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Marcello Balduccini Drexel University
Laura Barbulescu Carnegie Mellon University
Roman Bartak Charles University in Prague
Elena Bellodi Università di Ferrara
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Evaluating Answer Set Programming with Non-Convex
Recursive Aggregates

Mario Alviano

Department of Mathematics and Computer Science,
University of Calabria, 87036 Rende (CS), Italy

alviano@mat.unical.it

Abstract. Aggregation functions are widely used in answer set programming
(ASP) for representing and reasoning on knowledge involving sets of objects col-
lectively. These sets may also depend recursively on the results of the aggregation
functions, even if so far the support for such recursive aggregations was quite lim-
ited in ASP systems. In fact, recursion over aggregates was restricted to convex
aggregates, i.e., aggregates that may have only one transition from false to true,
and one from true to false, in this specific order. Recently, such a restriction has
been overcome, so that the user can finally use non-convex recursive aggregates
in ASP programs, either on purpose or accidentally. A preliminary evaluation of
ASP programs with non-convex recursive aggregates is reported in this paper.

Keywords: answer set programming, aggregation functions, non-convex recur-
sive aggregates

1 Introduction

Answer set programming (ASP) is a declarative language for knowledge representa-
tion and reasoning [9]. ASP programs are sets of disjunctive logic rules, possibly using
default negation under stable model semantics [21, 22]. Several constructs were added
to the original, basic language in order to ease the representation of practical knowl-
edge. Of particular interest are aggregate functions [5, 14, 17, 23, 27, 32], which allow
for expressing properties on sets of atoms declaratively. In fact, in many ASP programs
functional dependencies are enforced by means of COUNT aggregates, or equivalently
using SUM aggregates; for example, a rule of the following form:

⊥ ← R′(X), SUM[1, Y : R(X,Y , Z)] ≤ 1

constrains relation R to satisfy the functional dependency X → Y , where X ∪ Y ∪ Z
is the set of attributes ofR, andR′ is the projection ofR onX . Aggregate functions are
also commonly used in ASP to constrain a nondeterministic guess. For example, in the
knapsack problem the total weight of the selected items must not exceed a given limit,
which can be modeled by the following rule:

⊥ ← SUM[W,O : object(O,W,C), in(O)] ≤ limit .

Mainstream ASP solvers [15, 20] almost agree on the semantics of aggregates [14,
17], here referred to as F-stable model semantics, even if several valid alternatives were
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also considered in the literature [23, 30, 31, 33]. It is interesting to observe that F-stable
model semantics was proposed more than a decade ago, providing a reasonable seman-
tics for aggregates also in the recursive case. Indeed, it is based on an extension of
the original program reduct, and on a minimality check of the stable model candidate
resembling the disjunctive case. Despite this, for many years the implementation of F-
stable model semantics was incomplete, and recursion over aggregates was restricted to
convex aggregates [28], the largest class of aggregates for which the common reason-
ing tasks still belong to the first level of the polynomial hierarchy in the normal case
[3]. In fact, convex aggregates may have only one transition from false to true, and one
from true to false, in this specific order, a property that guarantees tractability of model
checking in the normal case.

However, non-convex aggregations may arise in several contexts while modeling
complex knowledge [1, 11, 13], and there are also minimalistic examples that are easily
encoded in ASP using recursive non-convex aggregates, while alternative encodings
not using aggregates are not so obvious. One of such examples is provided by the ΣP

2 -
complete problem called Generalized Subset Sum [6]. In this problem, two vectors u
and v of integers as well as an integer b are given, and the task is to decide whether the
formula ∃x∀y(ux + vy 6= b) is true, where x and y are vectors of binary variables of
the same length as u and v, respectively. For example, for u = [1, 2], v = [2, 3], and
b = 5, the task is to decide whether the following formula is true: ∃x1x2∀y1y2(1 ·x1 +
2 · x2 + 2 · y1 + 3 · y2 6= 5). Any natural encoding of such an instance would include
an aggregate of the form SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5. Luckily, a complete
implementation of F-stable model semantics for common aggregation functions has
been achieved this year by means of a translation combining disjunction and saturation
in order to eliminate non-convexity from aggregates [4].

The aim of this paper is to evaluate a few problems that can be encoded in ASP using
recursive non-convex aggregates. The tested programs are processed by the rewritings
presented in [4], which are implemented in a prototype system written in Python that
uses GRINGO and CLASP. In a nutshell, aggregates are represented by specific standard
atoms, so that the grounding phase can be delegated to GRINGO [19], and the numeric
output of GRINGO is then processed to properly encode aggregates for the subsequent
stable model search performed by CLASP [20]. The focus of the paper is on programs
using SUM aggregates, even if the tested system also supports several other common
aggregation functions such as COUNT, AVG, MIN, MAX, EVEN, and ODD.

2 Background

Let V be a set of propositional atoms including ⊥. A propositional literal is an atom
possibly preceded by one or more occurrences of the negation as failure symbol ∼. An
aggregate literal, or simply aggregate, is of the following form:

SUM[w1 : l1, . . . , wn : ln]� b (1)

where n ≥ 0, b, w1, . . . , wn are integers, l1, . . . , ln are propositional literals, and � ∈
{<,≤,≥, >,=, 6=}. (Note that [w1 : l1, . . . , wn : ln] is a multiset.) A literal is either a
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propositional literal, or an aggregate. A rule r is of the following form:

p1 ∨ · · · ∨ pm ← l1 ∧ · · · ∧ ln (2)

where m ≥ 1, n ≥ 0, p1, . . . , pm are propositional atoms, and l1, . . . , ln are liter-
als. The set {p1, . . . , pm} \ {⊥} is referred to as head, denoted by H(r), and the set
{l1, . . . , ln} is called body, denoted by B(r). A program Π is a finite set of rules. The
set of propositional atoms (different from ⊥) occurring in a program Π is denoted by
At(Π), and the set of aggregates occurring in Π is denoted by Ag(Π).

Example 1. Consider the following program Π1:

x1 ← ∼∼x1 x2 ← ∼∼x2 y1 ← unequal y2 ← unequal ⊥ ← ∼unequal
unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

As will be clarified after defining the notion of a stable model, Π1 encodes the instance
of Generalized Subset Sum introduced in Section 1. �

An interpretation I is a set of propositional atoms such that ⊥ /∈ I . Relation |= is
inductively defined as follows:

– for p ∈ V , I |= p if p ∈ I;
– I |= ∼l if I 6|= l;
– I |= SUM[w1 : l1, . . . , wn : ln]� b if

∑
i∈[1..n],I|=li wi � b;

– for a rule r, I |= B(r) if I |= l for all l ∈ B(r), and I |= r if H(r) ∩ I 6= ∅ when
I |= B(r);

– for a program Π , I |= Π if I |= r for all r ∈ Π .

For any expression π, if I |= π, we say that I is a model of π, I satisfies π, or π is
true in I . In the following, > will be a shorthand for ∼⊥, i.e., > is a literal true in all
interpretations.

The reduct of a programΠ with respect to an interpretation I is obtained by remov-
ing rules with false bodies and by fixing the interpretation of all negative literals. More
formally, the following function F (I, ·) is inductively defined:

– for p ∈ V , F (I, p) := p;
– F (I,∼l) := > if I 6|= l, and F (I,∼l) := ⊥ otherwise;
– F (I, SUM[w1 : l1, . . . , wn : ln]�b) := SUM[w1 : F (I, l1), . . . , wn : F (I, ln)]�b;
– for a rule r of the form (2), F (I, r) := p1 ∨ · · · ∨ pm ← F (I, l1) ∧ · · · ∧ F (I, ln);
– for a program Π , F (I,Π) := {F (I, r) | r ∈ Π, I |= B(r)}.

Program F (I,Π) is the reduct of Π with respect to I . An interpretation I is a stable
model of a program Π if I |= Π and there is no J ⊂ I such that J |= F (I,Π). Let
SM (Π) denote the set of stable models of Π .

Example 2. Continuing with Example 1, the models of Π1, restricted to the atoms in
At(Π1), areX ,X∪{x1},X∪{x2}, andX∪{x1, x2}, whereX = {unequal , y1, y2}.
Of these, only X ∪ {x1} is a stable model. Indeed, the reduct F (X ∪ {x1}, Π1) is

x1 ← > y1 ← unequal y2 ← unequal
unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5
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and no strict subset of X ∪ {x1} is a model of the above program. On the other hand,
the reduct F (X ∪ {x2}, Π1) is

x2 ← > y1 ← unequal y2 ← unequal
unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

and {x2, y2} is a model of the above program. Similarly, it can be checked that X and
X ∪ {x1, x2} are not stable models of Π1. �

An aggregate A is convex (in program reducts) if J |= F (I, A) and L |= F (I, A)
implies K |= F (I,A), for all J ⊆ K ⊆ L ⊆ I ⊆ V . If A is convex then I |= A
and J |= F (I, A) implies K |= F (I, A), for all J ⊆ K ⊆ I . Note that aggregate
SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5 from Example 1 is non-convex.

