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1. INTRODUCTION
Fundamentally, a graph is a simple concept. At a basic level a
graph is a set of relationships {e(n0,n2),e(n0,nj),...,e(nj−1,nj)}
between elements. This simple concept, however, has afforded the
development of a complex theory of graphs [1] and rich algorithms
for combinatorics [7] and clustering [4]. This has, in turn, made
graphs a fundamental part of educational data mining.

Many types of data can be naturally represented as graphs such
as social network data, user-system interaction logs, argument
diagrams, logical proofs, and forum discussions. Such data has
grown exponentially in volume as courses have moved online and
educational technology has been incorporated into the traditional
classroom. Analyzing it can help to answer a range of important
questions such as:

• What path(s) do high-performing students take through online
educational materials?
• What social networks can foster or inhibit learning?
• Do users of online learning tools behave as the system designers

expect?
• What diagnostic substructures are commonly found in student-

produced diagrams?
• Can we use prior student data to identify students’ solution

plan, if any?
• Can we use prior student data to provide meaningful hints in

complex domains?
• Can we identify students who are particularly helpful based

upon their social interactions?

Thus, graphs are simple in concept, general in structure, and
have wide applications for Educational Data Mining (EDM).
Despite the importance of graphs to data mining and data anal-
ysis there exists no strong community of researchers focused on
Graph-Based Educational Data Mining. Such a community is
important to foster useful interactions, share tools and techniques,
and to explore common problems.

2. GEDM 2014
This is the second workshop on Graph-Based Educational Data
Mining. The first was held in conjunction with EDM 2014 in
London [17]. The focus of that workshop was on seeding an initial
community of researchers, and on identifying shared problems, and
avenues for research. The papers presented covered a range of top-
ics including unique visualizations [13], social capital in educational
networks [8], graph mining [19, 11], and tutor construction [9].

The group discussion sections at that workshop focused on the
distinct uses of graph data. Some of the work presented focused
on student-produced graphs as solution representations (e.g. [14,
3]) while others focused more on the use of graphs for large-scale
analysis to support instructors or administrators (e.g. [18, 13]).
These differing uses motivate different analytical techniques and,
as participants noted, change our underlying assumptions about
the graph structures in important ways.

3. GEDM 2015
Our goal in this second workshop was to build upon this nascent
community structure and to explore the following questions:

1. What common goals exist for graph analysis in EDM?
2. What shared resources such as tools and repositories are re-

quired to support the community?
3. How do the structures of the graphs and the analytical methods

change with the applications?

The papers that we include here fall into four broad categories:
interaction, induction, assessment, and MOOCs.



Work by Poulovassilis et al. [15] and Lynch et al. [12] focuses
on analyzing user-system interactions in state based learning
environments. Poulovassilis et al. focuses on the analyses of
individual users’ solution paths and presents a novel mechanism
to query solution paths and identify general solution strategies.
Lynch et al. by contrast, examined user-system interactions from
existing model-based tutors to examine the impact of specific
design decisions on student performance.

Price & Barnes [16] and Hicks et al. [6] focus on applying these
same analyses in the open-ended domain of programming. Unlike
more discrete tutoring domains where users enter single equations
or select actions, programming tutors allow users to make drastic
changes to their code on each step. This can pose challenges for
data-driven methods as the student states are frequently unique
and admit no easy single-step advice. Price and Barnes present a
novel method for addressing the data sparsity problem by focusing
on minimal-distance changes between users [16] while in related
work Hicks et al. focuses on the use of path weighting to select
actionable advice in a complex state space [6].

The goal in much of this work is to identify rules that can
be used to characterize good and poor interactions or good and
poor graphs. Xue at al. sought address this challenge in part via
the automatic induction of graph rules for student-produced dia-
grams [22]. In their ongoing work they are applying evolutionary
computation to the induction of Augmented Graph Grammars,
a graph-based formalism for rules about graphs.

The work described by Leo-John et al. [10], Guerra [5] and
Weber & Vas [21], takes a different tack and focuses not on graphs
representing solutions or interactions but on relationships. Leo-
John et al. present a novel approach for identifying closely-related
word problems via semantic networks. This work is designed to
support content developers and educators in examining a set of
questions and in giving appropriate assignments. Guerra takes
a similar approach to the assessment of users’ conceptual changes
when learning programming. He argues that the conceptual
relationship graph affords a better mechanism for automatic as-
sessment than individual component models. This approach is
also taken up by Weber and Vas who present a toolkit for graph-
based self-assessment that is designed to bring these conceptual
structures under students’ direct control.

And finally, Vigentini & Clayphan [20], and Brown et al. [2]
focus on the unique problems posed by MOOCs. Vigentini and
Clayphan present work on the use of graph-based metrics to
assess students’ on-line behaviors. Brown et al., by contrast, focus
not on local behaviors but on social networks with the goal of
identifying stable sub-communities of users and of assessing the
impact of social relationships on users’ class performance.
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ABSTRACT
Augmented Graph Grammars provide a robust formalism
for representing and evaluating graph structures. With the
advent of robust graph libraries such as AGG, it has be-
come possible to use graph grammars to analyze realistic
data. Prior studies have shown that graph rules can be used
to evaluate student work and to identify empirically-valid
substructures using hand-authored rules. In this paper we
describe proposed work on the automatic induction of graph
grammars for student data using evolutionary computation
via the pyEC system.
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1. INTRODUCTION
Graph Grammars are logical rule representations for graph
structures. They can be designed to encode classes of suit-
able graphs to recognize complex sub-features. They were
introduced by Rosenfeld and Pfaltz in 1969 as “Context-free
web grammars” [1]. Since then Graph grammars have been
applied to a wide range of areas, including pattern recogni-
tion [2, 3, 4]; visual programming languages [5]; biological
development [6]; classification of chemical compounds [7, 8];
and social network analysis [9, 10, 11]. Simple graph gram-
mars are, like string grammars, composed of a set of pro-
duction rules that map from one structure to another. In
this case the rules map from a simple subgraph, typically a
single node or arc, to a more complex structure. As with
string grammars the node and arc types are drawn from
finite alphabets. Despite their utility, however, graph gram-
mars are very difficult to construct. The data structures
required are complex [5]. Moreover, development of suitable
graph grammars generally requires considerable domain ex-
pertise. Most existing uses of graph grammars have relied
on hand-authored rules.

In this paper we describe our ongoing work on the automatic
induction of Augmented Graph Grammars via Evolutionary
Computation (EC). Our long-term goal in this work is to
develop automated techniques that can extract empirically-
valid graph rules which can, in turn, be used to classify
student-produced argument diagrams and to provide the ba-
sis for automated student guidance and evaluation. This will
build upon our prior on the evaluation of a-priori rules for
student arguments. We will begin with background material
on Augmented Graph Grammars and discuss prior work on
grammar induction. We will then present an overview of our
planned work.

2. AUGMENTED GRAPH GRAMMARS
& ARGUMENT DIAGRAMS

Classical graph grammars are designed to deal with fixed
graphs that are composed from a finite set of static node and
arc types. Augmented graph grammars are an extension of
simple graph grammars that allow for complex node and arc
types, optional substructures, and complex rule expressions
[12]. Rather than using a fixed alphabet of graph compo-
nents they are defined by a complex ontology that allows for
subsidiary types such as textual fields, access functions, and
directional information. They can also be used to evaluate
negated elements as well as quantified expressions. As such
they are better suited to rich graph data such as user-system
interaction logs and student-produced argument diagrams.

Augmented Graph Grammars have previously been used for
the detection of empirically-valid substructures in student-
produced argument diagrams [13, 14]. In that work a-priori
rules were used to represent key discussion features and ar-
gumentative flaws. Argument diagrams are graphical ar-
gument representations that reify key features of arguments
such as hypothesis statements, claims, and citations as nodes
and the supporting, opposing, and informational relation-
ships as arcs between them.

A sample diagram collected in that work is shown in Figure
1 The diagram includes a central research claim node, which
has a single text field indicating the content of the research
claim. A set of citation nodes are connected to the claim
node via a set of supporting, opposing and undefined arcs
colored with green, red and blue respectively. Each citation
node contains two fields: one for the citation information,
and the other for a summary of the cited work; each arc has
a single text field explaining why the relationship holds. At



Figure 1: A student-produced LASAD argument diagram representing an introductory argument.

the bottom of the diagram, there is a single isolated hypoth-
esis node that contains two text fields, one for a conditional
or IF field, and the other for conditional or THEN field. We
expect the induced graph grammars from a set of argument
diagrams can be used to evaluate the student thesis work.

Figure 2 shows an a-priori rule that was defined as part
of that work. This rule is designed to identify a subgraph
where a single target node t is connected to two separate
citation nodes a and b such that: a is connected to t via an
opposing path; b is connected via a supporting path; and
there exists no comparison arc between a and b. The rules
in that study were implemented using AGG an augmented
graph grammar library built in Python [12]. AGG matches
the graphs using recursive stack-based algorithm. The code
first matches the ground nodes at the top-level of the class
(t, a, & b). It then tests for the recursive productions O,
and S, before finally testing for the negated comparison arc
c. This rule does not make use of the full range of potential
capacity for Augmented Graph Grammars. However it is
illustrative of the type of rules we plan to induce here, rules
that generalize beyond basic types and draw on existing pro-
duction classes but not, at least in the immediate term, use
complex textual elements or functional features.

3. GRAMMAR INDUCTION
Graph and relational data has grown increasingly prevalent
and graph analysis algorithms have been applied in a wide
range of domains from social network analysis [15] to bioin-
formatics [16]. Most of this work falls into one of two cate-
gories of algorithms: frequent subgraph matching, and graph
compression.

A number of algorithms have been developed to discover fre-
quent subgraphs. These include the gSpan algorithm devel-
oped by Yan and Han [17]; the AGM algorithm developed by
Inokuchi et al [18]; and the FSG algorithm developed by Ku-
ramochi and Karypis which is based on the previous Apriori

t

a b

O S

¬ c

(ParedWcomp)


t.Tpye = “claim′′or“hypothesis′′

a.Type = “Citation′′

b.Type = “Citation′′

c.Type = “Comparison′′


Figure 2: A simple augmented graph grammar rule
that detects compared counterarguments. The rule
shows a two citation nodes (a, & b) that have oppos-
ing relationships with a shared claim node (t) and do
not have a comparison arc (c) drawn between them.
The arcs S and O represent recursive supporting
and opposing path.

algorithm [19]. They are based upon controlled graph walks
coupled with indexing. While these algorithms are effective,
particularly on smaller graphs, with low vertex degree they
can also overfit simpler graph structures and they do not
scale well to larger, denser graph data [20].

The SUBDUE system takes a greedy-compression approach
to graph mining. SUBDUE searches for candidate sub-
graphs that can best compress the input graphs by replacing
a candidate subgraph with a single vertex. Then nodes and
arcs are added to the vertices to form new candidate sub-
graphs. The process is recursive and relies on the Minimum-
Description-Length (MDL) principle to evaluate the candi-
dates. SUBDUE has been applied successfully to extract
structure from visual programming [5], web search [21], and



analyzing user behaviors in games [22].

While these methods are successful they have practical and
theoretical limitations. Both classes of approaches are lim-
ited to static graphs composed from a finite alphabet of node
and arc types. The frequent subgraph approaches are based
upon iterative graph walks and can be computationally ex-
pensive and are limited to finding exact matches. They do
not generalize beyond the exact graphs matched nor do they
allow for recursive typing. SUBDUE, by contrast is a greedy
algorithm that finds the single most descriptive grammar
and does not allow for weighted matches.

For our present purposes, however, our goal is to identify
multiple heirarchical classes of the type shown in Figure 2
that can: generalize beyond exact node and arc types; can
draw on recursive rule productions; and can be weighted
based upon the graph quality. Moreover our long-term goal
with this work is to explore graph rule induction mechanisms
that can be expanded to include textual rules and complex
constraints. For that reason we have elected to apply evo-
lutionary computation. This is a general-purpose machine
learning mechanism that can be tunes to explore a range of
possible induction mechanisms.

4. METHODS

4.1 Evolutionary Computation
Evolutionary Computation (EC) is a general class of ma-
chine learning and optimization methods that are inspired
by the process of Darwinian evolution through natural se-
lection [23] such as Genetic Algorithms [24] or Genetic Pro-
gramming [25]. EC algorithms begin with a population of
randomly generated candidate solutions such as snippets of
random code, strings representing a target function, or for-
mal rules. Each of these solutions is ranked by a fitness
function that is used to evaluate the quality of the individu-
als. These functions can be defined by absolute measures of
success such as a suite of test cases, or by relative measures
such as a competition between chess-playing systems.

Once the individuals have been ranked a new generation of
individuals is produced through a combination of crossover
and mutation operations. Crossover operations combine two
or more parents to produce one or more candidate children.
In Genetic Algorithms where the candidate solutions are rep-
resented as strings this can be accomplished by splitting two
parents at a given index and then exchanging the substrings
to produce novel children. In Genetic Programming the par-
ents exchange blocks of code, functions, or subtrees. Muta-
tion operations alter randomly-selected parts of a candidate
solution by swapping out one symbol or instruction for an-
other, adding new sub-solutions, or deleting components.
This process of ranking and regeneration will iterate until
a target performance threshold is reached or a maximum
number of generations has passed.

EC methods are highly general algorithms that can be read-
ily adapted to novel domains by selecting an appropriate
solution representation and modification operations. Thus,
in contrast to more specific methods such as SUBDUE, the
EC algorithm allows us to tune the inductive bias of our
search and to explore alternative ways of traversing the so-

lution space. Therefore it is well suited to our present needs.
This flexibility is costly, however, as EC is far more compu-
tationally expensive than more specialized algorithms, and
applications of EC can require a great deal of tuning for
each use. In the subsections below we will describe the fit-
ness function and the operators that we will use in this work.
For this work we will rely on pyEC a general purpose evo-
lutionary computation engine that we have developed [26].

4.2 Dataset
Our initial analysis will be based upon a corpus of expert
graded student produced argument diagrams and essays pre-
viously described in [13, 14]. That dataset was collected as
part of a study on students’ use of argument diagrams for
writing that was conducted at the University of Pittsburgh
in 2011. For that study we selected a set of students in an
undergraduate-level course on Psychological Research Meth-
ods. As part of the course the students were tasked with
planning and executing an empirical research study and then
drafting a written report. The students were permitted to
work individually or in teams. This report was structured as
a standard empirical workshop paper. Prior to drafting the
report the students were tasked with diagramming the ar-
gument that they planned to make using LASAD an online
tool for argument diagramming and annotation.

Subsequent to this data collection process the diagrams and
essays were graded by an experienced TA using a set of par-
allel grading rubrics. These rubrics focused on the quality of
the arguments in the diagrams and essays and were used to
demonstrate that the structure and quality of the diagrams
can be used to predict the students’ subsequent essay per-
formance. These grades will be used as the weighting metric
for the diagrams and will be correlated with performance as
part of the fitness function we describe below. After comple-
tion of the data collection, grading, and testing phases and
accounting for student dropout and incomplete assignments
we collected 105 graded diagram-essay pairs 74 of which were
authored by teams.

4.3 Solution Representation
For the purposes of our present experiments we will use a
restricted solution representation that relies on a subset of
the augmented graph grammar formalism exemplified by the
rule shown in Figure 2. This will include only element types
and recursive productions. In future work we plan to sup-
port the induction of more complex rules defined by multiple
graph classes, novel productions, and expressions. However
for the present study we will focus on the simple case of
individual classes coupled with predefined productions.

4.4 Fitness Function
We plan to use the frequency correlation metric previously
employed in [13, 14]. In that study the authors assessed the
empirical validity of a set of a-priori diagram rules. The
validity of each individual rule was assessed by testing the
correlation between the frequency of the class in the existing
graph and the graph grade. The strength of that correlation
was estimated using Spearman’s ρ a non-parametic measure
of correlation [27]. In that work the authors demonstrated
that the a-priori rule frequency was correlated with stu-
dents’ subsequent essay grades and showed that the frequen-
cies could be used to predict students’ future performance.



4.5 Mutation
Our mutation operator will draw on the predefined graph
ontology to make atomic changes to an existing graph class.
The change will be one of the following operations:

Change Node change an existing node’s type.

Change Arc Change an existing arc’s type or orientation.

Delete Node Delete a node and its associated arcs.

Delete Arc Delete an existing arc.

Add Node Add a novel node with a specified type.

Add Arc Add an arc between existing nodes or add with
new nodes.

4.6 Crossover
By design the crossover operation should, like genetic crossover,
be conservative. Two very similar parents should produce
similar offspring. Crossover operations should therefore pre-
serve good building blocks and sub-solutions or introns through
random behavior [25]. Arbitrary graph alignment and crossover
is a challenging problem that risks causing unsustainable
changes on each iteration. We therefore treat graph crossover
as a matrix problem.

For each pair of parent classes we will define a pair of di-
agonal matricies of the type illustrated in Figure 3. The
letter indicies on the top and right indicate nodes while the
numerical indicies internally indicate arcs, and the ∅ symbol
indicates that no arc is present. The matricies are gener-
ated in a canonical order based upon the order in which the
nodes were added to the class. Thus on each iteration of the
crossover process the corresponding elements will obtain the
same index. As a consequence good subsolutions will obtain
the same location and will tend to be preserved over time.

Once a set of parent matricies has been generated we then
generate two child matricies of the same size as the parents
and then randomly select the node and arc members. In the
example shown in figures 3 and 4 the parents have nodes
{A,B,C,D} and {E,F,G} while the children have {E,B,G,D}
and {A,F,C}. Thus we align the nodes in canonical order
and, for each node pair, we flip a coin to decide where they
are copied. If one parent is larger than the other than any
additional nodes, in this case D, will be copied to the larger
child. We then perform a comparable exchange process for
the arcs. Each arc or potential arc is defined uniquely in the
matricies by its endpoints. We thus align the lists of arcs
in a comparable manner and then decide randomly which
arc, or empty arc, to copy. As with the nodes, extra arcs
from the larger parent, in this case 3,5, and one ∅ are copied
directly into the larger of the two children.

5. FUTURE WORK
In this paper we presented a method for the induction of
augmented graph grammars through evolutionary computa-
tion. We are presently applying this work to the automatic
induction of empirically-valid rules for student-produced ar-
gument diagrams. This work will serve to extend our prior
efforts on the use of augmented graph grammars for student

B C D

1 ∅ 3 A

4 5 B

∅ C

F G

7 ∅ E

∅ F

Figure 3: Canonical matricies for crossover parents.

B G D

1 ∅ 3 E

∅ 5 B

∅ G

F C

7 ∅ A

4 F

Figure 4: Canonical matricies for crossover children.

grading and feedback. This work represents an improve-
ment over prior graph grammar induction algorithms which
are limited to classical graph grammars and greedy extrac-
tion. This work also represents an extension for evolution-
ary computation by shifting it into a new domain. As part
of this work we also plan to explore additional extensions to
the standard evolutionary computation algorithm to address
problems of over-fitting such as χ2 reduction.
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[6] Francesc Rosselló and Gabriel Valiente. Graph
transformation in molecular biology. In Formal
Methods in Software and Systems Modeling, pages
116–133. Springer, 2005.

[7] Luc Dehaspe, Hannu Toivonen, and Ross D King.
Finding frequent substructures in chemical
compounds. In KDD, volume 98, page 1998, 1998.

[8] Stefan Kramer, Luc De Raedt, and Christoph Helma.
Molecular feature mining in hiv data. In Proceedings
of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
136–143. ACM, 2001.

[9] Wenke Lee and Salvatore J Stolfo. A framework for
constructing features and models for intrusion
detection systems. ACM transactions on Information
and system security (TiSSEC), 3(4):227–261, 2000.

[10] Calvin Ko. Logic induction of valid behavior
specifications for intrusion detection. In Proceedings of
the IEEE Symposium on Security and Privacy. (S&P
2000), pages 142–153. IEEE, 2000.

[11] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast
algorithms for mining association rules. In Proceedings
of the 20th International Conference on very large
data bases, VLDB, volume 1215, pages 487–499, 1994.

[12] Collin F Lynch. Agg: Augmented graph grammars for
complex heterogeneous data. In Proceedings of the
first international workshop on Graph-Based
Educational Data Mining (GEDM 2014).

[13] Collin F. Lynch and Kevin D. Ashley. Empirically
valid rules for ill-defined domains. In John Stamper
and Zachary Pardos, editors, Proceedings of The 7th

International Conference on Educational Data Mining
(EDM 2014). International Educational Datamining
Society IEDMS, 2014.

[14] Collin F. Lynch, Kevin D. Ashley, and Min Chi. Can
diagrams predict essay grades? In Stefan
Trausan-Matu, Kristy Elizabeth Boyer, Martha E.
Crosby, and Kitty Panourgia, editors, Intelligent
Tutoring Systems, Lecture Notes in Computer Science,
pages 260–265. Springer, 2014.

[15] Sherry E. Marcus, Melanie Moy, and Thayne Coffman.
Social network analysis. In Diane J. Cook and
Lawrence B. Holder, editors, Mining Graph Data,
chapter 17, pages 443–468. John Wiley & Sons, 2006.

[16] Chang Hun You, Lawrence B. Holder, and Diane J.
Cook. Dynamic graph-based relational learning of
temporal patterns in biological networks changing over
time. In Hamid R. Arabnia, Mary Qu Yang, and
Jack Y. Yang, editors, BIOCOMP, pages 984–990.

CSREA Press, 2008.

[17] Xifeng Yan and Jiawei Han. gspan: Graph-based
substructure pattern mining. In Proceedings of the
IEEE International Conference on Data Mining
(ICDM 2002), pages 721–724. IEEE, 2002.

[18] Akihiro Inokuchi, Takashi Washio, and Hiroshi
Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Principles
of Data Mining and Knowledge Discovery, pages
13–23. Springer, 2000.

[19] Michihiro Kuramochi and George Karypis. Frequent
subgraph discovery. In Proceedings IEEE International
Conference on Data Mining. (ICDM 2001), pages
313–320. IEEE, 2001.

[20] MICHIHIRO Kuramochi and George Karypis. Finding
topological frequent patterns from graph datasets.
Mining Graph Data, pages 117–158, 2006.

[21] Nitish Manocha, Diane J Cook, and Lawrence B
Holder. Cover story: structural web search using a
graph-based discovery system. Intelligence,
12(1):20–29, 2001.

[22] Diane J. Cook, Lawrence B. Holder, and G. Michael
Youngblood. Graph-based analysis of human transfer
learning using a game testbed. IEEE Trans. on
Knowl. and Data Eng., 19:1465–1478, November 2007.

[23] Charles Darwin. On the Origin of Species by Means of
Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. John Murray:
Albermarle Street: London, United Kingdom, 6
edition, 1872.

[24] Melanie Mitchell. An Introduction to Genetic
Algorithms. MIT Press: Cambridge, Massachusetts,
1999.

[25] Wolfgang Banzhaf. Genetic programming: an
introduction on the automatic evolution of computer
programs and its applications. Morgan Kaufmann
Publishers ; Heidelburg : Dpunkt-verlag; San
Francisco, California, 1998.

[26] Collin F. Lynch, Kevin D. Ashley, Niels Pinkwart, and
Vincent Aleven. Argument graph classification with
genetic programming and c4.5. In Ryan
Shaun Joazeiro de Baker, Tiffany Barnes, and
Joseph E. Beck, editors, The 1st International
Conference on Educational Data Mining, Montreal,
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ABSTRACT
The current generation of Massive Open Online Courses (MOOCs)
operate under the assumption that good students will help poor
students, thus alleviating the burden on instructors and Teaching
Assistants (TAs) of having thousands of students to teach. In
practice, this may not be the case. In this paper, we examine so-
cial network graphs drawn from forum interactions in a MOOC
to identify natural student communities and characterize them
based on student performance and stated preferences. We exam-
ine the community structure of the entire course, students only,
and students minus low performers and hubs. The presence of
these communities and the fact that they are homogeneous with
respect to grade but not motivations has important implications
for planning in MOOCs.

Keywords
MOOC, social network, online forum, community detection

1. INTRODUCTION
The current generation of Massive Open Online Courses (MOOCs)
is designed to leverage student interactions to augment instruc-
tor guidance. The activity in courses on sites such as Coursera
and edX is centered around user forums that, while curated
and updated by instructors and TAs, are primarily constructed
by students. When planning and building these courses, it is
hoped that students will help one another through the course
and that interacting with stronger students will help to improve

the performance of weaker ones. It has not yet been shown,
however, that this type of support occurs in practice.

Prior research on social networks has shown that social groups,
even those that gather face-to-face, can fragment into disjoint
sub-communities [37]. This small-group separation, if it takes
place in an online course, can be considered negative or positive,
depending on one’s perspective. If poor students communi-
cate only with similarly-floundering peers, then they run the
risk of perpetuating misunderstandings and of missing insights
discussed by better-performing peers and teaching staff. An
instructor may wish to avoid this fragmentation to encourage
poor students to connect with better ones.

These enduring subgroups may be beneficial, however, by help-
ing students to form enduring supportive relationships. Research
by Li et al. has shown that such enduring relationships can
enhance students’ social commitment to a course [18]. We be-
lieve that this social commitment will in turn help to reduce
feelings of isolation and alienation among students in a course.
Eckles and Stradley [9] have shown that such isolation is a key
predictor of student dropout.

We have previously shown that students can form stable com-
munities and that those communities are homogeneous with
respect to performance [3]. However that work did not: show
whether these results are consistent with prior work on imme-
diate peer relationships; address the impact of hub students on
these results; or discuss whether students’ varying goals and
preferences motivate the community structure. Our goal in this
paper is to build upon our prior work by addressing these issues.
In the remainder of this paper we will survey prior educational
literature on community formation in traditional and online
classrooms. We will then build upon our prior work by exam-
ining the impact of hub users. And we will look at the impact
of user motivations on community formation.



2. RELATED WORK

2.1 MOOCs, Forums, & Student Performance
A survey of the literature on MOOCs shows the beginnings of a
research base generating an abundance of data that has not yet
been completely analyzed [19]. According to Seaton et al. [29],
most of the time students spend on a MOOC is spent in dis-
cussion forums, making them a rich and important data source.
Stahl et al. [30] illustrates how through this online interaction
students collaborate to create knowledge. Thus students’ forum
activity is good not only for the individual student posting con-
tent or receiving answers, but for the class as a whole. Huang et
al. [14] investigated the behavior of the highest-volume posters
in 44 MOOC-related forums. These “superposters” tended to
enroll in more courses and do better in those courses than the
average. Their activity also added to the overall volume of forum
content and they left fewer questions unanswered in the forums.
Huang et al. also found that these superposters did not suppress
the activity of less-active users. Rienties et al. [25] examined the
way in which user interaction in MOOCs is structured. They
found that allowing students to self-select collaborators is more
conducive to learning than randomly assigning partners. Further,
Van Dijk et al. [31] found that simple peer instruction is signif-
icantly less effective in the absence of a group discussion step,
pointing again to the importance of a class discussion forum.

