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Abstract. Twelve years have elapsed since the first QBF evaluation
was held as an event linked to SAT conferences. During this period,
researchers have strived to propose new algorithms and tools to solve
challenging problems, with evaluations periodically trying to assess the
current state of the art. In this paper, we present an experimental account
of solvers and benchmarks with the aim to understand the progress, if
any, in the QBF arena. Unlike typical evaluations, the analysis is not
confined to the snapshot of submitted solvers and problems, but rather
we consider several tools that were proposed over the last decade, and
we run them on different problem sets. The main contribution of our
analysis, which is also the message we would like to pass along to the
research community is that some faded-to-oblivion techniques turn out
to be still quite effective.

1 Introduction

The first non-competitive QBF solvers evaluation (QBFEVAL’03) [3] was held as
an associated event of the SAT 2003 conference. If the purpose of QBFEVAL’03
was to assess the state of the art in the relatively young – in the time – QBF
reasoning field, the ensuing QBFEVAL series was established with the purpose
of measuring the progress in QBF reasoning techniques – see, e.g., [18]. Since
the last evaluation, what has been the progress (if any) in the QBF arena? After
more than a decade of new solvers being developed and new challenge problems
being proposed, we believe that QBFEVAL and, more recently, QBF Gallery [6]
events offer a series of snapshots about QBF solving and related aspects, but
somehow fail to provide a long-term picture about what has been achieved.

Covering the whole time span of QBFEVAL and QBF Gallery events, our
experiments enable us to assess the progress in the QBF field, and put the
current state of the art in a historical perspective. In order to achieve this goal,
the experimental setup is not confined to a snapshot in time offered by recently
proposed systems. In particular, as far as systems are concerned, we consider
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some legacy solvers, i.e., tools that were proposed in the literature, but are not
considered in more recents comparative events, e.g., because they are no longer
maintained or updated. We call new solvers all the other tools that we consider
and which are not legacy. In particular, out of 9 solvers considered, the legacy
ones are AIGSolve [19], aqme [21], quantor [4], QuBE [8], sKizzo [1], and
StruQS [22]. These tools are chosen among winners of at least one category
in the past QBFEVAL events, conditioned to their maintenance ending before
2010. The set of new solvers is assembled by including the winners of the last
QBF Gallery 2014, namely depqbf [15], ghostq [13] and rareqs [10]. As for
problems, we consider two different pools, namely QBF Gallery 2014 Track 1
and QBF Gallery 2014 Track 2. Overall, the problem set is purposefully biased
towards more recently submitted instances, in order to (try to) assess legacy
solvers on problems that are probably “unseen” to them, i.e., for which their
developers did not have a chance to optimize the solver.

The main conclusion that we draw by analyzing the results of our compar-
ison is that the techniques implemented in legacy solvers are far from being
outdated. Just to get an idea of what we observe – more details can be found
in Section 4 – consider that, if we rank the tools using the number of prob-
lems solved, then it turns out that at least two legacy solvers rank among the
first three solvers, for all the pools considered. Further evidence in this direction
can be obtained considering the “state-of-the-art” (SOTA) solver abstraction,
i.e., the ideal system that always fares the best time among the systems in a
solver portfolio. If we build “legacy-SOTA” and “new-SOTA” solvers based on
the corresponding portfolios of legacy and new solvers, then we observe that
legacy-SOTA outperforms new-SOTA – and this remains true even looking at
specific subcategories in most cases. While it is difficult to single out the con-
tribution of specific algorithmic techniques by looking at the performances of
implemented systems – most of which are closed source – the results we observe
strongly suggest that, while new solvers are better engineered than legacy ones,
the latter have some combination of techniques that are probably worth taking
into account for further developments.

The rest of the paper is structured as follows. In Section 2 we review QBF
syntax and semantics. In Section 3 we briefly describe the solvers and the prob-
lems used in our experiments. Section 4 presents the results, while in Section 5
we conclude the paper with some final remarks.

2 Preliminaries

In this section we consider the definition of QBFs and their satisfiability as given
in the literature of QBF decision procedures (see, e.g., [9, 2, 4]), and we define
features describing the structure of QBFs.