3 Non-Convex Aggregates Elimination

ASP solvers can only process sums of the form (1) in which all numbers are non-
negative integers, and the comparison operator� is≥. This is due to the numeric format
encoding the propositional program produced by the grounder. However, thanks to the
rewritings proposed by [4], all sums can be rewritten in the form accepted by current
ASP solvers. Following [4], strong equivalences can be used to restrict sums in the
input program to only two forms, which are essentially (1) with � ∈ {≥, 6=}. These
first rewritings are given by means of strong equivalences [16, 25, 34].

Definition 1. Let π := l1 ∧ · · · ∧ ln be a conjunction of literals, for some n ≥ 1.
A pair (J, I) of interpretations such that J ⊆ I is an SE-model of π if I |= π and
J |= F (I, l1)∧ · · · ∧F (I, ln). Two conjunctions π, π′ are strongly equivalent, denoted
by π ≡SE π′, if they have the same SE-models.

Strong equivalence means that replacing π by π′ preserves the stable models of any
logic program.

Proposition 1 (Lifschitz et al. 2001; Turner 2003; Ferraris 2005). Let π, π′ be two
conjunctions of literals such that π ≡SE π′. Let Π be a program, and Π ′ be the pro-
gram obtained from Π by replacing any occurrence of π by π′. It holds that Π ≡V Π ′.

The following strong equivalences can be proven by showing equivalence with re-
spect to models, and by noting that ∼ is neither introduced nor eliminated:

(E1) SUM[w1 : l1, . . . , wn : ln] > b ≡SE SUM[w1 : l1, . . . , wn : ln] ≥ b+ 1;
(E2) SUM[w1 : l1, . . . , wn : ln] ≤ b ≡SE SUM[−w1 : l1, . . . ,−wn : ln] ≥ −b;
(E3) SUM[w1 : l1, . . . , wn : ln] < b ≡SE SUM[w1 : l1, . . . , wn : ln] ≤ b− 1;
(E4) SUM[w1 : l1, . . . , wn : ln] = b ≡SE SUM[w1 : l1, . . . , wn : ln] ≤ b ∧

SUM[w1 : l1, . . . , wn : ln] ≥ b.

For example, (E1) and (E3) are easy to obtain because b is integer by assumption. Simi-
larly, (E4) is immediate by the semantics introduced in Section 2. For (E2), instead, the
following equivalences can be observed:
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(i) I |= SUM[w1 : l1, . . . , wn : ln] ≤ b;
(ii)

∑
i∈[1..n], I|=li wi ≤ b;

(iii)
∑
i∈[1..n], I|=li −wi ≥ −b;

(iv) I |= SUM[−w1 : l1, . . . ,−wn : ln] ≥ −b;

where (iii) above is obtained by multiplying both sides of the inequality (ii) by −1, and
the equivalence of (i) and (ii), and of (iii) and (iv), is immediate by the semantics of
sums. It is important to observe that the application of (E1)–(E4), from the last to the
first, to a program Π gives an equivalent program pre(Π) whose aggregates are sums
with comparison operators ≥ and 6=.

Theorem 1. Let Π be a program. It holds that Π ≡V pre(Π).

After this preprocessing, the structure of the input program is further simplified
by eliminating non-convex aggregates. To ease the presentation, and without loss of
generality, hereinafter aggregates are assumed to be of the following form:

SUM[− w1 : p1, . . . ,−wj : pj ,
− wj+1 : ∼lj+1, . . . ,−wk : ∼lk,

wk+1 : pk+1, . . . , wm : pm,

wm+1 : ∼lm+1, . . . , wn : ∼ln]� b

(3)

where n ≥ m ≥ k ≥ j ≥ 0, w1, . . . , wn are positive integers, each pi is a propositional
atom, each li is a propositional literal, � ∈ {≥, 6=}, and b is an integer. Intuitively,
aggregated elements of (3) are partitioned in four sets, namely positive literals with
negative weights, negative literals with negative weights, positive literals with positive
weights, and negative literals with positive weights.

Let Π be a program whose aggregates are of the form (3). Program rew(Π) is
obtained from Π by replacing each occurrence of an aggregate of the form (3) by a
fresh, hidden propositional atom aux [10, 24]. Moreover, if � is ≥, then the following
rule is added:

aux ← SUM[w1 : pF1 , . . . , wj : p
F
j ,

wj+1 : ∼∼lj+1, . . . , wk : ∼∼lk,

wk+1 : pk+1, . . . , wm : pm,

wm+1 : ∼lm+1, . . . , wn : ∼ln] ≥ b+ w1 + · · ·+ wk

(4)

where each pFi is a fresh, hidden atom associated with the falsity of pi, for all i ∈ [1..j],
and the following rules are also added to rew(Π):

pFi ← ∼pi (5)
pFi ← aux (6)

pi ∨ pFi ← ∼∼aux (7)
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Similarly, if � is 6=, then the following rules are added to rew(Π):

aux ← SUM[w1 : pF1 , . . . , wj : p
F
j ,

wj+1 : ∼∼lj+1, . . . , wk : ∼∼lk,

wk+1 : pk+1, . . . , wm : pm,

wm+1 : ∼lm+1, . . . , wn : ∼ln] ≥ b+ 1 + w1 + · · ·+ wk

(8)

aux ← SUM[w1 : p1, . . . , wj : pj ,

wj+1 : ∼lj+1, . . . , wk : ∼lk,

wk+1 : pFk+1, . . . , wm : pFm,

wm+1 : ∼∼lm+1, . . . , wn : ∼∼ln] ≥ −b+ 1 + wk+1 + · · ·+ wn

(9)

together with rules (5)–(7) for each new pFi . Intuitively, any atom of the form pFi in-
troduced by the rewriting must be true whenever pi is false, but also when aux is true,
so to implement what is usually referred to as saturation in the literature. Rules (5) and
(6) encode such an intuition. Moreover, rule (7) guarantees that at least one between pi
and pFi belongs to any model of reducts obtained from interpretations containing aux .
It is interesting to observe that when aux belongs to I the satisfaction of the associated
aggregate can be tested according to all subsets of I in the reduct F (Π, I).

The intuition behind (4) is that an interpretation I satisfies an aggregate of the form
(3) such that � is ≥ if and only if the following inequality is satisfied:

j∑

i=1

−wi · I(pi)+
k∑

i=j+1

−wi · I(∼li)+
m∑

i=k+1

wi · I(pi)+
n∑

i=m+1

wi · I(∼li) ≥ b (10)

where I(l) = 1 if I |= l, and I(l) = 0 otherwise, for all literals l. Moreover, inequality
(10) is satisfied if and only if the following inequality is satisfied:

j∑

i=1

−wi · I(pi) +
k∑

i=j+1

−wi · I(∼li) +
m∑

i=k+1

wi · I(pi) +

+

n∑

i=m+1

wi · I(∼li) + w1 + · · ·+ wk ≥ b+
k∑

i=1

wi

(11)

and by distributivity (11) is equivalent to the following inequality:

j∑

i=1

wi · (1− I(pi)) +
k∑

i=j+1

wi · (1− I(∼li)) +

+

m∑

i=k+1

wi · I(pi) +
n∑

i=m+1

wi · I(∼li) ≥ b+
k∑

i=1

wi.

(12)

Note that 1−I(l) = I(∼l) for all literals l, and pFi is associated with the falsity of pi, for
all i ∈ [1..j]. It is important to observe that negation was not used for positive literals
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in order to avoid oversimplifications in program reducts. Indeed, as already explained,
for all i ∈ [1..j], atom pFi will be derived true whenever pi is false, but also when the
aggregate is true.

The intuition behind (8)–(9) is similar. Essentially, an aggregate SUM(S) 6= b of
the form (3) is true if and only if either SUM(S) ≥ b + 1 or SUM(S) ≤ b − 1 is true,
and (E2) is applied to the second aggregate in order to use the previously explained
rewriting. Let rew∗ denote the composition rew ◦ pre.

Example 3. Consider again program Π1 from Example 1. Its rewriting rew∗(Π1) is as
follows:

x1 ← ∼∼x1 x2 ← ∼∼x2 y1 ← unequal y2 ← unequal ⊥ ← ∼unequal
unequal ← aux aux ← SUM[1 : xF1 ; 2 : xF2 ; 2 : yF1 ; 3 : yF2 ] ≥ 4

aux ← SUM[1 : x1; 2 : x2; 2 : y1; 3 : y2] ≥ 6
xF1 ← ∼x1 xF1 ← aux x1 ∨ xF1 ← ∼∼aux
xF2 ← ∼x2 xF2 ← aux x2 ∨ xF2 ← ∼∼aux
yF1 ← ∼y1 yF1 ← aux y1 ∨ yF1 ← ∼∼aux
yF2 ← ∼y2 yF2 ← aux y2 ∨ yF2 ← ∼∼aux

The only stable model of rew∗(Π1) is {x1, unequal , y1, y2, aux , xF1 , xF2 , yF1 , yF2 }. �

Correctness of the rewriting can be established by slightly adapting the proof by [4].

Theorem 2 (Correctness). Let Π be a program. It holds that Π ≡At(Π) rew
∗(Π).

