
Abstract

We present an interactive search assistance agent
that integrates search and recommendation-based
experiences into a novel unified presentation. The
agent guides the user toward more desirable inven-
tory, while also satisfying the constraints that the
user constructs with the help of the agent. We built
a prototype which supports this mechanism by
connecting to the search functionality on eBay. We
have also created the popularity knowledge-base of
the agent by aggregating data from billions of user
transactions. The accompanying video1 demon-
strates the resulting prototype in this context.

1 Introduction

Many popular applications that provide services like shop-
ping, search, media, and social networking, rely on infor-
mation retrieval (IR) technologies that can be broadly cate-
gorized into two groups: Query-based systems that primari-
ly aim to satisfy user input (i.e. keyword search, filtering,
and browsing) [1] and Recommender systems [2] that take
an active role in recommending content without the need for
direct user input. The lines between these two IR systems
can blur; a keyword search system might customize its re-
sults based on recent user behavior and a recommendation
system could narrow its results to be consistent with recent
search queries. However, these components typically func-
tion independently, and user interfaces emphasize certain
functionality based on the expected utility for the user.

Here, we present Focus, and interactive assistant for a
shopping website, which blurs the lines between user query-
based search and system-initiated recommendations. Our
proposal involves an intelligent system that unifies keyword
search, category browsing, attribute filtering, query comple-
tion, related query recommendation, and popularity-based
recommendations.

Focus behaves similar to a search engine in that it returns
results satisfying user queries and selected filters, while
simultaneously acting like a recommendation engine in in-
troducing popular inventory. It can assist users by suggest-
ing refinements for narrowing a query and proposing chang-
es to particular parts of a query in order to move the search
towards alternative directions. The latter functionality al-
lows the user to discover popular parts of inventory that

contain products with high seller supply and buyer demand.
This also helps the user avoid (or backtrack from) low result
scenarios.
Our design observes several principles:
• Interactive: Shopping/search should be a conversational

interaction between the user and shopping assistant.
• Mixed-initiative [3]: System and user take the initiative in

turns and the UI provides a mechanism for the two
agents to share information and align their goals.

• Incremental: The UI enables the user to make incremental
changes (refinement, pivoting, and generalization) to
the query, and receive immediate feedback on how
those changes affect the results. This helps the user
build a mental model of the inventory while navigating
through each part of the process.

• Shared narrow focus: The UI enables the user to focus on
a narrow context at a time (e.g. changing part of the
query), while the system keeps track of that focus and
provide contextual recommendations at every step.

Researchers often discuss personalization of search and
recommendations in two distinct contexts: customization
with respect to long term user models, and adaptation to
short-term user actions. The mechanisms that we propose
here belong to the latter category. However, we believe that
this system would benefit from long-term user models as
well, and so we pose that potential integration as an open
question for future work.

We implemented a prototype of Focus and demonstrate
its feasibility in the e-commerce domain. The system pow-
ers its recommendations with data aggregated from billions
of transactions on eBay. Next, we go through a motivating
example, followed by an overview of the runtime architec-
ture and offline processes that build the system’s
knowledge-base.

2 User-Interface Interaction

The paper is accompanied by a video demonstrating the
user-interface interaction1. In preparing a demo system we
were forced to make certain UI design choices, but the
claims and architectural commitments we make in this paper
are more abstract in nature and they should not be evaluated
limited to this particular interface.

1 http://youtu.be/RgoLvGf96Bg

Interactive Search with Contextual Navigation Recommendations

Tolga Könik
eBay Inc.

San Jose, CA 95125

tkonik@ebay.com

Yoni Medoff
eBay Inc.

San Jose, CA 95125

ymedoff@ebay.com

Rajyashree Mukherjee
eBay Inc.