More recently Rosé et al. [27] examined students’ evolving inter-
actions in MOOCs using a Mixed-Membership Stochastic Block
model which seeks to detect partially overlapping communities.
They found that the likelihood that students would drop out
of the course is strongly correlated with their community mem-
bership. Students who actively participated in forums early in
the course were less likely to drop out later. Furthermore, they
found one forum sub-community that was much more prone
to dropout than the rest of the class, suggesting that MOOC
communities are made up of students who behave in similar
ways. This community can in turn reflect or impact a student’s
level of motivation and their overall experience in a course much
like the“emotional contagion”model used in the Facebook mood
manipulation study by Kramer, Guillroy, and Hancock [16].

Yang et al. [36] also notes that unlike traditional courses stu-
dents can join MOOCs at different times and observed that
students who join a course early are more likely to be active
and connected in the forums, and less likely to drop out, than
those who join later. MOOCs also attract users with a range of
individual motivations. In a standard classroom setting students
are constrained by availability, convention, and goals. Few stu-
dents enroll in a traditional course without seeking to complete
it and to get formal credit for doing so. MOOCs by virtue of
their openness and flexibility attract a wide range of students
with unique personal motivations [10]. Some join the course
with the intent of completing it. Others may seek only to brush
up on existing knowledge, obtain specific skills, or just watch
the videos. These distinct motivations in turn lend themselves
to different in-class behaviors including assignment viewing and
forum access. The impact of user motivations in online courses
has been previously discussed by Wang et al. [32, 33]; we will
build upon that work here. Thus it is an open question whether
these motivations affect students’ community behaviors or not.

2.2 Communities, Hubs, & Peers
Kovanovic et al. [15] examined the relationship between social
network position or centrality, and social capital formation in
courses. Their work is specifically informed by the Community
of Inquiry (COI) framework. the COI framework is focused on
distance education and is particularly suited to online courses of
the type that we study here. The model views course behavior
through three presences which mediate performance: cognitive,
teaching, and social.

This social presence considers the nature and persistence of
student interactions and the extent to which they reinforce stu-
dents’ behaviors. In their analysis, the authors sought to test
whether network relationships, specifically students’ centrality
in their social graph, is related to their social performance as
measured by the nature and type of their interactions. To that
end, they examined a set of course logs taken from a series of
online courses offered within a public university. They found
that students’ position within their social graph was positively
correlated with the nature and type of their interactions, thus
indicating that central players also engaged in more useful social
interactions. They did not extend this work to groups, however,
focusing solely on individual hub students.

Other authors have also examined the relationship between
network centrality, neighbor relationships, network density, and
student performance factors. Eckles and Stradley [9] applied
network analysis to student attrition, finding that students with
strong social relationships with other students who drop out
are significantly more likely to drop out themselves. Rizzuto
et al. [26] studied the impact of social network density on stu-
dent performance. Network density is defined as the fraction
of possible edges that are present in a given graph. Thus it
is a measure of how “clique-like” the graph is. The authors
examined self-reported social networks for students in a large
traditional undergraduate psychology course. They found that
denser social networks were significantly correlated with per-
formance. However, a dominance analysis [1] showed that this
factor was less predictive than pure academic ability. These re-
sults serve to motivate a focus on the role of social relationships
in student behavior. Their analysis is complicated, however, by
their reliance on self-report data which will skew the strength
and recency of the reported relationships.

Fire et al. [11] studied student interaction in traditional class-
rooms, constructing a social network based on cooperation on
class assignments. Students were linked based on partnership on
group work as well as inferred cooperation based on assignment
submission times and IP addresses. The authors found that a
student’s grade was significantly correlated with the grade of
the student with the strongest links to that student in the social
network. We perform similar analysis in this paper to examine
whether the same correlation exists in MOOCs.

Online student interaction in blended courses has also been
linked to course performance. Dawson [8] extracted student
and instructor social networks from a blended course’s online
discussion forums and found that students in the 90th grade
percentile had larger social networks than those in the 10th
percentile. The study also found that high-performing students
primarily associated with other high-performing students and
were more likely to be connected to the course instructor, while
low-performing students tended to associate with other low-



performers. In a blended course, this effect may be offset by
face-to-face interaction not captured in the online social network,
but if the same separation happens in MOOC communities, low-
performing students are less likely to have other chances to learn
from high-performing ones.

2.3 Community Detection
One of the primary activities students engage in on forums
is question answering. Zhang et al. [38] conducted a social
network analysis on an online question-and-answer forum about
Java programming. Using vertex in-degree and out-degree, they
were able to identify a relatively small number of active users
who answered many questions. This allowed the researchers to
develop various algorithms for calculating a user’s Java expertise.
Dedicated question-and-answer forums are more structured than
MOOC forums, with question and answer posts identified, but a
similar approach might help identify which students in a MOOC
ask or answer the most questions.

Choo et al. [5] studied community detection in Amazon product-
review forums. Based on which users replied to each other most
often, they found communities of book and movie reviewers who
had similar tastes in these products. As in MOOC forums, users
did not declare any explicit social relationships represented in the
system, but they could still be grouped by implicit connections.

In the context of complex networks, a community structure is a
subgraph which is more densely connected internally than it is to
the rest of the network. We chose to apply the Girvan-Newman
edge-betweenness algorithm (GN) [13]. This algorithm takes as
input a weighted graph and a target number of communities.
It then ranks the edges in the graph by their edge-betweenness
value and removes the highest ranking edge. To calculate Edge-
betweenness we identify the shortest path p(a,b) between each
pair of nodes a and b in the graph. The edge-betweenness
of an arc is defined as the number of shortest paths that it
participates in. This is one of the centrality measures explored
by Kovanovic et al. above [15]. The algorithm then recalcu-
lates the edge-betweenness values and iterates until the desired
number of disjoint community subgraphs has been produced.
Thus the algorithm operates by iteratively finding and removing
the highest-value communications channel between communities
until the graph is fully segmented. For this analysis, we used
the iGraph library [7] implementation of G-N within R [24].

The strength of a candidate community can be estimated by
modularity. The modularity score of a given subgraph is defined
as a ratio of its intra-connectedness (edges within the subgraph)
to the inter-connectedness with the rest of the graph minus the
fraction of such edges expected if they were distributed at ran-
dom [13, 35]. A graph with a high modularity score represents
a dense sub-community within the graph.

3. DATA SET
This study used data collected from the“Big Data in Education”
MOOC hosted on the Coursera platform as one of the inaugural
courses offered by Columbia University [32]. It was created in
response to the increasing interest in the learning sciences and
educational technology communities in using EDM methods
with fine-grained log data. The overall goal of this course was
to enable students to apply each method to answer education
research questions and to drive intervention and improvement in
educational software and systems. The course covered roughly

the same material as a graduate-level course, Core Methods
in Educational Data Mining, at Teachers College Columbia
University. The MOOC spanned from October 24, 2013 to
December 26, 2013. The weekly course was composed of lecture
videos and 8 weekly assignments. Most of the videos contained
in-video quizzes (that did not count toward the final grade).

All of the weekly assignments were structured as numeric input
or multiple-choice questions. The assignments were graded au-
tomatically. In each assignment, students were asked to conduct
analyses on a data set provided to them and answer questions
about it. In order to receive a grade, students had to com-
plete this assignment within two weeks of its release with up
to three attempts for each assignment, and the best score out
of the three attempts was counted. The course had a total
enrollment of over 48,000, but a much smaller number actively
participated. 13,314 students watched at least one video, 1,242
students watched all the videos, 1,380 students completed at
least one assignment,and 778 made a post or comment in the
weekly discussion sections. Of those with posts, 426 completed
at least one class assignment. 638 students completed the online
course and received a certificate (meaning that some students
could earn a certificate without participating in forums at all).

In addition to the weekly assignments the students were sent
a survey that was designed to assess their personal motivations
for enrolling in the course. This survey consisted of 3 sets
of questions: MOOC-specific motivational items; two PALS
(Patterns of Adaptive Learning Survey) sub-scales [21], Aca-
demic Efficacy and Mastery-Goal Orientation; and an item
focused on confidence in course completion. It was distributed
to students through the course’s E-mail messaging system to
students who enrolled in the course prior to the official start
date. Data on whether participants successfully completed the
course was downloaded from the same course system after the
course concluded. The survey received 2,792 responses; 38% of
the participants were female and 62% of the participants were
male. All of the respondents were over 18 years of age.

The MOOC-specific items consisted of 10 questions drawn from
previous MOOC research studies (cf. [2, 22]) asking respondents
to rate their reasons for enrollment. These 10 items address
traits of MOOCs as a novel online learning platform. Specifically,
these 10 items included questions on both the learning content
and features of MOOCs as a new platform. Two PALS Survey
scales [21] measuring mastery-goal orientation and academic
efficacy were used to study standard motivational constructs.
PALS scales have been widely used to investigate the relation
between a learning environment and a student’s motivation (cf.
[6, 20, 28]). Altogether ten items with five under each scale
were included. The participants were asked to select a number
from 1 to 5 with 1 meaning least relevant and 5 most relevant.
Respondents were also asked to self-rate their confidence on a
scale of 1 to 10 as to whether they could complete the course
according to the pace set by the course instructor. All three
groups of items were domain-general.

4. METHODS
For our analysis, we extracted a social network from the online
forum associated with the course. We assigned a node to each
student, instructor, or TA in the course who added to it. Nodes
representing students were labeled with their final course grade
out of 100 points. The Coursera forums operate as standard



threaded forums. Course participants could start a new thread
with an initial post, add a post to an existing thread, and add
a comment or child element below an existing post. We added
a directed edge from the author of each post or comment to the
parent post and to all posts or comments that preceded it on
the thread based upon their timestamp. We made a conscious
decision to omit the textual content of the replies with the goal
of isolating the impact of the structure alone.

We thus treat each reply or followup in the graph as an implicit
social connection and thus a possible relationship. Such implicit
social relationships have been explored in the context of recom-
mender systems to detect strong communities of researchers [5].
This is, by design, a permissive definition that is based upon
the assumption that individuals generally add to a thread after
viewing the prior content within it and that individual threads
can be treated as group conversations with each reply being a
conscious statement for everyone who has already spoken. The
resulting network forms a multigraph with each edge represent-
ing a single implicit social interaction. We removed self loops
from this graph as they indicate general forum activity but
not any meaningful interaction with another person. We also
removed vertices with a degree of 0, and collapsed the parallel
edges to form a simple weighted graph for analysis.

In the analyses below we will focus on isolating student perfor-
mance and assessing the impact of the faculty and hub students.
We will therefore consider four classes of graphs: ALL the com-
plete graph; Student the graph with the instructor and TAs
removed; NoHub the graph with the instructor and hub users re-
moved; and Survey which includes only students who completed
the motivation survey. We will also consider versions of the above
graphs without students who obtained a score of 0, and without
the isolated individuals who connect with at most one other
person. As we will discuss below, a number of students received
a zero grade in the course. Because this is an at-will course, how-
ever, we cannot readily determine why these scores were obtained.
They may reflect a lack of engagement with the course, differen-
tial motivations for taking the course, a desire to see the course
materials without assignments, or genuinely poor performance.

4.1 Best-Friend Regression & Assortativity
Fire et al. [11] applied a similar social network approach to
traditional classrooms and found a correlation between a stu-
dent’s most highly connected neighbor (”best friend”) and the
student’s grade. The links in that graph included cooperation
on assignments as well as partnership on group assignments.
To examine whether the same correlation existed in a massive
online course in which students were less likely to know each
other beforehand and there were no group assignments, we
calculated each student’s best friend in the same manner and
performed a similar correlation.

The simple best friends analysis gives a straightforward mech-
anism for correlating individual students. However it is also
worthwhile to ask about students who are one-step removed
from their peers. Therefore we will also calculate the grade
assortativity (rG) of the graphs. Assortativity describes the cor-
relation of values between vertices and their neighbors [23]. The
assortativity metric r ranges between -1 and 1, and is essentially
the Pearson correlation between vertex and their neighbors [23].
A network with r=1 would have each vertex only sharing edges
with vertices of the same score. Likewise, if r=−1 vertices in

the network would only share edges with vertices of different
scores. Thus grade assortativity allows us to measure whether
individuals are not just connected directly to individuals with
similar scores but whether they correlate with individuals who
are one step removed.

Several commonly studied classes of networks tend to have pat-
terns in their assortativity. Social networks tend to have high
assortativity, while biological and technological networks tend
to have negative values (dissortativity) [23]. In a homogeneous
course or one where students only form stratified communities
we would expect the assortativity to be very high while in a het-
erogeneous class with no distinct communities we would expect
it to be quite low.

4.2 Community Detection
The process of community detection we employed is briefly de-
scribed here [3]. As noted there we elected to ignore the edge
direction when making our graph. Our goal in doing so was to
focus on communities of learners who shared the same threads,
even when they were not directly replying to one-another. We
believe this to be a reasonable assumption given the role of class
forums as a knowledge-building environment in which students
exchange information with the group. Individuals who partic-
ipate in a thread generally review prior posts before submitting
their contribution and are likely to return to view the followups.
Homogeneity in this context would mean that students gathered
and communicated primarily with equally-performing peers and
thus that they did not consistently draw from better-performing
classmates and help lower-performing ones or that the at-will
communities served to homogenize performance, with the stu-
dents in a given cluster evening out over time.

While algorithms such as GN are useful for finding clusters they
do not, in and of themselves, determine the right number of
communities. Rather, when given a target number they will seek
to identify the best possible set of communities. In some imple-
mentations the algorithm can be applied to iteratively select the
maximum modularity value over a possible range. Determining
the correct number of communities to detect, however, is a
non-trivial task especially in large and densely connected graphs
where changes to smaller communities will have comparatively
small effects on the global modularity score. As a consequence
we cannot simply optimize for the best modularity score as we
would risk missing small but important communities [12].

Therefore, rather than select the clusterings based solely on
the highest modularity, we have opted to estimate the correct
number of clusters visually. To that end we plotted a series of
modularity curves over the set of graphs. For each graph G we
applied the GN algorithm iteratively to produce all clusters in
the range (2,|GN |). For each clustering, we then calculated the
global modularity score. We examined the resulting scores to
identify a crest where the modularity gain leveled off or began to
decrease thus indicating that future subdivisions added no mean-
ingful information or created schisms in existing high-quality
communities. This is a necessarily heuristic process that is sim-
ilar to the use of Scree plots in Exploratory Factor Analysis [4].
We define the number identified as the natural cluster number.

5. RESULTS AND DISCUSSION
Before removing self-loops and collapsing the edges, the network
contained 754 nodes and 49,896 edges. The final social network



contained 754 nodes and 17,004 edges. 751 of the participants
were students, with 1 instructor and 2 TAs. One individual was
incorrectly labeled as a student when they were acting as the
Chief Community TA. Since this person’s posts clearly indicated
that he or she was acting in a TA capacity with regard to the
forums, we relabeled him/her as a TA. Of the 751 students 304
obtained a zero grade in the course leaving 447 nonzero students.
215 of the 751 students responded to the motivation survey.

There were a total of 55,179 registered users, so the set of 754
forum participants is a small fraction of the entire course audi-
ence. However, forum users are not necessarily those who will
make an effort or succeed in the course. Forum users did not all
participate in the course, and some students who participated in
the course did not use the forums: 1,381 students in the course
got a grade greater than 0, and 934 of those did not post or
comment on the forums, while 304 of the 751 students who did
participate in the forums received a grade of 0. Clearly students
who go to the trouble of posting forum content are in some
respect making an effort in the course beyond those who don’t,
but this does not necessarily correspond to course success.

5.1 Best-Friend Regression & Assortativity
We followed Fire et al.’s methodology for identifying Best Friends
in a weighted graph and calculated a simple linear regression
over the pairs. This correlation did not include the instructor or
TAs in the analysis. We calculated the correlation between the
students’ grades to their best friends’ grades in the set using
Spearman’s Rank Correlation Coefficient (ρ) [34]. The two vari-
ables were strongly correlated, ρ(748)=0.44, p<0.001. However,
the correlation was also affected by the dense clusters of students
with 0 grades. After removing the 0 grade students we found
an additional moderate correlation, ρ(444)=0.29, p<0.001.

Thus the significant correlation between best-friend grade and
grade holds over the transition from the traditional classroom to
a MOOC. This suggests that students in a MOOC, excluding the
many who drop out or do not submit assignments, behave sim-
ilarly to those in a traditional classroom in this respect. These
results are also consistent with our calculations for assortativity.
There we found a small assortative trend for the grades as shown
in Table 1. These values reflect that a student was frequently
communicating with students who in turn communicated with
students at a similar performance level. This in turn supports our
belief that homogeneous communities may be found. As Table
1 also illustrates, the zero-score students contribute substan-
tially to the assortativity correlation as well with the correlation
dropping by as much as a third when they were removed.

Table 1: The grade assortativity for each network.

Users Zeros V E rG

All Yes 754 17004 0.29
All No 447 5678 0.20
Students Yes 751 15989 0.32
Students No 447 5678 0.20
Non-Hub Yes 716 9441 0.37
Non-Hub No 422 3119 0.24

Figure 1: Modularity for each number of clusters,
including students with zeros.

Figure 2: Modularity for each number of clusters,
excluding students with zeros.

5.2 Community Structure
The modularity curves for the graphs both with and without
zero-score students are shown in Figures 1 and 2. We exam-
ined these plots to select the natural cluster numbers which are
shown in Table 2. As the values illustrate the instructor, TAs,
and hub students have a disproportionate impact on the graph
structure. The largest hub student in our graph connects to
444 out of 447 students in the network. The graph with all
users had lower modularity and required more clusters than the
graphs with only students or only non-hubs (see Table 2), with

Table 2: Graph sizes and natural number of clusters
for each graph.

Users Zeros V E Clusters

All Yes 754 17004 212
All No 447 5678 173
Students Yes 751 15989 184
Students No 447 5678 169
Non-Hub Yes 716 9441 79
Non-Hub No 422 3119 52
Survey Yes 215 1679 58



Figure 3: View of the student communities with edges of frequency <2 removed. The Student network with (left)
and without (right) hub-students, with each vertex representing a student and grade represented as color.

the non-hub graph having the highest modularity. This suggests
that non-hub students formed more isolated communities, while
teaching staff and hubs communicated across these communities
and connected them.

This largely consistent with the intent of the forums and the
active role played by the instructor and TAs in monitoring and
replying to all relevant posts in the forums. It is particularly in-
teresting how closely the curves for the ALL and Student graphs
mirror one another. This may indicate that the hub students are
also those that followed the instructor and TAs closely, thus giv-
ing them isomorphic relationships, or it may indicate that they
are more connected than even the instructors and thus came to
bind the forums together on their own. This impact is further
illustrated by the cluster plots shown in Figure 3. Here the ab-
sence of the hub students results in a noticeable thinning of the
graph which in turn highlights the frequency of communication
that can be attributed to this, comparatively small, group.

The difference between the full plots and those with zero values
are also notable as the zero grade students were clearly a major
factor in community formation. A direct examination of the
user graph showed that many of the zero students were only
connected to other zero students or were not connected at all.
This is also highlighted in Figure 3. In both graphs the bulk of
the zero score students are clustered in a tight network of com-
munities on the left-hand side. That super-community consists
primarily of zero score students communicating with other zero-
score students, a structure we have nick-named the ‘deathball.’

5.3 Student Performance & Motivation
As the color coding in Figure 3 illustrates, the students did
cluster by performance. Table 3 shows the average grade and

Table 3: Grade statistics by community, selected
to show examples of more and less homogeneous
communities.

Members Average Grade Standard Deviation

118 21.62 36.58
41 22.00 32.45
34 25.41 40.44
31 56.13 47.69
20 49.05 45.64
16 12.44 31.13
14 88.43 22.47
12 96.08 6.36
11 96.45 7.38
4 3.00 6.00
4 8.50 9.81
4 4.25 8.50
4 96.25 3.50

standard deviation for a small selection of the communities in
the ALL reply network including zero-grades, hub students,
and teaching staff. Several of the communities, particularly
the larger ones, do show a blend of good and poor students,
with a high standard deviation. However many if not most of
the communities are more homogeneous with good and poor
students sharing a community with similarly-performing peers.
These clusters have markedly lower standard deviation.

An examination of the grade distribution for each of the clusters
showed that the scores within each cluster were non-normal.
Therefore we opted to apply the Kruskal-Wallis (KW) test to
assess the correlation between cluster membership and perfor-



Table 4: Kruskal-Wallis test of student grade by
community, for each graph.

Users Zeros Chi-Squared df p-value

All Yes 349.0273 211 < 0.005
All No 216.1534 172 < 0.02
Students Yes 202.0814 78 < 0.005
Students No 80.93076 51 < 0.005
Non-Hub Yes 309.8525 183 < 0.005
Non-Hub No 218.9603 168 < 0.01
Survey Yes 99.99840 577 < 0.005

mance. The KW test is a nonparametric rank-based analogue
to the common Analysis of Variance [17]. Here we tested grade
by community number with the community being treated as a
categorical variable. The results of this comparison are shown
in Table 4. As that illustrates, cluster membership was a sig-
nificant predictor of student performance for all of the graphs
with the non-zero graphs having markedly lower p-values than
those with zero students included. These results are consistent
with our hypothesis that students would form clusters of equal-
performers and we find that those results hold even when the
highly-connected instructors, TAs and hub students are included.

We performed a similar KW analysis for the questions on the
motivation survey and for a binary variable indicating whether
or not the student completed the survey at all. For this analysis
we evaluated the clusters on all of the graphs. We found no
significant relationship between the community structure on
any of the graphs and the survey question results or the survey
completion variable. Thus while the clusters may be driven by
separate factors they are not reflected in the survey content.

6. CONCLUSIONS AND FUTURE WORK
Our goal in this paper was to expand upon our prior community
detection work with the goal of aligning that work with prior
research on peer impacts, notably the work of Fire et al. [11].
We also sought to examine the impact of hub students and
student motivations on our prior results.

To that end we performed a novel community clustering analysis
of student performance data and forum communications taken
from a single well-structured MOOC. As part of this analysis we
described a novel heuristic method for selecting natural numbers
of clusters, and replicated the results of prior studies of both
immediate neighbors and second-order assortativity.

Consistent with prior work, we found that students’ grades
were significantly correlated with their most closely associated
peers in the new networks. We also found that this correlation
extended out to their second-order neighborhood. This is consis-
tent with our prior work showing that students form stable user
communities that are homogeneous by performance. We found
that those results were stable even if instructors, hub players,
students with 0 scores, and students who did not fill out the sur-
vey were removed from consideration. This suggests that either
the students are forming communities that are homogeneous or
that the effect of those individual and network features on the
communities and on performance is minimal.

We also found that community membership was not a significant
predictor of whether students would complete the motivation
survey or of students’ motivations. We were surprised by the
fact that even when we focused solely on individuals who had
completed the survey, the students did not connect by stated
goals. This suggests to us that the students are more likely
coalescing around the pragmatic needs of the class or conceptual
challenges rather than on the winding paths that brought them
there. One limitation of this work is that by relying on the
forum data we were focused solely on the comparatively small
proportion of enrolled students (6%) who actively participated
in the forums. This group is, by definition a smaller set of more
actively-involved participants.

In addition to addressing our primary questions this study also
raised a number of open issues for further exploration. Firstly,
this work focused solely on the final course structure, grades, and
motivations. We have not yet addressed whether these commu-
nities are stable over time or how they might change as students
drop in our out. Secondly, while we ruled out motivations as a
basis for the community this work we were not able to identify
what mechanisms do support the communities. And finally this
study raises the question of generality and whether or not these
results can be applied to MOOCs offered on different topics or
whether the results apply to traditional and blended courses.

In subsequent studies we plan to examine both the evolution of
the networks over time as well as additional demographic data
with the goal of assessing both the stability of these networks
and the role of other potential latent factors. We will also
examine other potential clustering mechanisms that control for
other user features such as frequency of involvement and thread
structure. We also plan to examine other similar datasets to
determine if these features transition across classes and class
types. We believe that these results may change somewhat once
students can coordinate face to face far more easily than online.
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ABSTRACT
Model-based tutoring systems are driven by an abstract do-
main model and solver that is used for solution validation
and student guidance. Such models are robust but costly
to produce and are not always adaptive to specific students’
needs. Data-driven methods such as the Hint Factory are
comparatively cheaper and can be used to generate indi-
vidualized hints without a complete domain model. In this
paper we explore the application of data-driven hint analy-
sis of the type used in the Hint Factory to existing model-
based systems. We present an analysis of two probability
tutors Andes and Pyrenees. The former allows for flexible
problem-solving while the latter scaffolds students’ solution
path. We argue that the state-space analysis can be used to
better understand students’ problem-solving strategies and
can be used to highlight the impact of different design de-
cisions. We also demonstrate the potential for data-driven
hint generation across systems.

1. INTRODUCTION
Developers of model-based tutoring systems draw on do-
main experts to develop ideal models for student guidance.
Studies of such systems have traditionally been focused on
their overall impact on students’ performance and not on the
students’ user-system interaction. The Hint Factory, by con-
trast, takes a data-driven approach to extract advice based
upon students’ problem solving paths. In this paper we will
apply the Hint Factory analytically to evaluate the impact
of user interface changes and solution constraints between
two closely-related tutoring systems for probability.

Model-based tutoring systems are based upon classical ex-
pert systems, which represent relevant domain knowledge
via static rule bases or sets of constraints [9]. These knowl-
edge bases are generally designed by domain experts or with
their active involvement. They are then paired with classical
search algorithms or heuristic satisfaction algorithms to au-
tomatically solve domain problems, identify errors in student
solutions, and to provide pedagogical guidance. The goal of
the design process is to produce expert models that give the
same procedural advice as a human expert. Classical model-
based tutors have been quite successful in field trials, with
systems such as the ACT Programming Tutor helping stu-
dents achieve almost two standard deviations higher than
those receiving conventional instruction [5].

Data-driven hint generation methods such as those used in
Hint Factory [17] take a different approach. Rather than us-
ing a strong domain model to generate a-priori advice, data-
driven systems examine prior student solution attempts to
identify likely paths and common errors. This prior data
can then be used to provide guidance by directing students
towards successful paths and away from likely pitfalls. In
contrast to the expert systems approach, these models are
primarily guided not by what experts consider to be ideal
but by what students do.

Model-based systems such as Andes [18] are advantageous
as they can provide appropriate procedural guidance to stu-
dents at any point in the process. Such models can also be
designed to reinforce key meta-cognitive concepts and ex-
plicit solution strategies [4]. They can also scale up rapidly
to include new problems or even new domain concepts which
can be incorporated into the existing system and will be
available to all future users. Rich domain models, however,
are comparatively expensive to construct and require the
long-term involvement of domain experts to design and eval-
uate them.

