
Abstract 

We present an interactive search assistance agent 
that integrates search and recommendation-based 
experiences into a novel unified presentation. The 
agent guides the user toward more desirable inven-
tory, while also satisfying the constraints that the 
user constructs with the help of the agent. We built 
a prototype which supports this mechanism by 
connecting to the search functionality on eBay. We 
have also created the popularity knowledge-base of 
the agent by aggregating data from billions of user 
transactions. The accompanying video1 demon-
strates the resulting prototype in this context. 

1 Introduction 

Many popular applications that provide services like shop-
ping, search, media, and social networking, rely on infor-
mation retrieval (IR) technologies that can be broadly cate-
gorized into two groups: Query-based systems that primari-
ly aim to satisfy user input (i.e. keyword search, filtering, 
and browsing) [1] and Recommender systems [2] that take 
an active role in recommending content without the need for 
direct user input. The lines between these two IR systems 
can blur; a keyword search system might customize its re-
sults based on recent user behavior and a recommendation 
system could narrow its results to be consistent with recent 
search queries. However, these components typically func-
tion independently, and user interfaces emphasize certain 
functionality based on the expected utility for the user.  

Here, we present Focus, and interactive assistant for a 
shopping website, which blurs the lines between user query-
based search and system-initiated recommendations. Our 
proposal involves an intelligent system that unifies keyword 
search, category browsing, attribute filtering, query comple-
tion, related query recommendation, and popularity-based 
recommendations.  

Focus behaves similar to a search engine in that it returns 
results satisfying user queries and selected filters, while 
simultaneously acting like a recommendation engine in in-
troducing popular inventory. It can assist users by suggest-
ing refinements for narrowing a query and proposing chang-
es to particular parts of a query in order to move the search 
towards alternative directions. The latter functionality al-
lows the user to discover popular parts of inventory that 

contain products with high seller supply and buyer demand. 
This also helps the user avoid (or backtrack from) low result 
scenarios.  
Our design observes several principles: 
• Interactive: Shopping/search should be a conversational 

interaction between the user and shopping assistant. 
• Mixed-initiative [3]: System and user take the initiative in 

turns and the UI provides a mechanism for the two 
agents to share information and align their goals. 

• Incremental: The UI enables the user to make incremental 
changes (refinement, pivoting, and generalization) to 
the query, and receive immediate feedback on how 
those changes affect the results. This helps the user 
build a mental model of the inventory while navigating 
through each part of the process. 

• Shared narrow focus: The UI enables the user to focus on 
a narrow context at a time (e.g. changing part of the 
query), while the system keeps track of that focus and 
provide contextual recommendations at every step. 

Researchers often discuss personalization of search and 
recommendations in two distinct contexts: customization 
with respect to long term user models, and adaptation to 
short-term user actions. The mechanisms that we propose 
here belong to the latter category. However, we believe that 
this system would benefit from long-term user models as 
well, and so we pose that potential integration as an open 
question for future work. 

We implemented a prototype of Focus and demonstrate 
its feasibility in the e-commerce domain. The system pow-
ers its recommendations with data aggregated from billions 
of transactions on eBay. Next, we go through a motivating 
example, followed by an overview of the runtime architec-
ture and offline processes that build the system’s 
knowledge-base. 

2 User-Interface Interaction 

The paper is accompanied by a video demonstrating the 
user-interface interaction1. In preparing a demo system we 
were forced to make certain UI design choices, but the 
claims and architectural commitments we make in this paper 
are more abstract in nature and they should not be evaluated 
limited to this particular interface. 

                                                           
1 http://youtu.be/RgoLvGf96Bg 
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The user starts the interaction by typing an initial query to 
a search box, or by selecting a group of filters from the land-
ing page of the experience. This landing page is currently 
hand-curated but a natural extension would be to construct it 
by determining popular clusters of items, or by personaliz-
ing it based on past experience of the user. Subsequently, 
the system will respond by showing relevant results for the 
selected set of filters and recommends potential changes to 
the query. After every user action, the system retrieves new 
results and updates its query recommendations. These rec-
ommendations are incremental, targeting only the specific 
user selected parts of the query. 

At the heart of the communication between the user and 
the IR system is a user interface that represents the query, 
along with changes recommended by the system. This acts 
as shared knowledge between the user and the system, and 
helps to align their goals. This assisted search approach is 
similar to widely used autocomplete functionality in rec-
ommending changes to a query, but it differs in two key 
ways. First, the query is partitioned into named entities. Ad-
ditionally, recommended changes are incremental and can 
target any selected segment of the query. This provides the 
user with multiple directions for changing the query in in-
cremental fashion, resulting in a more interactive experi-
ence, which allows the user to navigate through the invento-
ry efficiently. 

The user interface (Figure 1) consists of three elements: 

search context (top two rows), which characterizes the cur-

rent query for information retrieval, recommendations for 

changing the query (dark bar), which list the recommenda-

tions to lead the user towards popular parts of the inventory, 

and a result set consisting of items that best match the 

search context.  