4 Implementation

The rewritings introduced in Section 3 have been implemented in a prototype sys-
tem written in Python and available at the following URL: http://alviano.net/
software/f-stable-models/. The prototype accepts an input language whose
syntax is almost conformant to ASP Core 2.0 [2]. It is a first-order language, meaning
that propositional atoms are replaced by first-order atoms made of a predicate and a list
or terms, where each term is an object constant, an object variable, or a composed term
obtained by combining a function symbol with other terms. As usual in ASP, all vari-
ables are universally quantified, so that the propositional semantics given in Section 2
can be used after a grounding phase that replaces variables by constants in all possible
ways.

The only exception to the ASP Core 2.0 format is that sums have to be encoded
using the standard predicates f sum and f set . Moreover, only positive literals can
occur in aggregation sets. In more detail, a sum of the form SUM[w1 : p1, . . . , wn :
pn]�b, where n ≥ 0, b, w1, . . . , wn are integers, p1, . . . , pn are (first-order) atoms, and
� ∈ {<,≤,≥, >,=, 6=} is encoded by the following first-order atom:

f sum(id , µ(�), b)

where µ(�) equals "<", "<=", ">=", ">", "=", or "!=", and id is an identified for
the aggregation set, encoded by the following rules:

f set(id , w1, p1)← p1 · · · f set(id , wn, pn)← pn
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where a body pi (i ∈ [1..n]) can be omitted if pi has no variables. (It is also possible
to extend a body of the above rules in order to further constrain the aggregation set;
for example, arithmetic expressions can be used to restrict the selection of atoms in the
aggregation sets.)

Example 4. Program Π1 from Example 1 is encoded as follows:

x1 :− not not x1. unequal :− f sum(uneq,"!=", 5).
x2 :− not not x2. f set(uneq, 1, x1).
y1 :− unequal. f set(uneq, 2, x2).
y2 :− unequal. f set(uneq, 2, y1).
:− not unequal. f set(uneq, 3, y2).

where not encodes the negation as failure symbol ∼, and rules with empty head are
integrity constraints, i.e., rules whose head is equivalent to ⊥.

Alternatively, instances of Generalized Subset Sum can be specified by means of
facts involving predicates exists , all , and bound . For example, the instance above is
encoded by the following facts:

exists(x1, 1). all(y1, 2). bound(5).
exists(x2, 2). all(y2, 3).

A program encoding the Generalized Subset Sum problem for instances encoded by
these predicates is the following:

true(X, C) :− exists(X, C), not not true(X, C).
true(X, C) :− all(X, C), unequal.
:− not unequal.
unequal :− f sum(uneq,"!=", B), bound(B).
f set(uneq, C, true(X, C)) :− true(X, C).

where X , C , and B are object variables. �

Given a program encoded as described above, the prototype obtains its propositional
version by means of the grounder GRINGO. During the grounding phase, instances of
predicate f sum are considered external, i.e., they are assigned the truth value unde-
fined in order to prevent their elimination. These instances and those of predicate f set
are identified and mapped in data structures of the prototype, so to have an internal rep-
resentation of all sums occurring in the propositional program. The rewritings presented
in Section 3 are then applied to these sums in order to eliminate any non-convexity. The
new sums, and any additional rule introduced by the rewriting process, are added to
the propositional program. Finally, the propositional program is printed to the standard
output using the numeric format of GRINGO, so that CLASP can be used for computing
its F-stable models, which eventually coincide with the F-stable models of the original
program because additional atoms are hidden.
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5 Experiment

The implemented rewritings were tested on a few domains that can be encoded us-
ing recursive sums. One of them is the Generalized Subset Sum problem presented in
the introduction, which is of particular relevance in this experiment because its natu-
ral encoding in ASP requires a recursive non-convex sum. In fact, an ASP encoding
for this problem that does not rely on recursive sums is not available, and therefore
in this case the performance of the prototype was compared with an SMT encod-
ing fed into Z3. The other two problems considered in this experiment are k-Clique-
Coloring and 2-QBF, Σp

2 -complete problems whose natural encodings in ASP do not
rely on recursive sums. In these two cases, an alternative encoding using recursive sums
can be obtained, even if usually paying an overhead on the running time. The aim of
the experiment for these two problems is to evaluate such an overhead. All tested in-
stances are available at the following URL: http://archives.alviano.net/
publications/2015/RCRA2015-experiment.zip.

The experiment was run on an Intel Xeon CPU 2.4 GHz with 16 GB of RAM. CPU
and memory usage were limited to 900 seconds and 15 GB, respectively. GRINGO,
CLASP, and Z3 were tested with their default settings. Their performances were mea-
sured by PYRUNLIM (http://alviano.net/software/pyrunlim/). The re-
sults are reported in Table 1, where each row reports the number of instances and, for
each tested ASP encoding, the number of solved instances, the average execution time
and the average memory consumption. Data for Z3 are not reported in the table because
it was run only on Generalized Subset Sum, discussed below.

Generalized Subset Sum [6]. Two vectors u and v of integers as well as an integer b are
given, and the task is to decide whether the formula ∃x∀y(ux+vy 6= b) is true, where x
and y are vectors of binary variables of the same length as u and v, respectively. For an
instance such that u = u1, . . . , um (m ≥ 1) and v = v1, . . . , vn (n ≥ 1) the following
ASP encoding was tested (actually, its non-propositional version):

xi ← ∼∼xi ∀i ∈ [1..m]
yi ← unequal ∀i ∈ [1..n]
⊥ ← ∼unequal
unequal ← SUM[u1 : x1, . . . , um : xm, v1 : y1, . . . , vn : yn] 6= b

Table 1. Performance of GRINGO+CLASP (number of solved instances; average execution time
in seconds; average memory consumption in MB).

Aggregates Alternative

Benchmark inst sol time mem sol time mem

Generalized Subset Sum 46 38 1.1 44 n/a n/a n/a
k-Clique Coloring 60 60 177.2 863 60 20.9 205

2-
Q

B
F Preprocessing Track 17 8 64.8 171 9 98.3 171

QBFLib Track 32 1 0.1 101 1 0.1 102
Application Track 48 13 126.1 45 19 22.7 45
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As for Z3, the following SMT encoding was tested:

∀y1 · · · ∀yn( ite(x1, u1, 0) + · · ·+ ite(xm, um, 0) +
ite(y1, v1, 0) + · · ·+ ite(yn, vn, 0) 6= b)

where x1, . . . , xm and y1, . . . , yn are Boolean constants and variables, respectively, and
ite(φ, t1, t2) is an if-then-else expression, i.e., its interpretation is t1 if φ is true, and t2
otherwise. As reported in the table, the ASP encoding leads to an excellent performance
in many cases, with 38 solved instances and an average execution time of around 1.1
seconds. The performance achieved within the SMT encoding is instead less attractive,
with only 14 solved instances and an average execution time of around 34.7 seconds.
The tested ASP solver is also more efficient in memory, using 44 MB on average, while
148 MB are used by Z3 to solve the SMT instances. The reason of such different per-
formances is that SMT is a more expressive language, allowing arbitrary alternations of
quantifies, while in ASP at most one alternation can be simulated by means of satura-
tion techniques. It turns out that ASP solvers can implement more optimized algorithms
for problems on the second level of the polynomial hierarchy.

k-Clique-Coloring [29]. Given a graphG = (V,E) with n nodes, and an integer k ≥ 2,
is possible to assign k colors to vertices in V such that each maximal clique K of G
contains two vertices of different colors? The tested encoding using non-convex sums
is reported below (again, its non-propositional version was actually tested).

xc ← ∼∼xc ∀x ∈ V, ∀c ∈ [1..k]
⊥ ← SUM[1 : x1, . . . , 1 : xk] 6= 1. ∀x ∈ V
⊥ ← ∼saturate
inx ∨ outx ← ∀x ∈ V
inx ← saturate ∀x ∈ V
outx ← saturate ∀x ∈ V
saturate ← inx, iny ∀x, y ∈ V, x 6= y, (x, y) /∈ E
saturate ← inx, iny, xc, yd ∀x, y ∈ V, ∀c, d ∈ [1..k], c 6= d
saturate ← outx, SUM[n : saturate,

− 1 : iny1 , . . . ,−1 : inyn−1
,

1 : inz1 , . . . , 1 : inzj ] ≥ 0 ∀x ∈ V, where
{y1, . . . , yn−1} = V \ {x},
{z1, . . . , zj} = {z | (x, z) ∈ E}

Intuitively, a color is assigned to each vertex, and the saturation is activated whenever
one of the following conditions is verified:

– the guessed K contains two non-adjacent nodes, i.e., K is not a clique;
– the guessed K contains two nodes with different colors;
– there is a vertex x ∈ V \K such that x is adjacent to all vertices in K, i.e., K is

not a maximal clique.

The alternative encoding not using recursive sums is obtained by replacing the last rule
above with the following rule:

saturate ← outx, outy1 , . . . , outyj ∀x ∈ V
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where {y1, . . . , yj} = {y ∈ V \ {x} | (x, y) /∈ E}. Intuitively, in this case the third
condition leading to saturate is the following:

– there is a vertex x ∈ V \K such that all vertices in V that are not adjacent to x do
not belong to K, i.e., K is not a maximal clique.