Syntax and Semantics A variable is an element of a set P of propositional letters
and a literal is a variable or the negation thereof. We denote with |l| the variable
occurring in the literal l, and with l the complement of l, i.e., ¬l if l is a variable

P.Marin et al. An Empirical Perspective on Ten Years of QBF Solving

63



and |l| otherwise. A literal is positive if |l| = l and negative otherwise. A clause
C is an n-ary (n ≥ 0) disjunction of literals such that, for any two distinct
disjuncts l, l′ in C, it is not the case that |l| = |l′|. A propositional formula
is a k-ary (k ≥ 0) conjunction of clauses. A quantified Boolean formula is an
expression of the form

Q1z1 . . . QnznΦ (1)

where, for each 1 ≤ i ≤ n, zi is a variable, Qi is either an existential quantifier
Qi = ∃ or a universal one Qi = ∀, and Φ is a propositional formula in the
variables {z1, . . . , zn}. The expression Q1z1 . . . Qnzn is the prefix and Φ is the
matrix of (1). A literal l is existential if |l| = zi for some 1 ≤ i ≤ n and ∃zi
belongs to the prefix of (1), and it is universal otherwise.

The semantics of a QBF ϕ can be defined recursively as follows. A QBF
clause is contradictory exactly when it does not contain existential literals. If
the matrix of ϕ contains a contradictory clause then ϕ is false. If the matrix of
ϕ has no conjuncts then ϕ is true. If ϕ = Qzψ is a QBF and l is a literal, we
define ϕl as the QBF obtained from ψ by removing all the conjuncts in which l
occurs and removing l from the others. Then we have two cases. If ϕ is ∃zψ, then
ϕ is true exactly when ϕz or ϕ¬z are true. If ϕ is ∀zψ, then ϕ is true exactly
when ϕz and ϕ¬z are true. The QBF satisfiability problem (QSAT) is to decide
whether a given formula is true or false. It is easy to see that if ϕ is a QBF
without universal quantifiers, solving QSAT is the same as solving propositional
satisfiability (SAT).

Representing QBFs To correlate the structure of QBFs with the performances
of solvers, we extract representative features from QBFs — see, e.g., [21]. A first
class is given by syntactic features:

– c, total number of clauses; c1, c2, c3 total number of clauses with 1, 2 and
more than two existential literals, respectively; ch, cdh total number of Horn
and dual-Horn clauses, respectively;

– v, total number of variables; v∃, v∀, total number of existential and universal
variables, respectively; ltot, total number of literals; vs, vs∃, vs∀, distribution
of the number of variables per quantifier set, considering all the variables,
and focusing on existential and universal variables, respectively; s, s∃, s∀,
number of total, existential and universal, quantifier sets;

– l, distribution of the number of literals in each clause; l+, l−, l∃, l∃+, l∃−, l∀,
l∀+, l∀−, distribution of the number of positive, negative, existential, pos-
itive existential, negative existential, universal, positive universal, negative
universal number of literals in each clauses, respectively.

– r, distribution of the number of variable occurrences r+, r−, r∃, r∃+, r∃−, r∀,
r∀+, r∀−, distribution of the number of positive, negative, existential, pos-
itive existential, negative existential, universal, positive universal, negative
universal variable occurrences, respectively.

We also take into account the following combined features:
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– c
v , the classic clauses-to-variables ratio, and for each x ∈ {l, r} the following
ratios (on mean values):

• x+

x , x−
x , x+

x−
, balance ratios;

• x∃
x , x∃+

x , x∃−
x , x∃+

x∃
, x∃−

x∃
, x∃+
x∃−

, x∃+
x+

, x∃−
x−
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• x∀
x , x∀+

x , x∀−
x , x∀+

x+
, x∀−

x−
, x∀+

x∀
, x∀−

x∀
, x∀+

x∀−
, balance ratios (universal part);

– c1
c , c2

c , c3
c , ch

c , cdh
c , ch

cdh
, i.e., balance ratios between different kinds of clauses.