Data-driven methods for generating feedback, by contrast,
require much lower initial investment and can readily adapt



to individual student behaviors. Systems such as the Hint
Factory are designed to extract solutions from prior student
data, to evaluate the quality of those solutions, and to com-
pile solution-specific hints [17]. While this avoids the need
for a strong domain model, it is limited to the space of so-
lutions explored by prior students. In order to incorporate
new problems or concepts it is necessary to collect additional
data. Additionally, such methods are not generally designed
to incorporate or reinforce higher-level solution strategies.

We believe that both of these approaches have inherent ad-
vantages and are not necessarily mutually exclusive. Our
goal in this paper is to explore what potential data-driven
methods have to inform and augment model-based systems.
We argue that data-driven methods can be used to: (1)
evaluate the differences between closely-related systems; (2)
assess the impact of specific design decisions made in those
systems for user behaviors; and (3) evaluate the potential ap-
plication of data-driven hint generation across systems. To
that end we will survey relevant prior work on model-based
and data-driven tutoring. We will describe two closely-
related tutoring systems and data collected from them. We
will then present a series of analyses using state-based meth-
ods and discuss the conclusions that we drew from them.

2. BACKGROUND
2.1 Model-Based Tutoring
Model-based tutoring systems take a classical expert-systems
approach to tutoring. They are typically based upon a
strong domain model composed of declarative rules and facts
representing domain principles and problem-solving actions
coupled with an automatic problem solver. This knowledge
base is used to structure domain knowledge, define individ-
ual problems, evaluate candidate solutions, and to provide
student guidance. Novices typically interact with the system
through problem solving with the system providing solution
validation, automatic feedback, pedagogical guidance, and
additional problem-solving tasks. The Sherlock 2 system, for
example, was designed to teach avionics technicians about
appropriate diagnostic procedures [11]. The system relies on
a domain model that represents the avionics devices being
tested, the behavior of the test equipment, and rules about
expert diagnostic methods. Sherlock 2 uses these models
to pose dynamic challenges to problem solvers, to simulate
responses to their actions, and to provide solution guidance.

Andes [19, 18, 20] and Pyrenees [4] are closely-related model-
driven ITSs in the domains of physics and probability. They
were originally developed at the University of Pittsburgh un-
der the Direction of Dr. Kurt VanLehn. Like other model-
based systems, they rely on a rule-based domain model and
automatic problem solvers that treat the domain rules as
problem-solving steps. They distinguish between higher-
level domain concepts such as Bayes’ Rule, and atomic steps
such as variable definitions. Principles are defined by a cen-
tral equation (e.g. p(A|B) = (p(B|A) ∗ p(A))/p(B)) and
encapsulate a set of atomic problem-solving steps such as
writing the equation and defining the variables within it.

The systems are designed to function as homework-helpers,
with students logging into the system and being assigned or
selecting one of a set of predefined problems. Each problem

Figure 1: The Andes user interface showing the
problem statement window with workspace on the
upper left hand side, the variable and equation win-
dows on the right hand side, and the dialogue win-
dow on the lower left.

is associated with a pre-compiled solution graph that defines
the set of possible solutions and problem-solving steps. The
system uses a principle-driven automated problem solver to
compile these graphs and to identify the complete solution
paths. The solver is designed to implement the Target Vari-
able Strategy (TVS), a backward-chaining problem solving
strategy that proceeds from a goal variable (in this case
the answer to the problem) via principle applications to the
given information. The TVS was designed with the help of
domain experts and guides solvers to define basic solution
information (e.g. given variables) and then to proceed from
the goal variable and use principles to define it in terms of
the given variables.

Students working with Andes use a multi-modal user inter-
face to write equations, define variables and engage in other
atomic problem-solving steps. A screenshot of the Andes UI
can be seen in Figure 1. Andes allows students to solve prob-
lems flexibly, completing steps in any order so long as they
are valid [20]. A step is considered to be valid if it matches
one or more entries in the saved solution paths and all nec-
essary prerequisites have been completed. Invalid steps are
marked in red, but no other immediate feedback is given.
Andes does not force students to delete or fix incorrect en-
tries as they do not affect the solution process. In addi-
tion to validating entries, the Andes system also uses the
precompiled solution graphs to provide procedural guidance
(next-step-help). When students request help, the system
will map their work to the saved solution paths. It will then
select the most complete solution and prompt them to work
on the next available step.

One of the original goals of the Andes system was to de-
velop a tutor that operated as an “intelligent worksheet.”
The system was designed to give students the freedom to
solve problems in any order and to apply their preferred
solution strategy. The system extends this freedom by al-
lowing invalid steps in an otherwise valid solution and by
allowing students to make additional correct steps that do
not advance the solution state or are drawn from multiple



Figure 2: The Pyrenees user interface showing the
problem statement at the top, the variable and equa-
tion lists on the left, and the tutor interaction win-
dow with calculator on the lower right.

solution paths. This was motivated in part by a desire to
make the system work in many different educational con-
texts where instructors have their own preferred methods
[20]. The designers of Andes also consciously chose only to
provide advice upon demand when the students would be
most willing to accept it. For the students however, par-
ticularly those with poor problem-solving skills, this passive
guidance and comparative freedom can be problematic as it
does not force them to adhere to a strategy.

This problem motivated the development of Pyrenees. Pyre-
nees, like Andes acts as a homework helper and supports stu-
dents with on-demand procedural and remediation help. It
uses an isomorphic domain model with the same principles,
basic steps, problems, and solution paths. Unlike Andes,
however, Pyrenees forces students to applying the target-
variable-strategy during problem solving. It also requires
them to repair incorrect entries immediately before moving
on. Students are guided through the solution process with
a menu-driven interface, shown in Figure 2. At each step,
the system asks students what they want to work on next
and permits them to make any valid step that is consistent
with the TVS. Chi and VanLehn [3] conducted a study of the
two systems and found that scaffolding the TVS in Pyrenees
helped to eliminate the gap between high and low learners.
This effect was observed both in the original domain where
it was taught (in their case probability) and it transferred to
a new domain (physics), where students used Andes alone.

2.2 Data-Extraction and
Data-Driven Tutoring.

One of the longstanding goals of educational data-miners is
to support the development of data-driven tutoring systems.
Such systems use past student data to structure pedagogical
and domain knowledge, administer conceptual and pedagog-
ical advice, or evaluate student performance and needs. A
number of attempts have been made to address these goals.
One of the most successful data-driven systems is the Hint
Factory [1, 2, 17]. The Hint Factory takes an MDP-based
approach to hint generation. It takes as input a set of prior
student logs for a given problem, represented as a network of
interactions [6, 7]. Each vertex in this network represents the

state of a student’s partial solution at some point during the
problem solving process, and each edge represents an action
that takes the student from one state to another. A complete
solution is represented as a path from the initial state to a
goal state. Each state in the interaction network is assigned
a weight via a value-iteration algorithm. A new student re-
questing a hint is matched to a previously observed state and
given context-sensitive advice. If, for example, the student is
working on a problem that requires Bayes’ Rule and has al-
ready defined p(A), p(B), and p(B|A) then the Hint Factory
would first prompt them to consider defining p(A|B), then
it would point them to Bayes Rule, before finally showing
them the equation p(A|B) = (p(B|A) ∗ p(A))/p(B).

These hints are incorporated into existing tutoring systems
in the form of a lookup table that provides state-specific
advice. When a user asks for help the tutor will match their
current state to an index state in the lookup table and will
prompt them to take the action that will lead them to the
highest value neighboring state. If their current state is not
found then the tutor will look for a known prior state or
will give up. The Hint Factory has been applied successfully
in a number of domains including logic proofs [17], data
structures [8], and programming [15, 10, 13]. Researchers
have also explored other related methods for providing data-
driven hints. These include alternative state representations
[13], path construction algorithms [16, 14], and example-
based model-construction [12].

The primary goal of the Hint Factory is to leverage prior
data to provide optimal state-specific advice. By calculating
advice on a per-state basis, the system is able to adapt to
students’ specific needs by taking into account both their
current state and the paths that they can take to reach the
goal. As a consequence the authors of the Hint Factory
argue that this advice is more likely to be in the students’
Zone of Proximal Development and thus more responsive to
their needs than a less-sensitive algorithm.

3. METHODS
In order to investigate the application of data-driven meth-
ods to model-based tutoring systems, we collected data from
two studies conducted with Andes and Pyrenees in the do-
main of probability. We then transformed these datasets
into interaction networks, consisting of states linked with
actions. We used this representation to perform a variety of
quantitative and qualitative analyses with the goal of eval-
uating the differences between the two systems and the im-
pact of the specific design decisions that were made in each.

3.1 The Andes and Pyrenees Datasets
The Andes dataset was drawn from an experiment con-
ducted at the University of Pittsburgh [3]. This study was
designed to assess the differential impact of instruction in
Andes and Pyrenees on students’ meta-cognitive and problem-
solving skills. Participants in this study were college under-
graduates who were required to have taken high-school level
algebra and physics but not to have taken a course in prob-
ability or statistics. The participants were volunteers and
were paid by time not performance.

Forty-four students completed the entire study. However
for the purposes of the present analysis, we drew on all



66 students who completed at least one problem in Andes-
Probability. This is consistent with prior uses of the Hint
Factory which draw from all students including those who
did not complete the problem. The Pyrenees-Probability
logs from this study were not used due to problems with the
data format that prevented us from completing our analysis.
From this dataset we drew 394 problem attempts covering
11 problems. The average number of steps required to solve
the problems was 17.6. For each problem we analyzed be-
tween 25 and 72 problem attempts, with an average of 35.8
attempts per problem. Some attempts were from the same
student, with at most two successful attempts per student.
Over all problems, 81.7% of the attempts were successful,
with the remainder being incomplete attempts.

The Pyrenees dataset was drawn from a study of 137 stu-
dents conducted in the 200-level Discrete Mathematics course
in the Department of Computer Science at North Carolina
State University. This study used the same probability text-
book and pre-training materials as those used in the Andes
study. The students used Pyrenees as part of a homework
assignment, in which they completed 12 problems using the
tutoring system. One of these problems was not represented
in the Andes dataset. We therefore excluded it from our
analysis, leaving 11 shared problems.

Unlike the Andes students, however, the Pyrenees students
were not always required to solve every problem. In this
study the system was configured to randomly select some
problems or problem steps to present as worked examples
rather than as steps to be completed. In order to ensure
that the results were equivalent we excluded the problem-
level worked examples and any attempt with a step-level
worked example from our analysis. As a consequence, each
problem included a different subset of these students. For
each problem we analyzed between 83 and 102 problem at-
tempts, with an average of 90.8 attempts per problem. Some
attempts were from the same student, with at most one suc-
cessful attempt per student. Over all problems, 83.4% of
the attempts were successful.

3.2 State and Action Representations
In order to compare the data from both tutors, we repre-
sented each problem as an interaction network, a represen-
tation used originally in the Hint Factory [7]. In the net-
work a vertex, or state, represents the sum total of a stu-
dents’ current problem solving steps at a given time during
a problem-solving attempt. Because Andes permits flexible
step ordering while Pyrenees does not, we chose to represent
the problem solving state st as the set of valid variables and
equations defined by the student at time t.

A variable is a probabilistic expression, such as P (A ∪ B),
that the student has identified as important to solving the
problem, for which the probability is known or sought. An
equation represents the application of a principle of proba-
bility, which relates the values of defined variables, such as
the Complement Theorem, P (A) + P (¬A) = 1. Because
such equations can be written in many algebraically equiv-
alent ways, we represent each equation as a 2-tuple, con-
sisting of the set of variables included in the equation (e.g.
{P (A), P (¬A)}) and the principle being applied (e.g. Com-
plement Theorem). Because we only represent valid equa-

tions, this representation uniquely identifies any equation
for a given problem. Because we used the same state rep-
resentation for both tutors, we were able to compare states
directly across tutors.

Additionally, we opted to ignore incorrect entries. Pyrenees
prevents students from applying the principles of probabil-
ity improperly and forces them to correct any mistakes made
immediately therefore any errors in the student logs are im-
mediately removed making the paths uninformative. Andes,
by contrast, gives students free reign when writing equations
and making other entries. This freedom resulted in syntac-
tic errors and improper rule application errors arising in our
dataset. The meaning of these invalid equations is inherently
ambiguous and therefore difficult to incorporate into a state
definition. However such errors are immediately flagged by
the system and may be ignored by the student without con-
sequence as they do not affect the answer validity therefore
they may be safely ignored as well.

An edge, or action, in our network represents the correct
application of a rule or a correct variable definition and leads
to a transition from one state to another. For the present
dataset and state representation, the possible actions were
the definition or deletion of variables or equations. Each of
these actions was possible in both tutors.

4. ANALYSIS
In order to develop a broader understanding of our datasets,
we first visualized the interaction network for each problem
as a weighted, directed graph. We included attempts from
both Andes and Pyrenees in the network, and weighted the
edges and verticies by the frequency with which it appeared
in the logs. We annotated each state and edge with the
weight contributed by each tutor. Two examples of these
graphs are given in Figure 3.

Throughout this section, we will use these graphs to address
the points we outlined at the end of Section 1. We begin
with a case study from one problem and will explore the
student problem solving strategies using our graph repre-
sentation. We will then compare the Andes and Pyrenees
Systems with a variety of metrics based on this represen-
tation. We will relate our observations back to the design
decisions of each system and identify evidence that may sup-
port or question these decisions. Finally, we will show how
the analysis methods associated with data-driven hint gen-
eration can be used to validate some of these findings.

4.1 Case Study: Problem Ex242
The graphical representation of a problem is very helpful for
giving a high-level overview of a problem and performing
qualitative analysis. Problem Ex242, shown in Figure 3,
presents an interesting scenario for a number of reasons. The
problem was the 10th in a series of 12 practice problems, and
asked the following:

Events A, B and C are mutually exclusive and
exhaustive events with p(A) = 0.2 and p(B) =
0.3. For an event D, we know p(D|A) = 0.04,
p(D|B) = 0.03, and p(C|D) = 0.3. Determine
p(B|D).



Figure 3: A graph representation of problems
Ex252a, left, and Ex242, right. States and edges are
colored on a gradient from blue to yellow, indicating
the number of students who reached that state in the
Andes and Pyrenees tutors respectively. Rounded
edges indicate that at least one student from both
tutors is present in a state. A green border indicates
a solution state, and a pink border indicates that a
state is contained in the pedagogically “ideal” solu-
tion. Edge thickness corresponds to the natural log
of the number of problem attempts which included
the given edge.

The problem is notable in the Pyrenees dataset because it
was the only one in which the students were split almost
evenly among two solution paths. For most of the problems
in the dataset the vast majority of students followed the
optimal solution path with only a few finding alternatives.
The ideal solution path, as suggested by Pyrenees’ domain
model, employed repeated applications of the Conditional
Probability Theorem: P (A ∩B) = P (A|B)P (B), which the
problem was designed to teach. The students had been pre-
viously exposed to Bayes’ Theorem however, and over half
of them chose to apply it instead. This allowed them to
circumvent one variable definition and two applications of
the Conditional Probability Theorem, achieving a slightly
shorter solution path. We make no argument here which
path the tutor should encourage students to take, but it is
worth noting that the Hint Factory, when trained on the
Pyrenees data for this problem, recommends the shorter,
more popular path.

The Andes dataset gives us a very different set of insights
into this problem. Because Andes lacks the strong pro-
cess scaffolding of Pyrenees, students were able to make a
wider variety of choices, leading to a graph with many more,
less populous states. While almost every state and edge in
the Pyrenees graph represents multiple students, the An-
des graph contains a number of paths, including solutions,
that were reached by only one student. In some state-based
analyses the authors choose to omit these singleton states,
for instance when generating hints. We have chosen to in-

clude them as they represent a fair proportion of the Andes
data. For instance, 62 of the 126 Andes states for Ex242
were singleton states.

Interestingly, while there were small variations among their
solutions, all of the Andes students choose to apply Bayes’
Rule rather than relying solely on the Conditional Probabil-
ity Theorem as suggested by Pyrenees. This, coupled with
the strong proportion of Pyrenees students who also chose
the Bayes’ Rule solution, indicates that the solution offered
by Pyrenees may be unintuitive for students, especially if
they have recently learned Bayes’ Rule. Again, this can be
interpreted as evidence that Pyrenees’ strong guidance did
have an impact on students’ problem solving strategies, but
it also raises concerns about how reasonable this guidance
will appear to the students. Regardless of one’s interpreta-
tion, an awareness of a trend like this can help inform the
evolution of model-based tutors like Andes and Pyrenees.

4.2 Comparing datasets
We now turn to qualitatively comparing the datasets. While
it is not a common practice to directly compare data from
different tutors, we argue that it is appropriate, especially
in this context. In longstanding tutoring projects it is com-
mon for developers and researchers to make many substan-
tive changes. The Andes system itself has undergone sub-
stantial interface changes over the course of its development
[20]. These changes can alter student behavior in substan-
tial ways, and it is important for researchers to consider
how they affect not just learning outcomes but also problem
solving strategies, as was investigated by Chi et al. [4].

In many respects the close relationship between Andes and
Pyrenees makes them analogous to different versions of the
same tutor and the presence of an isomorphic knowledge
base and problem set makes it possible for us to draw mean-
ingful comparisons between students. In this section we will
inspect how the scaffolding design decisions made when con-
structing the tutors affected the problem solving strategies
exhibited by the students.

A visual inspection of the state graphs for each problem
revealed significant portions of each graph were shared be-
tween the two datasets and portions that were represented
in only one of the two. Despite the fact that students using
Andes were capable of reaching any of the states available
to students in Pyrenees, many Pyrenees states were never
discovered by Andes students. As noted in Section 4.1, this
suggests that guidance from the Pyrenees tutor is successful
in leading students down solution paths that they would not
otherwise have discovered, possibly applying skills that they
would otherwise not have used.

To quantify these findings, we calculated the relative sim-
ilarity of students in each tutor. For a given problem, we
defined the state-similarity between datasets A and B as the
probability that a randomly selected state from a student in
A will be passed through by a randomly selected student
in B. Recall from Section 3.2 that our state representation
allows us to directly compare states across tutors. By this
definition, the self-similarity of a dataset is a measure of
how closely its students overlap each other while the cross-
similarity is a measure of how closely its students overlap



States Andes Pyrenees Solution
Andes 0.551 (0.134) 0.494 (0.153) 0.478 (0.186)

Pyrenees 0.460 (0.141) 0.688 (0.106) 0.669 (0.146)

Actions Andes Pyrenees Solution
Andes 0.878 (0.085) 0.874 (0.118) 0.851 (0.140)

Pyrenees 0.828 (0.117) 0.936 (0.021) 0.923 (0.036)

Table 1: Pairwise similarity across tutors and the
ideal solution path. Similarities were calculated for
each problem, and each cell lists the mean (and stan-
dard deviation) over all problems. The top half cov-
ers the state similarity metrics while the bottom half
of each table covers action similarity.

with the other dataset. Similarity measures for the datasets
can be found at the top of Table 1.

Predictably, both datasets have higher self-similarity than
cross-similarity, with Pyrenees showing higher self-similarity
than Andes. This indicates that Pyrenees students chose
more homogeneous paths to the goal. This is reasonable
and consistent with the heavy scaffolding that is built into
the system. It is important to note that our similarity met-
rics are not symmetric. The cross-similarity of Pyrenees
with Andes is higher than the reverse. This indicates that
the path taken by Pyrenees students are more likely to have
been observed by Andes students than vice-versa. This has
important implications for designers who are interested in
collecting data from a system that is undergoing modifica-
tions. If a system becomes increasingly scaffolded and re-
strictive over time, past data will remain more relevant than
in a system that is relaxed. In many ways this simply re-
flects the intuition that allowing students to explore a state
space more fully will produce more broadly useful data, and
restricting students will produce data that is more narrowly
useful. Note that here we are only observing trends, and we
make no claims of statistical significance.

In our analysis, we found that, within both datasets, many
solution paths or sub-paths differed only in the order that
actions were performed. In our domain, many actions do
not have ordering constraints. It is possible, for example,
to define the variables A and B in either order, and the re-
sulting solution paths would deviate from one another. We
thus sought to determine how much of the observed differ-
ence between our two datasets was due to these ordering
effects. To that end we define the action-similarity between
datasets A and P as the probability that a randomly se-
lected action performed by a student in A will have been
performed by a by a randomly selected student in B. These
values are shown in the bottom of Table 1, and each of the
trends observed for state-similarity hold, with predictably
higher similarity values.

It is notable that the similarity between Pyrenees and Andes
is almost as high as Andes’ self-similarity, indicating that the
actions taken by Pyrenees students are almost as likely to
be observed in Andes students as Pyrenees students. This
suggests that, for the most part, the Andes students per-
formed a superset of the actions performed by the Pyrenees
students. Thus the impact of Pyrenees is most visible in the
order of execution, not the actions chosen. This is consistent

States Andes Pyrenees Solution
Andes 0.419 (0.150) 0.327 (0.139) 0.253 (0.172)

Pyrenees 0.372 (0.193) 0.709 (0.145) 0.601 (0.214)

Actions Andes Pyrenees Solution
Andes 0.818 (0.151) 0.582 (0.168) 0.636 (0.205)

Pyrenees 0.678 (0.212) 0.899 (0.038) 0.879 (0.055)

Table 2: Pairwise similarity across tutors and the
ideal solution path calculated using a variable-free
state representation. Rows and columns are the
same as in Table 1.

Problem Andes Pyrenees
ex132 26 (47.5%) 2 (98.7%)
ex132a 13 (33.3%) 1 (100.0%)
ex144 2 (96.6%) 1 (100.0%)
ex152 11 (0.0%) 4 (0.0%)
ex152a 8 (59.0%) 3 (97.4%)
ex152b 12 (0.0%) 1 (100.0%)
ex212 8 (71.4%) 1 (100.0%)
ex242 9 (0.0%) 2 (49.38%)
ex252 7 (76.9%) 2 (98.4%)
ex252a 4 (81.8%) 2 (98.6%)
exc137 19 (0.0%) 2 (98.75%)

Table 3: For each problem, the tables gives the num-
ber of unique solution states represented in each tu-
tor’s dataset. Note that there may exist many solu-
tion paths which reach a given solution. The follow-
ing percent (in parentheses) represents the percent
solution paths that ended in the pedagogically ideal
solution.

with the design goals of Pyrenees which was set up to guide
students along the otherwise unfamiliar path of the TVS.

We also opted to examine the impact of the variable defini-
tions on our evaluation. As noted above, variable definitions
are an atomic action. They do not depend upon any event
assertion and thus have no ordering constraints unlike the
principles. We did so with the hypothesis that this would
increase the similarity metrics for the datasets by eliminat-
ing the least constrained decisions from consideration. Our
results are shown in Table 2 below. Contrary to our ex-
pectations, this actually reduced the similarity both within
and across the datasets, with the exception of Pyrenees’ self-
similarity. Thus the unconstrained variable definitions did
not substantially contribute to the dissimilarity. Rather,
most of the variation lay in the order of principle applica-
tions.

4.3 Similarity to an “ideal" solution
We now turn to exploring how well the ideal solution was
represented in the datasets. For both tutors the ideal solu-
tion is the pedagogically-desirable path constructed via the
TVS. Our measure of cross-similarity between two datasets
can also be applied between a single solution path and a
dataset by treating the single solution as a set of one. We
can thus measure the average likelihood of an ideal solution
state appearing in a student’s solution from each dataset.
The results of this calculation are shown in tables 1 and 2,
using both the state- and action-similarities explained ear-



lier. Predictably, the solution has a high similarity with
Pyrenees students, as these students are scaffolded tightly
and offered few chances to deviate from the path.

As Table 3 shows, Pyrenees students were funneled almost
exclusively to the ideal solution on the majority of prob-
lems, even if their paths to the solution were variable. We
found only one problem, Ex152, where the Pyrenees stu-
dents missed the ideal path. That was traced to a pro-
gramming error that forced students along a similar path.
Otherwise, there was only one problem, Ex242 (discussed
in Section 4.1), where a meaningful percentage of students
chose a different solution. The Andes students, by contrast,
were much less likely to finish in the ideal solution state, but
this was also problem-dependent.

4.4 Applications of the Hint Factory
Finally, having shown that the datasets differ, and that these
differences are consistent with the differing design choices of
the two tutors, we sought to determine what effect those
differences would have on data-driven hint generation. Our
goal was to determine how applicable a hint model of the
type produced by the Hint Factory would be for one dataset
if it was trained on another. To that end we performed a
modified version of the Cold Start Experiment [1], which
is designed to measure the number of state-specific hints
that Hint Factory can provide given a randomly selected
dataset. The Cold Start experiment functions like leave-
one-out cross-validation for state-based hint generation. In
the original Cold Start experiment, one student was selected
at random and removed from the dataset, to represent a
“new” student using the tutor. Each remaining student in
the dataset was then added, one at a time, in a random
order to the Hint Factory’s model. On each iteration, the
model is updated and the percentage of states on the ‘new’
student’s path for which a hint is available is calculated.
This is repeated a desired number of times with new students
to account for ordering effects.

For the present study we calculated cold-start curves for
both the Pyrenees and Andes datasets. We also calculated
curves using the opposing dataset to illustrate the growth
rate for cross-tutor hints. For these modified curves we se-
lected the hint-generating students from the opposing dataset.
All four curves are shown in Figure 4. Here AvA and PvP
designate the within tutor curves for Andes and Pyrenees
respectively while PvA and AvP designate the cross-tutor
curves for hints from Pyrenees provided to Andes users and
vice-versa. Figure 4 represents an average over all problems,
and therefore the x-axis extends only as far as the minimum
number of students to complete a problem. As the curves
illustrate, the within-tutor curves reach high rates of cov-
erage relatively quickly with PvP reaching a plateau above
95% after 21 students and AvA reaching 85%.

The cross-tutor curves, by contrast, reach much lower lim-
its. AvP reaches a plateau of over 75% coverage, while PvA
reaches a plateau of 60% coverage. This reflects the same
trends observed in Tables 1 and 2, where Andes better ex-
plains the Pyrenees data than vice-versa; however, neither
dataset completely covers the other. On the one hand this
result is somewhat problematic as it indicates that prior data
has a limited threshold for novel tutors or novel versions of a

Figure 4: The four Cold Start curves, averaged
across all problems. The x-axis shows the number of
students used to train the model, and the y-access
shows the percentage of a new student’s path that
has available hints. The curve labeled “XvY” indi-
cates training on the X dataset and selecting a new
student from the Y dataset (A = Andes; P = Pyre-
nees).

system in the same domain. Clearly a substantive interface
and scaffolding change of the type made in Pyrenees can
change the state space sufficiently that we cannot trivially
rely on our prior data. On the other hand, while the cross-
application of data does have upper limits, those limits are
comparatively high. Clearly data from a prior system can be
reused and can serve as a reliable baseline for novel system,
with the caveat that additional exploratory data is required.