San Jose, CA 95125

rmukherjee @ebay.com

The user starts the interaction by typing an initial query to
a search box, or by selecting a group of filters from the land-
ing page of the experience. This landing page is currently
hand-curated but a natural extension would be to construct it
by determining popular clusters of items, or by personaliz-
ing it based on past experience of the user. Subsequently,
the system will respond by showing relevant results for the
selected set of filters and recommends potential changes to
the query. After every user action, the system retrieves new
results and updates its query recommendations. These rec-
ommendations are incremental, targeting only the specific
user selected parts of the query.

At the heart of the communication between the user and
the IR system is a user interface that represents the query,
along with changes recommended by the system. This acts
as shared knowledge between the user and the system, and
helps to align their goals. This assisted search approach is
similar to widely used autocomplete functionality in rec-
ommending changes to a query, but it differs in two key
ways. First, the query is partitioned into named entities. Ad-
ditionally, recommended changes are incremental and can
target any selected segment of the query. This provides the
user with multiple directions for changing the query in in-
cremental fashion, resulting in a more interactive experi-
ence, which allows the user to navigate through the invento-
ry efficiently.

The user interface (Figure 1) consists of three elements:

search context (top two rows), which characterizes the cur-

rent query for information retrieval, recommendations for

changing the query (dark bar), which list the recommenda-

tions to lead the user towards popular parts of the inventory,

and a result set consisting of items that best match the

search context.

Figure 1. Focus interface - refinement

The search context includes a keyword query and a set of
selected filters consisting of attribute name-value pairs. The
search context is constructed by user’s initiative but the rec-
ommender system helps by suggesting new refinements and
possible changes to the existing query. Whenever the user
changes the search context (either by direct editing or by
selecting a system recommendation), the system updates the
search results that match that new context.

For example when the user enters the query “coach

shoulder bag,” the system recognizes the attributes

brand=Coach, style=Shoulder Bag, and category=Clothing

Shoes and Accessories by applying a named entity extrac-

tion mechanism, which resolves ambiguities by considering

co-occurrence frequencies in historical transactions. Next,

the system updates the interface with these filters and shows

relevant results from the inventory. Using this information,

the system also recommends new attribute filters such as

color and shoe size since those are filters that work well

with the selected filters (in terms of increasing the likeli-

hood of retrieving desirable inventory). At this point, the

user can click on one of these attributes (e.g. color) and get

an ordered list of recommended values that work well with

the previous set of filters (Figure 1). In this example, brown

is at the top of that list because it is a popular color for

coach shoulder bags.

Figure 2. Focus interface - pivoting

The user can also select one of the existing filters and get

alternative recommendations that work best with the current
search context (Figure 2). For a given selected filter, the
values are recommendations that lead the user towards pop-
ular parts of the inventory. Those recommendations are de-
termined dynamically based on past popular user activity
statistics, which we will describe in the next section. For
example, clicking on brand filter might retrieve the value
Vera Bradley as another popular brand, which also corre-
lates with shoulder bags. Similarly, clicking on style would
trigger recommendations for popular item styles for Coach,
including totes and messengers.

Finally, the user can continue typing new keyword que-
ries. During this process, the system may suggest autocom-
pleting the keyword (e.g. the partial query “bl” could trigger
the filter selection color=black). This autocomplete mecha-
nism also prefers entries that work best with the current
search context, among the ones that match the partial query.

3 Architecture

Focus architecture is partitioned into data storage, runtime
system, and offline data generation (Figure 3). Next, we
review these components and explain how they support the
functionality described in the previous section.

3.1 Runtime Performance System

The runtime system includes a number of services that re-
spond to user actions. The interface state consists of search
context, query change recommendations, and search results.
The user actions change the search context and the runtime
performance system responds by changing the result set and
recommendations.

The runtime performance system consists of three main
components. First, the item retrieval system returns a set of
items from the inventory that best match the search context.
Second, the attribute extraction service extracts a number of
attribute-value pairs from a keyword query. Finally, the
third service recommends changes on the query given the
search context. In this work, we are focusing only on the
third component that generates the recommendations and
therefore we will not describe the remaining components in
more detail.