A second class of features is computed on graph models of QBFs. From previous
related work on SAT, see, e.g. [17], we borrow variable graphs (VG) and the
clause graphs (CG). The former has a node for each variable and an edge between
variables that occur together in at least one clause, while the latter has nodes
representing clauses and an edge between two clauses whenever they share a
negated literal. For each graph, we consider the average value on their node
degree. Finally, we also consider a treewidth measure twp which accounts for
the treewidth of the VG adjusted to keep into account that only elimination
orders compatible to the prefix p are viable — see [20, 23] for details, and also
for extensive empirical evidence about the correlation of twp with hardness of
QBFs.

3 Setup

In this section we present solvers and problems that we selected for our analysis.
As for solvers, we consider systems participating to QBF Gallery 20141 as well
as solvers participating to past QBFEVAL editions. Considering the former, we
choose the winners of Track 1 and Track 2 [12] which are shortly described in
the following.

depqbf (v. 3.0.4) [15] is a search-based solver performing non-chronological
backtracking from conflicts and solutions; depqbf can select branching vari-
ables without following the prefix order by leveraging a compact representa-
tion of the dependencies among variables.

ghostq (v. qdimacs-gal-2014) [13] is a non-prenex DPLL-based solver which
makes use of auxiliary variables to force necessary assignments, i.e., to force a
value to an existential (resp. universal) variable if the opposite value directly
makes the formula evaluate to false (resp. true). Additionally, it features a
CEGAR-based learning to further prune the search space when the last
decision literal is existential (resp. universal) and a conflict (resp. solution)
is detected.

rareqs (v. 1.1) [10] is a counterexample guided abstraction refinement (CE-
GAR) based solver which performs a kind of resolution and expansion pro-
cedure but in a depth-first way, i.e., by expanding first only one value of a
variable, and learns abstractions of the local partial solutions to refine the
global solution.

1http://qbf.satisfiability.org/gallery
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We did not consider the system hiqqer [12] because we could not find a version
available for download. In the remainder of the paper, we refer to this pool of
solvers as s-new.

Solvers participating to past editions of QBFEVAL – to which we refer as
s-legacy from now on – are described in the following.

AIGSolve [19] uses And-Inverter Graphs (AIGs) as the main data structure,
and AIG-based operations to reason about the input formula. The solver
includes preliminary phases devoted to simplification, structure extraction
and early quantification of the input formula.

aqme [21] is a multi-engine solver, i.e., a tool using Machine Learning tech-
niques to select among its reasoning engines the one which is more likely to
yield optimal results. The reasoning engines of aqme are a subset of those
submitted to QBFEVAL’06, namely 2clsQ, quantor, QuBE, sKizzo, and
sSolve. Engine selection is performed according to the adaptive strategy de-
scribed in [21].

quantor [4] is based on Q-resolution (to eliminate existential variables) and
Shannon expansion (to eliminate universal variables), plus a number of fea-
tures, such as equivalence reasoning, subsumption checking, pure literal de-
tection, unit propagation, and also a scheduler for the elimination step.

QuBE [8] is a solver that first applies, among other simplification techniques,
deep equivalence reasoning and removes variables by Q-Resolution. Then, it
uses a search-based decision procedure that performs monotone and “don’t
care” literal propagation, non-chronological backtracking from conflicts and
solutions, in which it produces and removes less clauses/terms made tauto-
logical by blocking universal/existential literals than its predecessor.

sKizzo [1] is a reasoning engine for QBF featuring several techniques, including
search, resolution and skolemization.

StruQS [22] main feature is a dynamic combination of search – with solution-
and conflict-backjumping – and variable-elimination. The key point in this
approach is to implicitly leverage graph abstractions of QBFs to yield struc-
tural features which support an effective decision between search and variable
elimination.

We included AIGSolve because it is the only system employing AIG-based
operations to reason on input QBF. We involved aqme for its multi-engine archi-
tecture; as a by-product, it can return an approximated picture of state-of-the-art
QBF solvers back in 2006, so it can be used as “yardstick” to assess improve-
ments. quantor, QuBE, and sKizzo implement key QBF solution techniques,
namely resolution and expansion, DPLL-search, and Skolemization, respectively.
Finally, we included StruQS because it represents the first — and, to the best of
our knowledge, the only — attempt to combine dynamically very different solu-
tion techniques. Almost all the s-legacy solvers also collected accolades in past
QBF evaluations. AIGSolve was the winner of the QBFEVAL’10 small hard
track, while aqme was the system able to solve the highest number of formulas
in QBFEVAL’07, ’08, and in the main track of QBFEVAL’10. quantor was the
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winner of QBFEVAL’04, while QuBE won the 2QBF track of QBFEVAL’10.
Finally, sKizzo has been the winner of QBFEVAL’05 and ’07.