For this problem, both encodings lead to solve all tested instances, which are the graphs
submitted to the 4th ASP Competition [2] for the Graph Coloring problem. However,
the overhead due to the use of recursive non-convex aggregates slows the computation
down by a factor of 8, and also the memory consumption is around 4 times higher.

2-QBF. Given a 2-DNF ∃x∀yφ, is the formula valid? The tested encoding not using
sums is the following:

x← ∼∼x ∀x ∈ x
⊥ ← ∼saturate
yT ∨ yF ← ∀y ∈ y
yT ← saturate ∀y ∈ y
yF ← saturate ∀y ∈ y
saturate ← µ(l1), . . . , µ(ln) ∀l1 ∧ · · · ∧ ln ∈ φ, n ≥ 1

where µ(x) = x and µ(¬x) = ∼x for all x ∈ x, and µ(y) = yT and µ(¬y) = yF for
all y ∈ y. An equivalent encoding using non-convex sums can be obtained by replacing
all rules with yT or yF in the head with the following rules:

yT ← SUM[1 : saturate,−1 : yF ] ≥ 0 ∀y ∈ y
yF ← SUM[1 : saturate,−1 : yT ] ≥ 0 ∀y ∈ y

The tested instances are all the 2-QBF instances in the QBF Gallery 2014 (http:
//qbf.satisfiability.org/gallery/results.html). Also in this case
there is an overhead due to the unnatural use of non-convex sums. It impacts signifi-
cantly on the Application Track, where the difference in terms of solved instances is 6.

6 Related Work

F-stable model semantics [14, 17] is implemented by widely-used ASP solvers [15, 20].
The original definition in [14, 17] is slightly different than the one provided in Sec-
tion 2. In fact, propositional formulas can be arbitrarily nested in [17], while a more
constrained structure is assumed in this paper in order to achieve an efficient imple-
mentation. On the other hand, double negation is not permitted in [14], even if it can be
simulated by means of auxiliary atoms: a rule p ← ∼∼p can be equivalently encoded
by using a fresh atom pF and the following subprogram: {p ← ∼pF , pF ← ∼p}.
Similarly, negated literals cannot occur in the aggregates considered by [14] but again
can must be encoded by means of auxiliary atoms. Another difference with [14] is on
negated aggregates, which are not permitted by the language considered in this paper
because [17] and [14] actually assign different semantics to programs with negated ag-
gregates. As a final remark, the reduct of [14] does not remove negated literals from
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satisfied bodies, which however are necessarily true in all counter-models because dou-
ble negation is not allowed.

Techniques to rewrite logic programs with aggregates into equivalent programs with
simpler aggregates were investigated in the literature right from the beginning [32]. In
particular, rewritings into LPARSE-like programs, which differ from those presented in
this paper, were considered in [26]. As a general comment, since disjunction is not
considered in [26], all aggregates causing a jump from the first to the second level of
the polynomial hierarchy are excluded a priori. This is the case for aggregates of the
form SUM(S) 6= b, AVG(S) 6= b, and COUNT(S) 6= b, as first noted by [33], but also for
comparators other than 6= when negative weights are involved. In fact, in [26] negative
weights are eliminated by a rewriting similar to the one in (4), but negated literals
are introduced instead of auxiliary atoms, which may lead to unintuitive results [18].
A different rewriting was presented by [17], whose output are programs with nested
expressions, a construct that is not supported by current ASP systems. Other relevant
rewriting techniques were proposed in [8, 7], and proved to be quite efficient in practice.
However, these rewritings produce aggregate-free programs preserving F-stable models
only in the stratified case, or if recursion is limited to convex aggregates. On the other
hand, it is interesting to observe that the rewritings of [8, 7] are applicable to the output
of the rewritings presented in this paper in order to completely eliminate aggregates,
thus preserving F-stable models in general.

Several other stable model semantics were proposed for interpreting logic programs
with aggregates. Many of these semantics rely on stability checks that are not based
on minimality [30, 31, 33], and therefore the rewritings presented by [4] and recalled
in Section 3 cannot be used for these semantics. A more recent proposal is based on
a stability check that essentially eliminates aggregates from program reducts [23], and
therefore the rewritings by [4] cannot help also in this case. Finally, there are other ASP
constructs that are semantically close to aggregates, such as DL [13] and HEX [12]
atoms, for interacting with external knowledge bases possibly expressed in different
languages; as these constructs cannot be compactly reduced to sums in general, the
rewritings by [4] do not apply to these languages as well.

7 Conclusion

ASP takes advantage of several constructs to ease the representation of complex knowl-
edge. Aggregation functions are among the most commonly used constructs in ASP
specifications. The rewritings proposed by [4] provide a concrete simplification of the
structure of aggregations in input programs, so to improve the efficiency of low-level
reasoners. Such rewritings are implemented in a prototype system, presented in this
paper, which reported a reasonable performance on benchmarks for which more tai-
lored encodings using disjunction in rule heads exist. More relevant, when such an
aggregate-free encoding is unknown or untuitive, for example in the Generalized Sub-
set Sum problem, the rewritings implemented in the prototype are particularly useful.
Indeed, in this specific benchmark ASP solving significantly outperforms an alternative
encoding in the more expressive language of SMT.
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It must be remarked that this is only a preliminary evaluation of recursive non-
convex aggregates in ASP. For the future, we plan to collect more encodings for prob-
lems that can be easily represented by using recursive non-convex aggregates, so to
obtain a more suitable test suite for evaluating the efficiency of ASP solvers in pres-
ence of aggregations of this kind. Moreover, we will investigate alternative mappings
of common aggregation functions into sums, with the aim of simplifying some of the
rewritings by [4]. In particular, concerning ODD and EVEN, the rewritings by [4] are
quadratic in size, and hence an interesting question to answer is whether there exist
alternative rewritings of these aggregations whose sizes remain linear.
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Abstract. Answer Set Programming (ASP) is a well-known declarative pro-
gramming language for knowledge representation and non-monotonic reasoning.
ASP solvers are usually written in C/C++ with the aim of extremely optimiz-
ing their performance. Indeed, C/C++ allow for several low level optimizations,
which however come at the price of a less portable implementation. This is a
problem for some real world use cases which do not actually require anextremely
efficient computation, but would benefit from a platform-independentand easily-
deployable implementation. Motivated by such use cases, we developJWASP, a
new ASP solver written in Java and extending the open source librarySAT4J in or-
der to process ASP programs with atomic heads. We also report on a preliminary
experiment assessing the performance ofJWASP, whose results are encouraging:
JWASPis a good candidate as an alternative ASP solver for platform-independent
applications, which cannot rely on current ASP solvers.

1 Introduction

Answer Set Programming (ASP) [5] is a declarative programming paradigm, which has
been proposed in the area of non-monotonic reasoning and logic programming. The idea
of ASP is to represent a given computational problem by a logic program whose answer
sets correspond to solutions, and then use a solver to find them [5]. The availability of
solvers has made possible the application of ASP for solvingcomplex problems arising
in several areas [1, 6], including AI, knowledge representation and reasoning, databases,
bioinformatics. Recently ASP has been also used to solve a number of industry-level
applications [7, 21].

Answer set programming is computationally hard, and modernASP solvers are usu-
ally based on one of two alternative approaches. The first of these approaches consists
in implementing a native algorithm by adapting SAT solving techniques [22]. In par-
ticular, CDCL backtracking with learning, restarts, and conflict-driven heuristics is ex-
tended with ASP-specific propagation techniques such as support inference via Clark’s
completion, and well-founded inference via source pointers [23]. The second approach
resorts on rewriting techniques into SAT formulas, which are then evaluated by an off
the shelf SAT solver [13].

ASP solvers, like SAT solvers, are developed having in mind the (often well-deserved)
goal of maximizing performance. For this reason, ASP solvers are usually written in
C/C++, a programming language that is suited for implementing several low level opti-
mizations, but at the price of a reduced portability. This isa problem for some real world
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use cases which do not actually require the highest available performance in computa-
tion, but would benefit from a platform-independent and easily-deployable implemen-
tation. For example, the iTravel system [20] takes advantage of some ASP-based web
services implemented as Java servlets interacting withDLV [16] via the DLV WRAP-
PERAPI [19]. Usually, Java servlets are easily exportable as WAR archives, which are
then deployable to different servers by simply copying the archives. Such a simplicity
was not possible with the ASP-based web services because different versions ofDLV

were required for servers running different operating systems. A similar issue also af-
fects the distribution ofASPIDE [9], an IDE for ASP developed in Java which must
include different versions of an ASP solver for different operating systems. An ASP
solver implemented in Java would simplify the distributionof ASPIDE, not preventing
the possibility to run other ASP solvers written in C/C++ if needed.

