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ABSTRACT

Data-driven systems can provide automated feedback in the
form of hints to students working in problem solving environ-
ments. Programming problems present a unique challenge
to these systems, in part because of the many ways in which
a single program can be written. This paper reviews current
strategies for generating data-driven hints for programming
problems and examines their applicability to larger, more
open-ended problems, with multiple, loosely ordered goals.
We use this analysis to suggest directions for future work to
generate hints for these problems.

1. INTRODUCTION

Adaptive feedback is one of the hallmarks of an Intelli-
gent Tutoring System. This feedback often takes the form
of hints, pointing a student to the next step in solving a
problem. While hints can be authored by experts or gener-
ated by a solver, more recent data-driven approaches have
shown that this feedback can be automatically generated
from previous students’ solutions to a problem. The Hint
Factory [18] has successfully generated data-driven hints in a
number of problem solving domains, including logic proofs [2],
linked list problems [5] and a programming game [12]. The
Hint Factory operates on a representation of a problem called
an interaction network [4], a directed graph where each ver-
tex represents a student’s state at some point in the problem
solving process, and each edge represents a student’s action
that alters that state. A solution is represented as a path
from the initial state to a goal state. A student request-
ing a hint is matched to a previously observed state and
directed on a path to a goal state. The Hint Factory takes
advantage of the intuition that students with the same ini-
tial state and objective will follow similar paths, producing a
well-connected interaction network. When this occurs, even
a relatively small sample of student solutions can be enough
to provide hints to the majority of new students [1].

While problems in many domains result in well-connected
networks, this is not always the case. Programming prob-
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lems have a large, often infinite, space of possible states.
Even a relatively simple programming problem may have
many unique goal states, each with multiple possible solu-
tion paths, leaving little overlap among student solutions.
Despite this challenge, a number of attempts have been
made to adapt the Hint Factory to programming problems [9,
12, 16]. While these approaches have been generally success-
ful, they are most effective on small, well structured pro-
gramming problems, where the state space cannot grow too
large. This paper explores the opposite type of problem: one
that has a large state space, multiple loosely ordered goals,
unstructured output and involves creative design. Each of
these attributes poses a challenge to current data-driven hint
generation techniques, but they are also the attributes that
make such problems interesting, useful and realistic. In this
paper, we will refer to these as open-ended programming
problems. We investigate the applicability of current tech-
niques to these problems and suggest areas for future re-
search.

The primary contributions of this paper are 1) a review of
current data-driven hint generation methods for program-
ming problems, 2) an analysis of those methods’ applica-
bility to an open-ended problem and 3) a discussion of the
challenges that need to be addressed before we can expect
to generate hints for similar problems.

2. CURRENT APPROACHES

Current approaches to generating data-driven programming
hints, including alternatives to the Hint Factory [10, 13, 17],
can be broken down into three primary components:

1. A representation of a student’s state and a method
for determining when one state can be reached from
another, meaning they are connected in the network

2. An algorithm that, given a student’s current state, con-
structs an optimal path to a goal state. Often we sim-
plify this to the problem of picking the first state on
that path

3. A method to present this path, or next state, to the
student in the form of a hint

For the purposes of this paper, we limit our discussion to
the first step in this process. (For a good discussion of the
second step, see an analysis by Piech et al. [13], compar-
ing path selection algorithms.) While in some domains this



first step is straightforward, in programming tasks, espe-
cially open-ended problems, it is likely the most challeng-
ing. The simplest approach is to take periodic snapshots of
a student’s code and treat these as states, connecting con-
secutive snapshots in the network. However, because two
students’ programs are unlikely to match ezactly, this ap-
proach is likely to produce a very sparse, poorly connected
network, making it difficult to match new students to prior
solution attempts. A variety of techniques have been pre-
sented to address this problem, which can be grouped into
three main strategies: canonicalization, connecting states
and alternative state definitions.

2.1 Canonicalization

Canonicalization is the process of putting code states into
a standardized form, often by removing semantically unim-
portant information, so that trivial difference do not prevent
two states from matching. Rivers and Koedinger [15] present
a method for canonicalizing student code by first represent-
ing it as an Abstract Syntax Tree (AST). Once in this form,
they apply a number of functions to canonicalize the code,
including normalizing arithmetic and boolean operators, re-
moving unreachable and unused code, and inlining helper
functions. After performing this canonicalization on a set
of introductory programming problems, they found that a
median 70% of states had at least one match in the net-
work. Jin et al. [9] represent a program’s state as a Linkage
Graph, where each vertex is a code statement, and each di-
rected edge represents an ordering dependency, determined
by which variables are read and assigned to in each state-
ment. This state representation allows the Hint Factory to
ignore statement orderings which are not important to the
execution of the program. Lazar and Bratko [10] use the
actual text of Prolog code to represent a student’s state,
and then canonicalize the code by removing whitespace and
normalizing variable names.