5. DISCUSSION AND CONCLUSION
Our goal in this paper was to evaluate the application of
data-driven methods such as the Hint Factory to model-
based tutoring systems. To that end we analyzed and com-
pared datasets collected from two closely-related tutoring
systems: Andes and Pyrenees. Through our analysis we
sought to: (1) evaluate the differences between closely-related
systems; (2) assess the impact of specific design decisions
made in those systems for user behaviors; and (3) evalu-
ate the potential application of data-driven hint generation
across systems.

We found that, while the systems shared isomorphic domain
models, problems, and ideal solutions, the observed user be-
haviors differed substantially. Students using the Andes sys-
tem explored the space more widely, were more prone to
identify novel solutions, and rarely followed the ideal solu-
tion path. Students in Pyrenees, by contrast, were far more
homogeneous in their solution process and were limited in
the alternative routes they explored. Contrary to our expec-
tations, we found that this variation was not due to simple
ordering variations in the simplest of steps but of alterna-
tive strategy selection for the higher-level domain principles.
This is largely consistent with the design decisions that mo-
tivated both systems and with the results of prior studies.



We also found that the state-based hint generation method
used in the Hint Factory can be applied to the Andes and
Pyrenees data given a suitable state representation. For this
analysis we opted for a set-based representation given the
absence of strong ordering constraints across the principles.
We then completed a cold-start analysis to show that the
cross-tutor data could be used to bootstrap the construction
of hints for a novel system but does not provide for complete
coverage.

Ultimately we believe that the techniques used for data-
driven hint generation have direct application to model-
based systems. Data-driven analysis can be used to iden-
tify the behavioral differences between closely related sys-
tems and, we would argue, changes from one version of a
system to another. We also found that these changes can
be connected to the specific design decisions made during
development. Further, we found that data-driven methods
can be applied to model-based tutoring data to generate
state-based hints. We believe that hint information of this
type may be used to supplement the existing domain models
to produce more user-adaptive systems. In future work we
plan to apply these analyses to other appropriate datasets
and to test the incorporation of state-driven hints or hint
refinement to existing domain models.
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ABSTRACT
Data-driven systems can provide automated feedback in the
form of hints to students working in problem solving environ-
ments. Programming problems present a unique challenge
to these systems, in part because of the many ways in which
a single program can be written. This paper reviews current
strategies for generating data-driven hints for programming
problems and examines their applicability to larger, more
open-ended problems, with multiple, loosely ordered goals.
We use this analysis to suggest directions for future work to
generate hints for these problems.

1. INTRODUCTION
Adaptive feedback is one of the hallmarks of an Intelli-
gent Tutoring System. This feedback often takes the form
of hints, pointing a student to the next step in solving a
problem. While hints can be authored by experts or gener-
ated by a solver, more recent data-driven approaches have
shown that this feedback can be automatically generated
from previous students’ solutions to a problem. The Hint
Factory [18] has successfully generated data-driven hints in a
number of problem solving domains, including logic proofs [2],
linked list problems [5] and a programming game [12]. The
Hint Factory operates on a representation of a problem called
an interaction network [4], a directed graph where each ver-
tex represents a student’s state at some point in the problem
solving process, and each edge represents a student’s action
that alters that state. A solution is represented as a path
from the initial state to a goal state. A student request-
ing a hint is matched to a previously observed state and
directed on a path to a goal state. The Hint Factory takes
advantage of the intuition that students with the same ini-
tial state and objective will follow similar paths, producing a
well-connected interaction network. When this occurs, even
a relatively small sample of student solutions can be enough
to provide hints to the majority of new students [1].

While problems in many domains result in well-connected
networks, this is not always the case. Programming prob-

lems have a large, often infinite, space of possible states.
Even a relatively simple programming problem may have
many unique goal states, each with multiple possible solu-
tion paths, leaving little overlap among student solutions.
Despite this challenge, a number of attempts have been
made to adapt the Hint Factory to programming problems [9,
12, 16]. While these approaches have been generally success-
ful, they are most effective on small, well structured pro-
gramming problems, where the state space cannot grow too
large. This paper explores the opposite type of problem: one
that has a large state space, multiple loosely ordered goals,
unstructured output and involves creative design. Each of
these attributes poses a challenge to current data-driven hint
generation techniques, but they are also the attributes that
make such problems interesting, useful and realistic. In this
paper, we will refer to these as open-ended programming
problems. We investigate the applicability of current tech-
niques to these problems and suggest areas for future re-
search.

The primary contributions of this paper are 1) a review of
current data-driven hint generation methods for program-
ming problems, 2) an analysis of those methods’ applica-
bility to an open-ended problem and 3) a discussion of the
challenges that need to be addressed before we can expect
to generate hints for similar problems.

2. CURRENT APPROACHES
Current approaches to generating data-driven programming
hints, including alternatives to the Hint Factory [10, 13, 17],
can be broken down into three primary components:

1. A representation of a student’s state and a method
for determining when one state can be reached from
another, meaning they are connected in the network

2. An algorithm that, given a student’s current state, con-
structs an optimal path to a goal state. Often we sim-
plify this to the problem of picking the first state on
that path

3. A method to present this path, or next state, to the
student in the form of a hint

For the purposes of this paper, we limit our discussion to
the first step in this process. (For a good discussion of the
second step, see an analysis by Piech et al. [13], compar-
ing path selection algorithms.) While in some domains this



first step is straightforward, in programming tasks, espe-
cially open-ended problems, it is likely the most challeng-
ing. The simplest approach is to take periodic snapshots of
a student’s code and treat these as states, connecting con-
secutive snapshots in the network. However, because two
students’ programs are unlikely to match exactly, this ap-
proach is likely to produce a very sparse, poorly connected
network, making it difficult to match new students to prior
solution attempts. A variety of techniques have been pre-
sented to address this problem, which can be grouped into
three main strategies: canonicalization, connecting states
and alternative state definitions.

2.1 Canonicalization
Canonicalization is the process of putting code states into
a standardized form, often by removing semantically unim-
portant information, so that trivial difference do not prevent
two states from matching. Rivers and Koedinger [15] present
a method for canonicalizing student code by first represent-
ing it as an Abstract Syntax Tree (AST). Once in this form,
they apply a number of functions to canonicalize the code,
including normalizing arithmetic and boolean operators, re-
moving unreachable and unused code, and inlining helper
functions. After performing this canonicalization on a set
of introductory programming problems, they found that a
median 70% of states had at least one match in the net-
work. Jin et al. [9] represent a program’s state as a Linkage
Graph, where each vertex is a code statement, and each di-
rected edge represents an ordering dependency, determined
by which variables are read and assigned to in each state-
ment. This state representation allows the Hint Factory to
ignore statement orderings which are not important to the
execution of the program. Lazar and Bratko [10] use the
actual text of Prolog code to represent a student’s state,
and then canonicalize the code by removing whitespace and
normalizing variable names.

2.2 Connecting States
Even with canonicalization, a student requesting a hint may
not match any existing state in the network. In this case, we
can look for a similar state and create a connection between
them. Rivers and Koedinger [16] use normalized string edit
distance as a similarity metric between two program states.
They connect any two states in the network which have at
least 90% similarity, even if no historical data connect these
states. Additionally, they use a technique called path con-
struction to generate new solution paths from a given state
to a nearby, unconnected goal state by searching for a series
of insertions, deletions and edits to their AST that will trans-
form it into the goal state [17]. They also use this method
to discover new goal states which may be closer to the stu-
dent’s current state. Jin et al. [9] use a similar technique
to transform their Linkage Graphs to better match the cur-
rent state of a student when no direct matches can be found
in the interaction network. Piech et al. [13] use path con-
struction to interpolate between two consecutive states on
a solution path which differ by more than one edit. This
is useful to smooth data when student code is recorded in
shapshots that are too far apart.

2.3 Alternate State Definitions
Another approach is to forego the traditional code-based
representation of a student’s state, and use an alternate def-

inition. Hicks and Peddycord [7, 12] used the Hint Factory
to generate hints for a programming game called Bots, in
which the player writes a program to direct a robot through
various tasks in a 3D level. They chose to represent the state
of a player’s program as the final state of the game world
after the program was executed. They compared the avail-
ability of hints when using this “world state” model with a
traditional “code state” model, and found that using world
states significantly reduced the total number of states and
increased the availability of hints. The challenge with this
approach, as noted by the authors, is the generation of ac-
tionable hints. A student may be more capable of making a
specific change to her code than determining how to effect
a specific change in the code’s output.

3. AN OPEN-ENDED PROBLEM
The above techniques have all shown success on smaller,
well-structured problems, with ample data. We want to in-
vestigate their applicability to an open-ended problem, as
described in Section 1, where this is not the case. The pur-
pose of this paper is not to create actionable hints, nor are
we attempting to show the failures of current methods by
applying them to an overly challenging task. Rather, our
purpose is exploratory, using a small dataset to identify ar-
eas of possible future work, and challenges of which to be
mindful when moving forward with hint generation research.

We collected data from a programming activity completed
by 6th grade students in a STEM outreach program called
SPARCS [3]. The program, which meets for half-day ses-
sions approximately once a month during the school year,
consists of lessons designed and taught by undergraduate
and graduate students to promote technical literacy. The
class consisted of 17 students, 12 male and 5 female.

The activity was a programming exercise based on an Hour
of Code activity from the Beauty and Joy of Computing cur-
riculum [6]. It was a tutorial designed to introduce novices
to programming for the first time. The exercise had users
create a simple web-based game, similar to whack-a-mole,
in which players attempt to click on a sprite as it jumps
around the screen to win points. The exercise was split into
9 objectives, with tutorial text at each stage. Students were
not required to finish an objective before proceeding. A fin-
ished project required the use of various programming con-
cepts, including events, loops, variables and conditionals.
The students used a drag-and-drop, block-based program-
ming language called Tiled Grace [8], which is similar to
Scratch [14]. The user writes a program by arranging code
blocks, which correspond directly to constructs in the Grace
programming language. The editor also supports switching
to textual coding, but this feature was disabled. A screen-
shot of the activity can be seen in Figure 1.

During the activity, the students were allowed to go through
the exercise at their own pace. If they had questions, the
students were allowed to ask for help from the student vol-
unteers. Students were stopped after 45 minutes of work.
Snapshots of a student’s code were saved each time it was
run and periodically throughout the session. Occasional
technical issues did occur in both groups. One student had
severe technical issues, and this student’s data was not an-
alyzed (and is not reflected in the counts above). Students



Figure 1: A screenshot of the Hour of Code activ-
ity that students completed. Students received in-
structions on the left panel. The center panel was a
work area, and students could drag blocks in from
the bottom-right panel. The top-right panel allowed
students to test their games.

produced on average 148.5 unique code states and accom-
plished between 1 and 6 of the activity’s objectives, averag-
ing 3.2 objectives per student.

4. ANALYSIS
We attempted to understand the applicability of each of the
techniques discussed in Section 2 to our dataset. However,
since the output of our program was a game that involved
nondeterminism, we felt it would be inappropriate to at-
tempt to represent a program’s state as the result of its
execution. We therefore focused on the first two strategies,
canonicalization and connecting states.

4.1 Canonicalization
Our initial representation of a student’s code state was a
tree, where each code block was a node, and its children in-
cluded any blocks that were nested inside of it. In this way,
our representation was similar to Rivers and Koedinger’s
ASTs. To get a baseline for the sparsity of our dataset,
we first analyzed the code states without performing any
canonicalization. We calculated the total number of states
in the interaction network and the percentage which were
only reached by one student. Of those states reached by
multiple students, we calculated the mean and median num-
ber of students who reached them. We also calculated the
percentage of each student’s states that were unreached by
any other student in the dataset.

We then canonicalized the data by removing variable names
and the values of number and string literals. Our problem
featured very few arithmetic or logical operators, and these
were generally not nested, so we did not normalize them,
as suggested by Rivers and Koedinger [15]. We reran our
analyses on the canonicalized data. To ensure that we had
effectively removed all unimportant ordering information,
we recursively sorted the children of each node in the tree.
This effectively removed any ordering information from a
student’s code state, and kept only hierarchical information.
This is somewhat more extreme than the Linkage Graphs of
Jin et al. [9], and it does allow two meaningfully differ-

Raw Canonical Ordered
Total States 2380 1781 1656
% Unique 97.5% 94.8% 92.8%
Mean NU Count 3.44 3.95 2.82
Median NU Count 2 2 2
Mean % Path Unique 89.9% 83.0% 78.9%
Standard Deviation (6.67) (10.5) (13.3)

Table 1: Various measures of the sparseness of the
interaction network for the raw, canonicalized, and
ordered-canonicalized state representations. Mean
and median NU counts refer to the number of stu-
dents who reached each non-unique state.

ent code states to be merged in the process. We therefore
see this as an upper bound on the value of removing unim-
portant orderings from a code state. We recomputed our
metrics for the ordered-canonicalized interaction network as
well. The results can be seen in Table 1. Our later analyses
use the unsorted, canonicalized code representation.

These results indicate that canonicalization does little to re-
duce the sparsity of the state space, with students spending
most of their time in states that no other student has seen.
For comparison, recall Rivers and Koedinger found 70% of
states in a simple programming problem had a match after
canonicalization [15], though they were using a much larger
dataset. In our dataset, it is unlikely that we would be able
to find a direct path from a new student’s state to a goal
state in order to suggest a hint.

4.2 Connecting States
To address this, we explored the feasibility of connecting a
new student’s state to a similar, existing state in the net-
work. It is unclear how close two code states should be
before it is appropriate to connect them as in [16], or to
generate a path between them as in [17]. It certainly de-
pends on the state representation and distance metric used.
Rather than identifying a cutoff and measuring how often
these techniques could be applied, we chose to visualize the
distance between two students and make qualitative obser-
vations. Because our code states were already represented
as trees, we used Tree Edit Distance (TED) as a distance
metric. While Rivers and Koedinger reported better success
with Levenshtein distance [16], we believe that TED is the
most appropriate distance metric for block code, where tree
edit operations correspond directly to user actions.

For each pair of students, A and B, we created an N by M
distance matrix, D, where N is the number of states in A’s
solution path, and M is the number of states in B’s solution
path. Di,j = d(Ai, Bj), where d is the TED distance func-
tion, Ai is the ith state of A and Bj is the jth state of B.
We used the RTED algorithm [11] to calculate the distance
function, putting a weight of 1.0 on insertions, deletions and
replacements. We also omitted any state which was identical
to its predecessor state. We normalized these values by di-
viding by the maximum value of Di,j , and plotted the result
as an image. Three such images can be seen in Figure 2.

We also calculated the“path”through this matrix that passes
through the least total distance. This does not represent a



Figure 2: Three distance matrices, each comparing
two students, where each pixel represents the TED
between two states. Lighter shades of gray indi-
cate smaller distances. The green/yellow line shows
the path through the matrix with minimized total
distance, with yellow shades indicating smaller dis-
tances. Red crosses indicate where both students
met an objective. The top-left figure compares two
students as they completed objectives 1-4 in the ex-
ercise. In this example, the minimum-distance line
crosses each objective. The top right figure also de-
picts two students completing objective 4, but the
darker colors and straighter line indicate less align-
ment. The bottom figure depicts two students com-
pleting objectives 1-6, with high alignment.

path through the interaction network, but rather an align-
ment between the states of student A and those of student
B. Each pixel of the line represents a pairing of a state
from A with a state from B, such that these pairings are
contiguous and represent the smallest total distance. While
we do not suggest applying this directly as a strategy for
hint generation, it serves an a useful visual indicator of the
compatibility of two students for hinting purposes.

An alternate approach would have been to pair each state in
the interaction network with its closest pair from any other
student, and use this as a measure of how sparse the network
was. We chose to compare whole students, rather than indi-
vidual states, because we felt that the former could lead to
strange hinting behavior. Imagine, for instance, that a stu-
dent requests a hint, which initially points to a state from
student B, but at the very next step requests a hint that
points instead to student C. Perhaps the attributes that
make the student’s state similar to that of B are different
from those that make the state similar to C. The resulting
hints would be at best confusing, and at worst conflicting.

Mean Median Max Farthest
1 0.25 (0.27) 0.15 (0.29) 0.76 (0.56) 2.23 (0.75)
2 4.88 (3.93) 4.95 (4.34) 9.18 (5.74) 12.73 (6.10)
4 4.92 (2.77) 4.83 (2.78) 10.11 (3.69) 14.67 (4.77)
5 7.79 (1.32) 7.75 (1.41) 13.17 (1.72) 18.17 (1.72)
6 7.49 (1.11) 7.76 (1.37) 13.17 (0.98) 18.67 (1.75)

Table 2: For each objective, average distances (and
standard deviations) of minimum-distance student
pairs, using the mean, median and max metrics.
For reference, the final column represents the av-
erage maximum distance each student moved from
the start state while completing the objective.

A visual inspection of these matrices reveals that while many
student pairs are quite divergent, some show a notable close-
ness throughout the exercise. In order to quantify these
results, we developed a set of distance metrics between stu-
dents. First, the distance matrix and the minimum-distance
“path” were calculated for the two students. The path is
comprised of pairs of states, and for each pair, we recorded
the tree edit distance between the states. From this list of
distances, we calculated the mean, median and maximum
distances between the two students. We looked at each ob-
jective in the exercise, and isolated the relevant subpath of
each student who completed that objective. We paired each
of these subpaths with the most similar subpath in the set,
using the mean, median and max distance metrics. Table 2
shows the average values of these minimized pairs of stu-
dents, using each metric. Objective 3, and objectives 7-9
were omitted, as too few students completed them.

5. DISCUSSION
We have attempted to apply a meaningful canonicalization
to our state space, which did serve to reduce the number
of states by 30.4%. However, as seen in Table 1, even af-
ter the strongest canonicalization, over 90% of the states in
the interaction network had only been reached by one stu-
dent, with an average 78.9% of the states in each student’s
solution path being unique to that student. It seems that
our approach to canonicalization is insufficient to produce a
meaningful reduction of the state space, though it is possible
a more stringent canonicalization would be more effective.

Connecting existing states seems to be a more promising ap-
proach, giving us the ability to link new states to previously
observed states, even when they do not match exactly. Our
distance matrices indicate that some students take parallel,
or slowly diverging solution paths, which suggests that they
may be useful to each other in the context of hinting. As
shown in Figure 2, students are often closest together when
completing the same objective. This may seem self-evident,
but it does indicate that our distance metric is meaning-
ful. It is more difficult to put the actual TED values into
context. Students get, on average, farther away from their
closest paired student as they complete more objectives, but
this average distance does not exceed 8 tree edits during the
first 6 objectives. To put that number into context, during
this same time students do not, on average, get more than
19 tree edits away from the start state. This suggest that
there is certainly hint-relevant knowledge in these paired stu-



dents, but that it may be difficult to harness this knowledge
to generate a hint.

5.1 Limitations
It is important to note that this analysis is an exploratory
case study, and makes no strong claims, only observations.
We studied data from only 17 novice programmers, and the
problem we analyzed was highly complex, involving multiple
control structures, loosely ordered objectives, and unstruc-
tured output. This makes the problem quite dissimilar from
previous problems that have been been studied in the con-
text of hint generation, making it difficult to determine what
observations should be generalized.

5.2 Future Work
Rivers and Koedinger [16], as well as Jin et al. [9] note
the limitations of their methods for larger problems, and
each suggest that breaking a problem down into subprob-
lems would help to address this. Lazar and Bratko [10] at-
tempted this in their Prolog tutor by constructing hints for
individual lines of code, which were treated as independent
subproblems. Similarly, we may be able to isolate the sub-
section of a student’s code that is currently relevant, and
treat this as an independent problem. The hierarchical na-
ture of block-based coding environments lends itself to this
practice, making it an appealing direction for future work.

Our work makes the simplifying assumption that unweighted
TED is a reliable distance metric for code, but future work
should investigate alternative metrics. This might include a
weighted TED metric, which assigns different costs to inser-
tions, deletions and replacements, or even to different types
of nodes (e.g. deleting a for-loop node might cost more than
a function call node). Regardless of the metric used, once
two proximate states are identified, it is still an open ques-
tion how this information can be best used for hint gener-
ation. It is possible to construct a path between the states
and direct a student along this path. However, future work
might also investigate how to extract hint-relevant informa-
tion from one state and apply it to a similar state directly.

Because of the nature of our problem’s output, we did not
explore non-code-based state representations, as described
in Section 2.3. It would still be worth investigating how this
might be applied to open-ended problems. For instance, a
code state could be represented as a boolean vector, indi-
cating whether the code has passed a series of Unit Tests,
and hints could direct the student to the current flaw in
their program. However, creating actionable hints from this
information would pose a significant challenge.
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[3] V. Cateté, K. Wassell, and T. Barnes. Use and
development of entertainment technologies in after
school STEM program. In Proceedings of the 45th
ACM technical symposium on Computer science
education, pages 163–168, 2014.

[4] M. Eagle, M. Johnson, and T. Barnes. Interaction
Networks: Generating High Level Hints Based on
Network Community Clustering. In International
Educational Data Mining Society, pages 164–167,
2012.

[5] D. Fossati, B. D. Eugenio, and S. Ohlsson. I learn
from you, you learn from me: How to make iList learn
from students. In Artificial Intelligence in Education
(AIED), 2009.

[6] D. Garcia, B. Harvey, L. Segars, and C. How. AP CS
Principles Pilot at University of California, Berkeley.
ACM Inroads, 3(2), 2012.

[7] A. Hicks, B. Peddycord III, and T. Barnes. Building
Games to Learn from Their Players: Generating Hints
in a Serious Game. In Intelligent Tutoring Systems
(ITS), pages 312–317, 2014.

[8] M. Homer and J. Noble. Combining Tiled and Textual
Views of Code. In Proceedings of 2nd IEEE Working
Conference on Software Visualization, 2014.

[9] W. Jin, T. Barnes, and J. Stamper. Program
representation for automatic hint generation for a
data-driven novice programming tutor. In Intelligent
Tutoring Systems (ITS), 2012.

[10] T. Lazar and I. Bratko. Data-Driven Program
Synthesis for Hint Generation in Programming Tutors.
In Intelligent Tutoring Systems (ITS). Springer, 2014.

[11] M. Pawlik and N. Augsten. RTED: a robust algorithm
for the tree edit distance. Proceedings of the VLDB
Endowment, 5(4):334–345, 2011.

[12] B. Peddycord III, A. Hicks, and T. Barnes.
Generating Hints for Programming Problems Using
Intermediate Output. In Proceedings of the 7th
International Conference on Educational Data Mining
(EDM 2014), pages 92–98, 2014.

[13] C. Piech, M. Sahami, J. Huang, and L. Guibas.
Autonomously Generating Hints by Inferring Problem
Solving Policies. In Learning at Scale (LAS), 2015.

[14] M. Resnick, J. Maloney, H. Andrés, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, and Y. Kafai. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

[15] K. Rivers and K. Koedinger. A canonicalizing model
for building programming tutors. In Intelligent
Tutoring Systems (ITS), 2012.

[16] K. Rivers and K. Koedinger. Automatic generation of
programming feedback: A data-driven approach. In
The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013), 2013.

[17] K. Rivers and K. Koedinger. Automating Hint
Generation with Solution Space Path Construction. In
Intelligent Tutoring Systems (ITS), pages 329–339,
2014.

[18] J. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. Artificial Intelligence in Education
(AIED), 22(1):3–17, 2013.



Studio: Ontology-Based Educational Self-Assessment 
 

 

 

 

 

 

Christian Weber 
Corvinno Technology 

Transfer Center 
Budapest, Hungary 

cweber@corvinno.com 

Réka Vas 
Corvinus University 

of Budapest 
Budapest, Hungary 

reka.vas@uni-corvinus.hu 

 

   

ABSTRACT 

Students, through all stages of education, grasp new knowledge 

in the context of knowledge memorized all through their previous 

education. To self-predict personal proficiency in education, self-

assessment acts as an important learning feedback. The in-house 

developed Studio suit for educational self-assessment enables to 

model the educational domain as an ontology-based knowledge 

structure, connecting assessment questions and learning material 

to each element in the ontology. Self-assessment tests are then 

created by utilizing a sub-ontology, which frames a tailored 

testing environment fitting to the targeted educational field. In 

this paper we give an overview of how the educational data is 

modeled as a domain ontology and present the concepts of 

different relations used in the Studio system. We will deduct how 

the presented self-assessment makes use of the knowledge 

structure for online testing and how it adapts the test to the 

performance of the student. Further we highlight where 

potentials are for the next stages of development. 

Keywords 

Education, adaptive test, self-assessment, educational ontology 

1. INTRODUCTION 
Students exploring new fields of education are always confronted 

with questions regarding their individual progress: how much do 

they know after iterations of learning, in which directions should 

they progress to fill the field most effectively, how to grasp the 

outline and details of the field and how much of their time 

should they invest in learning? Especially in higher education, 

where learning becomes a self-moderated, personalized process, 

students are in need of continuous self-assessment to capture 

their current state of proficiency. At the same time, the 

unframed, informal self-prediction of students regarding their 

personal skills is often substantive and systematically flawed [1]. 

Here a systematic and objective solution for self-assessment is 

substantial to prevent a wrong or biased self-evaluation and to 

support the self-prediction of the personal proficiency. 

Following Jonassen, knowledge in education could be split into 

nine types across three categories to capture the human’s 

cognitive behavior. In his discussion, eight out of nine knowledge 

types underline that knowledge in the scope of learning is 

interrelated and strongly associated with previous experiences 

[2]. As such, a supporting solution for self-assessment should 

grasp and formalize the knowledge to assess in the context of 

related knowledge. 

The Studio suit for educational self-assessment, presented in this 

paper, provides here a software solution for testing the personal 

proficiency in the context of related knowledge. It enables to 

model areas of education as a substantial source for assessment 

and narrows the gap between a potentially flawed self-prediction 

and the real proficiency, by offering an objective and adaptive 

online knowledge-test. To follow the natural learning process 

and enable an easy extension, the software embeds the assessed 

knowledge into a network of contextual knowledge, which 

enables to adapt the assessment to the responses of the students. 

This paper will give an overview of the Studio educational 

domain ontology and the aspects of the system supporting 

personalized self-assessment. Further it will highlight potentials 

for data mining on the gathered educational data with an outlook 

on the next stages of evaluation. 

2. THE STUDIO APPROACH FOR SELF-

ASSESSMENT 
The basic concept of Studio is to model the focused education as 

an interrelated knowledge structure, which divides the education 

into sub-areas and knowledge items to know. The managed 

structure formalizes the relation between knowledge areas as a 

learning context and models the requirements to master specific 

parts of the education. This structure is used to create and 

support knowledge tests for students. Through this combination 

of assessment and knowledge structure, the student gains the 

freedom to explore not only single knowledge items but the 

education in the context of related knowledge areas, while the 

embedded requirements are used to map the modeled knowledge 

against the expected educational outcome. 

The assessment-system is designed to be accompanied by phases 

of learning within the system, where the student gets access to 

learning material, based on and supported by the test feedback. 

