead to misinterpretations by model readers. Hence, all paths with
zero variants must be refactored to increase model quality. In the above example
refactoring was performed without changing the semantics from a business point
of view. The quality of the process model in Figure 2b was increased while the
number of variants did not change. In other scenarios of the same category, the
number of variants did change and has, in some situations, even been increased,
e.g., in case of boundary events. Hence, the number of variants has to be computed
again after model refactoring.

5.2 Duplicate Variants

The semantic analysis of process models, i.e., the matching of model elements
such as activities, events, and decisions, to their counterpart in our actual business

22

revealed a second opportunity to improve process model quality and reduce the
number of variants. Frequently, choices from a set of alternatives in the process
models are not made completely independent. That is, the choice made at one
point may depend on a choice made earlier in the course of executing the process.
Figure 3 illustrates this with a fictitious example.op

order
received

check
order

prepayment
required?

ship order

receive
payment

prepayment
processed?

obtain
payment

order
completedcancellation

requested?

process
cancellation

order
cancelled

ye
s

no no

ye
s

no

ye
s

Figure 3: Non-normalized decisions

The business process contains a number of decisions. Two of them, namely
prepayment required and prepayment processed refer to the point in time, when the
payment for an order is carried out. If the customer chose a form of prepayment, it
will be carried out before shipment of the order. If, on the other hand, prepayment
has not been chosen, the money needs to be obtained after the shipment.

Looking only at the model, the process produces six variants, one for each
combination of alternative paths. Taking into account the actual implementation
of these decisions, we discovered that both decisions regarding payment are based
on the chosen payment method of the customer. From a set of payment methods,
one part qualifies for prepayment, whereas the remaining part does not. Hence,
these two decisions are based on the same semantic context and there exist, in
fact, only four variants in the process model.

We introduce trigger parameters and configuration parameters, and methods
to identify such dependencies and resolve them.

A configuration parameter, short CP, is a variation dimension, i.e., a
set of values that denote different alternatives.
A trigger parameter, short TP, denotes a variation point in the process
model that uses configuration parameters to specify the logic to choose
between alternatives.

Trigger parameters characterize variants based on either conditions, e.g., at
an XOR-gateway, or based on events, e.g. at attached intermediate boundary
message events, and hence correlate process variants with elements of the process
model. To identify duplicates, the complete process is analyzed and all trigger
parameters are listed separately with a unique id, the condition of a gateway or

23

the name of the event, and the process in which it is contained. Subsequently, a
number of checks are carried out.

Duplicate Trigger Parameters. First, duplicate labels of trigger parameters
are identified and marked. Corresponding points in the model are not yet refac-
tored, as there is the chance to find further replicas of the trigger parameter. Also,
duplicate labels do not necessarily imply duplicates, as also the configuration
parameters for these TPs must coincide. Currently, the duplicate detection uses
only simple string comparison; language processing is done by a domain expert
to identify duplicates. In future, natural language processing could assist, cf. [2].
A second quality check focuses on labels assigned to TPs, i.e., their correspond-
ing conditions and event names. The labels of TPs should comply with a style
that ensures that readers can quickly comprehend the semantic information. As
labeling style we focus on a best practice approach, see, for instance, [5,7]:

for events object + verb past perfect
for gateways a question attached to the gateway, condition expressions must

be an answer to the question stated at the corresponding gateway; both
question and answers are brief and precise.

The result of these checks is stored along with the specification of TPs. Labels
that violate the above standards are marked for refactoring. However, refactoring
labels is still postponed due to further checks. Moreover, not all labels may be
refactored, as some of them are used in a close business-IT-alignment. That means,
that some labels, in particular event names, are also used in the implementation of
IT systems and used for monitoring. Hence, to keep models and implementation
in sync, best practices may be neglected.

In our example, we identified 23 trigger parameters in the first part of our
order-to-cash process. Only four of them complied with our best practice naming
standards. Five out of the remaining 19 TPs could not be renamed for better
style due to their reuse in IT systems; the rest has been improved.