We evaluate the above mentioned systems on different pools of problem in-
stances. The syntax of the instances is prenex-CNF using the qdimacs 1.1 format.
The problem pools we consider are briefly outlined in the following.

– The formulas included in QBF Gallery 2014 Track 1. These are 276 instances
collectively denoted as qbfg-t1.

– The formulas included in QBF Gallery 2014 Track 2. These are collectively
denoted as qbfg-t2.

The pool qbfg-t2 includes formulas coming from six different families, namely:

bomb and dungeon [14] are encodings of conformant planning problems with
optimal length and uncertainty of the initial state.

complexity [11] result from a QBF encoding of automatic reduction between
decision problems. The original problem is undecidable in general, but it can
be reduced to Σp

2 if the dimension of the reduction is fixed and given, and
the size of the inputs is bounded.

hardness [16] Black-Box bounded model checking instances for an incomplete
parametrized arbiter of a bus system.

planning [5] This instance set include different planning problems encoded into
QBF using two different strategies: the first one is based on the iterative
squaring formulation, and the second one relies on a more compact tree-like
encoding.

testing [24] The solutions to these problems are test patterns for sequential
circuits coming from ISCAS 89 and ITC 99 benchmarks having a maximum
amount of inputs set to don’t care.

4 Experimental Analysis

In this section we report and analyze the results of our empirical evaluation.
All the experiments ran on a cluster of Intel Xeon E3-1245 PCs at 3.30 GHz
equipped with 64 bit Ubuntu 12.04. All solvers were limited to 600 seconds of
CPU time and to 4GB of memory.

4.1 QBF Gallery 2014 formulas – Track 1

The aim of our first experiment is to evaluate the selected solvers in the qbfg-
t1 pool of instances. In Table 1 we report the raw results of such evaluation.
Looking at the results, we can see that only 6 solvers out of 9 were able to
solve at least 25% of the test set. If we rank solvers according to the number of
problems solved within the time limit, then the best system is AIGSolve, which
can solve about 42% of the test set, followed by QuBE and aqme. To find the
best solver in s-new, namely ghostq, we must go down to the fourth position.
ghostq performs only slightly worse than aqme, and it tops at 33% of the

P.Marin et al. An Empirical Perspective on Ten Years of QBF Solving

67



Solver Total True False Unique
# Time # Time # Time # Time

AIGSolve 116 5333.01 56 2177.45 60 3155.56 22 1458.26

QuBE 106 8764.73 53 3997.78 53 4766.95 8 1195.58

aqme 97 3287.20 39 1098.00 58 2189.20 – –

ghostq 91 4814.73 48 2912.38 43 1902.17 4 158.97

depqbf 88 2388.32 39 1163.15 49 1225.17 5 454.77

rareqs 79 2588.64 32 1593.25 47 995.39 6 787.33

sKizzo 51 948.81 18 556.76 33 392.06 – –

quantor 50 1498.37 28 911.72 22 586.65 2 161.67

StruQS 43 6092.64 31 4052.98 12 2039.66 1 16.53

Table 1. Runtime of solvers on qbfg-t1. For each solver, the table reports its name
(column “Solver”), the total number of instances solved and the cumulative time to
solve them (columns “#” and “Time”, group “Total”), the number of instances found
satisfiable and the time to solve them (columns “#” and “Time”, group “True”), the
number of instances found unsatisfiable and the time to solve them (columns “#” and
“Time”, group “False”), and, finally, the number of instances uniquely solved and the
time to solve them (columns “#” and “Time”, group “Unique”); a “–” (dash) means
that the solver did not solve any instance. The table is sorted in descending order
according to the number of instances solved, and, in case of a tie, in ascending order
according to the cumulative time taken to solve them.

test set. This result is relevant for our case in point, particularly if we consider
that both AIGSolve and QuBE are systems dating back to 2010, while aqme
combines solvers dating back to QBFEVAL 2006. Finally, despite quantor and
StruQS were not able to solve more than 20% of qbfg-t1, still they were the
only ones able to solve some instances — 2 and 1, respectively.