If on the one hand Java provides all the means for implementing a platform-inde-
pendent ASP solver, on the other hand the following questions have to be answered:
How much overhead is introduced? Is the performance of an ASPsolver written in Java
acceptable when compared with state of the art ASP solvers? Motivated by the needs
arising in different use cases, and in order to answer these two questions, we developed
JWASP (https://github.com/dodaro/jwasp.git), a new ASP solver writ-
ten in Java.JWASPis based on the open source librarySAT4J [15]. In particular,JWASP

extendsSAT4J in order to process ASP programs with atomic heads.
A preliminary experiment assessing the performance ofJWASPhas been conducted

on benchmarks from the previous ASP competitions [1, 6]. In particular, JWASP was
compared with the following state of the art ASP solvers: thenativeCLASP 3.1.1 [11]
andWASP [3]; the rewriting-basedLP2SAT endowed byGLUCOSE[4]; andLP2SAT en-
dowed bySAT4J [15]. The results are encouraging. In fact, even ifJWASPcannot match
the performance ofCLASP, which is actually expected, it can compete with a prominent
rewriting-based ASP solver usingGLUCOSE. Our experiment highlights thatJWASP is
a good candidate as an alternative ASP solver for platform-independent applications,
where conventional solvers cannot be used or might not be comfortably integrated.

2 Preliminaries

Syntax and semantics of propositional logic and propositional ASP are briefly intro-
duced in this section.

2.1 Propositional Logic

Syntax.LetA be a fixed, countable set of (Boolean) variables, or (propositional) atoms,
including⊥. A literal ℓ is either an atoma, or its negation¬a. A clauseis a set of
literals representing a disjunction, and a propositional formulaϕ is a set of clauses
representing a conjunction, i.e., only formulas inconjunctive normal form(CNF) are
considered here.

Semantics.An interpretationI is a set of literals over atoms inA\{⊥}. Intuitively, lit-
erals inI are true, literals whose complement is inI are false and the remaining literals
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are undefined. An interpretationI is total if there are no undefined literals, otherwise
I is partial. An interpretationI is inconsistent if for an atoma botha and¬a are inI.
Relation|= is inductively defined as follows: fora ∈ A, I |= a if a ∈ I, andI |= ¬a
if ¬a ∈ I; for a clausec, I |= c if I |= ℓ for someℓ ∈ c; for a formulaϕ, I |= ϕ if
I |= c for all c ∈ ϕ. If I |= ϕ thenI is amodelof ϕ, I satisfiesϕ, andϕ is true w.r.t.
I. If I 6|= ϕ thenI is not a model ofϕ, I violatesϕ, andϕ is false w.r.t.I. Similar for
literals, and clauses. A formulaϕ is satisfiableif there is an interpretationI such that
I |= ϕ; otherwise,ϕ is unsatisfiable.

Example 1.Consider the following formulaϕ:

{a,¬b} {b,¬a} {¬a} {c} {c,¬b}

ϕ is satisfiable and the interpretationI = {¬a,¬b, c} is a model. ✁

2.2 Answer Set Programming

Syntax. Let ∼ denotenegation as failure. A ∼-literal (or just literal when clear from
the context) is either an atom (a positive literal), or an atom preceded by∼ (a negative
literal). A logic programΠ is a finite set of rules of the following form:

a← b1, . . . , bk,∼bk+1, . . . ,∼bm (1)

wherem ≥ 0, anda, b1, . . . , bm are atoms inA. For a ruler of the form (1), set{a} is
calledheadof r, and denotedH(r); conjunctionb1, . . . , bm,∼bk+1, . . . ,∼bm is named
bodyof r, and denotedB(r); the sets{b1, . . . , bk} and{bk+1, . . . , bm} of positive and
negative literals inB(r) are denotedB+(r) andB−(r), respectively. Aconstraintis a
rule r such thatH(r) = {⊥}.

Semantics.An interpretationI is a set of∼-literals over atoms inA \ {⊥}. Relation|=
is extended as follows: for a negative literal∼a, I |= ∼a if ∼a ∈ I; for a conjunction
ℓ1, . . . , ℓn (n ≥ 0) of literals,I |= ℓ1, . . . , ℓn if I |= ℓi for all i ∈ [1..n]; for a rule
r, I |= r if H(r) ∩ I 6= ∅ wheneverI |= B(r); for a programΠ, I |= Π if I |= r
for all r ∈ Π. The definition of a stable model is based on a notion of program reduct
[12]: Let Π be a normal logic program, andI an interpretation. The reduct ofΠ w.r.t.
I, denotedΠI , is obtained fromΠ by deleting each ruler such thatB−(r) ∩ I 6= ∅,
and removing negative literals in the remaining rules. An interpretationI is an answer
set forΠ if I |= Π and there is no total interpretationJ such thatJ ∩ A ⊂ I ∩ A and
J |= ΠI . The set of all answer sets of a programΠ is denotedSM(Π). ProgramΠ is
coherentif SM(Π) 6= ∅; otherwise,Π is incoherent.

Example 2.Consider the following programΠ:

a← c a← b,∼e b← a,∼e
c← ∼d d← ∼c e← ∼d

I = {a,∼b, c,∼d, e} is an answer set ofΠ. ✁
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Fig. 1.Computation of an answer set inJWASP.

3 Answer Set Computation inJWASP

In this section we first review the algorithms implemented inJWASP for the computa-
tion of an answer set, and then we describe how these were implemented by extending
SAT4J. The presentation is properly simplified to focus on the mainprinciples.

3.1 Main Algorithms

The main algorithm is depicted in Figure 1.

Preprocessing.The first step is a preprocessing of the input programΠ, that is trans-
formed into a propositional formula called theClark’s completionof the programΠ,
denotedComp(Π). This step is performed since answer sets are supported models [17].
A modelI of a programΠ is supportedif eacha ∈ I ∩A is supported, i.e., there exists
a ruler ∈ Π such thatH(r) = a, andB(r) ⊆ I. In more detail, given a ruler ∈ Π,
let auxr denote a fresh atom, i.e., an atom not appearing elsewhere, the completion of
Π consists of the following clauses:

– {¬a, auxr1 , . . . , auxrn} for each atoma occurring inΠ, wherer1, . . . , rn are the
rules ofΠ whose head isa;

– {H(r),¬auxr} and{auxr} ∪
⋃

a∈B+(r) ¬a ∪
⋃

a∈B−(r) a for each ruler ∈ Π;
– {¬auxr, ℓ} for eachr ∈ Π andℓ ∈ B(r).
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After computing the Clark’s completionComp(Π), the input is further simplified ap-
plying classical preprocessing techniques of SAT solvers [8], and then the nondetermin-
istic search takes place.

CDCL Algorithm. The main ASP solving algorithm is similar to the CDCL procedure
of SAT solvers. In the beginning a partial interpretationI is set to∅. Function unit
propagation extendsI with those literals that can be deterministically inferred. This
function returns false if an inconsistency (or conflict) is detected, true otherwise. When
an inconsistency is detected, the algorithm analyzes the inconsistent interpretation and
learns a clause using the1-UIP learning scheme [18]. The learned clause models the
inconsistency in order to avoid exploring the same search branch several times. Then,
the algorithm unrolls choices until consistency ofI is restored, and the computation
resumes by propagating the consequences of the clause learned by the conflict analysis.
If the consistency cannot be restored, the algorithm terminates returningINCOHERENT.
When no inconsistency is detected, the well founded propagation (detailed in the fol-
lowing) checks whetherI is unfounded-free. In caseI is not unfounded-free a clause
is added toComp(Π) and unit propagation is invoked. IfI is unfounded-free and the
interpretationI is total then the algorithm terminates returningCOHERENTandI is an
answer set ofΠ. Otherwise, an undefined literal, sayℓ, is chosen according to some
heuristic criterion. The computation then proceeds onI ∪ {ℓ}. Unit propagation and
well founded propagation are described in more detail in thefollowing.

Propagation rules.JWASPimplements two deterministic inference rules for pruning the
search space during answer set computation. These propagation rules are namedunit
andwell founded. Unit propagation is applied first. It returns false if an inconsistency
arises. Otherwise, well founded propagation is applied. Well founded propagation may
learn an implicit clause inΠ, in which case unit propagation is applied on the new
clause. More in details, unit propagation is as in SAT solvers: An undefined literalℓ is
inferred by unit propagation if there is a clausec that can be satisfied only byℓ, i.e.,c
is such thatℓ ∈ c is undefined and all literals inc \ {ℓ} are false w.r.t.I. Concerning
well founded propagation, we must first introduce the notionof an unfounded set. A
setX of atoms isunfoundedif for each ruler such thatH(r) ∩ X 6= ∅, at least
one of the following conditions is satisfied: (i) a literalℓ ∈ B(r) is false w.r.t.I; (ii)
B+(r) ∩ X 6= ∅. Intuitively, atoms inX can have support only by themselves. Well
founded propagation checks whether the interpretation contains an unfounded setX. In
this case, it learns a clause forcing falsity of an atom inX. Clauses for other atoms inX
will be learned on subsequent calls to the function, unless an inconsistency arises during
unit propagation. In case of inconsistencies, indeed, the unfounded setX is recomputed.