2.2 Connecting States

Even with canonicalization, a student requesting a hint may
not match any existing state in the network. In this case, we
can look for a similar state and create a connection between
them. Rivers and Koedinger [16] use normalized string edit
distance as a similarity metric between two program states.
They connect any two states in the network which have at
least 90% similarity, even if no historical data connect these
states. Additionally, they use a technique called path con-
struction to generate new solution paths from a given state
to a nearby, unconnected goal state by searching for a series
of insertions, deletions and edits to their AST that will trans-
form it into the goal state [17]. They also use this method
to discover new goal states which may be closer to the stu-
dent’s current state. Jin et al. [9] use a similar technique
to transform their Linkage Graphs to better match the cur-
rent state of a student when no direct matches can be found
in the interaction network. Piech et al. [13] use path con-
struction to interpolate between two consecutive states on
a solution path which differ by more than one edit. This
is useful to smooth data when student code is recorded in
shapshots that are too far apart.

2.3 Alternate State Definitions

Another approach is to forego the traditional code-based
representation of a student’s state, and use an alternate def-

inition. Hicks and Peddycord [7, 12] used the Hint Factory
to generate hints for a programming game called Bots, in
which the player writes a program to direct a robot through
various tasks in a 3D level. They chose to represent the state
of a player’s program as the final state of the game world
after the program was executed. They compared the avail-
ability of hints when using this “world state” model with a
traditional “code state” model, and found that using world
states significantly reduced the total number of states and
increased the availability of hints. The challenge with this
approach, as noted by the authors, is the generation of ac-
tionable hints. A student may be more capable of making a
specific change to her code than determining how to effect
a specific change in the code’s output.

3. AN OPEN-ENDED PROBLEM

The above techniques have all shown success on smaller,
well-structured problems, with ample data. We want to in-
vestigate their applicability to an open-ended problem, as
described in Section 1, where this is not the case. The pur-
pose of this paper is not to create actionable hints, nor are
we attempting to show the failures of current methods by
applying them to an overly challenging task. Rather, our
purpose is exploratory, using a small dataset to identify ar-
eas of possible future work, and challenges of which to be
mindful when moving forward with hint generation research.

We collected data from a programming activity completed
by 6th grade students in a STEM outreach program called
SPARCS [3]. The program, which meets for half-day ses-
sions approximately once a month during the school year,
consists of lessons designed and taught by undergraduate
and graduate students to promote technical literacy. The
class consisted of 17 students, 12 male and 5 female.

The activity was a programming exercise based on an Hour
of Code activity from the Beauty and Joy of Computing cur-
riculum [6]. It was a tutorial designed to introduce novices
to programming for the first time. The exercise had users
create a simple web-based game, similar to whack-a-mole,
in which players attempt to click on a sprite as it jumps
around the screen to win points. The exercise was split into
9 objectives, with tutorial text at each stage. Students were
not required to finish an objective before proceeding. A fin-
ished project required the use of various programming con-
cepts, including events, loops, variables and conditionals.
The students used a drag-and-drop, block-based program-
ming language called Tiled Grace [8], which is similar to
Scratch [14]. The user writes a program by arranging code
blocks, which correspond directly to constructs in the Grace
programming language. The editor also supports switching
to textual coding, but this feature was disabled. A screen-
shot of the activity can be seen in Figure 1.

During the activity, the students were allowed to go through
the exercise at their own pace. If they had questions, the
students were allowed to ask for help from the student vol-
unteers. Students were stopped after 45 minutes of work.
Snapshots of a student’s code were saved each time it was
run and periodically throughout the session. Occasional
technical issues did occur in both groups. One student had
severe technical issues, and this student’s data was not an-
alyzed (and is not reflected in the counts above). Students
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Figure 1: A screenshot of the Hour of Code activ-
ity that students completed. Students received in-
structions on the left panel. The center panel was a
work area, and students could drag blocks in from
the bottom-right panel. The top-right panel allowed
students to test their games.

produced on average 148.5 unique code states and accom-
plished between 1 and 6 of the activity’s objectives, averag-
ing 3.2 objectives per student.

4. ANALYSIS

We attempted to understand the applicability of each of the
techniques discussed in Section 2 to our dataset. However,
since the output of our program was a game that involved
nondeterminism, we felt it would be inappropriate to at-
tempt to represent a program’s state as the result of its
execution. We therefore focused on the first two strategies,
canonicalization and connecting states.

4.1 Canonicalization

Our initial representation of a student’s code state was a
tree, where each code block was a node, and its children in-
cluded any blocks that were nested inside of it. In this way,
our representation was similar to Rivers and Koedinger’s
ASTs. To get a baseline for the sparsity of our dataset,
we first analyzed the code states without performing any
canonicalization. We calculated the total number of states
in the interaction network and the percentage which were
only reached by one student. Of those states reached by
multiple students, we calculated the mean and median num-
ber of students who reached them. We also calculated the
percentage of each student’s states that were unreached by
any other student in the dataset.