If we consider the structure of the instances comprised in qbfg-t1, then we
can observe several structural differences between those solved by at least one
solver and those that remained unsolved. For instance, if we focus on the formula
size in terms of variables v and clauses c, then we can see that unsolved instances
feature, on average, higher values of both parameters, i.e., they are somewhat
larger. Looking at the median values v̂ and ĉ of the parameters v and c, we can
see that v̂ = 3412 if the population is restricted to solved instances, whereas
v̂ = 10188 on the population of unsolved ones. A similar picture holds for c,
with ĉ = 14818 and ĉ = 57130 for solved and unsolved instances, respectively.
As expected, twp is also indicative of this spread, since t̂wp = 486 for solved
instances, whereas t̂wp = 1102 for unsolved ones.

Another perspective about the results of Table 1 can be obtained by resorting
to the state-of-the-art solver abstraction (sota in the following), i.e., the ideal
solver that always fares the best time among all the solvers in a portfolio. In
this case, sota was able to cope with about 73% of qbfg-t1 (202 formulas).
What is more relevant is that all the systems contributed to its composition. In
particular, the main contributors — in percentage — were AIGSolve, depqbf,
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variables clauses

avg clause length treewidth

Fig. 1. Box-plots of different features distributions related to QBFs comprised in qbfg-
t1. Features are v and c (top-left and top-right, respectively), l (bottom left), and twp

(bottom right). Each distribution in the plots is labeled as follows: “SOTA-L” and
“SOTA-N” are placeholders for sota-legacy and sota-new, respectively, while “S”
and “U” – in parentheses – stand for “solved” and “unsolved”. For each plot, we show
a box-and-whiskers diagram representing the median (bold line), the first and third
quartile (bottom and top edges of the box), the minimum and maximum (whiskers at
the top and the bottom) of a distribution. An approximated 95% confidence interval
for the difference in the two medians is represented by the notches cut in the boxes: if
the notches of two plots do not overlap, this is strong evidence that the two medians
differ. Finally, in the y-axes of each plot are reported the values of the related features.

and rareqs with 22%, 20%, and 17%, respectively. Notice that 2 out of 3 of the
main contributors are indeed in s-new.

With the aid of the sota abstraction we can also compare the overall perfor-
mances of solvers in s-legacy vs. those in s-new. In order to do that, we com-
pute two abstractions, namely sota-legacy — considering only legacy systems
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— and sota-new— considering only new solvers. The rationale of this analysis
is twofold: on one hand, we want to evaluate the advancement of the state of
the art with respect to legacy systems (and related solving techniques); on the
other, we want to look for patterns, expressed by means of features, enabling
us to spot differences in the type of QBFs solved by old and new systems. As
far as advancing the state of the art is concerned, we report that sota-legacy
solves 185 formulas — about 92% of those solved by sota — while sota-new
tops at 70% (142 instances). In view of these results, and considering that most
of the formulas in qbfg-t1 where not available at the time in which the solvers
in s-legacy were developed, there does not seem to be a stark advancement in
solvers’ abilities from s-legacy to s-new.

As for the nature of the instances solved by legacy vs. new solvers, we can
try to observe differences in the structure of QBFs solved by solvers in sota-
legacy and solvers in sota-new. In Figure 1 we present the distributions of four
features across four different populations obtained by combining sota-legacy,
sota-new with solved and unsolved formulas. In the figure, we can see that
the parameter l (average clause length) is not significantly different among the
various classes of problems — all the notches overlap. If we consider v (number of
variables) then we see that for sota-new the value of v̂ is significantly different
between solved and unsolved instances, while the same is not true for sota-
legacy. Therefore, it seems that the sheer number of variables matters most for
solvers in sota-new. However, also notice that there is no significant difference
between sota-legacy and sota-new when considering (un)solved formulas.
As for c (number of clauses) both sota-legacy and sota-new are sensitive to
this parameter: higher values of c imply harder formulas. Also in this case, no
significant difference can be spotted when considering sota-legacy and sota-
new on (un)solved formulas. Finally, looking at the distributions of twp, we can
see that its median value is not a significant hardness predictor for solvers in
sota-new, whereas it is a hardness predictor for solvers in sota-legacy, but
there are no differences when considering (un)solved formulas. Overall, we can
conclude that no clear pattern emerges that could help to differentiate (un)solved
formulas between solvers in sota-new and sota-legacy, at least looking at
the parameters shown in Figure 1.

