

Using Ontology and Data Provenance to Improve

Software Processes

Humberto L. O. Dalpra1, Gabriella C. B. Costa2, Tássio F. M. Sirqueira1, Regina

Braga1, Cláudia M. L. Werner2, Fernanda Campos1, José Maria N. David1

1UFJF – Federal University of Juiz de Fora – Department of Computer Science, Juiz de

Fora – MG – Brazil.

2UFRJ – Federal University of Rio de Janeiro – COPPE – Systems Engineering and

Computer Science Department, Rio de Janeiro – RJ –Brazil.

humbertodalpra@gmail.com, tassio@tassio.eti.br,

{gabriellacbc,werner}@cos.ufrj.br,

{regina.braga, fernanda.campos, jose.david}@ufjf.edu.br

Abstract. Provenance refers to the origin of a particular object. In

computational terms, provenance is a historical record of the derivation of

data that can help to understand the current record. In this context, this work

presents a proposal for software processes improvement using a provenance

data model and an ontology. This improvement can be obtained by process

data execution analysis with an approach called PROV-Process, which uses a

layer for storing process provenance and an ontology based on PROV-O.

1. Introduction

Process can be defined as a systematic approach to create a product or to perform some

task [Osterweil, 1987]. Currently, many organizations are investing in the definition and

improvement of their processes aiming to improve product's quality. However, the

increase of process data generated makes the analysis of them more complex. It requires

the use of techniques to allow proper analysis of these data, extracting records that, in

fact, will contribute to process improvement. One way of analyzing this data is using

provenance techniques and models.

 Buneman et al. (2001) define data provenance as the description of the origins of

a piece of data and how it is stored in a database. Thus, to capture the origin of process

data, it is necessary to capture the process flow specification (prospective provenance)

and process execution data (retrospective provenance), in order to have the information

regarding the success, failure, delays and errors, during process execution.

 Lim et al. (2010) state that the provenance can be captured prospectively and

retrospectively. Prospective provenance captures the abstract workflow specification (or

process) enabling future data derivation. Retrospective provenance captures process

execution, i.e., data derivation records.

 To obtain the benefits of provenance, data have to be modeled, gathered, and

stored for further queries [Marinho et al., 2012]. After the capture and storage of

process provenance data, it can be used for analysis that enables process improvement

(e.g., shorter execution time and greater efficiency of the results). One possible way to

analyze processes provenance data is through the use of ontology and the inference

mechanisms provided by it, enabling the discovery of strategic information for software

project managers. This paper proposes a layer for the storage of software process

provenance data and the analysis of these data using an ontology. A W3C provenance

model called PROV [Groth and Moreau, 2013] was used both for storage and analysis

of these data.

The remainder of this paper is structured as follows: Section 2 presents related

works that deal with provenance and processes. Section 3 is dedicated to describe the

approach to improve software processes using an ontology called PROV-Process. The

next section presents an overview of the PROV-Process ontology, which was based on

PROV-O, describing the extensions made on it. Section 5 discusses the analysis of an

industry software process using the PROV-Process approach and the possibilities to

improve future executions of this process through the information obtained by PROV-

Process ontology. Finally, conclusions are presented in Section 6.

2. Related Work

Missier et al. (2013) present D-PROV, an extension of PROV specification, with the

aim of representing process structure, i.e., to enable the storage and query using

prospective provenance. An example of using D-PROV in the context of scientific

workflows defined by Data ONE scientists was shown in the article. This work was

used as basis to capture prospective provenance in PROV-Process approach.

 Miles et al. (2011) propose a technique, called PRiME, to adapt application

projects to interact with a provenance layer. The authors specify the steps involved in

applying PRiME and analyze its effectiveness through two case studies.

 Wendel et al. (2010) present a solution to failures in software development

processes based on PRiME, the Open Provenance Model and a SOA architecture. They

use Neo4j to store the data, Gremlin to query and REST web services as the connection

to the tools.

 Junaid et al. (2010) propose an approach where a provenance system intercepts

the actions of users, processes and stores these actions to provide suggestions on

possible future actions for the workflow project. These suggested actions are based on

the actions of the current user and are calculated based on the provenance information

stored.

 Similar to the related work mentioned above, PROV-Process approach aims to

improve future software process executions, through provenance data. However, other

approaches do not use ontologies as a technique for query provenance data or use any

inference mechanism, as PROV-Process approach does. Through ontology inferences,

we derive strategic information to suggest software process improvement, as shown in

the next sections.