3.2 Implementation

The implementation of a modern and efficient ASP solver requires the implementation
of at least three modules. The first module is the parser of a ground ASP program.
The second module computes the Clark’s completion. The third module implements
the CDCL backtracking algorithm extended by applying well founded propagation as
presented in Section 3.1. Concerning the parser,JWASPaccepts as input normal ground
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programs expressed in the numeric format ofGRINGO [10]. The Clark’s completion is
computed after the whole program has been parsed. The third module is implemented
by JWASPexploiting the open source Java librarySAT4J [15]. In particular,SAT4J pro-
vides an implementation of the base CDCL algorithm.JWASP extends this algorithm
by modifying the propagate function ofSAT4J, which in our solver includes the well
founded inference rule. In particular, specific data structures and the algorithm for com-
puting unfounded sets are introduced inJWASPwhich are not provided bySAT4J.

4 Experiment

The performance ofJWASPwas compared withCLASP 3.1.1 andLP2SAT [13]. CLASP

is a native state of the art ASP solver, whileLP2SAT is an ASP solver based on a rewrit-
ing of the ASP program into a SAT formula that is evaluated using a SAT solver. Two
variants ofLP2SAT were considered, namelyLP2GLUCOSEandLP2SAT4J, which use
GLUCOSE [4] and SAT4J [15] as SAT solver, respectively. All the ASP solvers use
GRINGO [10] as grounder. The experiment concerns a comparison of the solvers on
publicly available benchmarks used in the 3rd and 4th ASP competitions [1, 6]. The
experiment was run on a four core Intel Xeon CPU X3430 2.4 GHz,with 16 GB of
physical RAM, and operating system Debian Linux. Time and memory limits were set
to 600 seconds and 15 GB, respectively. Performance was measured using the tools
pyrunlim and pyrunner (https://github.com/alviano/python).

Table 1 summarizes the number of solved instances and the average running time
in seconds for each solver. In particular, the first column reports the considered bench-
marks; the remaining columns report the number of solved instances within the time-out
(solved), and the running time averaged over solved instances (time). The first obser-
vation is thatJWASPoutperforms the rewriting-basedLP2SAT4J. In fact,JWASPsolved
17 more instances thanLP2SAT4J and it is in general faster. The advantage ofJWASP

is obtained in 3 different benchmarks, namely KnightTour, MazeGeneration, and Num-
berlink, whereJWASPsolves 5, 7, and 3 more instances thanLP2SAT4J. Once the SAT
solver backhand is replaced byGLUCOSE, a clear improvement of performance is mea-
sured.LP2GLUCOSE is clearly faster (it solves 20 instances more) thanLP2SAT4J. In

Table 1.Solved instances and average running time.

LP2SAT4J JWASP LP2GLUCOSE WASP CLASP

Track # sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t

GraphColouring 30 8 47.45 7 31.07 14 124.02 8 66.15 13 129.98
HanoiTower 30 27 120.80 26 166.57 30 10.41 30 33.83 28 53.18
KnightTour 10 2 67.66 7 52.03 3 24.37 8 4.39 10 57.95
Labyrinth 30 14 222.34 17 158.44 18 151.70 26 72.64 26 48.05
MazeGeneration 10 3 332.46 10 5.06 4 164.15 10 3.10 10 1.04
Numberlink 10 4 98.05 7 7.67 5 164.67 8 12.71 8 7.91
SokobanDecision 10 6 46.57 7 61.42 10 59.34 9 92.15 10 42.91

Total 130 64 133.72 81 100.50 84 82.45 99 44.75 105 52.48
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this case, since the rewriting technique is the same, the difference of performance is due
to the fact thatGLUCOSEoutperformsLP2SAT4J. The performance gap between C++
and Java implementations can be observed also by comparingWASP and JWASP. In
particular,WASP solves 18 more instances thanJWASP. The differences are noticeable
in Labyrinth whereWASP solves 9 more instances thanJWASP. Similar considerations
hold by comparingCLASP and JWASP. In fact, the former is in general faster solving
24 more instances than the latter. Finally, it is important to note thatJWASPis basically
comparable in performance withLP2GLUCOSE(the latter solves only 3 instances more
than the former). An in-depth analysis shows thatJWASP is faster in KnightTour and
MazeGeneration solving 4 and 6 instances more thanLP2GLUCOSE, respectively. On
the contrary,LP2GLUCOSE is faster thanJWASP in GraphColouring, HanoiTower, and
SokobanDecision. We observe that the main advantage ofJWASP over LP2GLUCOSE

is registered (as expected) in the benchmarks in which the well founded propagation
(implemented natively byJWASP) is applied, such as KnightTour and MazeGeneration.

5 Discussion

During recent years, ASP has obtained growing interest since efficient implementations
were available. For reason of efficiency, most of the modern ASP solver are imple-
mented in C++. To the best of our knowledge, the only previousJava-based ASP solver
wasJSMODELS[14], which is not developed anymore.JSMODELSwas based onSMOD-
ELS featuring the DPLL algorithm and lookahead heuristics. From an abstract point of
view, JWASPis more similar to modern ASP solvers, likeWASP [2, 3] andCLASP [11].
In fact, all the three solvers are based on CDCL algorithm andsource pointers for the
computation of unfounded sets. However,JWASPis implemented in Java and thus it is a
cross-platform and more portable implementation. An alternative to the development of
a native solver is to rewrite the input program into a CNF formula, as done by the family
of solversLP2SAT [13]. This alternative approach can be applied to obtain a Java-based
solver by endowingLP2SAT with a Java-based SAT solver such asSAT4J. This ap-
proach is less efficient thanJWASPin the experimental analysis reported in this paper. It
is worth noting that, bothJWASPandLP2SAT apply the Clark’s completion [17]. Thus,
the main difference betweenJWASPandLP2SAT4J consists of the native computation
of unfounded set ofJWASP, which is obtained by using an algorithm based on source
pointers introduced bySMODELS [23].

In this paper we reported on the new Java-based ASP solverJWASP built on the
top of the SAT solverSAT4J. The new solver was compared with both C++ and Java-
based approaches. In our experiment,JWASP outperforms the Java-based alternative
LP2SAT4J, and it is competitive withLP2GLUCOSE. However, as expected,JWASPis in
general slower than the native solvers. This confirms that C++ implementations are usu-
ally much faster than Java-based approaches as also noted in[15]. Future work concerns
the extension ofJWASPfor handling optimization constructs and cautious reasoning.
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Searching for Sequential Plans
Using Tabled Logic Programming

Roman Barták and Jindřich Vodrážka

Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic

Abstract. Logic programming provides a declarative framework for mod-
eling and solving many combinatorial problems. Until recently, it was not
competitive with state of the art planning techniques partly due to search
capabilities limited to backtracking. Recent development brought more
advanced search techniques to logic programming such as tabling that
simplifies implementation and exploitation of more sophisticated search
algorithms. Together with rich modeling capabilities this progress brings
tabled logic programing on a par with current best planners. The paper
brings an initial experimental study comparing various approaches to
search for sequential plans in the Picat planning module.

Keywords: planning; tabling; iterative deepening; branch-and-bound

1 Introduction

Automated planning was an important area for Prolog. PLANNER [5] was de-
signed as a language for proving theorems and manipulating models in a robot,
and it is perceived as the first logic programming (LP) language. Nevertheless,
since the design of STRIPS planning model [6], planning approaches other than
LP were more successful. SAT-based planning [9] is probably the closest ap-
proach to logic programming that is competitive with best automated planners.

For decades the so called domain-independent planning has been perceived
as the major direction of AI research with the focus on “physics-only” planning
domain models. This attitude is represented by International Planning Compe-
titions (IPC) [8] that accelerated planning research by providing a set of stan-
dard benchmarks. On the other hand and despite the big progress of domain-
independent planners in recent years, these planning approaches are still rarely
used in practice. For example, it is hard to find any of these planners in areas
such as robotics and computer games. This is partly due to low efficiency of
the planners when applied to hard real-life problems and partly due to missing
guidelines about how to describe planning problems in such a way that they are
efficiently solvable.

IPC accelerated research in domain-independent planning by providing en-
codings (domain models) for many benchmark problems. On the other hand, as
everyone is using IPC benchmark problems to evaluate the planners, there has
not been almost any research about how to encode the planning problems effi-
ciently. Also, though the role of domain knowledge is well known in planning [4],
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the domain-dependent planners were banned from IPC which further decreased
interest in alternative approaches to model and solve planning problems.

Recently, tabling has been successfully used to solve specific planning prob-
lems such as Sokoban [20], the Petrobras planning problem [2], and several plan-
ning problems used in ASP competitions [23]. This led to development of the
planner module of the Picat programming language. This general planning sys-
tem was applied to various domains in IPC and compared with best domain-
independent optimal planners [24] as well as best domain-dependent planners
[3]. In this paper we summarize the modeling and solving capabilities of Picat
and we focus on their deeper experimental comparison.

2 Background on Planning

Classical AI planning deals with finding a sequence of actions that change the
world from some initial state to a goal state. We can see AI planning as the task
of finding a path in a directed graph, where nodes describe states of the world
and arcs correspond to state transitions via actions. Let γ(s, a) describe the state
after applying action a to state s, if a is applicable to s (otherwise the function is
undefined). Then the planning task is to find a sequence of actions 〈a1, a2, . . . , an〉
called a plan such that, s0 is the initial state, for each i ∈ {1, . . . , n}, ai is
applicable to the state si−1 and si = γ(si−1, ai), and, finally, sn satisfies a given
goal condition. For solving cost-optimization problems, each action has assigned
a non-negative cost and the task is to find a plan with the smallest cost.