Redundant Trigger Parameters. The next check focuses on TPs that can
be eliminated, which would decrease the number of variants. The check verifies
whether a process model can be refactored in a way such that the TP is eliminated
without changing process semantics. It is important to keep semantics equivalent
as otherwise the process logic would change. This task is performed by process
experts together with domain experts to ensure consistency. A reduction of TPs
improves comprehension of the model and increases its quality additionally.

Figure 4, which shows an excerpt of our example process, illustrates this check.
The fragment on the left figure (a) shows a split XOR-gateway corresponding to
a TP. Assuming that only a single variant is provided as input, there will be two
variants – one that includes the timer event, and another that does not. Upon a
careful review of the left model, one recognizes that the question addressed at
the split gateway and the condition at the intermediate timer event are similar.

24

Timer

t(order_creation)
+ 10min > now()?

t(order_creation) + 10min

t(order_creation) + 10min

no

yes

(a) Original model

Timer

t(order_creation)
+ 10min > now()?

t(order_creation) + 10min

t(order_creation) + 10min

no
yes

(b) Refactored model

Figure 4: Redundant trigger parameters

From a semantic point of view, the condition is checked twice: If the time has
not progressed far enough, the process will wait for it using a timer event. An
equivalent logic is shown on the right hand side (b) of Figure 4 where only the
intermediate timer event is used. The TP is avoided, reducing the complexity
of the model and eliminating another variant locally. Recall that the number
of variants can multiply throughout the process, e.g., in case of subprocesses.
Hence, even saving one variant locally, can reduce the overall number of variants
significantly.

In fact, using our approach to eliminating redundant trigger parameters, the
total number of variants decreased to approx. 36,000 – a reduction of 39.3% in
total. Putting the large reduction into practice, one would not have guessed such
tremendous reduction. The effect has such an impact, because the removal of a
single TP may effect the complete process hierarchy. In cases where processes
or parts of them are scoped by boundary events, the decrease of local variants
might also turn down variants on a global scale as shown in our example.

Duplicate Trigger Configurations Identification and documentation of du-
plicate and redundant trigger parameters is the first step towards understanding
why variants occur. Information on TPs already support the analysis of variants
and actions can be derived from the analysis results. These actions can either
lead to a removal of TPs and, consequently, a decrease in process variants and an
increase in model quality. The next step towards reducing process variants is the
analysis of configuration parameters. Configuration parameters (CP) are used to
split up a business context, for instance payment methods in the order handling
process. Configuration parameters are bound to trigger parameters, assigning
information about the business context to it. A trigger parameter, linked to a
specific process model element, determines the process’ behavior based on the
information of a configuration parameter.

Recall the above example shown in Figure 3, where the decision, which path is
chosen, is based on the customer’s choice of a payment method for two out of three
gateways. Yet, the information in the process model alone is insufficient to decide,
whether these decisions are taken on identical conditions. In practice “yes” and
“no” do not determine, which path to chose; the actual selection of the payment

25

method is required. Further on, it could very well be possible that payment
methods exist that require both, a prepayment before and a final payment after
the shipment. Here, CPs come into play as they bind actual conditions of trigger
parameters to values from a business context. For each CP, we store a unique id,
its name, and all unique values.

Furthermore, we distinguish three types of configuration parameters, which
indicate how the value of the parameters is determined, respectively.

design-time the parameter is static, e.g., to configure an IT system
a priori run-time the parameter is determined at the creation of a process

instance and does not change anymore for this instance, e.g., based on the
received order that triggered a process instance

live run-time the parameter is determined during the run of the process in-
stance, e.g., the outcome of a human task or a value computed by an IT
system

These types are closely related to process variant definitions, see section 3,
where one variant is comprised of a complex model including decisions. Here,
the CP types design-time and a priori run-time can be used to exclude certain
variants (in our definition) from the process model, when a process is instantiated.
Design-time CPs are comparable to configuration points in complex variant
definitions.