The query recommendations component consists of a
number of services, which all utilize the same backend data
storage and inference engine. The structured autocomplete
service inputs the search context along with a partial key-
word query, and returns filter values that match the partial
keyword query, preferring popular filters that co-occur with
selected filters in the search context in past transactions. The
attribute name refinement service returns most popular at-
tribute names to be used for further filtering given selected
filters. Finally, the attribute value selection service return
best values for a chosen filter given the selected filters in the
search context. All of these services use the same backend
engine that stores information about popularity of attributes
and their interaction.

3.2 Backend Reasoning Engine

All query recommendation services rely on the backend
reasoning engine. Each service uses this engine to retrieve
candidate values and order them based on a single populari-
ty metric. We will first describe this popularity metric and
then we will discuss the retrieval process specific to each
service.

Candidate Sorting
Our goal is to estimate the conditional probability P(y | x)
representing the likelihood of the user finding desired items
in the result set, when filtering by a name-value pair y, given
the selected name-value filters x = x1, x2… xn. For example,
given the selected filter vector x=<brand=nike, type=shoe>,
candidates for y may include constraints like color=white or
size=10. In that case, the recommendation engine would
need to determine whether color=white or size=10 is a bet-
ter refinement. The algorithm merely sorts candidate instan-
tiations for y by maximizing P(y | x) for a given x. We
achieve this by Naïve Bayesian inference, where we have:

P(y | x) ~ P(x 1| y) P(x 2| y)… P(x n| y) P(y)
assuming conditional independence:

P(x i x j| y) = P(x i| y) P(x j| y)
Under that assumption, the order of P(y | x) for a fixed x
depends only on P(xi| y) and P(y) values.

Retrieval
The three recommendation services use the backend engine
differently, depending on how they select candidate values
of y. For efficient retrieval, all values are stored in a table
which has one row for each y instance and has columns ob-
serving the following schema:

<name(y), value(y), P(y), P(x 1| y), P(x 2| y),… , P(x n| y)>
This table has O(n) columns and rows, where n is the num-
ber of attribute-value pairs and in our domain. Moreover, we
assume that the matrix is sparsely populated, which is an
assumption that holds in our shopping domain.
The typical goal is to return y names and/or values (the first
two columns), given the probability values. For a set of se-
lected context filters x =<x1,x2,..xn>, all services retrieve
only y rows such that:

P(x1| y) ≠ 0, P(x2| y) ≠ 0,…, P(xn| y) ≠ 0
Given a sparse matrix, this significantly reduces the num-

ber of candidates and their retrieval becomes very efficient
with usual indexing.
 On top of the shared retrieval constraints above, the sug-
gestion services use additional constraints. In structured
autocomplete with the partial keyword query q, the system
enforces the additional constraint contains(name(y), q), e.g.

Filter Suggestion

Service

Attribute
Relevance

Structured Data

Clickstream
Data

query, selected filters

Item retrieval

Recommended items

User
Interface

Offline
Model

Generation

The Data Store Real-time Performance System

Inventory

Figure 2. Architecture Overview.

Refinement

Alternatives

Autocomplete

Query
recommendations

the query “re” retrieves only aspects like color=red, where
the query is contained in the aspect value. On the other
hand, in attribute value refinement, the name N of the attrib-
ute is given as input, we use the additional constraint
name(y) = N, e.g. when the filter color is selected, all re-
trieved y rows satisfy name(y)=“color”. The attribute name
recommendations are handled with a slight extension where
y represents only the attribute name (without value). This
fits in our database with minor changes.

3.3 Offline Architecture

The mechanism we defined in the previous section defines a
conditional probability metric P(xi| y), which we defined as
the probability of selection of y (filter name or name-value
pair) to be useful for the user, given a selected attribute filter
xi, and P(y) the unconditional probability of selection of the
filter y to be useful. However, we have not described how
we can obtain those values in a practical use case.