We then canonicalized the data by removing variable names
and the values of number and string literals. Our problem
featured very few arithmetic or logical operators, and these
were generally not nested, so we did not normalize them,
as suggested by Rivers and Koedinger [15]. We reran our
analyses on the canonicalized data. To ensure that we had
effectively removed all unimportant ordering information,
we recursively sorted the children of each node in the tree.
This effectively removed any ordering information from a
student’s code state, and kept only hierarchical information.
This is somewhat more extreme than the Linkage Graphs of
Jin et al. [9], and it does allow two meaningfully differ-

Raw | Canonical | Ordered
Total States 2380 1781 1656
% Unique 97.5% 94.8% 92.8%
Mean NU Count 3.44 3.95 2.82
Median NU Count 2 2 2
Mean % Path Unique | 89.9% 83.0% 78.9%
Standard Deviation (6.67) (10.5) (13.3)

Table 1: Various measures of the sparseness of the
interaction network for the raw, canonicalized, and
ordered-canonicalized state representations. Mean
and median NU counts refer to the number of stu-
dents who reached each non-unique state.

ent code states to be merged in the process. We therefore
see this as an upper bound on the value of removing unim-
portant orderings from a code state. We recomputed our
metrics for the ordered-canonicalized interaction network as
well. The results can be seen in Table 1. Our later analyses
use the unsorted, canonicalized code representation.

These results indicate that canonicalization does little to re-
duce the sparsity of the state space, with students spending
most of their time in states that no other student has seen.
For comparison, recall Rivers and Koedinger found 70% of
states in a simple programming problem had a match after
canonicalization [15], though they were using a much larger
dataset. In our dataset, it is unlikely that we would be able
to find a direct path from a new student’s state to a goal
state in order to suggest a hint.

4.2 Connecting States

To address this, we explored the feasibility of connecting a
new student’s state to a similar, existing state in the net-
work. It is unclear how close two code states should be
before it is appropriate to connect them as in [16], or to
generate a path between them as in [17]. It certainly de-
pends on the state representation and distance metric used.
Rather than identifying a cutoff and measuring how often
these techniques could be applied, we chose to visualize the
distance between two students and make qualitative obser-
vations. Because our code states were already represented
as trees, we used Tree Edit Distance (TED) as a distance
metric. While Rivers and Koedinger reported better success
with Levenshtein distance [16], we believe that TED is the
most appropriate distance metric for block code, where tree
edit operations correspond directly to user actions.

For each pair of students, A and B, we created an N by M
distance matrix, D, where N is the number of states in A’s
solution path, and M is the number of states in B’s solution
path. D;; = d(As, B;), where d is the TED distance func-
tion, A; is the ith state of A and Bj; is the jth state of B.
We used the RTED algorithm [11] to calculate the distance
function, putting a weight of 1.0 on insertions, deletions and
replacements. We also omitted any state which was identical
to its predecessor state. We normalized these values by di-
viding by the maximum value of D; ;, and plotted the result
as an image. Three such images can be seen in Figure 2.

We also calculated the “path” through this matrix that passes
through the least total distance. This does not represent a



Figure 2: Three distance matrices, each comparing
two students, where each pixel represents the TED

between two states. Lighter shades of gray indi-
cate smaller distances. The green/yellow line shows
the path through the matrix with minimized total
distance, with yellow shades indicating smaller dis-
tances. Red crosses indicate where both students
met an objective. The top-left figure compares two
students as they completed objectives 1-4 in the ex-
ercise. In this example, the minimum-distance line
crosses each objective. The top right figure also de-
picts two students completing objective 4, but the
darker colors and straighter line indicate less align-
ment. The bottom figure depicts two students com-
pleting objectives 1-6, with high alignment.

path through the interaction network, but rather an align-
ment between the states of student A and those of student
B. Each pixel of the line represents a pairing of a state
from A with a state from B, such that these pairings are
contiguous and represent the smallest total distance. While
we do not suggest applying this directly as a strategy for
hint generation, it serves an a useful visual indicator of the
compatibility of two students for hinting purposes.

An alternate approach would have been to pair each state in
the interaction network with its closest pair from any other
student, and use this as a measure of how sparse the network
was. We chose to compare whole students, rather than indi-
vidual states, because we felt that the former could lead to
strange hinting behavior. Imagine, for instance, that a stu-
dent requests a hint, which initially points to a state from
student B, but at the very next step requests a hint that
points instead to student C. Perhaps the attributes that
make the student’s state similar to that of B are different
from those that make the state similar to C. The resulting
hints would be at best confusing, and at worst conflicting.