3. PROV-Process Overview

PROV-Process is an approach for storage and analysis of software process provenance

data in order to improve future process execution. The main objective of the approach is

to identify improvements for future software process instances by using a provenance

layer (comprising a database, an ontology and mechanisms to manipulate these

components).

As shown in Figure 1, after the process modeling, a process instance can be

created. Both the process model and the model of the generated instance are stored in

PROV-Process Database, through a prospective mechanism. After that, the process

instance can be executed and the retrospective data provenance is stored through the

PROV-Process approach. This storage is done using a relational database, which has

been modeled using PROV-DM specification [Moreau and Missier, 2013].

Figure 1: PROV-Process Approach

 PROV-DM types and relations are organized according to six components.

PROV-Process Database implements all these components using a relational database.

Figure 2 shows, for example, tables of the first component, which comprise entities,

activities and their interrelations: Used (Usage), WasGeneratedBy (Generation),

WasStartedBy (Start), WasEndedBy (End), WasInvalidatedBy (Invalidation), and

WasInformedBy (Communication).

 All the data stored in the PROV-Process relational database are exported to the

PROV-Process ontology. This ontology is described in details in next section.

4. PROV-Process Ontology

Ontology research has become more widespread in Computer Science community.

Although the term has been limited to the philosophy sphere in the past, it has earned

specific roles in Artificial Intelligence, Computational Linguistics and Databases

[Guarino, 1998].

 PROV-Process Ontology was developed from the PROV-O ontology

[Belhajjame et al., 2013], which was defined based on PROV-DM data model. PROV-

O defines the vertices of PROV (Agent, Entity and Activity) as classes and uses object

properties for the interrelations representation. The core classes and properties from

PROV-O are shown in Figure 3.

Figure 2: Part of PROV-Process Database

Figure 3: PROV-O: Core Classes and Properties [Belhajjame et al., 2013]

 Classes and properties in PROV-O can be used directly to represent provenance

information or one can specialize them for modeling specific applications. Thus,

PROV-O can also be specialized to create new classes and properties to model

provenance information for different domains and applications. Based on this, we create

some new properties on PROV-O (generating PROV-Process Ontology), in order to

adapt it to the software process domain and to allow the inference of new information to

improve software processes. Examples of these properties are presented in the

following.

 A group of rules (using Property Chains) was added in PROV-O in the

‘wasAssociatedWith’ data property:

1. used o wasAttributedTo

2. wasStartedBy o wasAttributedTo

3.wasEndedBy o wasAttributedTo

 These rules state that, as show in Figure 4, if an activity used, was stated by or

was ended by an entity and that entity was assigned to an agent, we can infer that an

activity is associated with an agent.

Figure 4: wasAssociatedWith properties chains

 In the PROV-O, a data property called processInstanceId that corresponds to the

generated/executed instance identifier from the main process was also inserted.

 Finally, it should be noted that all records, called Attributes in PROV-Process

database, must be exported to the PROV-Process Ontology as new data properties with

their respective value.

5. Evaluation

In order to evaluate the applicability of the ontology of PROV-Process to software

process, the approach was applied to a process from a Brazilian software development

company [Ceosoftware, 2015]. A flow model shown in Figure 5 was created based on

the specifications of this process.

 To do this evaluation, real data execution of the process expressed in Figure 5

was analyzed. Thus, retrospective provenance of this process instances was stored using

the PROV-Process relational database. It should be noted, however, that the execution

data of the whole process were not provided by the company, but just a part of it.

In this work, 10 process execution instances, which have been fully completed,

were analyzed. Regarding the obtained data, the following were used:

 RDM1 (change request) number;

 Information if an RDM was created from a previous RDM;

 Date and time of RDM opening;

 Type of RDM;

 Responsible for opening the RDM (Origin);

 Changed modules and components during the deployment task;

 Team responsible for implementation of the solution;

1 RDM is an acronym for ‘change request’, in Portuguese, used by the company which provided the data

for this research. It means a registration opened by support, client or commercial department, to make

changes / adjustments in software system.

 Situation of RDM;

 Date and time of RDM completion.

 These process execution data were obtained through a spreadsheet sent by the

company responsible for the project2.