4.2 QBF Gallery 2014 formulas – Track 2

Our next experiment aims at assessing solvers on the pool qbfg-t2. Before delv-
ing into the analysis, we wish to point out that there are structural differences
between the formulas in qbfg-t2 and those in qbfg-t1. On average, they are
characterized by a smaller number of median variables v̂ (3374 vs. 4708), but a
considerably larger number of median clauses ĉ (29492 vs. 17397). Formulas in
qbfg-t2 are also characterized by a relatively small value of universal variables
since v̂∀

v̂ = 0.006 in the case of qbfg-t2, while the same ratio is 0.02 in the case
of qbfg-t1. Finally, we report that qbfg-t1 formulas usually have a higher
value of average clause length since l̂ = 2.58, whereas the same value is 2.37 for
qbfg-t2.
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Family Solver Total True False Unique
# Time # Time # Time # Time

AIGSolve 83 1003.23 40 165.20 43 838.03 – –
rareqs 83 1420.61 34 165.41 49 1255.19 6 1094.71
quantor 82 923.25 53 217.92 29 705.33 – –
aqme 80 674.38 53 345.02 27 329.36 – –

bomb depqbf 67 2410.16 40 1693.36 27 716.79 – –
(132) sKizzo 57 609.41 31 2.39 26 607.03 – –

ghostq 56 532.47 29 42.66 27 489.81 – –
QuBE 47 1168.86 23 470.47 24 698.39 – –
StruQS 36 1051.46 19 813.58 17 237.88 – –

rareqs 75 1559.65 29 466.77 46 1092.88 15 1148.51
depqbf 49 1553.73 22 1086.35 27 467.38 – –
ghostq 42 1791.86 11 499.21 27 467.38 – –
QuBE 39 1273.95 19 277.87 20 996.09 – –

complexity aqme 33 528.28 15 188.76 18 339.52 – –
(104) quantor 26 170.44 11 11.29 15 159.14 – –

StruQS 21 1855.53 13 1677.81 8 177.72 – –
AIGSolve 15 70.26 7 12.24 8 58.02 – –
sKizzo 9 316.60 4 315.82 5 0.78 – –

quantor 104 525.30 18 54.81 86 470.48 – –
aqme 104 1121.43 18 86.11 86 1035.32 – –
AIGSolve 87 1220.22 17 417.12 70 803.10 – –
rareqs 57 1870.73 18 54.89 39 1815.85 – –

dungeon depqbf 44 535.22 18 300.44 26 234.77 – –
(107) QuBE 34 1429.60 7 212.89 27 1216.71 – –

ghostq 7 385.11 4 4.62 3 380.49 – –
sKizzo 2 0.99 – – 2 0.99 – –
StruQS 1 21.96 1 21.96 – – – –

StruQS 88 7826.42 1 372.74 87 7453.68 12 3033.19
QuBE 76 1346.11 – – 76 1346.11 2 328.75
ghostq 51 2649.30 2 239.56 49 2409.74 1 224.22
aqme 50 265.14 – – 50 265.14 – –

hardness rareqs 14 1431.05 – – 14 1431.05 – –
(114) AIGSolve 12 2038.84 – – 12 2038.84 – –

depqbf 8 617.99 – – 8 617.99 – –
quantor – – – – – – – –
sKizzo – – – – – – – –

AIGSolve 147 2371.36 38 114.02 109 2257.34 10 861.70
rareqs 137 1093.01 38 125.66 99 967.35 – –
quantor 131 6750.13 37 122.68 94 6627.44 – –
aqme 123 9263.25 37 464.97 86 8798.28 – –

planning sKizzo 74 71.57 34 24.02 40 47.55 – –
(147) depqbf 57 5134.24 29 1876.90 28 3257.34 – –