 
Figure 1. Focus interface - refinement 

 
The search context includes a keyword query and a set of 
selected filters consisting of attribute name-value pairs. The 
search context is constructed by user’s initiative but the rec-
ommender system helps by suggesting new refinements and 
possible changes to the existing query. Whenever the user 
changes the search context (either by direct editing or by 
selecting a system recommendation), the system updates the 
search results that match that new context. 

For example when the user enters the query “coach 

shoulder bag,” the system recognizes the attributes 

brand=Coach, style=Shoulder Bag, and category=Clothing 

Shoes and Accessories by applying a named entity extrac-

tion mechanism, which resolves ambiguities by considering 

co-occurrence frequencies in historical transactions. Next, 

the system updates the interface with these filters and shows 

relevant results from the inventory. Using this information, 

the system also recommends new attribute filters such as 

color and shoe size since those are filters that work well 

with the selected filters (in terms of increasing the likeli-

hood of retrieving desirable inventory). At this point, the 

user can click on one of these attributes (e.g. color) and get 

an ordered list of recommended values that work well with 

the previous set of filters (Figure 1). In this example, brown 

is at the top of that list because it is a popular color for 

coach shoulder bags. 

 
Figure 2. Focus interface - pivoting 

 
The user can also select one of the existing filters and get 

alternative recommendations that work best with the current 
search context (Figure 2). For a given selected filter, the 
values are recommendations that lead the user towards pop-
ular parts of the inventory. Those recommendations are de-
termined dynamically based on past popular user activity 
statistics, which we will describe in the next section. For 
example, clicking on brand filter might retrieve the value 
Vera Bradley as another popular brand, which also corre-
lates with shoulder bags. Similarly, clicking on style would 
trigger recommendations for popular item styles for Coach, 
including totes and messengers.  

Finally, the user can continue typing new keyword que-
ries. During this process, the system may suggest autocom-
pleting the keyword (e.g. the partial query “bl” could trigger 
the filter selection color=black). This autocomplete mecha-
nism also prefers entries that work best with the current 
search context, among the ones that match the partial query. 

3 Architecture 

Focus architecture is partitioned into data storage, runtime 
system, and offline data generation (Figure 3). Next, we 
review these components and explain how they support the 
functionality described in the previous section. 



3.1 Runtime Performance System 

The runtime system includes a number of services that re-
spond to user actions. The interface state consists of search 
context, query change recommendations, and search results. 
The user actions change the search context and the runtime 
performance system responds by changing the result set and 
recommendations.  

The runtime performance system consists of three main 
components. First, the item retrieval system returns a set of 
items from the inventory that best match the search context. 
Second, the attribute extraction service extracts a number of 
attribute-value pairs from a keyword query. Finally, the 
third service recommends changes on the query given the 
search context. In this work, we are focusing only on the 
third component that generates the recommendations and 
therefore we will not describe the remaining components in 
more detail.  

The query recommendations component consists of a 
number of services, which all utilize the same backend data 
storage and inference engine. The structured autocomplete 
service inputs the search context along with a partial key-
word query, and returns filter values that match the partial 
keyword query, preferring popular filters that co-occur with 
selected filters in the search context in past transactions. The 
attribute name refinement service returns most popular at-
tribute names to be used for further filtering given selected 
filters. Finally, the attribute value selection service return 
best values for a chosen filter given the selected filters in the 
search context. All of these services use the same backend 
engine that stores information about popularity of attributes 
and their interaction.  

3.2 Backend Reasoning Engine 

All query recommendation services rely on the backend 
reasoning engine. Each service uses this engine to retrieve 
candidate values and order them based on a single populari-
ty metric. We will first describe this popularity metric and 
then we will discuss the retrieval process specific to each 
service. 

Candidate Sorting 
Our goal is to estimate the conditional probability P(y | x) 
representing the likelihood of the user finding desired items 
in the result set, when filtering by a name-value pair y, given 
the selected name-value filters x = x1, x2… xn. For example, 
given the selected filter vector x=<brand=nike, type=shoe>, 
candidates for y may include constraints like color=white or 
size=10. In that case, the recommendation engine would 
need to determine whether color=white or size=10 is a bet-
ter refinement. The algorithm merely sorts candidate instan-
tiations for y by maximizing P(y | x) for a given x. We 
achieve this by Naïve Bayesian inference, where we have: 

P(y | x) ~ P(x 1| y) P(x 2| y)… P(x n| y) P(y) 
assuming conditional independence: 

P(x i x j| y) = P(x i| y) P(x j| y) 
Under that assumption, the order of P(y | x) for a fixed x 
depends only on P(xi| y) and P(y) values.  