If we have a system running in production, those values
can be obtained based on usage of filters and the engage-
ment with their results. However, it is not clear how we
should initialize such a system. In the shopping domain,
there are several alternatives that can be used as proxies to
these probabilities, each resulting in different runtime be-
havior. One can use data from engagement with an existing
(but static) filter system, or use inventory-based metrics (i.e.
how many items in inventory satisfy brand=nike and cate-
gory=basketball shoes at a given time). Instead, we decided
to optimize our system for popularity. Hence, we calculate
the P values by listing item view actions and counting co-
occurrence of attribute-value pairs (e.g. number of viewed
items with attributes brand=nike and color=white). Conse-
quently, the resulting system is biased towards preferring
items with higher rates of user interaction.

4 Evaluation

Our results are quite preliminary, and we have not yet con-
ducted a systematic user experiment. We implemented a
prototype user interface (demonstrated in the accompanying
video) powered by real user activity data. While this kind of
interface could be useful for different computing environ-
ments, its strength is highlighted in touch screen devices,
where selecting from suggestions is easier than typing, and
there is limited space for suggestions.

The backend data is automatically generated using bil-
lions of items viewed at eBay and it covers a large portion
of items in the inventory that contain attribute data. Our
item retrieval service and concept extractor utilizes existing
services at eBay. We built the query recommendation ser-
vices from scratch and they utilize a Solr [4] database for
storing and accessing attribute relevance data efficiently.

Related Work

A related approach that is recently gaining importance is
conversational search like "Google Now," "Apple Siri," and
“Microsoft Cortana,” [5] where the IR system also actively
interacts with the user, but in these systems there is no ex-

plicit and agreed representation of the shared context, and
resolving ambiguities and determining which part of past
dialog is relevant for the current query remains to be a diffi-
cult challenge. Facebook graph search [6] was employing
structured autocomplete until recently, where named entities
were recommended to complete user queries, but no method
is provided for changing parts of a query to reduce low re-
call. Pinterest’s search interface [7] represents query words
as tokens, which can be individually deleted and recom-
mends refinement words incrementally but the tokenization
does not seem to happen in terms of name-value pairs, and
there is no mechanism to change part of a query to alterna-
tive values. At the time of submission, Bing researchers
described a similar search experience, which also includes
pivoting [8]. We find it quite encouraging and validating
that other teams have independently built systems motivated
by similar ideas.

CONCLUSION

We presented an information retrieval experience for a
shopping domain that merges search and recommendations
in a novel way. The system facilitates an incremental
mixed-initiative interaction between the user and a recom-
mender agent, which leads the user towards popular parts of
the inventory, while also satisfying user queries. We imple-
mented a functioning prototype that utilizes data mined
from billions of transactions on eBay and the backend algo-
rithm is efficient and scalable.

We are at early stages of this work and lack crucial eval-
uation demonstrating the utility of this system. However, we
believe that our contribution is a novel step towards more
intelligent interactive information retrieval systems and can
encourage future research in this area.

References

1. Manning, C. D. and Raghavan, P. Introduction to Infor-

mation Retrieval, Cambridge Press, USA, 2008.

2. Jannach, D. and Zanker, M. Recommender Systems: An
Introduction, 2010.

3. Walker, M., and Whittaker, S. Mixed initiative in dia-
logue: An investigation into discourse segmentation. Pro-

ceedings of the 28th Meeting of the ACL, 1990, 70-78.

4. Apache Solr. http://lucene.apache.org/solr/

5. Lison, P. and Meena, R. Spoken dialogue systems: the
new frontier in human-computer interaction XRDS: Cross-
roads, The ACM Magazine for Students - Natural Lan-

guage 21 1 (2014), 46-51.

6. Facebook. http://facebook.com

7. Pinterest. http://pinterest.com

8. Bing – Type less, search images faster.
http://blogs.bing.com/search/2015/04/16/type-less-search-
images-faster/

