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ABSTRACT

We present a graph-based approach to discover and extend
semantic relationships found in a mathematics curriculum
to more general network structures that can illuminate re-
lationships within the instructional material. Using words
representative of a secondary level mathematics curriculum
we identified in separate work, we constructed two similar-
ity networks of word problems in a mathematics textbook,
and used analogous random walks over the two networks
to discover patterns. The two graph walks provide similar
global views of problem similarity within and across chap-
ters, but are affected differently by number of math words
in a problem and math word frequency.

1. INTRODUCTION

Curricula are compiled learning objects, typically presented
in sequential order and arranged hierarchically, as in a book’s
Table of Contents. Ideally, a domain model captures rela-
tionships between the learning objects and the knowledge
components or skills they exercise. Unfortunately, domain
models are not often granular enough for optimal learning
experiences. For example, prerequisite relationships may be
lacking, or the knowledge components associated with an
exercise may be unknown. In such cases, assessments on
those learning objects will be insufficient to enable appro-
priate redirection unless expert (i.e. teacher) intervention
is explicitly given. Domain models remain coarse because
using experts to enumerate and relate the knowledge com-
ponents is costly.

As a means to automatically discover relationships among
learning objects and to reveal their knowledge components,
we demonstrate the use of direct similarity metrics and ran-
dom graph walks to relate exercises in a mathematics cur-
riculum. We first apply a standard cosine similarity measure
between pairs of exercises, based on bag-of-word vectors con-
sisting of math terms that we identified in separate work
[7]. Then, to extract less explicit relationships between ex-
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ercises, we randomly walk a graph using the cosine distance
as edge weights. We also recast the problem as a bipartite
graph with exercises on one side and words on the other,
providing an edge when an exercise contains the math word.
We contrast these two different types of random walks and
find somewhat similar results, which lends confidence to the
analysis. The bipartite graph walks, however, are more sen-
sitive to differences in word frequency. Casting measures of
similarity as graphs and performing random walks on them
affords more nuanced ways of relating objects, which can be
used to build more granular domain models for analysis of
prerequisites, instructional design, and adaptive learning.

2. RELATED WORK

Random walks over graphs have been used extensively to
measure text similarity. Applications include similarity of
web pages [15] and other documents [5], citations [1], pas-
sages [14], person names in email [12] and so on. More re-
cently, general methods that link graph walks with external
resources like WordNet have been developed to produce a
single system that handles semantic similarity for words,
sentences or text [16]. Very little work compares walks over
graphs of the same content, where the graphs have differ-
ent structure. We create two different kinds of graphs for
mathematics word problem and compare the results. We
find that the global results are very similar, which is good
evidence for the general approach, and we find differences in
detail that suggest further investigation could lead to cus-
tomizable methods, depending on needs.

An initiative where elementary science and math tests are a
driver for artificial intelligence has led to work on knowledge
extraction from textbooks. Berant et al. [2] create a system
to perform domain-specific deep semantic analysis of a 48
paragraphs from a biology textbook for question answering.
Extracted relations serve as a knowledge base against which
to answer questions, and answering a question is treated as
finding a proof. A shallow approach to knowledge extraction
from a fourth grade science curriculum is taken in [6], and
the knowledge base is extended through dialog with users
until a path in the knowledge network can be found that
supports a known answer. In the math domain, Kushman et
al. [10] generate a global representation of algebra problems
in order to solve them by extracting relations from sentences
and aligning them. Seo et al. [18] study text and diagrams
together in order to understand the diagrams better through
textual cues. We are concerned with alignment of content



Two machines produce the same type of widget. Machine
A produces W widgets, X of which are damaged. Machine B
produces Y widgets, Z of which are damaged. The fraction of
damaged widgets for Machine A is % or (simplified fraction).
The fraction of damaged widgets for Machine B is % or
(stmplified fraction). Write each fraction as a decimal and a
percent. Use pencil and paper. Select a small percent that
would allow for a small number of damaged widgets. Find
the number of widgets by which each machine exceeded the

acceptable number of widgets.

Figure 1: Sample problem; math terms are in boldface.

across rather than within problems, and our objective is
finer-grained analysis of curricula.

Other work that addresses knowledge representation from
text includes ontology learning [3], which often focuses on
the acquisition of sets of facts from text [4]. There has
been some work on linking lexical resources like WordNet
or FrameNet to formal ontologies [17, 13], which could pro-
vide a foundation for reasoning over facts extracted from
text. We find one work that applies relation mining to e-
learning: Simko and Bielikov4 [19] apply automated relation
mining to extract relations to support e-course authoring in
the domain of teaching functional programming. Li et al.
[11] apply k-means clustering to a combination of problem
features and student performance features, and propose the
clusters correspond to Knowledge Components [8].