In our example, the configuration parameter “payment method” consists of
values credit card, paypal, invoice, and cash-on-delivery; the former two options
being prepayments, and the latter payments after shipping. The CP type is a
priori run-time, because it is based on the customer’s choice of a payment method
recorded in the incoming order. As we have discussed above, the CP is used for
the TP of two gateways in the process model of Figure 3.

The binding of the values of a CP to the conditions of the outgoing paths of
the gateway bridges the gap between domain knowledge, i.e., the actual process
execution, and trigger parameters in process models. Using this connection, we
can now identify trigger parameters that use the same configuration parameters.
In combination with the search for duplicate trigger parameters, see above, we
can now normalize the process model, by making identical and similar decisions
consistent in their labelling.

First, we verify that all duplicate TPs that have been identified, see above, are
actually duplicates. That is, they must use the same CP values for the decision.
If this is not the case, we detected ambiguous labels in our model, which should
be resolved by renaming one or both of the TPs in the model. Duplicate TPs
with identical CP values are recorded as actual duplicates into the list of variants.
These duplicates are later refactored manually.

In our example process, we found two TPs “gift voucher” and “gift voucher
bought”, which – looking at the labels – suggest a potential duplicate. However,
the values of the corresponding CPs revealed that the first addressed the payment
of an order using a gift voucher, whereas the second incorporated the purchase of
a gift voucher by the customer. This highlights the importance to verify duplicates
using configuration parameters.

26

Second, we analyze trigger parameters that have the same configuration
parameter values. If a number of choices with semantically identical TPs and
CPs occur in one process instance, i.e., they lie on a common path in a process
model without concurrency, then a decision for one choice determines also the
decision in other choices, which leads to a reduction of variants.

To refactor the process model, we need to examine, why the same business
context, i.e., set of configuration parameters, is applied to trigger parameters
with different labels. In our case, a gap or mismatch between modeling and
interpreting business information, and errors in process models were the main
reasons. Next, process and domain experts must clarify how to remediate this
discrepancy. Typically, they decide for one TP and update the label of the other
to properly match the context if necessary.

An example for the second case are trigger parameters “articles exist” and
“article exists”. The first conveys the impression that all articles must be available,
whereas the second suggests only one article was sufficient. However, consulting
domain experts and configuration parameters led to the decision that both trigger
parameters are identical, and one has been renamed accordingly.

Of the initially 23 identified trigger parameters four could be removed due
to duplicate TPs or duplicate CPs, which led to an increase in the consistency
and unambiguity of the process model. The labels now better fit the domain
knowledge. Even more important is the fact that readers of the process model
can analyze, which domain information is used in trigger parameters and how
variants are triggered. The semantic binding helped to increase process model
quality significantly.

5.3 Merging of Events

During our analysis of the process model, we disclosed another opportunity to
reduce the number of process variants. In some cases, variants were triggered by
two or more message-receive events that indicated the same business trigger, but
differed in the data payload. Such variants can be treated as a single instance
under the condition that some constraints are met.

– All events must have the same scope, e.g., boundary events are attached to
the same scope.

– The control flow of all events must be merged directly succeeding the message
events.

These constraints ensure that different events, e.g., different messages, do not
have different effects on the state of the business process. The decision whether
events can be merged must be taken by domain experts. They must agree that
some events cannot be distinguished later on in the monitoring system. If they
deny, the monitoring system must be configured in a way that all events are
monitored.

In the example in Figure 5, we identified two variants that were triggered by
two message events, respectively, of which only one is processed according to the

27

unify event

sufficient
payment
received

Partner

payment
received

(sufficient to process)

payment
received

Partner

(a) Original model

unify event

sufficient
payment
received

Partner

payment
received

(sufficient to process)

payment
received

Partner

(b) Refactored model

Figure 5: Merging of events

event-based gateway preceding these events. Both events indicate an incoming
payment, however subtle differences led to their distinction in the model. After
the issue has been disclosed following the conditions above, domain experts
confirmed that merging the events for the purpose of monitoring was allowed.
The original model is not changed in this case. The refactored model is only
used to configure the monitoring solution. This has the disadvantage that two
models need to be in synchronization. Still, in many cases the benefit of reducing
variants outweighs the cost of maintaining two models.