This combined approach offers a unique self-assessment to the 

students, where the backing knowledge context is used to adapt 

the assessment in dependency of the test performance of the 

student. 

Before any regular examination students may use Studio to 

assess their knowledge on their own. It is the tutor’s 

responsibility to set the course of self-assessment test in Studio 

 



system by selecting knowledge areas and sub-knowledge areas 

which are relevant for the target education from the domain 

ontology. Then the frame will be automatically completed with 

elements from the ontology which detail the selected knowledge 

areas and are modeled as required for this part of the education. 

As the system stores assessment questions for each knowledge 

element, Studio will then automatically prepare an assessment 

test, based on the defined selection and the domain ontology. The 

resulting knowledge-test is then accessible as a self-assessment 

test for the student, who explores the backed knowledge 

structure, which pictures the expected learning outcome, in 

cycles of testing, reflection and learning. The process of test 

definition and assessment is shown in Figure 1, while the result 

preparation for reflection and learning is discussed in section 2.5. 

 

Figure 1: The overall design, assess and reflection cyle of the 

system. 

2.1 The Educational Domain Ontology 
The Studio system is based on a predesigned educational 

ontology, explained in detail by Vas in [3]. Domain ontology is a 

frequently used term in the field of semantic technologies and 

underlines the storage and conceptualization of domain 

knowledge and is often used in a number of projects and 

solutions [4][5][6] and could address a variety of domains with 

different characteristics in their creation, structure and 

granularity, depending on the aim and the modeling person [7]. A 

specialization in terms of the field is the educational domain 

ontology which is a domain ontology adapted to the area and 

concepts of education. They could target to model different 

aspects of education as the curriculum or aspects relevant for the 

task of learning and course creation [8][9][10] or describe the 

design, use and retrieval of learning materials till creating 

courses [11], as well as directly the learner within the education 

[12]. 

Within the area of educational ontologies, domain ontologies 

tend to model too specific details of the education, in an attempt 

to model the specific field as complete as possible. This enables 

a comprehensive view on the field but it comes at the cost of 

generality, with the potential to be inflexible to handle changes. 

Other concepts model the education across different ontologies, 

matching concepts like the learner, the education and the course 

description, introducing a broad horizon but with additional 

overhead to combine modelled insights and reason on new 

instances. 

The appeal of the Studio educational ontology is the size and 

focus of the main classes and their relationships between each 

other. The knowledge to learn is the main connecting concept in 

the core of education. It enables a great flexibility to be 

resourceful for different education related questions. An example 

is here the business process management extension PROKEX, 

which maps process requirements against knowledge areas to 

create assessment test, reflecting the requirements of attached 

processes [13]. 

An important factor in learning is the distance between the 

expectation of the tutor and the learning performance of the 

student. Here a short cycle of repeated assessment and learning 

is a major factor for a better personal learning performance [14]. 

This aspect directly benefits from the focused concentration on 

knowledge-areas as the main exchange concept between students 

and tutors. As even further the close connections between 

learners and educators via direct tutoring is one major enabler for 

computer aided systems [15], each step towards a more direct 

interaction through focused concepts is an additional supporter. 

The class structure fuses the idea of interrelated knowledge with 

a model of the basic types of educational concepts, involved in 

situations of individual learning. Figure 2 visualizes the class 

concepts as knowledge elements, together with the relation types, 

used to model the dependencies between different aspects of 

knowledge and learning within the educational ontology. 

The Knowledge Area is the super-class and core-concept of the 

ontology. The ontology defines two qualities of main relations 

between knowledge areas: Knowledge areas could be a sub-

knowledge area of other knowledge areas with the “has_sub-

knowledge_area” relation or be required for another knowledge 

area with the “requires_knowledge_of” relation. A knowledge 

area may have multiple connected knowledge areas, linked as a 

requirement or sub-area. The “requires_knowledge_of” relation 

defines that a node is required to complete the knowledge of a 

parent knowledge area. This strict concept models a requirement 

dependency between fields of knowledge in education and yields 

the potential to assess perquisites of learning, analog to the basic 

idea of perquisites within knowledge spaces, developed by 

Falmagne [16]. 

Education is a structured process which splits the knowledge to 

learn into different sub-aspects of learning. Knowledge areas in 

the ontology are extended by an additional sub-layer of 

knowledge elements in order to effectively support educational 



and testing requirements. Figure 2 visualizes the sub-elements 

and their relations. By splitting the assessed knowledge into sub-

concepts, the coherence and correlation of self-assessment 

questions could be expressed more efficiently and with the 

potential of a more detailed educational feedback. 
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Figure 2: Model of the educational ontology. 

Theorems express in a condensed and structured way the 

fundamental insights within knowledge areas. They fuse and 

explain the basic concepts of the depicted knowledge and set 

them in relation to the environment of learning with examples. 

Multiple theorems could be “part_of” a knowledge area. Each 

theorem may define multiple Basic Concepts as a “premise” or 

“conclusion”, to structure how the parts of the knowledge area 

are related. Examples enhance this parts as a strong anchor for 

self-assessment questions and “refer_to” the theorems and basic 

concepts as a “part_of” one or more knowledge areas. 

2.2 The Testbank 
In order to connect the task of self-assessment with the model of 

the educational domain, the system integrates a repository of 

assessment questions. Each question addresses one element of 

the overall knowledge and is directly associated with one 

knowledge area or knowledge element instance within the 

ontology. The domain ontology provides here the structure for the 

online self-assessment while the repository of questions 

supplements the areas as a test bank. The target of the self-

assessment is to continuously improve the personal knowledge 

within the assessed educational areas, by providing feedback on 

the performance after each phase of testing. To do so, the Studio 

system includes Learning Material connected to the test bank and 

the knowledge areas, analog to the test questions. The learning 

material is organized into sections as a structured text with 

mixed media, as pictures and videos, and is based on a wiki-

engine to maintain the content, including external links. 

2.3 Creating and Maintaining Tests 
The creation and continues maintenance of the domain ontology 

is a task of ontology engineering. The ontology engineer (the 

ontologist), creates, uses and evaluates the ontology [17], with a 

strong focus on maintaining the structure and content. Within 

Studio, this process is guided and supported by a specialized 

administration workflow and splits in three consecutive task 

areas, in line with decreasing access rights: 

 Ontology engineering (instance level): The creation 

and linking of instances of the existing knowledge-area 

classes into the overall domain ontology. 

 Test definition: Knowledge areas, which are relevant 

to a target self-assessment test, are selected and 

grouped into specialized containers called Concept 

Groups (CG). These concept groups are organized into 

a tree of groups, in line with the target of the 

assessment. The final tree in this regards captures a 

sub-ontology. Concept groups are internally organized 

based on the overall ontology and include all relations 

between knowledge elements, as defined within the 

domain ontology. 

 Question and learning material creation: Questions 

and learning materials alike are directly connected to 

single knowledge areas within the designed test frame 

and get imported, if already existing, from the domain 

ontology. More questions and learning materials are 

defined now, in line with the additional need of the 

targeted education and are available for future tests. 

The pre-developed structure of classes and relations is fixed as 

the central and integral design of the system. A view of the 

system interface for administration is provided in Figure 3. The 

left area shows the visualization of the current ontology section 

in revision and the right area shows the question overview with 

editing options. Tabs give access to additional editing views, 

including the learning material management and interfaces to 

modify relations between nodes and node descriptions. 

2.4 Adaptive Self-Assessment 
To prepare an online self-assessment test, the system has to load 

the relevant educational areas from the domain ontology and 

extract the questions and relations of the filtered knowledge 

areas. 

The internal test algorithm makes use of two assumptions: 

 Knowledge-area ordering: As the main knowledge 

areas are connected through “requires_knowledge_of” 

and “part_of” relations, every path, starting with the 

start-element, will develop on average from general 

concepts to detailed concepts - given that the concept 

groups in the test definition are also selected and 

ordered to lead from general to more detailed groups. 

 Knowledge evaluation dependency: If a person, 

taking the test, fails on general concepts he or she will 

potentially also fail on more detailed concepts. Further, 

if a high number of detailed concepts are failed, the 

parent knowledge isn’t sufficiently covered and will be 

derived as failed, too. 

 



 

Figure 3: The main ontology maintenance and administration interface, showing a part of the domain ontology.

The filtering is done based on the selection of a tutor, acting as 

an expert for the target educational area. The tutor chooses 

related areas, which are then created as a Test Definition, 

containing Concept Groups, as described in section 2.3. The 

system then uses the test definition as a filtering list to extract 

knowledge areas. After the extraction, the structure is cached as 

a directed graph, while the top element of the initial concept 

group is set as a start element. Beginning with the start-element, 

the test will move then through the graph, while administering 

the questions connected to knowledge areas and knowledge 

elements.  

The loading of knowledge-elements follows three steps: 

1. Each type of relation between two knowledge-elements 

implements a direction for the connection. Assuming 

the system loads all relations, starting with the start-

element and ending on a knowledge-element, this 

creates a two level structure where the start-node is a 

parent-element and all related, loaded elements are 

child-elements, as seen below in Figure 4. 

2. The loading algorithm then selects one child-element 

and assumes it as a start-element and repeat the 

loading process of knowledge-elements. 

3. When no knowledge-elements for a parent-element 

could be loaded, the sub-process stops. When all sub-

processes have stopped, the knowledge structure is 

fully covered. 

The test algorithm will now activate the child knowledge areas of 

the start element and select the first knowledge area to the left 

and draw a random question from the selected knowledge area. If 

the learner fails the question, the algorithm will mark the 

element as failed and selects the next knowledge area from the 

same level. If the learner’s answer is correct, the system will 

activate the child elements of the current node and draw a 

random question from the first left child. 

Based on the tree shaped knowledge structure, the assessment 

now follows these steps to run the self-assessment, supported by 

the extracted knowledge structure: 

1. Starting from the start-element, the test algorithm will 

activate the child knowledge-areas of the start element.  

2. The algorithm now selects the first child-knowledge 

area and draws a random question out of the pool of 

available questions for this specific knowledge-element 

from the test bank. 

3. If the learner fails the question, the algorithm will 

mark the element as failed and select the next 

knowledge area from the same level. If the learner’s 

answer is correct, the system will activate the child 

elements of the current node and trigger the process for 

each child-element. 

 

Figure 4: Excerpt from the sub-ontology visualization, with 

the visible parent-child relationship, as used in the data-

loading for preparing the self-assessment.  



An example question is shown below in Figure 5. Further 

following the testing algorithm, the system dives down within the 

domain ontology and triggers questions depending on the 

learner’s answers and the extracted model of the relevant 

education. In this regards the Studio system adapts the test on the 

fly to the performance of the learner. Correlating to the idea of 

adaptation, the learner will later gain access to learning material 

for each mastered knowledge area. As the learner continues to 

use the self assessment to evaluate the personal knowledge, he or 

she will thus explore different areas of the target education, 

following their individual pace of learning. 

 

Figure 5: Test interface with a random drawn test question. 

2.5 Test Feedback and Result Visualization 
An important aspect of the system is the test feedback and 

evaluation interface. The educational feedback is one of the main 

enabler for the student to grasp the current state and extend of 

the personal education. The domain ontology models the 

structure and the dependencies of the educational domain, and 

the grouped test definition extracts the relevant knowledge for 

the target area or education. As such, the visualization of the 

ontology structure extracted for the test, together with the 

indication of correct and incorrect answers, represents a map of 

the knowledge of the learner. 

Throughout each view onto the ontology, the system uses the 

same basic visualization, making use of the Sencha Ext JS 

JavaScript framework [18]. The visualization itself is a custom 

build, similar to the Ext JS graph function “Radar” and based on 

the idea of Ka-Ping, Fisher, Dhamija and Hearst [19]. All views 

are able to zoom in and out of the graph, move the current 

excerpt and offer a color code legend, explaining the meaning of 

the colored nodes. In comparison with state of the art, the 

interface offers no special grouping or additional visualization 

features like coding information into the size of nodes. Each 

interface offers an additional textual tree view to explore the 

knowledge-elements or concept groups in a hierarchical listing. 

This simple, straightforward approach for visualization correlates 

with the goal of a direct and easy to grasp feedback through 

interfaces which have a flat learning curve and enable to catch 

the functionality in a small amount of time. 

While this simple visualization is sufficient for the reasonable 

amount of knowledge-elments within the result view, this alone 

is not suitable for the domain ontology administration interface, 

as seen in Figure 3. Here Studio realizes methodologies to filter 

and transform the data to visualize. To do so it makes use of two 

supporting mechanisms: 

 The maximum-level-selector defines the maximum 

level the system extracts from the domain ontology for 

full screen visualization. 

 In combination with the maximum level, the ontologist 

could select single elements within the domain 

ontology. This triggers an on-demand re-extraction of 

the visualized data, setting the selected knowledge-

element as the centre element. The system then loads 

the connected nodes, based on their relations into the 

orientation circles till the maximum defined level is 

reached. More details about the transformation are in 

[19]. 

 

Figure 6: Result visualization as educational feedback for the learner.



Together, this selection and transformation mechanism enables 

the fluent navigation within the complete domain ontology 

structure, while re-using the same visualization interface.  

Figure 6 shows the main view of the result interface. The left 

area shows the sub-ontology extracted for the test, while the 

colored nodes represent the answers to the administered 

questions. A red node visualizes wrong answers, while orange 

nodes are rejected nodes with correct answers but with an 

insufficient number of correctly answered child nodes, 

indicating a lack of the underlying knowledge. Green nodes 

represent accepted nodes with correct answers and a sufficient 

amount of correctly answered questions for child nodes. Grey 

nodes are not administered nodes, which were not yet reached 

by the learner, as higher order nodes had no adequate 

acceptance. 

Even though the target of the system is not a strict evaluation in 

number, the evaluation of the percentage of solved and 

accepted knowledge elements helps the learner to track the 

personal progress and could additionally be saved as a report 

for further consultation. Besides providing an overview of the 

self-assessment result, the result interface gives access to the 

integrated learning material. For every passed node, the learner 

can now open the correlated material and intensify the 

knowledge for successful tested areas. 

Retaking the test in cycles of testing and learning, while 

adapting the educational interaction, is the central concept of 

the Studio approach for self-assessment. As a consequence the 

system will not disclose the right answers to questions or 

learning material for not yet administered knowledge areas, to 

promote an individual reflection on the educational content 

outside of a flat memorization of content. 

3. SYSTEM EVALUATION 
The system has been used, extended and evaluated in a number 

of European and nationally funded research projects, including 

applications in business process management and innovation-

transfer [20], medical education [21] and job market 

competency matching [22]. 

Currently the system is being evaluated based on a running 

study with 200 university students in the field of business 

informatics. The study will conclude on two current research 

streams which are improving the systems testing and analysis 

capability. The first direction looks into potentials for the 

integration of learning styles into adaptive learning systems to 

offer valuable advice and instructions to teachers and students 

[23]. Within the second direction the question is challenged on 

how to adapt the presented self-assessment further towards the 

performance of the students, based on extracting assessment 

paths from the knowledge structure [24]. 

For each running test, Studio collects basic quantitative data 

about the number of assigned questions, how often tests are 

taken and how many students open which test and when. This 

is completed by qualitative measures, collecting which 

questions and knowledge elements the students passed or 

failed. To conclude further on the mechanisms and impacts of 

Studio within the current study, a new logging system was 

developed, collecting the interaction with the system and 

detailed information about the feedback as detailed events. 

Each event stores information about the system in 7 

dimensions, as described in Table 1 below: 

Table 1: Event blueprint to store events concerning system 

interaction. 

Attribute Description 

Event description code Which type of event and what 

factors are relevant. 

Location code On which part of the assessment-

process or interface the event has 

occurred. 

Session identifier Each access of the system is one 

session for one user. 

Numerical value storage Multi-purpose field, filled 

depending on the event type. 

String value storage Multi-purpose field, filled 

depending on the event type. 

Event-time The time of the start of the 

event. 

Item reference A unique reference code, 

identifying the correlated item 

within the ontology. E.g. a 

question or a knowledge-element 

ID. 

All events are stored in order of their occurrence, so if no 

explicit end event is defined, the next event for the same 

session and user is acting as the implicit end date. Extending 

the existing storage of information within Studio, the new 

logging system stores the additional events, as shown in Table 

2 below: 

Table 2: Assessment events and descriptions. 

Event type Description 

START_TEST Marks the start of a test. 

END_TEST Marks the end of a test. 

OPEN_WELCOME_LM The user opened the welcome 

page. 

OPEN_LM_BLOCK The student opened a learning 

material block on the test 

interface. 

OPEN_LM The student opened the learning 

material tab on the test interface. 

RATE_LM The student rated the learning 

material. 

CHECK_RESULT The student opened a result page. 

CONTINUE_TEST The student submitted an answer. 

FINISH_TEST The test has been finished. 

SUSPEND_TEST The user suspended the test. 

RESUME_TEST The user has restarted a previously 

suspended test. 

SELECT_TEST_ALGO-

RITHM 

The algorithm used to actually test 

the student is selected. 



TEST_ALGORITHM_-

EVENT 

The behavior of the current test 

algorithm changes, e.g. entering 

another stage of testing. 

ASK_TESTQUESTION Sends out a test question to the 

user to answer. 

STUDIO_LOGOUT The user logs out of the Studio 

system. 

To store the events, the system implements an additional 

logging database, splitting the concepts of the logging to a star-

schema for efficient extraction, transformation and loading. The 

logging system is modular and easy to extend with new 

concepts and easy to attach to potential event positions within 

the Studio runtime. Together with the existing logging of the 

assessment evaluation feedback, this new extension tracks the 

exploration of the sub-ontology within the assessment and 

enriches the feedback data with context information of the 

students behavior on the system. 

4. NEXT STEPS 
The domain ontology offers a functional and semantically rich 

core for supporting learning and education. Yet not all the 

semantic potentials are fully leveraged to support and test the 

learner’s progress. The “requires_knowledge_of” relation-

requirement is a potential start-concept to model sub-areas as 

groups which together compose the dependency. This could act 

as an additional input for the assessment, where the system 

derives more complex decision how to further explore the 

related parts of the structure [25]. This could also be visualized, 

enabling the learner to grasp the personal knowledge as a 

visible group of concepts. 

Besides giving colors to the different types of relations, the 

visualizing of edges between knowledge areas is yet unfiltered, 

offering no further support for navigation. A next stage of 

implementation could be the introduction of a visual ordering 

and grouping of knowledge areas and relations. Underlying 

relations of sub-nodes could be interpreted visually through the 

thickness of relations between nodes, easing the perception of 

complex parts of the domain ontology, especially within 

administration and maintenance tasks. 

The feedback of the current evaluation study of Studio will 

provide additional insights into the usage of the system by the 

students. Based on this new data it is possible to mine profiles 

over time on the knowledge structure. One major application is 

here the creation of behavior profiles, as proposed in [23]. 
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ABSTRACT
This paper explores the feasibility of a graph-based approach
to model student knowledge in the domain of programming.
The key idea of this approach is that programming concepts
are truly learned not in isolation, but rather in combina-
tion with other concepts. Following this idea, we represent
a student model as a graph where links are gradually added
when the student’s ability to work with connected pairs of
concepts in the same context is confirmed. We also hypothe-
size that with this graph-based approach a number of tradi-
tional graph metrics could be used to better measure student
knowledge than using more traditional scalar models of stu-
dent knowledge. To collect some early evidence in favor of
this idea, we used data from several classroom studies to
correlate graph metrics with various performance and moti-
vation metrics.

1. INTRODUCTION
Student modeling is widely used in adaptive educational sys-
tems and tutoring systems to keep track of student knowl-
edge, detect misconceptions, provide targeted support and
give feedback to the student [2]. The most typical overlay
student model dynamically represents the inferred knowl-
edge level of the student for each knowledge element (KE)
(also called knowledge component or KC) defined in a do-
main model. These knowledge levels are computed as the
student answers questions or solves problems that are mapped
to the domain KEs. Student models are frequently built over
networked domain models where KEs are connected by pre-
requisite, is-a, and other ontological relationships that are
used to propagate the knowledge levels and produce a more
accurate representation of the knowledge of the learner. Since
these connections belong to domain models, they stay the

same for all students and at all times. In this work we ex-
plore the idea that it might be beneficial for a student model
to include connections between domain KEs that represent
some aspects of individual student knowledge rather than
domain knowledge. This idea is motivated by the recogni-
tion that the mastery in many domains is reached as the
student practices connecting different KEs, i.e., each KE is
practiced in conjunction with other KEs. To address this, we
build a model represented as a network of KEs that get pro-
gressively connected as the student successfully works with
problems and assessment items containing multiple KEs. As
the student succeeds in more diverse items mapped to dif-
ferent KEs, her model gets better connected.

To explore the value of this graph-based representation of
student knowledge, we compute different graph metrics (e.g.,
density, diameter) for each student and analyze them in re-
lation to student performance metrics and attitudinal ori-
entations drawn from a motivational theory. This analysis
was performed using data collected from 3 cohorts of a Java
programming course using the same system and the same
content materials. In the remaining part of the paper, we
describe related work, introduce and illustrate the suggested
approach, describe graph and performance metrics, and re-
port the results of the correlation analysis.

2. RELATED WORK
Graph representation of student activity is not new. The
2014 version of the Graph-Based Educational Data Mining
Workshop 1 contains two broad types of related work: the
analysis of the networking interaction among students, for
example work on social capital [14] and social networking in
MOOCs [3, 12]; and analyses of learning paths over graph
representation of student traces while performing activities
in the system [1, 5]. Our work fits in the second type since
we model traces of each student interacting with the sys-
tem. However, our approach is different as it attempts to
combine an underlying conceptual model with the traces of
the student learning.

1http://ceur-ws.org/Vol-1183/gedm2014_proceedings.
pdf



A considerable amount of work focused on graph repre-
sentation of domain models that serve as a basis for over-
lay student models. The majority of this work focused on
constructing the prerequisite relationships between domain
knowledge components (concept, skills) [6, 13]. In this case
links established between a pair of concepts represent prereq-
uisite - outcome relationship. Another considerable stream
of work explored the use of formal ontologies with such re-
lationships as is-a and part-of for connecting domain knowl-
edge components [7]. Ontological representation, in turn,
relates to another stream of work that applies graph tech-
niques to structural knowledge representation, for example
by analyzing the network properties of ontologies [9].

The research on graph-based domain models also leads to
a stream of work on using Bayesian networks to model the
relationships between domain concepts for knowledge prop-
agation in the process of student modeling [15, 4]. Yet, in
both cases mentioned above links between knowledge com-
ponents were not parts of individual student model, but ei-
ther parts of the domain model or student modeling pro-
cess and thus remain the same for all students. In con-
trast, the approach suggested in this paper adds links be-
tween knowledge components to individual student models
to express combinations of knowledge components that the
given student explored in a problem solving or assessment
process. This approach is motivated by our belief that in
the programming domain, student knowledge is more effec-
tively modeled by capturing student progress when students
needed to apply multiple concepts at the same time.

3. THE APPROACH
The idea behind our approach is that knowledge is likely to
be stronger for concepts which are practiced together with
a larger variety of other concepts. We hypothesize, for ex-
ample, that a student who solves exercises, in which the
concept for-loop is used with post-incremental operator and
post-decremental operator will have a better understanding
of for-loop than another student who practices (even the
same amount of times) the for loops concept in a more nar-
row context, i.e., only with post-incremental operator. To
represent our approach, for each student we build a graph-
based student model as a network of concepts where the
edges are created as the student succeeds in exercises con-
taining both concepts to be connected. The Domain Model
defining the concept space and the mapping between the
concepts and programming exercises is explained in the next
section. The weight of the edges in the graph is computed
as the overall success rate on exercises performed by the
student which contain the pair of concepts. Pairs of con-
cepts that do not co-occur in exercises succeeded by the stu-
dent are not connected in her graph. In this representation,
highly connected nodes are concepts successfully practiced
with different other concepts. We also compute a measure
of weight for each node by taking the average weight among
edges connecting the node. This measure of the success rate
on concepts favors exercises that connect more concepts be-
cause each exercise containing n concepts produce or affects
n(n−1)/2 edges. For example, a success on an exercise hav-
ing 10 concepts contributes to 45 edges, but a successful at-
tempt to an exercise connecting 5 concepts only contributes
to 10 edges. We hypothesize that in a graph built following
this approach, metrics like average degree, density, average

Figure 1: Exercise jwhile1

path length, and average node weight can be good indicators
of student knowledge compared to the amount of activities
done or overall measures of assessment like success rate on
exercises. We further explore these graph metrics in relation
with motivational factors drawn from a learning motivation
theory.

3.1 Domain Model and Content
Our content corpus is composed by a set of 112 interactive
parameterized exercises (i.e., questions or problems) in the
domain of Java programming from our system QuizJet [11].
Parameterized exercises are generated from a template by
substituting a parameter variable with a randomly generated
value. As a result each exercise can be attempted multiple
times. To answer the exercise the student has to mentally
execute a fragment of Java code to determine the value of a
specific variable or the content printed on a console. When
the student answers, the system evaluates the correctness,
reports to the student whether the answer was correct or
wrong, shows the correct response, and invites the student
to “try again”. As a result, students may still try the same
exercises even after several correct attempts. An example of
parameterized java exercise can be seen in Figure 1.

In order to find the concepts inside all of the exercises, we
used a parser [10] that extracts concepts from the exercise’s
template code, analyzes its abstract syntax tree (AST), and
maps the nodes of the AST (concepts extracted) to the nodes
in a Java ontology 2. This ontology is a hierarchy of pro-
gramming concepts in the java domain and the parser uses
only the concepts in the leaf nodes of the hierarchy.

In total there are 138 concepts extracted and mapped to
QuizJet exercises. Examples of concepts are: Int Data Type,
Less Expression, Return Statement, For Statement, Subtract
Expression, Constant, Constant Initialization Statement, If
Statement, Array Data Type, Constructor Definition, etc.
We excluded 8 concepts which appear in all exercise tem-
plates (for example “Class Definition” or “Public Class Spec-
ifier” appear in the first line of all exercises). Each concept
appears in one or more Java exercises. Each of the 112 ex-
ercises maps to 2 to 47 Java concepts. For example, the
exercise “jwhile1”, shown in Figure 1, is mapped to 5 con-
cepts: Int Data Type, Simple Assignment Expression, Less
Expression, While Statement, Post Increment Expression.

2http://www.sis.pitt.edu/~paws/ont/java.owl



3.2 Graph Metrics
To characterize the student knowledge graph we computed
standard graph metrics listed below.

• Graph Density (density): the ratio of the number of
edges and the number of possible edges.

• Graph Diameter (diameter): length of the longest
shortest path between every pair of nodes.

• Average Path Length (avg.path.len): average among
the shortest paths between all pairs of nodes.

• Average Degree (avg.degree): average among the
degree of all nodes in an undirected graph.