3. METHODS

3.1 Data

We used 1800 exercises from 17 chapters of a Grade 7 mathe-
matics curriculum. Most are word problems, as illustrated in
Figure 1. They can incorporate images, tables, and graphs,
but for our analysis, we use only the text. The vocabu-
lary of the resulting text consists of 3,500 distinct words.
We construct graphs where math exercises are the nodes, or
in a bipartite graph, math exercises are the left side nodes
and words are the right side nodes. Our initial focus is on
exercise similarity due to similarity of the math skills that
exercises tap into, and we use mathematics terminology as
an indirect proxy of skills a problem draws upon.

3.2 Math Terminology

The text of the word problems includes ordinary language
expressions unrelated to the mathematics curriculum, such
as the nouns machines, widgets shown in problem in Fig-
ure 1, or the verbs produces, damaged. For our purposes,
mathematics terminology consists of words that expresses
concepts that are needed for the mathematical competence
the curriculum addresses. To identify these terms, we devel-
oped annotation guidelines for human annotators who label
words in their contexts of use, and assessed the reliability of
annotation by these guidelines. Words can be used in the
math texts sometimes in a math sense and sometimes in a
non-math sense. Annotators were instructed to label terms
based on the most frequent usage.

Using a chance-adjusted agreement coefficient in [-1,1] [9],
reliability among three annotators was 0.81, representing

high agreement. All the non-stop words were then labeled
by a trained annotator. We developed a supervised machine
learning approach to classify vocabulary into math and non-
math words [7] that can be applied to new mathematics cur-
ricula. For the text used here, there were 577 math terms.

3.3 Random Walks in Graphs

A random walk on a graph starts at a given node and steps
with random probability to a neighboring node. The same
random decision process is employed at this and every sub-
sequent node until a termination criterion is met. Each time
a node is visited, it is counted. Open random walks require
that the start node and end nodes differ. Traversal methods
may employ a bias to navigate toward or away from certain
neighbors through edge weights or other graph attributes.

In a graph, G = (V, E) with nodes V' and edges FE, a ran-
dom walk that begins at v, and ends at v, can be denoted as
(vz, ..., vy). By performing several random walks, the frac-
tion of times the node v, is visited converges to the prob-
ability of target v, being visited given the start node v,
which can be expressed as P(vy|vz) under the conditions of
the walk. In the case of a random walk length of 1, P(vy|vy)
will simply measure the probability of v, being selected as
an adjacent node to vy.

3.4 Cosine Similarity Graph

Math exercises are represented as bag-of-words vectors with
boolean values to indicate whether a given math term is
present. Cosine similarity quantifies the angle between the
two vectors, and is given by the dot product of two vectors.
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Similarity values of 1 indicate that both the vectors are the
same whereas a value of zero indicates orthogonality between
the two vectors. Pairwise cosine similarities for all 1800
exercises were computed, yielding a cosine similarity matrix
Mecos. The matrix corresponds to a graph where non-zero
cosine similarities are edge weights between exercises.

(1)

cos(t,e) =

In a graph walk, the probability that a node v, will be
reached in one step from a node v, is given by the prod-
uct of the degree centrality of v, and the normalized edge
weight (vs,vy). With each exercise as a starting node, we
performed 100,000 random walks on the cosine-similarity
graph, stepping with proportional probability to all outgo-
ing cosine similarity weights. To measure 2nd degrees of
separation, with each walk we made two steps.

For two math vectors considered as the sets A and B, cosine
similarity can be conceptualized in terms of the intersection
set C = A U B and set differences A\ B and B\ A. Cosine
similarity is high when |C| > A\ B and |C| > B\ A.

The degree of a node affects the probability of traversing
any edge from that node. The two factors that affect de-
gree centrality of a start node are the document frequencies
of its math words, and the total number of math words.
Here, document frequency (df) is the normalized number of
exercises a word occurs in. A high df math word in a prob-
lem increase its degree centrality because there will be more
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Figure 2: Exercise-to-Exercise similarity in Chapter 6. The exercises of Chapter 6 are displayed in row-columns in a square
matrix. The rows represent source nodes and columns represent targets. Each row has been normalized across the book, even
though only Chapter 6 is shown. The axes demarcate the sections of the chapter. M,.s is the cosine similarity. Mcosrw is the
output from the random walk using cosine similarity edge weights, My, is the output from the random bipartite walk. Raw
values displayed between 0 and 0.005 corresponding to light and dark pixels, respectively.

problems it can share words with, resulting in non-zero co-
sine values and therefore edges. The number of math words
in a problem also increases its degree centrality.