Mean Median Max Farthest
1 | 0.25 (0.27) | 0.15 (0.29) | 0.76 (0.56) 2.23 (0.75)
2 || 4.88 (3.93) | 4.95 (4.34) | 9.18 (5.74) 12.73 (6.10)
4 || 4.92 (2.77) | 4.83 (2.78) | 10.11 (3.69) || 14.67 (4.77)
5 7.79 (1.32) | 7.75 (1.41) | 13.17 (1.72) || 18.17 (1.72)
6 | 7.49 (1.11) | 7.76 (1.37) | 13.17 (0.98) || 18.67 (1.75)

Table 2: For each objective, average distances (and
standard deviations) of minimum-distance student
pairs, using the mean, median and max metrics.
For reference, the final column represents the av-
erage maximum distance each student moved from
the start state while completing the objective.

A visual inspection of these matrices reveals that while many
student pairs are quite divergent, some show a notable close-
ness throughout the exercise. In order to quantify these
results, we developed a set of distance metrics between stu-
dents. First, the distance matrix and the minimum-distance
“path” were calculated for the two students. The path is
comprised of pairs of states, and for each pair, we recorded
the tree edit distance between the states. From this list of
distances, we calculated the mean, median and maximum
distances between the two students. We looked at each ob-
jective in the exercise, and isolated the relevant subpath of
each student who completed that objective. We paired each
of these subpaths with the most similar subpath in the set,
using the mean, median and max distance metrics. Table 2
shows the average values of these minimized pairs of stu-
dents, using each metric. Objective 3, and objectives 7-9
were omitted, as too few students completed them.

5. DISCUSSION

We have attempted to apply a meaningful canonicalization
to our state space, which did serve to reduce the number
of states by 30.4%. However, as seen in Table 1, even af-
ter the strongest canonicalization, over 90% of the states in
the interaction network had only been reached by one stu-
dent, with an average 78.9% of the states in each student’s
solution path being unique to that student. It seems that
our approach to canonicalization is insufficient to produce a
meaningful reduction of the state space, though it is possible
a more stringent canonicalization would be more effective.

Connecting existing states seems to be a more promising ap-
proach, giving us the ability to link new states to previously
observed states, even when they do not match exactly. Our
distance matrices indicate that some students take parallel,
or slowly diverging solution paths, which suggests that they
may be useful to each other in the context of hinting. As
shown in Figure 2, students are often closest together when
completing the same objective. This may seem self-evident,
but it does indicate that our distance metric is meaning-
ful. It is more difficult to put the actual TED values into
context. Students get, on average, farther away from their
closest paired student as they complete more objectives, but
this average distance does not exceed 8 tree edits during the
first 6 objectives. To put that number into context, during
this same time students do not, on average, get more than
19 tree edits away from the start state. This suggest that
there is certainly hint-relevant knowledge in these paired stu-



dents, but that it may be difficult to harness this knowledge
to generate a hint.

5.1 Limitations

It is important to note that this analysis is an exploratory
case study, and makes no strong claims, only observations.
We studied data from only 17 novice programmers, and the
problem we analyzed was highly complex, involving multiple
control structures, loosely ordered objectives, and unstruc-
tured output. This makes the problem quite dissimilar from
previous problems that have been been studied in the con-
text of hint generation, making it difficult to determine what
observations should be generalized.

5.2 Future Work

Rivers and Koedinger [16], as well as Jin et al. [9] note
the limitations of their methods for larger problems, and
each suggest that breaking a problem down into subprob-
lems would help to address this. Lazar and Bratko [10] at-
tempted this in their Prolog tutor by constructing hints for
individual lines of code, which were treated as independent
subproblems. Similarly, we may be able to isolate the sub-
section of a student’s code that is currently relevant, and
treat this as an independent problem. The hierarchical na-
ture of block-based coding environments lends itself to this
practice, making it an appealing direction for future work.

Our work makes the simplifying assumption that unweighted
TED is a reliable distance metric for code, but future work
should investigate alternative metrics. This might include a
weighted TED metric, which assigns different costs to inser-
tions, deletions and replacements, or even to different types
of nodes (e.g. deleting a for-loop node might cost more than
a function call node). Regardless of the metric used, once
two proximate states are identified, it is still an open ques-
tion how this information can be best used for hint gener-
ation. It is possible to construct a path between the states
and direct a student along this path. However, future work
might also investigate how to extract hint-relevant informa-
tion from one state and apply it to a similar state directly.

Because of the nature of our problem’s output, we did not
explore non-code-based state representations, as described
in Section 2.3. It would still be worth investigating how this
might be applied to open-ended problems. For instance, a
code state could be represented as a boolean vector, indi-
cating whether the code has passed a series of Unit Tests,
and hints could direct the student to the current flaw in
their program. However, creating actionable hints from this
information would pose a significant challenge.
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