• Average Node Weight (avg.node.weight): the weight
of a node is the average of the weight of its edges. We
then average the weights of all nodes in the graph.

3.3 Measures of Activity
To measure student activity so that it could be correlated
with the graph metrics we collected and calculated the fol-
lowing success measures:

• Correct Attempts to Exercises (correct.attempts):
total number of correct attempts to exercises. It in-
cludes repetition of exercises as well.

• Distinct Correct Exercises (dist.correct.attempts):
number of distinct exercise attempted successfully.

• Overall Success Rate (success.rate): the number
of correct attempts to exercises divided by the total
number of attempts.

• Average Success Rate on Concepts
(avg.concept.succ.rate): we compute the success rate
of each concept as the average success rate of the ex-
ercises containing the concept. Then we average this
among all concepts in the domain model.

3.4 Motivational Factors
We use the revised Achievement-Goal Orientation question-
naire [8] which contains 12 questions in a 7-point Likert
scale. There are 3 questions for each of the 4 factors of
the Achievement-Goal Orientation framework : Mastery -
Approach, Mastery-Avoidance, Performance-Approach and
Performance-Avoidance. Mastery-Approach goal orien-
tation relates to intrinsic motivation: “I want to learn this
because it is interesting for me”, “I want to master this
subject”; Mastery-Avoidance relates to the attitude of
avoid to fail or avoid learning less than the minimum; Per-
formance -Approach goal orientation stresses the idea of
having a good performance and relates well with social com-
parison: “I want to perform good in this subject”, “I want to
be better than others here”; and Performance-Avoidance
oriented students avoid to get lower grades or avoid to per-
form worse than other students. The goal orientation of
a student helps to explain the behavior that the student
exposes when facing difficulty, but does not label the final
achievement of the student. For example, if a student is
Mastery-Approach oriented, it does not necessarily mean
that the student reached the mastery level of the skill or
knowledge. In our case, we believe the achievement-goal ori-
entation of the student can convey the tendency to pursue
(or avoid) to solve more diverse (and more difficult) exer-
cises, which contain more heterogeneous space of concepts,
thus contribute to form better connected graphs.

Table 1: Correlation between activity measures and grade
and between graph metrics and grade. * significance at 0.1,
** significance at 0.05.

Measure of Activity Corr. Coeff. Sig. (p)
Correct Attempts to Exercises .046 .553
Distinct Correct Exercises .114 .147
Overall Success Rate .298 .000**
Avg. Success Rate on Concepts .188 .016**

Graph Metric Corr. Coeff. Sig. (p)
Average Degree .150 .055*
Graph Density .102 .190
Graph Diameter .147 .081
Average Path Length .152 .052*
Average Node Weight .201 .010**

4. EXPERIMENTS AND RESULTS
4.1 Dataset
We collected student data over three terms of a Java Pro-
gramming course using the system: Fall 2013, Spring 2014,
and Fall 2014. Since the system usage was not mandatory,
we want to exclude students who just tried the system while
likely using other activities (not captured by the system)
for practicing Java programming. For this we looked at the
distribution of distinct exercises attempted and we exclude
all student below the 1st quartile (14.5 distinct exercises
attempted). This left 83 students for our analysis. In to-
tal these students made 8,915 attempts to exercises. On
average, students have attempted about 55 (Standard Devi-
ation=22) distinct exercises while performing an average of
107 (SD=92) exercises attempts. On average, students have
covered about 63 concepts with SD=25 (i.e., succeeded in at
least one exercise containing the concept), and have covered
about 773 concept pairs with SD=772 (i.e., succeeded in at
least one exercise covering the concept pair.) The average
success rate (#correct attempts

#total attempts
) across students is about 69%

(SD=11%).

4.2 Graph Metrics and Learning
We compare graph metrics (Avg. Degree, Graph Density,
Graph Diameter, Avg. Path Length and Avg Node Weight)
and measures of activity (Correct Attempts to Exercises,
Distinct Correct Exercises, Overall Success Rate and Avg.
Success Rate on Concepts) by computing the Kendall’s τB
correlation of these metrics with respect to the students’
grade on the programming course. Results are displayed in
Table 1.

Surprisingly, the plain Overall Success Rate (which does
not consider concepts disaggregation, nor graph informa-
tion) is better correlated with course grade than any other
measure. Students who succeed more frequently, get in gen-
eral better grades. Interestingly, both the Average Suc-
cess Rate on Concepts and the Average Node Weight
are both significantly correlated with grade. This last mea-
sure uses the graph information and presents a slightly bet-
ter correlation than the former, which does not consider the
graph information.

Among the other graph metrics, Average Degree and Av-
erage Path Length are marginally correlated with course



Figure 2: Graph representation of two students.

Table 2: Graph metrics, measures of activity and motiva-
tional scores of 2 students.

Student A Student B
Graph Density 0.077 0.094
Graph Diameter 2.85 2.00
Avg. Path Length 1.77 1.78
Avg. Degree 8.64 10.55
Avg. Node Weight 0.49 0.51
Correct Attempts 71 83
Dist. Correct Exercises 66 61
Overall Succ. Rate 0.82 0.76
Avg. Succ.Rate on Concepts 0.50 0.53
Mastery-Approach 0.83 0.78
Mastery-Avoidance 0.83 0.56
Performance-Approach 1.0 0.17
Performance-Avoidance 1.0 0.0
Grade (%) 100 97

grade (p values less than 0.1). Although this is a weak ev-
idence, we believe that we are in the good track. A higher
Average Degree means a better connected graph, thus it
follows our idea that highly connected nodes signal more
knowledge. Average Path Length is more difficult to in-
terpret. A higher Average Path Length means a less
connected graph (which contradicts our assumption), but
also, it can express students reaching more “rear” concepts
which appear in few more-difficult-exercises and generally
have longer shortest paths. We think that further explo-
ration of metrics among sub-graphs (e.g. a graph for an
specific topic), and further refinement of the approach to
build edges (e.g. connecting concepts that co-occur close to
each other in the exercise) could help to clarify these results

Figure 2 shows the graphs of 2 students who have similar
amount of distinct exercises solved correctly but present dif-
ferent graph metrics and motivational profile. See metrics in
Table 2. Student B has more edges, lower diameter, higher
density, higher degree, solved less questions more times. Stu-
dent A presents a less connected graph although she he/she
solved more distinct questions (66 compared to 61 on Stu-
dent B). Student B has lower Mastery-Avoidance orientation
score and lower Performance orientation scores than Student
A, which could explain why Student B work result in a bet-
ter connected graph. Analyses of Motivational factors are
described in the following section.

4.3 Metrics and Motivation
We now explore the relationship between motivational fac-
tors and the graphs of the students. The idea is to see to

which extent the motivational profile of the student explains
the graph’s shape. Step-wise regression models were used
where the dependent variables are the graph metrics and
the independent variables are the motivational factors. We
found a significant model of the diameter of the graph (R2 =
0.161, F = 6.523, p = 0.006) with the factors Mastery-
Avoidance (B = 0.952, p = 0.001) and Mastery-Approach
(B = −0.938, p = 0.006). Note the negative coefficient for
Mastery-Approach and the positive coefficient for Mastery-
Avoidance. As the Achievement-Goal Orientation frame-
work suggests, Mastery-Approach oriented students are mo-
tivated to learn more, tend to explore more content and do
not give up easily when facing difficulties; Mastery-Avoidance
students, in the other hand, do not cope well with diffi-
culties and tend to give up. Then, a possible explanation
of the results is that, in one hand, students with higher
Mastery-Approach orientation are more likely to solve diffi-
cult questions which connects more and more distant con-
cepts which decreases the graph diameter; and on the other
hand, Mastery-Avoidance students avoid difficult exercises
containing many concepts, thus making less connections and
producing graphs with higher diameters. Correlations be-
tween graph metrics and motivational factors confirmed the
relation between Mastery-Avoidance and Graph Diameter
(Kendall’s τB = 0.197, p = 0.030). Although these re-
sults are encouraging, they are not conclusive. For exam-
ple, Mastery-Approach students might just do more work,
not necessarily targeting difficult questions. More analysis
is needed to deeply explore these issues.

5. DISCUSSIONS AND CONCLUSIONS
In this paper we proposed a novel approach to represent stu-
dent model in the form of a dynamic graph of concepts that
become connected when the student succeed in assessment
item containing a pair of concepts to be connected. The
idea behind this approach is to strengthen the model for
those concepts that are applied in more different contexts,
i.e., in assessment items containing other different concepts.
We applied this approach to data of assessment items an-
swered by real students and analyzed the graph properties
comparing them to several performance measures such as
course grade as well as motivational factors. Results showed
that this idea is potentially a good indicator of knowledge
of the students, but further refinement of the approach is
needed. We used several measures of the built graphs as
descriptors of student knowledge level, and we found that a
metric aggregating the success rates of the edges to the level
of concepts (nodes) is highly correlated to course grade, al-
though it does not beat the plain overall success rate of the
student in assessment items.

In the future work, we plan to repeat our analysis using
more reliable approaches to construct the knowledge graph.
One idea is to use rich information provided by the parser
(mapping between exercises and concepts) to ensure that
each new link connects concepts that interact considerably
in the program code. This could be done by controlling
the concepts proximity in the question code (e.g. only con-
sider co-occurrence when concepts are close to each other
in the parser tree.) Another approach to keep more reliable
edges is to consider only a subset of important concepts
for each problem using feature selection techniques. Also
we plan to perform analyses of sub-graphs targeting specific



“zones” of knowledge. For example, a partial graph with
only concepts that belongs to a specific topic, or concepts
that are prerequisites of a specific concept. Another inter-
esting idea relates to recommendation of content: guide the
student to questions that will connect the isolated parts of
the knowledge graph or minimize the average path length of
the graph. Along the same lines, the analysis of the graph
shortest paths and overall connectivity can help in designing
assessment items that better connect distant concepts.
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G. Stumme. Semantic network analysis of ontologies.
Springer, 2006.

[10] R. Hosseini and P. Brusilovsky. Javaparser: A
fine-grain concept indexing tool for java exercises. In
The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013), pages 60–63, 2013.

[11] I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky. Guiding
students to the right questions: adaptive navigation
support in an e-learning system for java programming.
Journal of Computer Assisted Learning,
26(4):270–283, 2010.

[12] S. Jiang, S. M. Fitzhugh, and M. Warschauer. Social
positioning and performance in moocs. In Workshop
on Graph-Based Educational Data Mining, page 14.
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Bayesian networks for student model engineering.
Computers & Education, 55(4):1663–1683, 2010.



Graph-based Modelling of Students’ Interaction Data from
Exploratory Learning Environments

Alexandra Poulovassilis
London Knowledge Lab

Birkbeck, Univ. of London
ap@dcs.bbk.ac.uk

Sergio Gutierrez-Santos
London Knowledge Lab

Birkbeck, Univ. of London
sergut@dcs.bbk.ac.uk

Manolis Mavrikis
London Knowledge Lab

UCL Institute of Education
m.mavrikis@lkl.ac.uk

ABSTRACT
Students’ interaction data from learning environments has
an inherent temporal dimension, with successive events be-
ing related through the“next event”relationship. Exploratory
learning environments (ELEs), in particular, can generate
very large volumes of such data, making their interpretation
a challenging task. Using two mathematical microworlds
as exemplars, we illustrate how modelling students’ event-
based interaction data as a graph can open up new querying
and analysis opportunities. We demonstrate the possibilities
that graph-based modelling can provide for querying and
analysing the data, enabling investigation of student-system
interactions and leading to the improvement of future ver-
sions of the ELEs under investigation.
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1. INTRODUCTION
Much recent research has focussed on Exploratory Learn-
ing Environments (ELEs) which encourage students’ open-
ended interaction within a knowledge domain, coupled with
intelligent techniques that aim to provide pedagogical sup-
port to ensure students’ productive interaction [9]. The data
gathered from students’ interactions with such ELEs pro-
vides a rich source of information for both pedagogical and
technical research, to help understand how students are us-
ing the ELE and how the intelligent support that it provides
may be enhanced to better support students’ learning.

In this paper, we consider how modelling students’ event-
based interaction data as a graph makes possible graph-
based queries and analyses that can provide insights into
the ways that students are using the affordances of the sys-
tem and the effects of system interventions on students’ be-
haviour. Our case studies are two intelligent ELEs: the
MiGen system, that aims to foster 11-14 year old students’

learning of algebraic generalisation [15]; and the iTalk2Learn
system that aims to support 8-10 year old students’ learning
of fractions [7]. Both systems provide students with math-
ematical microworlds in which they undertake construction
tasks: in MiGen creating 2-dimensional tiled models using
a tool called eXpresser and in iTalk2learn creating fractions
using the FractionsLab tool. In eXpresser, tasks typically re-
quire the construction of several models, moving from spe-
cific models involving specific numeric values to a general
model involving the use of one or more variables; in parallel,
students are asked to formulate algebraic rules specifying
the number of tiles of each colour that are needed to fully
colour their models. In FractionsLab, tasks require the con-
struction, comparison and manipulation of fractions, and
students are encouraged to talk aloud about aspects of their
constructions, such as whether two fractions are equivalent.

Both systems include intelligent components that provide
different levels of feedback to students, ranging from un-
solicited prompts and nudges, to low-interruption feedback
that students can choose to view if they wish. The aim
of this feedback is to balance students’ freedom to explore
while at the same time providing sufficient support to en-
sure that learning is being achieved [9]. The intelligent sup-
port is designed through detailed cognitive task analysis and
Wizard-of-Oz studies [13], and it relies on meaningful indica-
tors being detected as students are undertaking construction
tasks. Examples of such indicators in MiGen are ‘student
has made a building block’ (part of a model), ‘student has
unlocked a number’ (i.e. has created a variable), ‘student
has unlocked too many numbers for this task’; while ex-
amples of such indicators in FractionsLab are ‘student has
created a fraction’, ‘student has changed a fraction’ (numer-
ator or denominator), ‘student has released a fraction’ (i.e.
has finished changing it).

Teacher Assistance tools can subscribe to receive real-time
information relating to occurrences of indicators for each
student, and can present aspects of this information visu-
ally to the teacher [8]. Indicators are either task independent
(TI) or task dependent (TD). The former refer to aspects of
the student’s interaction that are related to the microworld
itself and do not depend on the specific task the student is
working on, while the latter require knowledge of the task
the student is working on, may relate to combinations of
student actions, and their detection requires intelligent rea-
soning to be applied (a mixture of case-based, rule-based and
probablistic techniques). Detailed discussions of MiGen’s TI



and TD indicators and how the latter are inferred may be
found in [8].

In this paper we explore how graph-based representation of
event-based interaction data arising from ELEs such as Mi-
Gen and FractionsLab can aid in the querying and analysis
of such data, with the aim of exploring both the behaviours
of the students in undertaking the exploratory learning tasks
set and the effectiveness of the intelligent support being
provided by the system to the students. Data relating to
learning environments has often been modelled as a graph
in previous work, for example in [10] for providing support
to moderators in e-discussion environments; in [16, 18] for
supporting learning of argumentation; in [17] for modelling
data and metadata relating to episodes of work and learning
in a lifelong learning setting; in [1] for learning path discov-
ery as students“navigate”through learning objects; in [3] for
recognising students’ activity planning in ELEs; and in [23]
for gaining better understanding of learners’ interactions and
ties in professional networks.

Previous work that is close to ours is the work on interac-
tion networks and hint generation [6, 21, 20, 4, 5], in which
the graphs used consist of nodes representing states within a
problem-solving space and edges representing students’ ac-
tions in transitioning between states. This approach targets
learning environments where students are required to select
and apply rules, and the interaction network aims to rep-
resent concisely information relating to students’ problem-
solving sequences in moving from state to state. Our focus
here differs from this in that we are using graphs to model
fine-grained event-based interaction data arising from ELEs.
In our graphs, nodes are used to represent indicator occur-
rences (i.e. events, not problem states) and edges between
such nodes represent the “next event” relationship. Also,
rather than using the information derived from querying and
analysing this data to automatically generate hints, our fo-
cus is on investigating how students are using the system
and the effects of the system’s interventions in order to un-
derstand how students interact with the ELEs and improve
their future versions.

2. GRAPH-BASED MODELLING
Figure 1 illustrates our Graph Data Model for ELE interac-
tion data. We see two classes of nodes: Event — represent-
ing indicator occurrences; and EventType — representing
different indicator types. The instances of the Event class
are occurrences of indicators that are detected or generated
by the system as each student undertakes a task. We see
that instances of Event have several attributes: dateTime:
the date and time of the indicator occurrence; userID: the
student it relates to; sessionID: the class session that the
student was participating in at the time; taskID: the taskID
that the student was working on; and constrID: the con-
struction that the student was working on1.

1The model in Fig. 1 focusses on the interaction data. The
full data relating to ELEs such as eXpresser and Fraction-
sLab would also include classes relating to users, tasks, ses-
sions and constructions; and attributes describing instances
of these classes, such as a user’s name and year-group, a
task’s name and description, a construction’s content and
description, and a session’s description and duration.

Event
dateTime
taskID
constrID
userID
sessionID

EventType

eventID
eventStatus
eventCat

occurrenceOf

next

Figure 1: Core Graph Data Model

There is a relationship ‘next’ linking an instance of Event
to the next Event that occurs for the same user, task and
session. There is a relationship ‘occurrenceOf’ linking each
instance of Event to an instance of the EventType class.

The instances of the EventType class include: startTask,
endTask, numberCreated, numberUnlocked, unlockedNum-
berChanged, buildingBlockMade, correctModelRuleCreated,
incorrectModelRuleCreated, interventionGenerated, interven-
tionShown, in the case of eXpresser (see [8] for the full list);
and startTask, endTask, fractionCreated, fractionChanged,
fractionReleased, inverventionShown, in the case of Frac-
tionsLab.

We see that instances of the EventType class have several
attributes, including:

• eventID: a unique numerical identifier for each type of
indicator;

• eventStatus: this may be -1, 0 or 1, respectively stat-
ing that an occurrence of this type of indicator shows
that the student is making negative, neutral or posi-
tive progress towards achieving the task goals; an addi-
tional status 2 is used for indicators relating to system
interventions;

• eventCat: the category into which this indicator type
falls; for example, startTask and endTask are task-
related indicators; interventionGenerated and inter-
ventionShown are system-related ones; numberCreated,
numberUnlocked, unlockedNumberChanged are number-
related; and fractionCreated, fractionChanged, frac-
tionReleased are fraction-related.

Figure 2 shows a fragment of MiGen interaction data con-
forming to this graph data model. Specifically, it relates to
the interactions of user 5 as he/she is working on task 2
during session 9. The user makes three constructions during
this task (with constrIDs 1, 2 and 3). The start and end
of the task are delimited by an occurrence of the startTask
and endTask indicator type, respectively — events 23041
and 33154. We see that the two events following 23041 re-
late to an intervention being generated and being shown to
the student (this is likely to be because the student was in-
active for over a minute after starting the task); following
which, the student creates a number — event 24115.

There are additional attributes relating to events, not shown
here for simplicity, capturing values relating to the student’s
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next
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numberCreated

eventID:1006
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userID:5
sessionID:9

next

next

...

occurrenceOf

occurrenceOf

occurrenceOf

occurrenceOf

startTask

eventID:0
eventStatus:0
eventCat:taskEv

Figure 2: Fragment of Graph Data

constructions and information relating to the system’s in-
terventions. For example, for event 24115, the value of the
number created, say 5; for event 23921, the feedback strat-
egy used by the system to generate this intervention, say
strategy 8; and for event 23923, the content of the message
displayed to the user, say“How many green tiles do you need
to make your pattern?” and whether this is a high-level in-
terruption by the system or a low-level interruption that
the student can choose to view or not. Such information
can be captured through additional edges outgoing from an
event instance to a literal-valued node: 24115

value−−−→ 5, 23921
strategy
−−−−−−→ 8, 23932

message
−−−−−−→ “How many green tiles do you need

to make your pattern?”, 23932
level−−−→ “high”. Since graph data

models are semi-structured (and graph data therefore does
not need to strictly conform to a single schema), this kind
of heterogeneity in the data is readily accommodated.

Figure 3 similarly shows a fragment of FractionsLab inter-
action data, relating to the interactions of user 5 working
on task 56 during session 1. The user makes one construc-
tion during this task. We see events relating to the stu-
dent changing and ‘releasing’ a fraction. Following which
the system displays a message (in this case, it was a high-
interruption message of encouragement“Great! Well Done”).

We see from Figures 2 and 3 that the sub-graph induced by
edges labelled ‘next’ consists of a set of paths, one path for
each task undertaken by a specific user in a specific session.
The entire graph is a DAG (directed acyclic graph): there
are no cycles induced by the edges labelled ‘next’ since each
links an earlier indicator occurrence to a later one; while
the instances of EventType and other literal-valued nodes
can have only incoming edges. The entire graph is also a
bipartite graph, with the two parts comprising (i) the in-
stances of Event, and (ii) the instances of EventType and
the literal-valued nodes.

As a final observation, we note that Figures 1 – 3 adopt
a “property graph” notation (e.g. as used in the Neo4J
graph database, neo4j.com) in which nodes may have at-
tributes. In a “classical” graph data model, each attribute
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Figure 3: Fragment of Graph Data

of a node would be represented by an edge and its value by
a literal-valued node. So, for example, the information that
the taskID of event 23041 is 2 would be represented by an
edge 23041

taskID−−−−−→ 2. The query examples in the next section
assume this “classical” graph representation.

3. GRAPH QUERIES AND ANALYSES
Because the sub-graph induced by edges labelled ‘next’ con-
sists of a set of paths, the data readily lends itself to explo-
ration using conjunctive regular path (CRP) queries [2]. A
CRP query, Q, consisting of n conjuncts is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where each Xi and Yi is a variable or a constant, each Zi is
a variable that appears also in the right hand side of Q, and
each Ri is a regular expression over the set of edge labels.
In this context, a regular expression, R, has the following
syntax:

R := ε | a | | (R1.R2) | (R1|R2) |R∗ |R+

where ε denotes the empty string, a denotes an edge label,
denotes the disjunction of all edge labels, and the operators
have their usual meaning. The answer to a CRP query on a
graph G is obtained by finding for each 1 ≤ i ≤ n a binary
relation ri over the scheme (Xi, Yi), where there is a tuple
(x, y) in ri if and only if there is a path from x to y in G
such that: x = Xi if Xi is a constant; y = Yi if Yi is a
constant; and the concatenation of the edge labels in the
path satisfies the regular expression Ri. The answer is then
given by forming the natural join of the binary relations
r1, . . . , rn and finally projecting on Z1, . . . , Zm.

To illustrate, the following CRP query returns pairs of events
x, y such that x is an intervention message shown to the user
by the system and y indicates that the user’s next action –
in eXpresser – was to create a number (note, variables in
queries are distinguished by an initial question mark):

(?X,?Y) <- (?X,occurrenceOf,interventionShown),

(?X,next,?Y),

(?Y,occurrenceOf,numberCreated)



The result would contain pairs such as (23923,24115) from
Figure 2, demonstrating that there are indeed situations
where an intervention message displayed by the MiGen sys-
tem leads directly to the creation of a number by the student.

The following query returns pairs of events x, y such that
that x is an intervention message shown to the user by the
system and y is the user’s next action; the type of y is also
returned, through the variable ?Z:

(?X,?Y,?Z) <- (?X,occurrenceOf,interventionShown),

(?X,next,?Y),

(?Y,occurrenceOf,?Z)

The result would contain triples such as (23923,24115,num-
berCreated) from Figure 2 and (344760,344761,clickButton)
from Figure 3, allowing researchers to see what types of
events directly follow the display of an intervention mes-
sage. This would allow the confirmation or contradiction of
researchers’ expectations regarding the immediate effect of
intervention messages on students’ behaviours.

Focussing for the rest of this section on the data in Figure 2,
the following query returns pairs of events x, y such that x is
any type of event and y indicates that the user’s next action
was to unlock a number; the type of x is also returned,
through the variable ?Z:

(?X,?Y,?Z) <- (?X,occurrenceOf,?Z),

(?X,next,?Y),

(?Y,occurrenceOf,numberUnlocked)

The result would allow researchers to see what types of
events immediately precede the unlocking of a number (i.e.
the creation of a variable). This would allow confirmation
of researchers’ expectations about the design of the MiGen
system’s intelligent support in guiding students towards gen-
eralising their models by changing a fixed number to an ‘un-
locked’ one.

The following query returns pairs of events x, y such that
that x is an intervention generated by the system and y is
any subsequent event linked to x through a path comprising
one or more ‘next’ edges; the type of y is also returned,
through the variable ?Z:

(?X,?Y,?Z) <- (?X,occurrenceOf,interventionGenerated),

(?X,next+,?Y),

(?Y,occurrenceOf,?Z)

The result would contain triples such as (23921, 23923, inter-
ventionShown), (23921, 24115, numberCreated), ... (23921,
33154, endTask), allowing researchers to see what types of
events directly or indirectly follow the display of an interven-
tion message by the system. This would allow the confirma-
tion or contradiction of researchers’ expectations regarding
the longer-term effect of intervention messages on students’
behaviours.

We can modify the query to retain only pairs x, y that relate
to the same construction:

(?X,?Y,?Z) <- (?X,occurrenceOf,interventionGenerated),

(?X,constrID,?C), (?X,next+,?Y),

(?Y,constrlID,?C), (?Y,occurrenceOf,?Z)

The result would contain triples such as
(23921, 23923, interventionShown),
(23921, 24115, numberCreated),
(23921, 24136, numberUnlocked),
(23921, 24189, unlockedNumberChanged),
relating to construction 1 made by user 5 during session 9
for task 2 (two more events — 24136 and 24189 — relat-
ing to construction 1 have been assumed here, in addition
to 23923 amd 24115 shown in Figure 2, for illustrative pur-
poses). The results would not contain (23921,33154,end-
Task), since event 33154 relates to construction 3.

To show more clearly the answers to the previous query in
the form of possible event paths, we can use extended regular
path (ERP) queries [11], in which a regular expression can
be associated with a path variable and path variables can
appear in the left-hand-side of queries. Thus, for example,
the following query returns the possible paths from x to y:

(?X,?P,?Y,?Z) <-

(?X,occurrenceOf,interventionGenerated),

(?X,constrID,?C), (?X,next+:?P,?Y),

(?Y,constrID,?C), (?Y,occurrenceOf,?Z)

The result would contain answers such as
(23921, [next], 23923, interventionShown),
(23921, [next, 23923, next], 24115, numberCreated),
(23921, [next, 23923, next, 24115, next], 24136, numberUn-
locked),
(23921, [next, 23923, next, 24115, next, 24136, next], 24189,
unlockedNumberChanged).

The use of the regular expressions next and next+ in the
previous queries matches precisely one edge labelled ‘next’,
or any number of such edges (greater than or equal to 1),
respectively. However, for finer control and ranking of query
answers, it is possible to use approximate answering of CRP
and ERP queries (see [11, 17]), in which edit operations such
as insertion, deletion or substitution of an edge label can be
applied to regular expressions.