Figure 5: Process to manage requests and changes in software

2 All the execution data used for the implementation of this assessment can be found at this link

http://gabriellacastro.com.br/dsc/ex1/ex1.xlsx . Each row of this table represents a distinct execution of

the process.

http://gabriellacastro.com.br/dsc/ex1/ex1.xlsx

Table 1: Data execution example – Part 1

RDM Number Outspread Opening Date Opening Time Type Origin

30006 0 10/03/2013 14:54:00 Module liberation Client

30006 1 06/11/2014 17:18:00 Module liberation Client

Table 2: Data execution example – Part 1

RDM
Number RDM Module Module Component Team

Closed
Date

Closed
Time

30006 Financial DLL - ERP PDA clsValidacao VB6 10/03/2013 22:06:00

30006 Financial DLL - ERP PDA clsValidacao VB6 06/12/2014 10:41:00

The obtained data (examples about these data can be seen in Tables 1 and 2,

where the dates are using the format MM/DD/YYYY) were imported to the PROV-

Process database according to the following criteria:

 For all executions whose data were analyzed, three records were set in Activity

table, with their names:

o Opening the Request for Change;

o Solution Implementation;

o Change RDM to Complete.

 The RDM number was inserted as an attribute of each of the above activities,

by using Attribute and Activity_Attribute tables.

 If a particular instance of execution corresponds to the unfolding of a previous

RDM, a record in WasInfomedBy table was created.

 Date and time of RDM open were included using the startTime attribute of the

activity Opening the Request for Change.

 RDM type was inserted as an attribute of the Opening the Request for Change

activity using Attribute and Activity_Attribute tables.

 The role responsible for the Opening the Request for Change activity was

inserted in Agent table, using the name field and the Person type.

 Relationship between Opening the Request for Change activity and the

responsible for the same activity were inserted as records of the

WasAssociatedWith table.

 Values as module, RDM module and component were included as records

using Entity table and were associated with the Solution Implementation

activity by creating records in Used table.

 Values as module, RDM module and component, included as records using

Entity table, have been associated with agents who manipulated it by

creating records in WasAttributedTo table.

 Role responsible for Solution Implementation activity was inserted in Agent

table, using the name field and the Person type.

 Relationship between Solution Implementation activity and the responsible for

the same activity were inserted as records in WasAssociatedWith table.

 Date and time of RDM completion were inserted using the endTime attribute

of the Change RDM to Complete activity.

 As in the flow model (Figure 5) the role responsible for the Change RDM to

Complete activity is the Quality Team. This role was inserted as record in

the Agent table and was associated with this task by inserting a record in the

wasAssociatedWith table.

 In order to identify which instance of the process execution a particular activity

is associated with, a related attribute called processInstanceId was added to

all activities by using the Attribute and Activity_Attribute tables.

After inserting the process execution data in the PROV-Process relational

database, all the data were entered as individuals and their relationship in PROV-

Process Ontology3. From this point, through the ontology inference engine, the

derivation of strategic information was possible. As examples of information inferred

from retrospective provenance data of this process, we can highlight four types:

1) Activities that influenced the generation of other activities, that is, as can be

seen in red mark in Figure 6, Opening the Request for Change (id = 1) influenced

Opening the Request for Change (id = 4). The same information was also inferred for

the tasks of the same type with the ids 7, 13 and 19.

Figure 6: Activities that influenced the generation of other activities

 2) Agents that could be associated with the Solution Implementation activity,

considering that they already handled the artifacts involved in this activity in any other

execution of the process. Figure 7 shows, for example, that Solution Implementation

activity (id = 11) was influenced by DotNet agent (id = 5), given that this agent handled

common artifacts to this activity in other instances of this process. The same type of

information (agents that could be associated with the Solution deployment task) also

occurs for Solution Implementation activity with ids equal to 8, 20, 23, 26 and 29.

3 The generated ontology with all the individuals can be found at this link

http://gabriellacastro.com.br/dsc/ex1/ex1-english.owl .

http://gabriellacastro.com.br/dsc/ex1/ex1-english.owl

Figura 7: Agents that influenced an activity

 3) A list of all activities in which an agent was involved, as well as the artifacts

(entities) handled by her/him, as can be seen in Figure 8. Although this type of

information can be obtained through queries on PROV-Process relational database,

using the ontology and inference engine, this information can be obtained more easily

(with a simple SPARQL query).

Figure 8: Activities and agents handled by DotNet agent

 4) A list of all activities where an artifact (entity) was consumed, as can be seen

in Figure 9. Although this type of information can be obtained through queries on

PROV-Process relational database, using the ontology and inference engine, this

information may be obtained more easily (with a simple SPARQL query).