3.5 Bipartite exercise and word graph

The set of exercises V. are the left-side nodes and the math
words V,, are the right-side nodes in the undirected bipartite
graph G = (Ve, Vi, E), where an edge exists between ve, and
vy if exercise x contains the math word 1.

We performed open random walks on this graph to measure
similarity between nodes. To measure the similarity of ex-
ercises, we walk in even steps — a step to a connected word
followed by a step back to one of the exercises that shares
that word. The degrees of separation between vertices on
the same side of the graph (e.g. exercise-to-exercise) will be
1/2 where [ is the length of the walk. In this paper, we ex-
plored first and second degrees of separation so our bipartite
graphs had a walk length of 4.

Table 1: Summary statistics of the similarity distributions

| cosine | TWeos | I'Whp
minimum | 0 0 0
maximum | 6.3 x1072 | 0.50 0.11
mean 5.55 x107% | 5.55 x107% | 5.55 x10™*
median 0 2.41 x10™% | 2.06 x107*
std. dev. | 1.19 x1072 | 8.57 x10™* | 1.24 x1073

Because exercise nodes are connected via word nodes, we in-
terpret the fraction of node visits as a similarity measure be-
tween the source node and any node visited. We performed
100,000 random walks from each node. Exercise-to-exercise
similarity can be visualzed as square matrices with source
nodes in the rows and target nodes in the columns. To fac-
tor out the times a source may have been selected as one of
the targets, we set the diagonal of the matrix to zero. We
then normalized across the rows so that we could interpret

the distribution across the row as a probability distribution
to all other nodes for that source node.

4. RESULTS

We compare the three measures of similarity between ex-
ercises: 1) cosine similarity, 2) random walks using cosine
similarity as edge weights, and 3) random walks along a bi-
partite graph of exercises and words.

4.1 Exercise-to-Exercise Similarity

We describe exercise-to-exercise similarity with square ma-
trices where each exercise is represented as a row-column. A
number of features of the measures are embedded in Figure
2, which shows heatmaps of color values for pairs of exercises
in chapter 6 for each matrix. We find that within chapters
and especially within sections of those chapters, there is a
high degree of similarity between exercises regardless of the
measure. This demonstrates that words within sections and
chapters share a common vocabulary. We can see that M.,
has more extreme values than M osr; as explained below,
it has both more zero cosine values, and more very high
values. This is most likely because M osrw, from doing the
walk, picks up exercises that are another degree of separa-
tion away. When the row of the matrix is normalized to
capture the distribution of the source node, the otherwise
high values from M,.,s are tempered in the Mcosr matrix.
This shift to a large number of lower scores is shown in the
bottom panel of Figure 3. My, and Mcosrw are very similar,
but My, generally has a wider dynamic range.

4.2 Comparison of the Graph Walks

Table 1 provides summary statistics for cosine similarity and

the two random walks for all pairs of problems (N=3,250,809).
The cosine matrix is very sparse, as shown by the median

value of 0. Of the two random walk similarities, rw.,s has

a lower standard deviation around the mean, but otherwise

the two random walks produce similar distributions.



The similarity values given by cosine and the cosine random
walk will increasingly differ the more that the start problem
has relatively higher degree centrality due either to more
words or higher frequency of words in exercises (df). For
reference, the word that occurs most frequently, number,
has a df of 0.42, and the second most frequent occurs in
only 15% of the exercises. Fifty eight nodes have no edges
(0 degree), the most frequent number of edges is 170, and
the maximum is 1,706. Table 2 gives the summary statistics
for df, number of math words, and degree centrality.

Inspection of the data shows that for pairs of problems in
the two chapters for our case study, if the cosine similar-
ity between a pair is high (> 0.75), the similarity values
for rweos tend to go down as the number of shared word
increases from 3 to between 5 and 7. For the rwp,, the
opposite trend occurs, where the similarity goes up as the
number of words increases. This difference helps account for
an observed divergence in the two graph walks for sections
5 and 6 of Chapter 6.