For example, using the techniques described in [11, 17], the
user can chose to allow the insertion of the label ‘next’ into
a regular expression, at an edit cost of 1. Submitting then
this query:

(?X,?P,?Y,?Z) <-

(?X,occurrenceOf,interventionGenerated),

(?X,constrID,?C), APPROX(?X,next:?P,?Y),

(?Y,constrID,?C), (?Y,occurrenceOf,?Z)

would return first exact answers, such as
(23921, [next], 23923, interventionShown). The regular ex-
pression next in the conjunct APPROX(?X,next:?P,?Y) would
then be automatically approximated to next.next, leading
to answers such as



(23921, [next, 23923, next], 24115, numberCreated)
at an edit distance of 1 from the original query. Following
this, the regular expression next.next would be automati-
cally approximated to next.next.next, leading to answers
such as
(23921, [next, 23923, next, 24115, next], 24136, numberUn-
locked)
at distance 2. This incremental return of paths of increas-
ing length can continue for as long as the user wishes, and
allows researchers to examine increasingly longer-term ef-
fects of intervention messages on students’ behaviours. It
would also be possible for users to specify from the outset a
minimum and maximum edit distance to be used in approx-
imating and evaluating the query, for example to request
paths encompassing between 2 and 4 edges labelled ‘next’.

Queries based on evaluating regular expressions over a graph-
based representation of interaction data, such as those above,
can aid in the exploration of students’ behaviours as they are
undertaking tasks using ELEs and the effectiveness of the
intelligent support being provided by the ELE. The query
processing techniques employed are based on incremental
query evaluation algorithms which run in polynomial time
with respect to the size of the database graph and the size
of the query and which return answers in order of increasing
edit distance [11]. A recent paper [19] gives details of an
implementation, which is based on the construction of an
automaton (NFA) for each query conjunct, the incremental
construction of a weighted product automaton from each
conjunct’s automaton and the data graph, and the use of
a ranked join to combine answers being incrementally pro-
duced from the evaluation of each conjunct. The paper also
presents a performance study undertaken on two data sets
— lifelong learning data and metadata [17] and YAGO [22].
The first of these has rather ‘linear’ data, similar to the in-
teraction data discussed here, while the second has ‘bushier’
connectivity. Query performance is generally better for the
former than the latter, and the paper discusses several pos-
sible approaches towards query optimisation.

In addition to evaluating queries over the interaction data,
by representing the data in the form of a graph it is possible
to apply graph structure analyses such as the following:

• path finding and clustering: this would be useful for
determining patterns of interest across a whole dataset,
or focussing on particular students, tasks or sessions
c.f. [4];

• average path length: this would be useful for determin-
ing the amount of student activity (i.e. the number of
indicator occurrences being generated per task) across
a whole dataset, or focussing on particular students,
tasks or sessions;

• graph diameter: to determine the greatest distance be-
tween any two nodes (which, due to the nature of the
data, would be event type nodes); this would be an in-
dication the most long-running and/or most intensive
task(s);

• degree centrality: determining the in-degree centrality
of event type nodes would identify key event types oc-
curring in students’ interactions; this analysis could be
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Figure 4: Transitions between Event Types

applied across a whole dataset, or focussing on partic-
ular students, tasks or sessions;

• nodes that have a high probability of being visited on a
randomly chosen shortest path between two randomly
chosen nodes have high betweenness centrality; deter-
mining this measure for pairs of event type nodes (ig-
noring the directionality of the ‘occurrenceOf’ edges)
would identify event types that play key mediating
roles between other event types.

We have already undertaken some ad hoc analyses of in-
teraction data arising from classroom sessions using ELEs.
For example, Figure 4 shows the normalised incoming tran-
sitions for a 1-hour classroom session involving 22 students
using MiGen (in the diagram, s denotes the ‘startTask’ and
e the ‘endTask’ event types). Event types with an adja-
cent circle show transitions where this type of event occurs
repeatedly in succession. The thickness of each arrow or
circle indicates the value of the transition probability: the
thicker the line, the higher the probability. Red (light grey)
is used for probabilities < 0.2 and black for probabilities
≥ 0.2. We can observe a black arrow 3007 → 1005, indicat-
ing transitions from events of type 3007 (detection by the
system that the student has made an implausible building
block for this task) to events of type 1005 (modification of a
rule by the student). Such an observation raises a hypoth-
esis for more detailed analysis or further student observa-
tion, namely: “does the construction of an incorrect building
block lead students to self-correct their rules?”. Developing
a better understanding of such complex interaction can lead
to improvement of the system. For this particular example,
we designed a new prompt that suggests to students to first
consider the building block against the given task before
proceeding unnecessarily in correcting their rules. More ex-
amples of such ad hoc analyses are given in [14]. Represent-
ing the interaction data in graph form will allow more sys-
tematic, flexible and scalable application of graph-structure
algorithms such as those identified above.

4. CONCLUSIONS AND FUTURE WORK
We have presented a graph model for representing event-
based interaction data arising from Exploratory Learning
Environments, drawing on the data generated when students
undertake exploratory learning tasks with the eXpresser and



FractionsLab microworlds. Although developed in the con-
text of these systems, the model is a very general one and
can easily be used or extended to model similar data from
other ELEs.

We have explored the possibilities that evaluating regular
path queries over this graph-based representation might pro-
vide for exploring the behaviours of students as they are
working in the ELE and the effectiveness of the intelligent
support that it provides to them. We have also identified
additional graph algorithms that may yield further insights
about learners, tasks and significant indicators.

Planned worked includes transformation and uploading of
the interaction data sets gathered during trials and full class-
room sessions of the two systems into an industrial-strength
graph database such as Neo4J, following the graph model
presented in Section 2; followed by the design, implemen-
tation and evaluation of meaningful queries, analyses and
visualisations over the graph data, building on the work
presented in Section 3. Equipped with an appropriate user
interface, educational researchers, designers or even teach-
ers with less technical expertise could in this way explore
the data from their perspective. This has the potential to
lead to an improved understanding of interaction in this
context and to feed back to the design of the ELEs. We
see this approach very much in the spirit of “polyglot per-
sistence” (i.e. using different data storage methods to ad-
dress different data manipulation problems), and hence be-
ing used in conjunction with other EDM resources such as
DataShop [12]. Another direction of research is investigation
of how the flexible querying processing techniques for graph
data (including both query approximation and query relax-
ation) that have been developed in the context of querying
lifelong learners’ data and metadata [11, 17] might be ap-
plied or adapted to the much finer-granularity interaction
data described here and the more challenging pedagogical
setting of providing effective intelligent support to learners
undertaking exploratory tasks in ELEs.
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ABSTRACT 

In this paper we present an analysis (in progress) of a dataset 

containing forum exchanges from three different MOOCs. The 

forum data is enhanced because together with the exchanges and 

the full text, we have a description of the design and pedagogical 

function of forums in these courses and a certain level of detail 

about the users, which includes achievement, completion, and in 

some instances more details such as: education; employment; age; 

and prior MOOC exposure. 

Although a direct comparison between the datasets is not possible 

because the nature of the participants and the courses are 

different, what we hope to identify using graph-based techniques 

is a characterization of the patterns in the nature and development 

of communication between students and the impact of the ‘teacher 

presence’ in the forums. With the awareness of the differences, we 

hope to demonstrate that student engagement can be directed ‘by-

design’ in MOOCs: teacher presence should therefore be planned 

carefully in the design of large-scale courses. 

Keywords 

MOOCs, Discussion forums, graph-based EDM, pedagogy. 

1. INTRODUCTION 
In the past couple of years MOOCs (Massive Open Online 

Courses) have become the center of much media hype as 

disruptive and transformational [1, 2]. Although the focus has 

been on a few characteristics of the MOOCS – i.e. free courses, 

massive numbers, massive dropouts and implicit quality 

warranted by the status of the institutions delivering these courses 

– a rapidly growing research interest has started to question the 

effectiveness of MOOCS for learning and their pedagogies. If one 

ignores entirely the philosophies of teaching driving the design 

and delivery of MOOCs going from the the socio-constructivist 

(cMOOC, [4, 5]) to instructivist (xMOOC, [3]), at the practical 

level, instructors have to make specific choices about how to use 

the tools available to them. One of these tools is the discussion 

forum. Forums are one of the most popular asynchronous tools to 

support students’ communication and collaboration in web-based 

learning environments [6]. These can be deployed in a variety of 

ways, ranging from a tangential support resource which students 

can refer to when they need help, to a space for learning with 

others, driven by the activities students have to carry out (usually 

sharing work and eliciting feedback). The latter, in a sense, 

emulates class-time in traditional courses providing a space for 

structured discussions about the topics of the course. One could 

argue that like in face-to-face classes, the value of the interaction 

depends on the importance attributed to the forums by the 

instructors. This is an interesting point to explore teachers’ 

presence and the value of their input in directing such 

conversations. Mazzolini & Maddison characterize the role of the 

teacher and teacher presence in online discussion forums as 

varying from being the ‘sage on the stage’, to the ‘guide on the 

side’ or even ‘the ghost in the wings’ [7]. Furthermore they argue 

that the ‘ideal’ degree of visibility of the instructor in discussion 

forums depends on the purpose of forums and their relationship to 

assessment. There are also a number of accounts indicating that 

students’ learning in forums is not very effective [8, 9]. However 

if one looks at the data there are numerous examples indicating 

that behaviours in forums are good predictors of performance in 

the courses using them, particularly if forum activities are 

assessed [10,11,12,13]. Yet, forums in MOOCs tend to attract 

only a small portion of the student activity [14]. This is setting 

forums in MOOCs apart from ‘tutorial-type’ forums used to 

support students’ learning in online or blended courses in higher 

education. Furthermore, some argue that active engagement is not 

the only way of benefiting from discussion forums [15] and 

students’ characteristics and preferences could be more important 

than the course design in determining the way in which they take 

full advantage of online resources [16].  

2. THE THREE MOOCS IN DETAIL 
In order to investigate the way in which students use the 

discussion forums, we have extracted data from three MOOCS 

delivered by a large, research intensive Australian university. The 

three courses are: P2P (From Particles to Planets - Physics); 

LTTO (Learning to Teach Online); and INTSE (Introduction to 

Systems Engineering), which are broadly characterised in the top 

of Table 1. The courses were specifically designed in quite 

different ways to test hypotheses about their design, delivery and 

effectiveness.  

In particular, P2P was designed emulating a traditional university 

course in a sequential manner. All content was released on a 

week-by-week basis dictating the pace of instruction. LTTO and 

INTSE, instead were designed to provide a certain level of 

flexibility for the students to elect their learning paths. All content 

 

 



was readily available at the start, however for LTTO, the delivery 

followed a week-on-week delivery focusing on the interaction 

with students and a selective attention to particular weekly topics 

(i.e. weekly feedback videos driven by the discussion forums as 

well as weekly announcements). Although announcements were 

used also in INTSE, the lack of weekly activities in the forums did 

not impose a strong pacing. In INTSE, the forums had only a 

tangential support value and were used mainly to respond to 

students’ queries and to clarify specific topics emerging from the 

quizzes. Table 1 provides an overview of the different courses. 

This also shows that the forum activity in the various courses is a 

very small portion of all actions emerging from the logs of activity 

which has been reported in the literature [9].  

3. DETAILS OF THE DATASET 

3.1 The dataset 
The data under consideration is an export form the Coursera 

platform. Raw forum database tables (posts, comments, tags, 

votes) as well as a JSON based web clickstream were used. The 

clickstream events consist of a key which specifies action – either 

a ‘pageview’ or ‘video’ item. Forum clickstream events were 

identified by a common ‘/forum’ prefix. 

The clickstream was further classified into: browsing; profile 

lookups; social interaction (looking at contributions); search; 

tagging; and threads. From the classification it became evident the 

clickstream did not record all events, such as when a post or 

comment was made, or when votes were applied. For these, 

specific database tables were used. In order to manage different 

data sets and sources, a standardized schema was built, allowing 

disparate sources to feed into, but exposing a common interface to 

conduct analysis over forum activities. This is shown in Figure 1. 

 Figure 1. Forum data transformation process 

 

3.2 An overview of forums activity 
There are very interesting trends which require more detailed 

examination (bottom of table 1). As expected, in LTTO the forum 

activity is larger than in the other courses and this is probably due 

to the fact that students were asked to submit post in forums 

following the learning activities. The proportion of active students 

in forum is 4x in magnitude compared to the other courses. Yet, if 

we look at the average amount of posts or comments, the patterns 

are not straightforward to interpret, as the level of engagement is 

similar across the courses with 3 to 5 posts per student and 1 to 3 

comments (i.e. replies to existing posts), but with P2P showing a 

higher level of engagement than the other courses. One possible 

explanation is the different target group of the different courses 

with INTSE including a majority of professional engineers with 

postgraduate qualifications, P2P focusing on high school student 

and teachers, and LTTO targeting a broad base of teachers across 

different educational levels. 

 INTSE LTTO P2P 

Target group Engineers 
Teachers at all 

levels 

High school 

and teachers 

Course length 9 weeks 8 weeks 8 weeks 

Forums 
54 

(14 top level) 
105 

(17 top-level) 
63 

(15 top-level) 
 

Design mode All-at-once All-at-once Sequential 

Delivery mode All-at-once Staggered Staggered 

Use of forums Tangential Core activity Support 

N in forum 422 (2.1%) 1685 (9.3%) 293 (2.8%) 

Tot posts 
1361   

(avg=3.3) 

6361 

(avg=3.8) 

1399 

(avg=4.8) 

Tot comments 
285 

(avg=0.7) 

2728 

(avg=1.7) 

901 

(avg=3.1) 
 

Registrants 32705 28558 22466 

Active 

students1 
60% 63% 47% 

Completing2 
4.2% 

(0.3% D) 
4.4% 

(2.4 D) 
0.7% 
(0.2%) 

Table 1. Summary of the courses under investigation. NOTE: 

1. Active students are those appearing in the clickstream; 2. 

Completing students achieve the pass grade or Distinction (D) 

The type of activity is summarised in Figure 2. In the chart, the 

five categories refer to the following: View corresponds to listing 

forums, threads and viewing posts; Post is the writing of a post or 

start of a new thread; Comment is a reply to an existing post; 

Social refers to all actions engaging directly with other’s status 

(up-vote, down-vote and looking at profiles/reputation); Engage 

refers to the additional interaction with forums content (searching, 

tagging, ‘watching’ or subscribing to posts or threads).  

The viewing behaviour is the most prominent for both the student 

and instructor groups and the figures are pretty much similar 

across the board. A two-way ANOVA (2x5, role by activity) on 

the percentage of distributions, shows that there is no significant 

difference between students and instructors, but there is an 

obvious difference between views and the other types of 

behaviour (F(4,29) = 1656.3, p < .01). 

If we consider the engagement over the timeline and compare the 

type of activities carried out by students and instructors, Figure 3 

(end of the paper) shows the patterns for the three courses. The 

most striking pattern is that there doesn’t seem to be an obvious 

one. For what concerns posts and views in all the three courses 

there is a sense of synchronicity between the two groups, however 

from this chart it is not possible to understand in more detail what 

are the connections between what students and teachers do. 



Instructors’ comments are slightly offset, possibly as a reaction to 

students’ posts. An interesting aspect is the amount of ‘social’ 

engagement in the P2P course that merits further analysis.  

4. DIRECTIONS AND OPEN QUESTIONS 
From this coarse analysis it is apparent that there seem to be 

minimal behavioural differences in the way students and 

instructors interact in the different courses, however more analysis 

is required to tackle questions about the individual differences in 

students’ and instructors’ patterns of interaction and their 

interrelations. Furthermore little can be said about how the nature 

of interactions drives the development of communication and 

engagement. However a number of questions like the following 

remain open and unanswered: how do discussions develop over 

time? How teacher presence affects the development of 

discussions? Is the number of forums affecting how students 

engage with them (i.e. causing disorientation)? 

Figure 2. Distribution of forum activities by role 

 

4.1 The DM and graph-based approaches 
A possible way to answer the questions about the types/patterns of 

behaviours, the structure and development of networks and the 

growth of groups/communities over time might be using data 

mining and graph-based approaches. For example, [6] used a 

combination of quantitative, qualitative and social network 

information about forum usage to predict students' success or 

failure in a course by applying classification algorithms and 

classification via clustering algorithms. In their approach the 

activity of students in the forums is organized according to a set of 

commonly used quantitative metrics and a couple of measures 

borrowed from Social Network Analysis (table 2). Although this 

seems to be a promising approach, there are two issues with this 

methodology in the MOOCs: 1) only a tiny proportion of students 

can be considered active and 2) it is hard to scale the instructor’s 

evaluation. The first problem is not easily resolved and it is an 

issue in the literature reviewed [17, 18]; non-posting behavior is 

considered as an index of disengagement, partly because this is 

easy to measure. In principle the latter could be substituted by 

peer evaluation (up-vote, down-vote), but there is no easy way to 

ensure consistency.  

Indicator Type Description 

Messages Quantitative Number of messages written by 

the student. 

Threads Quantitative Number of new threads created 

by the student. 

Words Quantitative Number of words written by 

the student. 

Sentences Quantitative Number of sentences written 

by the student. 

Reads Quantitative Number of messages read on 

the forum by the student. 

Time Quantitative Total time, in minutes, spent 

on forum by the student. 

AvgScoreMsg Qualitative Average score on the 

instructor's evaluation of the 

student's messages. 

Centrality Social Degree centrality of the 

student. 

Prestige Social Degree prestige of the student. 

Table 2. Possible indicators characterising forum engagement 

 

An alternative method that can be explored is graph-based 

approaches. For example, Bhattacharya et al. [19] used graph-

based techniques to explore the evolution of software and source 

branching providing an insight in the process. Kruck et al. [20] 

developed GSLAP, an interactive, graph‐based tool for analyzing 

web site traffic based on user‐defined criteria. 

Kobayashi et al. [18] used a method to quickly identify and track 

the evolution of topics in large datasets using a mix of assignment 

of documents to time slices and clustering to identify discussion 

topics. Yang et al [21] integrated graph-based clustering to 

characterize the emergence of communities and text-based 

analysis to portray the nature of exchanges. In fact, students move 

in the various sub-forums taking different roles or stances as they 

engage with different subsets of students.  As the reasons to 

engage in these discussions are partly determined by different 

interests, goals, and issues, it is possible to construct a social 

network graph based on the post-reply-comment structure within 

threads.  The network generated provides a possible view of a 

student’s social participation within a MOOC, which may indicate 

some detail about their values, beliefs and intentions. 

Furthermore, Brown et al [22] have already shown the value of 

exploring the communities in discussion forums in MOOCs 

particularly for what concerns the homogeneity of performance 

but dissimilarity of motivations characterizing student hubs.     



4.2 Discussion points 
The examples above provide evidence of the potential for using 

graph-based methods to obtain better insights into the process and 

content analysis for our dataset and to extend its applicability to 

MOOCs, however there are a number of contentious points to 

raise which will provide opportunities for discussion. 

Firstly the number of students who are actively involved in 

discussion is a very small proportion of the active participants. 

This means that the subset may not be representative at all. One 

could argue that these students are already engaged or desperately 

need help. Previous literature [21, 22, 23] focused on the ability 

to predict performance and on the peer effect which can emerge 

from the analysis of the graphs/social networks. 

Secondly, one could question the value of the communities in 

xMOOCs: especially when courses are designed with an 

instructivits approach leading to mastery, by definition this is an 

individualistic perspective focused on the testing of one’s own 

skills/learning. Of course in cMOOCs -connectivists by design- 

the importance of the development of social support is essential. 

This seems to be supported by Brown et al [22]: they were not 

able to uncover a direct relation between stated goals and 

motivations with the participation in forums, and attributed this to 

pragmatic needs. However, as the authors suggested earlier, the 

instructors might play a fundamental role in shaping the 

communities based on the value attributed to forums in their 

plans/design and the level of engagement/interaction. Considering 

the split between cMOOCs and xMOOCs again, interesting work 

might come out of the experiment conducted by Rose’ and 

colleagues in the DALMOOC in which automated agents were 

deployed to support students’ conversations. In Coursera the 

deployment of ‘community mentors’ will be an interesting space 

to explore, given that the importance of design seems to be 

removed from instructors in the ‘on-demand’ model. 

Lastly, more research is needed in the time-based dimension of 

development of forums in MOOCs. Questions like how students 

bond and create stable relations, how they become authoritative 

and what motivates them to contribute over time are all open 

questions which the analysis of graphs over time might be able to 

address. 
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ABSTRACT
In the field of Intelligent Tutoring Systems, data-driven meth-
ods for providing hints and feedback are becoming increas-
ingly popular. One such method, Hint Factory, builds an
interaction network out of observed player traces. This data
structure is used to select the most appropriate next step
from any previously observed state, which can then be used
to provide guidance to future players. However, this method
has previously been employed in systems in which each ac-
tion a player may take requires roughly similar effort; that
is, the“step cost” is constant no matter what action is taken.
We hope to apply similar methods to an interaction network
built from player traces in our game, BOTS; However, each
edge can represent a varied amount of effort on the part of
the student. Therefore, a different hint selection policy may
be needed. In this paper, we discuss the problems with our
current hint policy, assuming all edges are the same cost.
Then, we discuss potential alternative hint selection policies
we have considered.

Keywords
Hint Generation, Serious Games, Data Mining

1. INTRODUCTION
Data-driven methods for providing hints and feedback are
becoming increasingly popular, and are especially useful for
environments with user- or procedurally-generated content.
One such method, Hint Factory, builds an interaction net-
work out of observed player traces. An Interaction Network
is a complex network of student-tutor interactions, used to

model student behavior in tutors, and provide insight into
problem-solving strategies and misconceptions. This data
structure can be used to provide hints, by treating the Inter-
action Network similarly to a Markov Decision Process and
selecting the most appropriate next step from the requesting
user’s current state. This method has successfully been em-
ployed in systems in which each action a player may take is
of similar cost; for example in the Deep Thought logic tutor
each action is an application of a particular axiom. Applying
this method to an environment where actions are of differ-
ent costs, or outcomes are of varying value will require some
adaptations to be made. In this work, we discuss how we
will apply Hint Factory methods to an interaction network
built from player traces in a puzzle game, BOTS. In BOTS,
each “Action” is the set of changes made to the program
between each run. Therefore, using the current hint selec-
tion policy would result in very high-level hints comprising
a great number of changes to the student’s program. Since
this is undesirable, a different hint selection policy may be
needed.

2. DATA-DRIVEN HINTS AND FEEDBACK
In the ITS community, several methods have been proposed
for generating hints/feedback from previous observations of
users’ solutions or behavior. Rivers et al propose a data-
driven method to generate hints automatically for novice
programmers based on Hint Factory[8]. They present a
domain-independent algorithm, which automates hint gener-
ation. Their method relies on solution space, which utilizes
graph to represent the solution states. In solution space,
each node represents a candidate solution and each edge rep-
resents the action used to transfer from one state to another.
Due to the existence of multiple ways to solve a program-
ming problem, the size of the solution space is huge and thus
it is impractical to use. A Canonicalizing model is used to
reduce the size of the solution space. All states are trans-
formed to canonicalized abstract syntax trees (ASTs). If the
canonical form of two different states are identical, they can
be combined together. After simplifying the solution space,
hint generation is implemented. If the current state is in-



correct and not in the solution space, the path construction
algorithm will find an optimal goal state in the solution space
which is closest to current state. This algorithm uses change
vectors to denote the change between current state and goal
state. Once a better goal state is found during enumerat-
ing all possible changes, it returns the current combination
of change vectors. Each change vector can be applied to
current state and then form an intermediate state. The in-
termediate states are measured by desirability score, which
represents the value of the state. And then the path con-
struction algorithm generates optimal next states based on
the rank of the desirability scores of all the intermediate
states. Thus a new path can be formed and added to the
solution space, and appropriate hints can be generated.

Jin et al propose linkage graph to generate hints for pro-
gramming courses[4]. Linkage graph uses nodes to represent
program statements and direct edges to indicate ordered de-
pendencies of those statements. Jin’s approach applies ma-
trix to store linkage graph for computation. To generate
linkage matrix, first, they normalize variables in programs
by using instructor-provided variable specification file. After
variable normalization, they sort the statement with 3 steps:
(i) preprocessing, which breaks a single declaration for mul-
tiple variables (e.g. int a, b, c) into multiple declaration
statements (e.g. int a; int b; int c;); (ii) creating statement
sets according to variable dependencies, which put indepen-
dent statements into first set, put statements depend only
on statements in the first set into second set, put statements
depends only on statements in the first and second set into
third set, and so on; (iii) in-set statement sorting, during
which the statements are sorted in decreasing order within
set using their variable signatures. In hint generation, they
first generate linkage graphs with a set of correct solutions,
as the sources for hint generation. They also compose the
intermediate steps during program development into a large
linkage graph, and assign a reward value to each state and
the correct solution. Then, they apply value iteration to
create a Markov Decision Process (MDP). When a student
requires hint, tutor will generate a linkage graph for the par-
tial program and try to find the closest match in MDP. If
a match is found in MDP, the tutor would generate hint
with the next best state based on highest assigned value.
If a match is not found in current MDP, which means the
student is taking a different approach from existing correct
solutions, the tutor will try to modify those correct solutions
to fit student’s program and then provide hints.

Hint Factory[9] is an automatic hint generation technique
which uses Markov decision processes (MDPs) to generate
contextualized hints from past student data. It mainly con-
sists of two parts - Markov Decision Process (MDP) gener-
ator and hint provider. The MDP generator runs a process
to generate MDP values for all states seen in previous stu-
dents’ solutions. In this process, all the students’ solutions
are combined together to form a single graph. Each node
of the graph represents a state, and each edge represents an
action one student takes to transform from current state to
another state. Once the graph is built, the MDP generator
uses Bellman backup to assign values for all nodes. After up-
dating all values, a hint file is generated. The hint provider
uses hint file to provide hint. When a student asks for a hint
at a existing state, hint provider will retrieve current state

Figure 1: The BOTS interface. The robot’s program
is along the left side of the screen. The “toolbox” of
available commands is along the top of the screen.

information and check if hints are available for the state.
The action that leads to subsequent state with the highest
value is used to generate a hint sequence. A hint sequence
consists of four types of hints and are ordered from gen-
eral hint to detailed hint. Hint provider will then show hint
from top of the sequence to the student. Hint Factory has
been applied in logic tutors which helps students learn logic
proof. The result shows that the hint-generating function
could provide hints over 80% of the time.