Figura 9: Activities where an artifact (entity) was consumed

Information inferred from the use of ontology proposed by the PROV-Process

approach could help to improve process performance offering to the project manager

information acquired at the time of the instantiation of a new process. This information

might suggest, for example, the most appropriate agents and artifacts to be handled first,

according to the type of problem reported / reason for opening the RDM.

6. Conclusion

This paper presented an approach, called PROV-Process, that obtains strategic

information to the project manager enabling her/him to take decisions that can improve

process performance. Therefore, this approach presents the advantages of using data

provenance coupled with ontology. Through the use of ontology, it is possible to detect:

(1) activities that influenced the generation of other activities; (2) agents that could be

associated with the solution of the deployment task, considering that they already

handled the artifacts involved in this task in any other execution of the process; (3) A

list of activities in which an agent was involved, as well as the artifacts (entities)

handled by her/him. No metric had be used for comparison of results.

Process data execution (retrospective provenance of the software process) are

stored in a relational database, modeled based on PROV-DM specification. As a result,

its data feed an ontology, created from the PROV-O model. With this and using an

inference machine, one can infer new information about the process.

To evaluate the PROV-Process approach, it was applied to a real industry

software process.

 As threats to validity, we can cite:

 The partner company did not inform all process performance data, and only

made available a spreadsheet with some of these data. This lack of detail

directly impacts on a greater specificity in the results.

 Data obtained from the partner company did not include information about

the actors who, in fact, performed the activity. They informed only the team

that performed a certain activity.

Currently, we are working in the following improvements: (1) Implementing

new rules indicating other actions that can help to improve processes; (2) Applying the

approach to other real case studies.

References

Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao,

J. (2013) “PROV-O: The PROV Ontology”. Available in

<http://www.w3.org/TR/prov-o/>. Accessed in July 2015.

Buneman, P., Khanna, S. and Tan, W. C. (2001) “Why and where: A characterization of

data provenance”. In: 8th International Conference on Database Theory, London. pp.

4-6.

Ceosoftware. (2015) “Soluções criativas e inovadoras”. Available in

<http://www.ceosoftware.com.br/>. Accessed in July 2015 (in Portuguese).

Groth, P., Moreau, L. (2013) “PROV - Overview”. Available in

<http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/>. Accessed in July

2015.

Guarino, N. (1998) “Formal ontology in information systems” In: Proceedings of the

first international conference (FOIS'98), Trento, Italy (Vol. 46). IOS press, pp. 3-15.

Junaid, M. M., Berger, M., Vitvar, T., Plankensteiner, K., Fahringer, T. (2009)

“Workflow composition through design suggestions using design-time provenance

information”. In: E-Science Workshops, 2009 5th IEEE International Conference on.

IEEE. pp. 110-117.

Lim, C., Lu, S., Chebotko, A., Fotouhi, F. (2010) “Prospective and Retrospective

Provenance Collection in Scientific Workflow Environments”. In Proceedings of the

2010 IEEE International Conference on Services Computing (SCC '10). IEEE

Computer Society, Washington, DC, USA, pp. 449-456.

Marinho, A., Murta, L., Werner, C., Braganholo, V., Cruz, S. M. S. D., Ogasawara, E.,

Mattoso, M. (2012) “ProvManager: a provenance management system for scientific

workflows”. Concurrency and Computation: Practice and Experience, v. 24, n. 13,

pp. 1513-1530.

Miles, S., Groth, P., Munroe, S., Moreau, L. (2011) “PrIMe: A methodology for

developing provenance-aware applications”. ACM Transactions on Software

Engineering and Methodology (TOSEM), v.20 n.3, pp.1-42.

Missier, P., Dey, S. C., Belhajjame, K., Cuevas-Vicenttín, V., Ludäscher, B. (2013) “D-

PROV: extending the PROV provenance model with workflow structure”.

In: Proceedings of the 5th USENIX Workshop on the Theory and Practice of

Provenance (TaPP). USENIX Association, Berkeley, CA, USA, Article 9, pp. 1-7.

Moreau, L., Missier, P. (2013). “Prov-dm: The prov data model”. Available in

<http://www.w3.org/TR/2013/REC-prov-dm-20130430/>. Accessed in July 2015.

Osterweil, L. (1987) “Software processes are software too”. In Proceedings of the 9th

international conference on Software Engineering. IEEE Computer Society Press, pp.

2-13.

Wendel, H., Kunde, M., Schreiber, A. (2010). “Provenance of software development

processes”. In Provenance and Annotation of Data and Processes, v. 6378 of Lecture

Notes in Computer Science, pp. 59-63. Springer Berlin Heidelberg.