Table 3 illustrates two pairs of problems from section 5 that
have high cosine similarities, and relatively higher rwy, sim-
ilarities (greater than the rw means of 0.0055) and relatively
lower rweos (lower than the rw means). The reverse pattern
is seen for two pairs of problems from section 6 that have
high cosine similarities. These problems have higher than
average I'weos and lower than average rwy,. What differen-
tiates the two pairs of problems is that the section 5 prob-
lems have a relatively large number of words in common:
14 for the first pair, 12 for the second pair. In both pairs,
some of the words have relatively high document frequency.
As discussed above, these two properties increase the degree
centrality of the start node of a step in the rw.,s graph, and
thus lower the probability of hitting each of the start node’s
one-degree neighbors. This effect propagates along the two
steps of the walk. For the rws, graph, however, as the num-
ber of shared math words for a pair of problems increases,
the number of paths from one to the other also increases,
thus raising the probability of the traversal. This effect also
propagates through a two-step walk. In contrast to the sec-
tion 5 problems, the two section 6 problems have relatively
fewer words in common: 3 for both pairs.

For problem pairs where the cosine similarity is between
0.40 and 0.60, the mean similarity from rwy, is 30% higher
than for rw.,s for when the number of math words in com-
mon is 3 (0.0033 vs. 0.0043), 80% higher when the number
of math words in common is 6 (0.0024 versus 0.0045), and
three as high when the number of math words in common
is 9 (0.0023 versus 0.0068). For problems pairs where the

Table 2: Summary statistics of document frequency (df) of
math words, number of math words in problems, and degree
centrality of rwees

| df | math words | degree ctr. rweos
minimum | 5.54 x10~% | 1 0
maximum | 0.424 24 1,706
mean 0.183 8.35 418.4
median 6.66 <1073 | 8.00 340
std. dev. 0.314 3.64 317.1

Table 3: Two pairs of problems with high cosine similarity
and reverse patterns of graph walk similarity. The first pair,
from section 5, have lower than average rwc.,s and higher
than average rwy, due to relatively many words in common
(12 and 14). The second pair, from section 6, have higher
than average rwcos and lower than average rwy, due to rel-
atively few words in common.

Prob 1 | Prob 2 | cosine I'Weos r'wyp | N | max df

6.5.99 | 6.5.85 | 1.0000 | 0.0032 | 0.0102 | 12 0.42
6.5.94 | 6.5.83 | 0.8819 | 0.0026 | 0.0064 | 14 0.13

6.6.109 | 6.6.102 | 0.8660 | 0.0068 | 0.0037 | 3 0.11
6.6.104 | 6.6.102 | 0.7746 | 0.0068 | 0.0029 | 3 0.11

cosine similarity is less than 0.20, the two walks produce
very similar results. The average similarity values for the
bipartite walk are about 20% higher, and the maximum val-
ues are higher, but the two walks produce similar means,
independent of the lengths of the common word vectors, or
the total number of math words.

Since we normalized the matrices across rows, which are
the source nodes, differences between the bipartite matrix,
My, and the cosine matrices implied that the degree of the
target node had a greater impact on the variability in the
bipartite matrix. To measure the impact of the edge degree
on the target nodes, we considered the column sum for those
targets that had 1 edge, those that had 2, etc. up to 20
edges. The results are summarized in Figure 4. As can be
seen, the column sum varies linearly by the number of target
edges in the bipartite matrix, whereas the cosine matrices
do not. We found the cubed root of the column sum in My,
approaches the distribution of column sums of the cosine
matrices, which is provided in Figure 4.
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Figure 3: Tail distribution of similarity values in Mcos,
Meosrw, and Myp,. Because 62% of the values in M¢os are 0,
the plot shows only non-zero values.

S. CONCLUSION

Visualization of the three similarity matrices shows they re-
veal the same overall patterns, thus each is confirmed by
the others. However, the bipartite walk was the most sen-
sitive to word frequency across exercises, and the number
of words in problems. With our goal of automatically dis-
covering knowledge components and identifying their rela-
tionships, the random walk that stepped in proportion to
its cosine similarity performed best. It was able to discover
second-degree relationships that seem reasonable as we ex-
plore by eye those matches. Future work will test these re-
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Figure 4: Distribution of column sums by number of edges
in the target node represented by the column. Error plots
show the mean and standard error for each type. Black line
is the cubed root of the mean of the column sums of M.

lationships with student performance data. We should find,

for

example, that if two exercises are conceptually similar,

then student outcomes should also be similar and learning
curves should reveal shared knowledge components. In this
respect, such automatically constructed knowledge graphs
can create more refined domain models that intelligent tu-
toring systems and robust assessments can be built upon.
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