Retrieval 
The three recommendation services use the backend engine 
differently, depending on how they select candidate values 
of y. For efficient retrieval, all values are stored in a table 
which has one row for each y instance and has columns ob-
serving the following schema: 

<name(y), value(y), P(y), P(x 1| y), P(x 2| y),… , P(x n| y)> 
This table has O(n) columns and rows, where n is the num-
ber of attribute-value pairs and in our domain. Moreover, we 
assume that the matrix is sparsely populated, which is an 
assumption that holds in our shopping domain. 
The typical goal is to return y names and/or values (the first 
two columns), given the probability values. For a set of se-
lected context filters x =<x1,x2,..xn>, all services retrieve 
only y rows such that: 

P(x1| y) ≠ 0, P(x2| y) ≠ 0,…, P(xn| y) ≠ 0 
Given a sparse matrix, this significantly reduces the num-

ber of candidates and their retrieval becomes very efficient 
with usual indexing.  
 On top of the shared retrieval constraints above, the sug-
gestion services use additional constraints. In structured 
autocomplete with the partial keyword query q, the system 
enforces the additional constraint contains(name(y), q), e.g. 
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the query “re” retrieves only aspects like color=red, where 
the query is contained in the aspect value. On the other 
hand, in attribute value refinement, the name N of the attrib-
ute is given as input, we use the additional constraint 
name(y) = N, e.g. when the filter color is selected, all re-
trieved y rows satisfy name(y)=“color”. The attribute name 
recommendations are handled with a slight extension where 
y represents only the attribute name (without value). This 
fits in our database with minor changes. 

3.3 Offline Architecture 

The mechanism we defined in the previous section defines a 
conditional probability metric P(xi| y), which we defined as 
the probability of selection of y (filter name or name-value 
pair) to be useful for the user, given a selected attribute filter 
xi, and P(y) the unconditional probability of selection of the 
filter y to be useful. However, we have not described how 
we can obtain those values in a practical use case.  

If we have a system running in production, those values 
can be obtained based on usage of filters and the engage-
ment with their results. However, it is not clear how we 
should initialize such a system. In the shopping domain, 
there are several alternatives that can be used as proxies to 
these probabilities, each resulting in different runtime be-
havior. One can use data from engagement with an existing 
(but static) filter system, or use inventory-based metrics (i.e. 
how many items in inventory satisfy brand=nike and cate-
gory=basketball shoes at a given time). Instead, we decided 
to optimize our system for popularity. Hence, we calculate 
the P values by listing item view actions and counting co-
occurrence of attribute-value pairs (e.g. number of viewed 
items with attributes brand=nike and color=white). Conse-
quently, the resulting system is biased towards preferring 
items with higher rates of user interaction. 

4 Evaluation 

Our results are quite preliminary, and we have not yet con-
ducted a systematic user experiment. We implemented a 
prototype user interface (demonstrated in the accompanying 
video) powered by real user activity data. While this kind of 
interface could be useful for different computing environ-
ments, its strength is highlighted in touch screen devices, 
where selecting from suggestions is easier than typing, and 
there is limited space for suggestions.  

The backend data is automatically generated using bil-
lions of items viewed at eBay and it covers a large portion 
of items in the inventory that contain attribute data. Our 
item retrieval service and concept extractor utilizes existing 
services at eBay. We built the query recommendation ser-
vices from scratch and they utilize a Solr [4] database for 
storing and accessing attribute relevance data efficiently.  

Related Work 

A related approach that is recently gaining importance is 
conversational search like "Google Now," "Apple Siri," and 
“Microsoft Cortana,” [5] where the IR system also actively 
interacts with the user, but in these systems there is no ex-

plicit and agreed representation of the shared context, and 
resolving ambiguities and determining which part of past 
dialog is relevant for the current query remains to be a diffi-
cult challenge. Facebook graph search [6] was employing 
structured autocomplete until recently, where named entities 
were recommended to complete user queries, but no method 
is provided for changing parts of a query to reduce low re-
call. Pinterest’s search interface [7] represents query words 
as tokens, which can be individually deleted and recom-
mends refinement words incrementally but the tokenization 
does not seem to happen in terms of name-value pairs, and 
there is no mechanism to change part of a query to alterna-
tive values. At the time of submission, Bing researchers 
described a similar search experience, which also includes 
pivoting [8]. We find it quite encouraging and validating 
that other teams have independently built systems motivated 
by similar ideas.  

CONCLUSION 

We presented an information retrieval experience for a 
shopping domain that merges search and recommendations 
in a novel way. The system facilitates an incremental 
mixed-initiative interaction between the user and a recom-
mender agent, which leads the user towards popular parts of 
the inventory, while also satisfying user queries. We imple-
mented a functioning prototype that utilizes data mined 
from billions of transactions on eBay and the backend algo-
rithm is efficient and scalable. 

We are at early stages of this work and lack crucial eval-
uation demonstrating the utility of this system. However, we 
believe that our contribution is a novel step towards more 
intelligent interactive information retrieval systems and can 
encourage future research in this area.  
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