3. BOTS
BOTS is a programming puzzle game designed to teach
fundamental ideas of programming and problem-solving to
novice computer users. The goal of the BOTS project is
to investigate how to best use community-authored content
within serious games and educational games. BOTS was
inspired by games like LightBot [10] and RoboRally [2], as
well as the success of Scratch and it’s online community [1]
[5]. In BOTS, players take on the role of programmers writ-
ing code to navigate a simple robot around a grid-based 3D
environment, as seen in Figure 1. The goal of each puzzle
is to press several switches within the environment, which
can be done by placing an object or the robot on them.
To program the robots, players will use simple graphical
pseudo-code, allowing them to move the robot, repeat sets
of commands using “for” or “while” loops, and re-use chunks
of code using functions. Within each puzzle, players’ scores
depend on the number of commands used, with lower scores
being preferable. In addition, each puzzle limits the maxi-
mum number of commands, as well as the number of times
each command can be used. For example, in the tutorial
levels, a user may only use the “Move Forward” instruction
10 times. Therefore, if a player wants to make the robot
walk down a long hallway, it will be more efficient to use a
loop to repeat a single “Move Forward” instruction, rather
than to simply use several “Move Forward” instructions one
after the other. These constraints are meant to encourage
players to re-use code and optimize their solutions.

In addition to the guided tutorial mode, BOTS also con-



tains an extensive “Free Play” mode, with a wide selection
of puzzles created by other players. The game, in line with
the “Flow of Inspiration” principles outlined by Alexander
Repenning [7], provides multiple ways for players to share
knowledge through authoring and modifying content. Play-
ers are able to create their own puzzles to share with their
peers, and can play and evaluate friends’ puzzles, improv-
ing on past solutions. Features such as peer-authored hints
for difficult puzzles, and a collaborative filtering approach
to rating are planned next steps for the game’s online ele-
ment. We hope to create an environment where players can
continually challenge their peers to find consistently better
solutions for increasingly difficult problems.

User-generated content supports replayability and a sense
of a community for a serious game. We believe that user-
created puzzles could improve interest, encouraging students
to return to the game to solidify their mastery of old skills
and potentially helping them pick up new ones.

4. ANALYSIS
4.1 Dataset
Data for the BOTS studies has come from a middle school
computer science enrichment program called SPARCS. In
this program, the students attend class on Saturday for 4
hours where computer science undergraduates teach them
about computational thinking and programming. Students
attend a total of 7 sessions, each on a different topic, ranging
from security and encryption to game design. The students
all attend the same magnet middle school. The demograph-
ics for this club are 74.2% male, 25.8% female, 36.7% African
American, and 23.3% Hispanic. The student’s grade distri-
bution is 58% 6th grade, 36% 7th grade and 6% 8th grade.

From these sessions, we collected gameplay data for 20 tu-
torial puzzles as well as 13 user-created puzzles, With this
data, we created an Interaction Network in order to be able
to provide hints and feedback for future students [3]. How-
ever, using program edits as states, the interaction networks
produced were very sparse. In order to be better able to
relate similar actions, we produced another interaction net-
work using program output as our state definition [6].

4.2 States and Transitions
Based on the data collected, we can divide the set of ob-
served states into classes. First among these is the start state
in which the problem begins. By definition, every player’s
path must begin at this state. Next is the set of goal states
in which all buttons on the stage are pressed. These are
reported by the game as correct solutions. Any complete
solution, by definition, ends at one such state. Among states
which are neither start nor goal states, there are three im-
portant classifications: Intermediate states (states a robot
moves through during a correct solution), mistake states
(states a robot does not move through during a correct so-
lution), and error states (states which result from illegal
output, like attempting to move the robot out-of-bounds).
Based on these types of states, we classified our hints based
on the transitions they represented.

4.2.1 Subgoal Transition

  

Error
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Figure 2: Several generated hints for a simple puz-
zle. The blue icon represents the robot. The ’X’ icon
represents a goal. Shaded boxes are boxes placed on
goals, while unshaded boxes are not on goals. Hint
F in this figure depicts the start and most common
goal state of the puzzle.

(start/intermediate) → (intermediate/goal) These transitions
occur when a student moves the robot to an intermediate
state rather than directly to the goal. Since players run
their programs to produce output, we speculate that these
may represent subgoals such asmoving a box onto a specific
switch. After accomplishing that task, the user then ap-
pends to their program, moving towards a new objective,
until they reach a goal state. Hint B in Figure 2 shows a
hint generated from such a transition.

4.2.2 Correction Transition
(error/mistake) → (intermediate/goal) This transition oc-
curs when a student makes and then corrects a mistake.
These are especially useful because we can offer hints based
on the type of mistake. Hints D and E in Figure 2 show hints
built from this type of transition; however, hint E shows a
case where a student resolved the mistake in a suboptimal
way.

4.2.3 Simple Solution Transition
(start) → (goal) This occurs when a student enters an entire,
correct program, and solves the puzzle in one attempt. This
makes such transitions not particularly useful for generating
hints, other than showing a potential solution state of the
puzzle. Hint F in Figure 2 shows this type of transition.

4.2.4 Rethinking Transition
(intermediate) → (intermediate/goal) This transition occurs
when rather than appending to the program as in a subgoal
transition, the user deletes part or all of their program, then
moving towards a new goal. As a result, the first state is
unrelated to the next state the player reaches. Offering this
state as a hint would likely not help guide a different user.
Hint A in Figure 2 shows an example of this. Finding and
recognizing these is an important direction for future work.



4.2.5 Error Transition
(start/intermediate) → (mistake/error) This corresponds to
a program which walks the robot out of bounds, into an
object, or other similar errors. While we disregarded these
as hints, this type of transition may still be useful. In such
a case, the last legal output before the error could be a
valuable state. Hint C in Figure 2 is one such case.

4.3 Next Steps
While this approach was able to help us identify interest-
ing transitions, as well as significantly reduce the sparseness
of the Interaction Network by merging states with similar
output, we violate several assumptions of the Hint Factory
technique by using user compilation as an action. Essen-
tially, the cost of an action can vary widely. In the most
extreme examples, the best next state selected by Hint Fac-
tory will simply be the goal state.

4.4 Current Hint Policy
Our current hint selection policy is the same as the one used
in the logic tutor Deep Thought with a few exceptions [9].
We combine all student solution paths into a single graph,
mapping identical states to one another (comparing either
the programs or the output). Then, we calculate a fitness
value for each node. We assign a large positive value (100)
to each goal state, a low value for dead-end states (0) and
a step cost for each step taken (1). Setting a non-zero cost
on actions biases us towards shorter solutions. We then
calculate fitness values V (s) for each state s, where R(s) is
the initial fitness value for the state, γ is a discount factor,
and P (s, s′) is the observed frequency with which users in
state s go to state s′ next, via taking the action a. The
equation for determining the fitness value of a state is as
follows:

V (s) := R(s) + γmax
a

∑
s′

Pa(s, s′)V (s′) (1)

However, in our current representation there is only one
available action from any state: “run.” Different players us-
ing this action will change their programs in different ways
between runs, so it is not useful to aggregate across all the
possible resulting states. Instead, we want to consider each
resulting state on its own. As a result, we use a simplified
version of the above, essentially considering each possible
resulting state s′ as the definite result of its own action:

V (s) := R(s) + γmax
s′
P (s, s′)V (s′) (2)

Since the action “run” can encompass many changes, select-
ing the s′ which maximizes the value may not always be the
best choice for a hint. The difference between s and s′ can
be quite large, and this is usually the case when an expert
user solves the problem in one try, forming an edge directly
between the “start” state and “goal” state. These and other
“short-circuits” make it difficult to assess which of the child
nodes would be best to offer as a hint by simply using the
calculated fitness value.

Figure 3: This subgraph shows a short-circuit where
a player bypasses a chain of several steps.

Another problem which arises from this state representation
is seen in Hints C and E above. These hints show states
where a student traveled from a state to a worse state before
ultimately solving the problem. Since we limit our search for
hintable states to the immediate child states of s in s′, we are
unable to escape from such a situation if the path containing
the error is the best or only observable path to the goal.

4.5 Proposed Hint Policies
One potential modification of the hint policy involves ana-
lyzing the programs/output on the nodes, using some dis-
tance metric δ(s, s′). This measurement would be used in
addition to the state’s independent fitness value R(s) which
takes into account distance from a goal, but is irrespective
of the distance from any previous state. For example in the
short-circuit example above, using “difference in number of
lines of code” as a distance metric we could take into ac-
count how far the “Goal” state is from the “Start” state, and
potentially choose a nearer state as a hint. This also helps
correct for small error-correction steps in player solutions;
if the change between the current state and the target hint
state is very small, we may want to consider hinting toward
the next step instead, or a different solution path altogether.

V (s) := R(s) + γmax
a

∑
s′

δ(s, s′)P (s, s′)V (s′) (3)

One potential downside to this approach is that it requires
somewhat more knowledge of the domain to be built into the
model. If the distance metric used is inaccurate or flawed,
there may be cases where we choose a very suboptimal hint.
using difference in lines of code as our distance metric, the
change between a state where a player is using no functions
and a state where the user writes existing code into a func-
tion may be very small. Hints selected in these cases might
guide students away from desired outcomes in our game.

Another problem we need to resolve with our current hint
policy, as discussed above, is the case where the best or
only path to a goal from a given state s has an error as
a direct child s′. One method of resolving this could be,
instead of offering s′ as a hint, continuing to ask for next-
step hints from s′ until some s′ is a hintable, non-error state.
This solution requires no additional knowledge of the game
domain, however it’s possible that the hint produced will
be very far from s, or that we may skip over important
information about how to resolve the error or misconception



that led the student into state s in the first place.

Other modifications to the hint selection policy may produce
better results than these. We hope to look into as many
possible modifications as we can, seeing which modifications
produce the most suitable hints on our current dataset be-
fore settling on an implementation for the live version of the
game.
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ABSTRACT
We present a graph-based approach to discover and extend
semantic relationships found in a mathematics curriculum
to more general network structures that can illuminate re-
lationships within the instructional material. Using words
representative of a secondary level mathematics curriculum
we identified in separate work, we constructed two similar-
ity networks of word problems in a mathematics textbook,
and used analogous random walks over the two networks
to discover patterns. The two graph walks provide similar
global views of problem similarity within and across chap-
ters, but are affected differently by number of math words
in a problem and math word frequency.

1. INTRODUCTION
Curricula are compiled learning objects, typically presented
in sequential order and arranged hierarchically, as in a book’s
Table of Contents. Ideally, a domain model captures rela-
tionships between the learning objects and the knowledge
components or skills they exercise. Unfortunately, domain
models are not often granular enough for optimal learning
experiences. For example, prerequisite relationships may be
lacking, or the knowledge components associated with an
exercise may be unknown. In such cases, assessments on
those learning objects will be insufficient to enable appro-
priate redirection unless expert (i.e. teacher) intervention
is explicitly given. Domain models remain coarse because
using experts to enumerate and relate the knowledge com-
ponents is costly.

As a means to automatically discover relationships among
learning objects and to reveal their knowledge components,
we demonstrate the use of direct similarity metrics and ran-
dom graph walks to relate exercises in a mathematics cur-
riculum. We first apply a standard cosine similarity measure
between pairs of exercises, based on bag-of-word vectors con-
sisting of math terms that we identified in separate work
[7]. Then, to extract less explicit relationships between ex-

ercises, we randomly walk a graph using the cosine distance
as edge weights. We also recast the problem as a bipartite
graph with exercises on one side and words on the other,
providing an edge when an exercise contains the math word.
We contrast these two different types of random walks and
find somewhat similar results, which lends confidence to the
analysis. The bipartite graph walks, however, are more sen-
sitive to differences in word frequency. Casting measures of
similarity as graphs and performing random walks on them
affords more nuanced ways of relating objects, which can be
used to build more granular domain models for analysis of
prerequisites, instructional design, and adaptive learning.

2. RELATED WORK
Random walks over graphs have been used extensively to
measure text similarity. Applications include similarity of
web pages [15] and other documents [5], citations [1], pas-
sages [14], person names in email [12] and so on. More re-
cently, general methods that link graph walks with external
resources like WordNet have been developed to produce a
single system that handles semantic similarity for words,
sentences or text [16]. Very little work compares walks over
graphs of the same content, where the graphs have differ-
ent structure. We create two different kinds of graphs for
mathematics word problem and compare the results. We
find that the global results are very similar, which is good
evidence for the general approach, and we find differences in
detail that suggest further investigation could lead to cus-
tomizable methods, depending on needs.

An initiative where elementary science and math tests are a
driver for artificial intelligence has led to work on knowledge
extraction from textbooks. Berant et al. [2] create a system
to perform domain-specific deep semantic analysis of a 48
paragraphs from a biology textbook for question answering.
Extracted relations serve as a knowledge base against which
to answer questions, and answering a question is treated as
finding a proof. A shallow approach to knowledge extraction
from a fourth grade science curriculum is taken in [6], and
the knowledge base is extended through dialog with users
until a path in the knowledge network can be found that
supports a known answer. In the math domain, Kushman et
al. [10] generate a global representation of algebra problems
in order to solve them by extracting relations from sentences
and aligning them. Seo et al. [18] study text and diagrams
together in order to understand the diagrams better through
textual cues. We are concerned with alignment of content



Two machines produce the same type of widget. Machine

A produces W widgets, X of which are damaged. Machine B

produces Y widgets, Z of which are damaged. The fraction of

damaged widgets for Machine A is X
W

or (simplified fraction).

The fraction of damaged widgets for Machine B is Z
Y

or

(simplified fraction). Write each fraction as a decimal and a

percent. Use pencil and paper. Select a small percent that

would allow for a small number of damaged widgets. Find

the number of widgets by which each machine exceeded the

acceptable number of widgets.

Figure 1: Sample problem; math terms are in boldface.

across rather than within problems, and our objective is
finer-grained analysis of curricula.

Other work that addresses knowledge representation from
text includes ontology learning [3], which often focuses on
the acquisition of sets of facts from text [4]. There has
been some work on linking lexical resources like WordNet
or FrameNet to formal ontologies [17, 13], which could pro-
vide a foundation for reasoning over facts extracted from
text. We find one work that applies relation mining to e-
learning: Šimko and Bieliková [19] apply automated relation
mining to extract relations to support e-course authoring in
the domain of teaching functional programming. Li et al.
[11] apply k-means clustering to a combination of problem
features and student performance features, and propose the
clusters correspond to Knowledge Components [8].

3. METHODS
3.1 Data
We used 1800 exercises from 17 chapters of a Grade 7 mathe-
matics curriculum. Most are word problems, as illustrated in
Figure 1. They can incorporate images, tables, and graphs,
but for our analysis, we use only the text. The vocabu-
lary of the resulting text consists of 3,500 distinct words.
We construct graphs where math exercises are the nodes, or
in a bipartite graph, math exercises are the left side nodes
and words are the right side nodes. Our initial focus is on
exercise similarity due to similarity of the math skills that
exercises tap into, and we use mathematics terminology as
an indirect proxy of skills a problem draws upon.

3.2 Math Terminology
The text of the word problems includes ordinary language
expressions unrelated to the mathematics curriculum, such
as the nouns machines, widgets shown in problem in Fig-
ure 1, or the verbs produces, damaged. For our purposes,
mathematics terminology consists of words that expresses
concepts that are needed for the mathematical competence
the curriculum addresses. To identify these terms, we devel-
oped annotation guidelines for human annotators who label
words in their contexts of use, and assessed the reliability of
annotation by these guidelines. Words can be used in the
math texts sometimes in a math sense and sometimes in a
non-math sense. Annotators were instructed to label terms
based on the most frequent usage.

Using a chance-adjusted agreement coefficient in [-1,1] [9],
reliability among three annotators was 0.81, representing

high agreement. All the non-stop words were then labeled
by a trained annotator. We developed a supervised machine
learning approach to classify vocabulary into math and non-
math words [7] that can be applied to new mathematics cur-
ricula. For the text used here, there were 577 math terms.

3.3 Random Walks in Graphs
A random walk on a graph starts at a given node and steps
with random probability to a neighboring node. The same
random decision process is employed at this and every sub-
sequent node until a termination criterion is met. Each time
a node is visited, it is counted. Open random walks require
that the start node and end nodes differ. Traversal methods
may employ a bias to navigate toward or away from certain
neighbors through edge weights or other graph attributes.

In a graph, G = (V,E) with nodes V and edges E, a ran-
dom walk that begins at vx and ends at vy can be denoted as
(vx, ..., vy). By performing several random walks, the frac-
tion of times the node vy is visited converges to the prob-
ability of target vy being visited given the start node vx,
which can be expressed as P (vy|vx) under the conditions of
the walk. In the case of a random walk length of 1, P (vy|vx)
will simply measure the probability of vy being selected as
an adjacent node to vx.

3.4 Cosine Similarity Graph
Math exercises are represented as bag-of-words vectors with
boolean values to indicate whether a given math term is
present. Cosine similarity quantifies the angle between the
two vectors, and is given by the dot product of two vectors.

cos(t, e) =
te

‖t‖‖e‖ =

∑n
i=1 tiei√∑n

i=1 (ti)2
√∑n

i=1 (ei)2
(1)

Similarity values of 1 indicate that both the vectors are the
same whereas a value of zero indicates orthogonality between
the two vectors. Pairwise cosine similarities for all 1800
exercises were computed, yielding a cosine similarity matrix
Mcos. The matrix corresponds to a graph where non-zero
cosine similarities are edge weights between exercises.

In a graph walk, the probability that a node vy will be
reached in one step from a node vx is given by the prod-
uct of the degree centrality of vx and the normalized edge
weight (vx, vy). With each exercise as a starting node, we
performed 100,000 random walks on the cosine-similarity
graph, stepping with proportional probability to all outgo-
ing cosine similarity weights. To measure 2nd degrees of
separation, with each walk we made two steps.

For two math vectors considered as the sets A and B, cosine
similarity can be conceptualized in terms of the intersection
set C = A ∪ B and set differences A \B and B \A. Cosine
similarity is high when |C| � A \B and |C| � B \A.

The degree of a node affects the probability of traversing
any edge from that node. The two factors that affect de-
gree centrality of a start node are the document frequencies
of its math words, and the total number of math words.
Here, document frequency (df) is the normalized number of
exercises a word occurs in. A high df math word in a prob-
lem increase its degree centrality because there will be more



Figure 2: Exercise-to-Exercise similarity in Chapter 6. The exercises of Chapter 6 are displayed in row-columns in a square
matrix. The rows represent source nodes and columns represent targets. Each row has been normalized across the book, even
though only Chapter 6 is shown. The axes demarcate the sections of the chapter. Mcos is the cosine similarity. Mcosrw is the
output from the random walk using cosine similarity edge weights, Mbp is the output from the random bipartite walk. Raw
values displayed between 0 and 0.005 corresponding to light and dark pixels, respectively.

problems it can share words with, resulting in non-zero co-
sine values and therefore edges. The number of math words
in a problem also increases its degree centrality.

3.5 Bipartite exercise and word graph
The set of exercises Ve are the left-side nodes and the math
words Vw are the right-side nodes in the undirected bipartite
graph G = (Ve, Vw, E), where an edge exists between vex and
vwi if exercise x contains the math word i.

We performed open random walks on this graph to measure
similarity between nodes. To measure the similarity of ex-
ercises, we walk in even steps – a step to a connected word
followed by a step back to one of the exercises that shares
that word. The degrees of separation between vertices on
the same side of the graph (e.g. exercise-to-exercise) will be
l/2 where l is the length of the walk. In this paper, we ex-
plored first and second degrees of separation so our bipartite
graphs had a walk length of 4.

Table 1: Summary statistics of the similarity distributions

cosine rwcos rwbp

minimum 0 0 0
maximum 6.3 ×10−2 0.50 0.11
mean 5.55 ×10−4 5.55 ×10−4 5.55 ×10−4

median 0 2.41 ×10−4 2.06 ×10−4

std. dev. 1.19 ×10−3 8.57 ×10−4 1.24 ×10−3

Because exercise nodes are connected via word nodes, we in-
terpret the fraction of node visits as a similarity measure be-
tween the source node and any node visited. We performed
100,000 random walks from each node. Exercise-to-exercise
similarity can be visualzed as square matrices with source
nodes in the rows and target nodes in the columns. To fac-
tor out the times a source may have been selected as one of
the targets, we set the diagonal of the matrix to zero. We
then normalized across the rows so that we could interpret

the distribution across the row as a probability distribution
to all other nodes for that source node.

4. RESULTS
We compare the three measures of similarity between ex-
ercises: 1) cosine similarity, 2) random walks using cosine
similarity as edge weights, and 3) random walks along a bi-
partite graph of exercises and words.

4.1 Exercise-to-Exercise Similarity
We describe exercise-to-exercise similarity with square ma-
trices where each exercise is represented as a row-column. A
number of features of the measures are embedded in Figure
2, which shows heatmaps of color values for pairs of exercises
in chapter 6 for each matrix. We find that within chapters
and especially within sections of those chapters, there is a
high degree of similarity between exercises regardless of the
measure. This demonstrates that words within sections and
chapters share a common vocabulary. We can see that Mcos

has more extreme values than Mcosrw; as explained below,
it has both more zero cosine values, and more very high
values. This is most likely because Mcosrw, from doing the
walk, picks up exercises that are another degree of separa-
tion away. When the row of the matrix is normalized to
capture the distribution of the source node, the otherwise
high values from Mcos are tempered in the Mcosrw matrix.
This shift to a large number of lower scores is shown in the
bottom panel of Figure 3. Mbp and Mcosrw are very similar,
but Mbp generally has a wider dynamic range.

4.2 Comparison of the Graph Walks
Table 1 provides summary statistics for cosine similarity and
the two random walks for all pairs of problems (N=3,250,809).
The cosine matrix is very sparse, as shown by the median
value of 0. Of the two random walk similarities, rwcos has
a lower standard deviation around the mean, but otherwise
the two random walks produce similar distributions.



The similarity values given by cosine and the cosine random
walk will increasingly differ the more that the start problem
has relatively higher degree centrality due either to more
words or higher frequency of words in exercises (df). For
reference, the word that occurs most frequently, number,
has a df of 0.42, and the second most frequent occurs in
only 15% of the exercises. Fifty eight nodes have no edges
(0 degree), the most frequent number of edges is 170, and
the maximum is 1,706. Table 2 gives the summary statistics
for df, number of math words, and degree centrality.

Inspection of the data shows that for pairs of problems in
the two chapters for our case study, if the cosine similar-
ity between a pair is high (≥ 0.75), the similarity values
for rwcos tend to go down as the number of shared word
increases from 3 to between 5 and 7. For the rwbp, the
opposite trend occurs, where the similarity goes up as the
number of words increases. This difference helps account for
an observed divergence in the two graph walks for sections
5 and 6 of Chapter 6.

Table 3 illustrates two pairs of problems from section 5 that
have high cosine similarities, and relatively higher rwbp sim-
ilarities (greater than the rw means of 0.0055) and relatively
lower rwcos (lower than the rw means). The reverse pattern
is seen for two pairs of problems from section 6 that have
high cosine similarities. These problems have higher than
average rwcos and lower than average rwbp. What differen-
tiates the two pairs of problems is that the section 5 prob-
lems have a relatively large number of words in common:
14 for the first pair, 12 for the second pair. In both pairs,
some of the words have relatively high document frequency.
As discussed above, these two properties increase the degree
centrality of the start node of a step in the rwcos graph, and
thus lower the probability of hitting each of the start node’s
one-degree neighbors. This effect propagates along the two
steps of the walk. For the rwbp graph, however, as the num-
ber of shared math words for a pair of problems increases,
the number of paths from one to the other also increases,
thus raising the probability of the traversal. This effect also
propagates through a two-step walk. In contrast to the sec-
tion 5 problems, the two section 6 problems have relatively
fewer words in common: 3 for both pairs.

For problem pairs where the cosine similarity is between
0.40 and 0.60, the mean similarity from rwbp is 30% higher
than for rwcos for when the number of math words in com-
mon is 3 (0.0033 vs. 0.0043), 80% higher when the number
of math words in common is 6 (0.0024 versus 0.0045), and
three as high when the number of math words in common
is 9 (0.0023 versus 0.0068). For problems pairs where the

Table 2: Summary statistics of document frequency (df) of
math words, number of math words in problems, and degree
centrality of rwcos

df math words degree ctr. rwcos

minimum 5.54 ×10−4 1 0
maximum 0.424 24 1,706
mean 0.183 8.35 418.4
median 6.66 ×10−3 8.00 340
std. dev. 0.314 3.64 317.1

Table 3: Two pairs of problems with high cosine similarity
and reverse patterns of graph walk similarity. The first pair,
from section 5, have lower than average rwcos and higher
than average rwbp due to relatively many words in common
(12 and 14). The second pair, from section 6, have higher
than average rwcos and lower than average rwbp due to rel-
atively few words in common.

Prob 1 Prob 2 cosine rwcos rwbp N max df
6.5.99 6.5.85 1.0000 0.0032 0.0102 12 0.42
6.5.94 6.5.83 0.8819 0.0026 0.0064 14 0.13

6.6.109 6.6.102 0.8660 0.0068 0.0037 3 0.11
6.6.104 6.6.102 0.7746 0.0068 0.0029 3 0.11

cosine similarity is less than 0.20, the two walks produce
very similar results. The average similarity values for the
bipartite walk are about 20% higher, and the maximum val-
ues are higher, but the two walks produce similar means,
independent of the lengths of the common word vectors, or
the total number of math words.

Since we normalized the matrices across rows, which are
the source nodes, differences between the bipartite matrix,
Mbp, and the cosine matrices implied that the degree of the
target node had a greater impact on the variability in the
bipartite matrix. To measure the impact of the edge degree
on the target nodes, we considered the column sum for those
targets that had 1 edge, those that had 2, etc. up to 20
edges. The results are summarized in Figure 4. As can be
seen, the column sum varies linearly by the number of target
edges in the bipartite matrix, whereas the cosine matrices
do not. We found the cubed root of the column sum in Mbp

approaches the distribution of column sums of the cosine
matrices, which is provided in Figure 4.

Figure 3: Tail distribution of similarity values in Mcos,
Mcosrw, and Mbp. Because 62% of the values in Mcos are 0,
the plot shows only non-zero values.

5. CONCLUSION
Visualization of the three similarity matrices shows they re-
veal the same overall patterns, thus each is confirmed by
the others. However, the bipartite walk was the most sen-
sitive to word frequency across exercises, and the number
of words in problems. With our goal of automatically dis-
covering knowledge components and identifying their rela-
tionships, the random walk that stepped in proportion to
its cosine similarity performed best. It was able to discover
second-degree relationships that seem reasonable as we ex-
plore by eye those matches. Future work will test these re-



Figure 4: Distribution of column sums by number of edges
in the target node represented by the column. Error plots
show the mean and standard error for each type. Black line
is the cubed root of the mean of the column sums of Mbp.

lationships with student performance data. We should find,
for example, that if two exercises are conceptually similar,
then student outcomes should also be similar and learning
curves should reveal shared knowledge components. In this
respect, such automatically constructed knowledge graphs
can create more refined domain models that intelligent tu-
toring systems and robust assessments can be built upon.
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