As the state space is usually huge, an implicit and compact representation
of states and actions is necessary. Since the time of Shakey, the robot [15, 6], a
factored representation of states is the most widely used. Typically, the state of
the world is described as a set of predicates that hold in the state or by a set of
values for multi-valued state variables. Actions are then describing changes of the
states in the representation, for example, actions make some predicates true and
other false or actions change values of certain states variables. The Planning
Domain Definition Language (PDDL) [13] is the most widely used modeling
language for describing planning domains using the factored representation of
states. This is also the language of IPC competitions.

In Picat we will preserve the state-transition nature of classical AI planning,
but instead of factored representation we will use a structured representation of
states. Like in the PDDL, each action will have pre-conditions verifying whether
the action is applicable to a given state. However, the precondition can be any
Picat call. The action itself will specify how the state should be changed; we will
give some examples later.

3 Background on Picat

Picat is a logic-based multi-paradigm programming language aimed for general-
purpose applications. Picat is a rule-based language, in which predicates, func-
tions, and actors are defined with pattern-matching rules. Picat incorporates
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many declarative language features for better productivity of software devel-
opment, including explicit non-determinism, explicit unification, functions, list
comprehensions, constraints, and tabling.

In Picat, predicates and functions are defined with pattern-matching rules.
Picat has two types of rules: a non-backtrackable rule (also called a commitment
rule) Head,Cond => Body, and a backtrackable rule Head,Cond ?=> Body. In
a predicate definition, the Head takes the form p(t1, . . . , tn), where p is called
the predicate name, and n is called the arity. The condition Cond, which is
an optional goal, specifies a condition under which the rule is applicable. For
a call C, if C matches Head and Cond succeeds, then the rule is said to be
applicable to C. When applying a rule to call C, Picat rewrites C into Body. If
the used rule is non-backtrackable, then the rewriting is a commitment, and the
program can never backtrack to C. However, if the used rule is backtrackable,
then the program will backtrack to C once Body fails, meaning that Body will
be rewritten back to C, and the next applicable rule will be tried on C.

Briefly speaking, Picat programming is very similar to Prolog programming.
By providing features like functions, list comprehensions etc., Picat programs are
even more compact and declarative than equivalent Prolog programs. Moreover,
the possibility of explicit non-determinism and unification gives the programmer
better control of program execution to make the code even more efficient. More
details about the Picat language can be found in the Picat documentation [16].

3.1 Tabling

The Picat system provides a built-in tabling mechanism [21] that simplifies cod-
ing of some search algorithms. Tabling is a technique to memorize answers to
calls and re-using the answer when the same call appears later. Tabling im-
plicitly prevents loops and brings properties of graph search (not exploring the
same state more than once) to classical depth-first search used by Prolog-like
languages. Both predicates and functions can be tabled; linear tabling [21] is
used in Picat. In order to have all calls and answers of a predicate or a function
tabled, users just need to add the keyword table before the first rule. For a pred-
icate definition, the keyword table can be followed by a tuple of table modes
[7], including + (input), - (output), min, max, and nt (not tabled). These modes
specify how a particular attribute of the predicate should be handled. For a pred-
icate with a table mode declaration that contains min or max, Picat tables one
optimal answer for each tuple of the input arguments. The last mode can be nt,
which indicates that the corresponding argument will not be tabled [22]. Ground
structured terms are hash-consed [19] so that common ground terms are tabled
only once. For example, for three terms c(1,c(2,c(3))), c(2,c(3)), and c(3),
the shared sub-terms c(2,c(3)) and c(3) are reused from c(1,c(2,c(3))).

Mode-directed tabling has been successfully used to solve specific planning
problems such as Sokoban [20], and the Petrobras planning problem [2]. A plan-
ning problem is modeled as a path-finding problem over an implicitly specified
graph. The following code gives the framework used in all these solutions:
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table (+,-,min)

path(S,Path,Cost), final(S) => Path = [], Cost = 0.

path(S,Path,Cost) =>

action(S,S1,Action,ActionCost),

path(S1,Path1,Cost1),

Path = [Action|Path1],

Cost = Cost1+ActionCost.

The call path(S,Path,Cost) binds Path to an optimal path from S to a final
state. The predicate final(S) succeeds if S is a final state, and the predicate
action encodes the set of actions in the problem.

3.2 Resource-Bounded Search

As mentioned in the previous section, the tabling mechanism supports solving
optimization problems, such as looking for the shortest path, using the table
modes min and max. When applied to the single-source shortest path problem,
linear tabling is similar to Dijkstra’s algorithm, except that linear tabling tables
shortest paths from the encountered states to the goal state rather than shortest
paths to the encountered states from the initial state. When looking for the
shortest path from a single initial state to some goal state only, such as in
planning, classical tabling may be too greedy as it visits the states that could
be farther from the initial state than the length of the shortest path from start
to goal. Resource-bounded search is a way to overcome this inefficiency.

Assume that we know the upper bound for the path length, let us call it a
resource. Each time, we expand some state, we decrease available resource by
the cost of the action used for expansion. Hence less quantity of resource will be
available for expansion of the next state (if action costs are positive). The idea
of resource-bounded search is to utilize tabled states and their resource limits to
effectively decide when a state should be expanded and when a state should fail.
Let SR denote a state with an associated resource limit, R. If R is negative, then
SR immediately fails. If R is non-negative and S has never been encountered
before, then S is expanded by using a selected action. Otherwise, if the same
state S has failed before and R′ was the resource limit when it failed, then SR

is only expanded if R > R′, i.e., if the current resource limit is larger than the
resource limit was at the time of failure.

4 Planning in Picat

The Picat system has a built-in module planner for solving planning problems.
The planning problem is described as an abstract state transition diagram and
solved using techniques exploiting tabling. By abstraction we mean that states
and actions are not grounded, but described in an abstract way similar to model-
ing operators in PDDL. In this section we briefly introduce the planner module,
give an example of planning domain model in Picat, and describe available search
techniques to solve the planning problems.
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4.1 The planner Module of Picat

The planner module is based on tabling but it abstracts away tabling from
users. For a planning problem, users only need to define the predicates final/1
and action/4, and call one of the search predicates in the module on an initial
state in order to find a plan or an optimal plan.

– final(S): This predicate succeeds if S is a final state.
– action(S,NextS,Action,ACost): This predicate encodes the state tran-

sition diagram of a planning problem. The state S can be transformed to
NextS by performing Action. The cost of Action is ACost, which must be
non-negative. If the plan’s length is the only interest, then ACost = 1.

These two predicates are called by the planner. The action predicate specifies
the precondition, effect, and cost of each of the actions. This predicate is normally
defined with nondeterministic pattern-matching rules. As in Prolog, the planner
tries actions in the order they are specified. When a non-backtrackable rule is
applied to a call, the remaining rules will be discarded for the call.

4.2 Modeling Example

To demonstrate how the planning domain is encoded in Picat, we will use the
Transport domain from IPC’14. Given a weighted directed graph, a set of trucks
each of which has a capacity for the number of packages it can carry, and a set
of packages each of which has an initial location and a destination, the objective
of the problem is to find an optimal plan to transport the packages from their
initial locations to their destinations. This problem is more challenging than the
Nomystery problem that was used in IPC’11, because of the existence of multiple
trucks, and because an optimal plan normally requires trucks to cooperate. This
problem degenerates into the shortest path problem if there is only one truck
and only one package. We introduced the Picat model of this domain in [24],
where other examples of domain models are given.

A state is represented by an array of the form {Trucks,Packages}, where
Trucks is an ordered list of trucks, and Packages is an ordered list of waiting
packages. A package in Packages is a pair of the form (Loc,Dest) where Loc

is the source location and Dest is the destination of the package. A truck in
Trucks is a list of the form [Loc,Dests,Cap], where Loc is the current location
of the truck, Dests is an ordered list of destinations of the loaded packages on
the truck, and Cap is the capacity of the truck. At any time, the number of
loaded packages must not exceed the capacity.

Note that keeping Cap as the last element of the list facilitates sharing, since
the suffix [Cap], which is common to all the trucks that have the same capacity,
is tabled only once. Also note that the names of the trucks and the names of
packages are not included in the representation. Two packages in the waiting list
that have the same source and the same destination are indistinguishable, and as
are two packages loaded on the same truck that have the same destination. This
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representation breaks object symmetries – two configurations that only differ by
a truck’s name or a package’s name are treated as the same state.

A state is final if all of the packages have been transported.

final({Trucks,[]}) =>

foreach([_Loc,Dests|_] in Trucks)

Dests == []

end.