6 Conclusion and Future Work

In this paper, we introduced an approach to characterize and reduce variants
in business process models. It is based on the notion of trigger parameters and
configuration parameters that provide insight into the data and logic that is
applied when control flow diverges within the process model.

Introducing the optimizations presented above reduced the number of variants
in a single process model from 59,244 to 11,000 variants, respectively 69.5 percent.
Due to the process hierarchy, the number of variants on the happy path dropped
from 360 down to 120. The reduction of variants eases the activation of monitoring
to a large extent. Nevertheless, bear in mind that this immense reduction was
triggered by optimizing only two local areas. Moreover, the changes applied to
the process model also reduced overhead, normalized decision labels, and thereby
increased the quality of our process model significantly.

For future work, we are looking into extending our approach to discover
process variants in process models. This addresses the automatic discovery of
variants, where also concurrent activities are taken into account. This means
that the different ordering of interleaved activities is not considered as different
variants, if they follow along the same paths in the process model.

28

References

1. Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing variability in
business process models: the provop approach. Journal of Software Maintenance,
22(6-7):519–546, 2010.

2. Henrik Leopold. Natural Language in Business Process Models - Theoretical Foun-
dations, Techniques, and Applications, volume 168 of Lecture Notes in Business
Information Processing. Springer, 2013.

3. Chen Li, Manfred Reichert, and Andreas Wombacher. Mining business process
variants: Challenges, scenarios, algorithms. Data Knowl. Eng., 70(5):409–434, 2011.

4. Thomas J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308–320,
July 1976.

5. J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven process modeling
guidelines (7pmg). Inf. Softw. Technol., 52(2):127–136, February 2010.

6. Jan Mendling, Jan Recker, and Hajo A. Reijers. Process modeling quality: A
framework and research agenda. BPM Center Report, BPM-09-02, 2009.

7. Jan Mendling, Hajo A. Reijers, and Jan Recker. Activity Labeling in Process
Modeling: Empirical Insights and Recommendations. Inf. Syst., 35(4):467–482,
2010.

8. Glenford J. Myers. An extension to the cyclomatic measure of program complexity.
SIGPLAN Not., 12(10):61–64, October 1977.

9. Hajo A. Reijers, Jan Mendling, and Jan C. Recker. Business process quality
management. In Jan vom Brocke and Michael Rosemann, editors, Handbook on
Business Process Management 1 : Introduction, Methods, and Information Systems,
International Handbooks on Information Systems, pages 167–185. Springer Berlin /
Heidelberg, 2010.

10. Michael Rosemann and Wil M. P. van der Aalst. A configurable reference modelling
language. Inf. Syst., 32(1):1–23, 2007.

11. Wasim Sadiq and Maria E. Orlowska. Analyzing Process Models Using Graph
Reduction Techniques. Inf. Syst., 25(2):117–134, April 2000.

12. Sherif Sakr, Emilian Pascalau, Ahmed Awad, and Mathias Weske. Partial Process
Models to Manage Business Process Variants. International Journal of Business
Process Integration and Management (IJBPIM), 6(2):20, sep 2011.

13. Antti Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, volume 1491 of Lecture Notes in Computer Science,
pages 429–528, London, UK, UK, 1998. Springer.

14. Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

15. W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An alternative way
to analyze workflow graphs. In AnneBanks Pidduck, M.Tamer Ozsu, John My-
lopoulos, and CarsonC. Woo, editors, Advanced Information Systems Engineering,
volume 2348 of Lecture Notes in Computer Science, pages 535–552. Springer Berlin
Heidelberg, 2002.

16. Barbara Weber and Manfred Reichert. Refactoring Process Models in Large Process
Repositories. In Advanced Information Systems Engineering, volume 5074 of Lecture
Notes in Computer Science, pages 124–139. Springer, 2008.

29

	Why do process variants matter for process monitoring?