QuBE 14 1270.35 12 743.61 2 526.74 – –
ghostq 11 2155.26 8 1420.71 3 734.55 – –
StruQS 4 1229.67 4 1229.67 – – – –

aqme 71 2675.64 64 2339.68 7 335.95 1 3.00
StruQS 65 1770.09 63 1488.09 2 282.00 4 236.18
depqbf 57 692.38 46 672.96 11 19.42 2 359.15
AIGSolve 51 4194.44 46 4163.65 5 30.79 2 11.88

testing QuBE 41 765.08 31 734.85 10 30.23 1 1.24
(131) rareqs 34 428.00 22 317.04 12 110.95 1 0.53

ghostq 32 269.13 29 66.10 3 203.03 – –
quantor 26 121.15 25 110.52 1 10.63 – –
sKizzo 1 0.02 1 0.02 – – – –

Table 2. Performances of QBF solvers on qbfg-t2: The table is split in six horizontal
parts, one for each family. The first column contains families names, as well as its total
amount of instances. The rest of the table is organized as Table 1.
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In Table 2, we show the results of our experiments on qbfg-t2. The formulas
in bomb, when compared to the whole qbfg-t2 formulas, are characterized by
higher median values of l−

l (0.96 vs 0.84), c
v (13.61 vs 8.74), and twp (914 vs

758). On this subcategory, the best systems are AIGSolve, rareqs, and quan-
tor, which are the only ones able to solve more than 60% of the total. Also in
this case, two of the top three performers are solvers in s-legacy. However, we
should also point out that rareqs is the only system able to solve instances
uniquely. Overall, it seems that the solvers which are not purely search-based
are also the most effective ones in this subcategory. This difference cuts across
the separation between s-legacy and s-new, and it could be due to the fact
that these formulas are relatively easy to expand into SAT instances, so solvers
featuring this technique, e.g., quantor and rareqs, handle them more effec-
tively. Indeed, if we consider the sota abstraction, its major contributors are
quantor and rareqs, with 41 and 38 formulas, respectively. Overall, sota is
able to solve 77% of the total (102 instances out of 132). In spite of the very
good performances of rareqs, still sota-legacy solved 96 instances, while
sota-new 89, thus confirming the picture that we observed in qbfg-t1.

Regarding the results on complexity, looking at Table 2 we can see that the
best solvers are all comprised in s-new. Noticeably, this is the only subcategory
of qbfg-t2 and the only case throughout our experimental analysis in which this
is true. rareqs, depqbf, and ghostq are able to solve 75, 49, and 42 instances,
respectively. In particular, rareqs solves 15 of them uniquely. Looking at the
structure of QBFs, we can see that complexity instances are smaller than bomb

ones: the median values of c, v, and l are 1101, 2533, and 6601, respectively.
Moreover, with respect to bomb, we also report a smaller values of v̂∀

v̂ , and of

median clause-to-variable ratio c
v . On the other hand, the parameter l̂ on these

formulas is 2.66, higher than qbfg-t2 (2.37) and bomb (2.07). Since depqbf
and ghostq do not perform very well on bomb and also on other subcategories
in qbfg-t2, we conjecture that (i) relatively small instances with (ii) relatively
small number of universally quantified variables even with (iii) relatively long
clauses, could correlate with positive performances of depqbf and ghostq.
Considering the sota abstraction, we report that it solves the same number of
formulas solved by the best solver (rareqs). Unsurprisingly, in this case sota-
new outperforms sota-legacy — 75 and 44 solved instances, respectively.

Considering dungeon, we can see that the three best solvers are comprised
in s-legacy. quantor and aqme solved 97% of dungeon, while AIGSolve
topping at about 81%. The structure of dungeon is characterized by large values
of v̂, ĉ, and l̂ (27781, 128155, and 265184, respectively). On the other hand,

we report small values of l̂ (1.99) and v̂∀ (5). Moreover, it is worth noticing
that dungeon formulas have a large amount of c1 and ch (number of unary and
Horn clauses, respectively) with respect to the whole QBFs in qbfg-t2. The
value of ĉ1 related to dungeon is 20299, while the one reported for qbfg-t2 is
3. Considering ĉh, the values in dungeon and qbfg-t2 are 125611 and 23277,
respectively. Given, e.g., the large number of unary and Horn clauses, these
formulas should not be particularly challenging in general. Despite that, looking
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at the result we can see that otherwise effective solvers such as ghostq solved
only 6% of the total. This fact makes us conjecture that for this family sheer size
becomes an issue for some solvers. Finally, we report that sota can solve all but
one formula (106 solved out of 107) and, in this case, sota-legacy outperforms
sota-new (106 and 57 solved instances, respectively).

Considering hardness, looking at Table 2 we can see that the best system
is StruQS with 88 solved formulas, followed by QuBE and ghostq with 76
and 51 solved instances, respectively. This result is quite surprising because,
considering the results described so far, StruQS always ranks among the worst
three solvers. To investigate this phenomenon, we analyzed the structure of the
instances comprised in hardness. First, we report that, on one hand, both v̂
and ĉ are relatively small (2191 and 7793, respectively); on the other, we can

report for hardness the highest value of several features, such as l̂ (9.80), v̂∀
v̂ (in

percentage, 5%), and the number of quantified sets ŝ (26, against a value of 3
reported for qbfg-t2). This can partially explain the performance of StruQS
because its hybrid resolution-search algorithm works best with small formu-
las having many quantifier alternations. Finally, we report that sota was able
to solve 91 instances, and its best contributors – in percentage – are QuBE,
StruQS, and ghostq, with 65%, 16%, and 13% of the total, respectively. Also
in this case, sota-legacy outperformed sota-new (90 and 51 solved instances,
respectively).

Concerning the results on planning, we can see from Table 2 the best solver
is AIGSolve, able to deal with all the instances in the family. It is followed
by rareqs and quantor, that solved 137 and 131 instances, respectively. The
picture seems to be very similar to bomb and, indeed we can report that this
family is characterized by a low value of v̂ (1947 vs. 3374 of qbfg-t2), but

large values of ˆltot) (326955 vs 96532) and ĉ (112826 vs 29492). These data also
implies that planning has the largest value of the median clause to variable
ratio. Finally, we report that variables in planning are highly connected: the
median value of the VG node degree is 170.05, while the same value in qbfg-t2
is 21.61. As a final comment, we report that the performances of sota-legacy
and sota-new are quite close in this case, with 147 and 137 instances solved,
respectively.

To conclude, looking at the results on testing, we can see that aqme is the
best solver, dealing with about 54% of the instances. It is worth noticing that
aqme solved 13% of the instances running sSolve [7], a system dating back
to year 2000. Second and third are StruQS and depqbf, solving about 50%
and 43%, respectively. Values of dimensional features of these formulas are quite
similar to bomb, with the noticeable exception of the total amount of universal
variables (more than 2% of the total), that makes the family more similar to
hardness, which may also can explain the good performances of StruQS. As
a final consideration, we report that sota solved 69% of the total, and its ma-
jor contributors is depqbf (53%). Notice that also in this case sota-legacy
outperforms sota-new (85 and 65 solved instances, respectively).
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5 Conclusions

In the paper we have shown the results of a massive evaluation of QBF solvers
and benchmarks. The picture that we have obtained is significant both because
it is the first historical perspective on QBF solving technologies, and because of
the results that emerged clearly from the analysis. In particular, we have shown
that recently proposed solvers might benefit from some techniques implemented
in legacy ones which defy aging. Indeed, new solvers seems to be fairly well en-
gineered – the majority of the overall SOTA solver is made by new systems –
and they made a relevant contribution to the QBF field, as witnessed by the fact
that they are most often among the ones solving a formula uniquely. However,
by comparing the sota-legacy and sota-new abstractions we have also shown
that legacy systems still outperform the new ones in many problem categories.
Therefore, we believe that it would be interesting to blend new techniques, e.g.,
CEGAR or dependency schemas, with legacy ones – modulo the inevitable engi-
neering challenges that might arise – in order to really push forward the state of
the art in the QBF arena. A contribution to the development and optimization of
such blended solvers might come, e.g., from the significant number of problems
that emerged as challenging throughout our evaluation.
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