The PDDL rules for the actions are straightforwardly translated into Picat
as follows.

action({Trucks,Packages},NextState,Action,ACost) ?=>

Action = $load(Loc), ACost = 1,

select([Loc,Dests,Cap],Trucks,TrucksR),

length(Dests) < Cap,

select((Loc,Dest),Packages,PackagesR),

NewDests = insert_ordered(Dests,Dest),

NewTrucks = insert_ordered(TrucksR,[Loc,NewDests,Cap]),

NextState = {NewTrucks,PackagesR},

action({Trucks,Packages},NextState,Action,ACost) ?=>

Action = $unload(Loc), ACost = 1,

select([Loc,Dests,Cap],Trucks,TrucksR),

select(Dest,Dests,DestsR),

NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),

NewPackages = insert_ordered(Packages,(Loc,Dest)),

NextState = {NewTrucks,NewPackages}.

action({Trucks,Packages},NextState,Action,ACost) =>

Action = $move(Loc,NextLoc),

select([Loc|Tail],Trucks,TrucksR),

road(Loc,NextLoc,ACost),

NewTrucks = insert_ordered(TrucksR,[NextLoc|Tail]),

NextState = {NewTrucks,Packages}.

For the load action, the rule nondeterministically selects a truck that still has
room for another package, and nondeterministically selects a package that has
the same location as the truck. After loading the package to the truck, the rule
inserts the package’s destination into the list of loaded packages of the truck. Note
that the rule is nondeterministic. Even if a truck passes by a location that has
a waiting package, the truck may not pick it. If this rule is made deterministic,
then the optimality of plans is no longer guaranteed, unless there is only one
truck and the truck’s capacity is infinite.

The above model is very similar to the PDDL encoding available at IPC web
pages [8]. The major difference is the model of states that is a structure consisting
of two ordered lists. The ordering is used to obtain a unique representation
of states. The encoding can be further extended by adding control knowledge,
for example the predicate action can begin with a rule that deterministically
unloads a package if the package’s destination is the same as the truck’s location.
To exploit better the resource-bound search, one can also add heuristics to action
definition. The heuristic can estimate the cost-to-goal and it can be added to
actions through the following condition:

R.Barták et al. Searching for Sequential Plans Using Tabled Logic Programming

29



current_resource() - ACost >= estimated_cost(NewState).

The current resource() is a built-in function of the planner giving the maximal
allowed cost-distance to the goal. Note that heuristic is a part of the domain
model so it is domain dependent.

We discussed some domain modeling principles in [3]. Basically, the Picat
planner module supports:

– structured state representation that is more compact than the factored rep-
resentation and allows removing symmetry between objects by representing
objects via their properties rather than via their names (see representation
of trucks and packages in the Transport domain),

– control knowledge that guides the planner via ordering of actions in the
model and using extra conditions to specify when actions are applicable
(for example, always unload the package when the truck is at the package
destination),

– action symmetry breaking by modeling possible action sequences via a non-
deterministic finite state automaton (for example, load the truck and move
it somewhere for further loading or unloading before assuming actions of
another truck),

– heuristics that estimate the cost-to-goal and can be domain dependent (do-
main independent heuristics can be used as well).

4.3 Search Techniques

The planning-domain model is specified as a set of Picat rules that are explored
by the Picat planner. This planner uses basically two search approaches to find
optimal plans. Both of them are based on depth-first search with tabling and
in some sense they correspond to classical forward planning. It means that they
start in the initial state, select an action rule that is applicable to the current
state, apply the rule to generate the next state, and continue until they find a
state satisfying the goal condition (or the resource limit is exceeded).

The first approach starts with finding any plan using the depth first search. The
initial limit for plan cost can (optionally) be imposed. Then the planner tries to
find a plan with smaller cost so a stricter cost limit is imposed. This process is
repeated until no plan is found so the last plan found is an optimal plan. This
approach is very close to branch-and-bound technique [12]. Note that tabling is
used there – the underlying solver remembers the best plans found for all visited
states so when visiting the state next time, the plan from it can be reused rather
than looked for again. This planning algorithm is evoked using the following call:

best_plan_bb(+InitState,+CostLimit,-Plan,-PlanCost)

This is where the user specifies the initial state and (optionally) the initial cost
limit. The algorithm returns a cost-optimal plan and its cost. This approach can
be also used to find the first plan using the call plan(+S,+L,-P,-C).
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Despite using tabling that prevents re-opening the same state, this approach
still requires good control knowledge to find the initial plan (otherwise, it may
be lost in a huge state space) or alternatively some good initial cost limit should
be used to prevent exploring long plans.

The second approach exploits the idea of iteratively extending the plan length
as proposed first for SAT-based planners [9]. It first tries to find a plan with cost
zero. If no plan is found, then it increases the cost by 1. In this way, the first
plan that is found is guaranteed to be optimal. Unlike the IDA* search algorithm
[10], which starts a new round from scratch, Picat reuses the states that were
tabled in the previous rounds. This planning algorithm is evoked using the call:

best_plan(+InitState,+CostLimit,-Plan,-PlanCost)

This approach is more robust with respect to weak or no control knowledge, but
it has the disadvantage that it can only find the optimal plan, which could be
more time consuming than finding any plan.

Note that the cost limit in the above calls is used to define the function
current resource() mentioned in the action rules. Briefly speaking the cost of
the partial plan is subtracted from the cost limit to get the value of the function
current resource() that can be utilized to compare with the heuristic distance
to the goal.

5 Experimental Comparison

The Picat planner uses a different approach to planning so it is important to show
how this approach compares with current state-of-the-art planning techniques
and to understand better the Picat search procedures. In [24] we compared
the Picat planer with SymBA [18] – the domain-independent bidirectional A*
planner which won the optimal sequential track of IPC’14. As the Picat planner
can exploit domain-dependent information, in [3] we compared the Picat planner
with leading domain-dependent planners based on control rules and hierarchical
task networks (HTN). We will summarize these results first and then we will
present a new experimental study comparing the search approaches in Picat.

5.1 Comparison to Automated Planners

Optimal Domain Independent Planners. We have encoded in Picat most
domains used in the deterministic sequential track of IPC’14. All of the encod-
ings are available at: picat-lang.org/ipc14/. The Picat planner was using the
iterative deepening best plan/4 planning algorithm. We have compared these
Picat encodings with the IPC’14 PDDL encodings solved with SymBA. Table
1 shows the number of instances (#insts) in the domains used in IPC’14 and
the number of (optimally) solved instances by each planner. The results were
obtained on a Cygwin notebook computer with 2.4GHz Intel i5 and 4GB RAM.
Both Picat and SymBA were compiled using g++ version 4.8.3. For SymBA, a
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setting suggested by one of SymBA’s developers was used. A time limit of 30
minutes was used for each instance as in IPC. For every instance solved by both
planners, the plan quality is the same. The running times of the instances are
not given, but the total runs for Picat were finished within 24 hours, while the
total runs for SymBA took more than 72 hours.

Table 1. The number of problems solved optimally.

Domain # insts Picat SymBA

Barman 14 14 6

Cave Diving 20 20 3

Childsnack 20 20 3

Citycar 20 20 17

Floortile 20 20 20

GED 20 20 19

Parking 20 11 1

Tetris 17 13 10

Transport 20 10 8

Total 171 148 87

Domain Dependent Planners. We took the following domains: Depots, Zeno-
travel, Driverlog, Satellite, and Rovers from IPC’02. The Picat encodings are
available at: picat-lang.org/aips02/. We compared Picat with TLPlan [1],
the best hand-coded planner of IPC’02, TALPlanner [11] another good planner
based on control rules, and SHOP2 [14], the distinguished hand-coded planner
of IPC’02 using HTN. Each of these planners used its own encoding of planning
domains developed by the authors of the planners.

All planners found (possibly sub-optimal) plans for all benchmark problems
and the runtime to generate plans was negligible; every planner found a plan in
a matter of milliseconds. Hence we focused on comparing the quality of obtained
plans that is measured by a so called quality score introduced in IPC. Briefly
speaking the score for solving one problem is 1, if the planner finds the best plan
among all planners; otherwise the score goes down proportionally to the quality
of the best plan found. The higher quality score means an overall better system.

For TLPlan, TALPlanner, and SHOP2 we took the best plans reported in the
results of IPC’02. Taking in account the nature of planners and their runtimes,
there is a little hope to get better plans when running on the current hardware.
For the Picat planner we used the branch-and-bound best plan bb/4 planning
algorithm. Table 2 shows the quality scores when we gave five minutes to the
Picat planner to improve the plan (running under MacOS X 10.10 on 1.7 GHz
Intel Core i7 with 8 GB RAM).

The results show that the Picat planner is competitive with other domain-
dependent planners and that it can even find better plans. In [3] we also demon-
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Table 2. Comparison of quality scores for the best plan (5 minutes)

Domain # insts Picat TLPlan TALPlanner SHOP2

Depots 22 21.94 19.93 20.52 18.63

Zenotravel 20 19.86 18.40 18.79 17.14

Driverlog 20 17.21 17.68 17.87 14.16

Satellite 20 20.00 18.33 16.58 17.16

Rovers 20 20.00 17.67 14.61 17.57

Total 102 99.01 92.00 88.37 84.65

strated that the Picat domain models are much smaller than domain models
using control rules and are much closer in size to the PDDL models.

5.2 Comparison of Search Techniques

In the second experiment we focused on comparing two search approaches to find
cost-optimal plans in Picat, namely branch-and-bound and iterative deepening.
When looking for optimal plans, the hypothesis is that iterative deepening re-
quires less memory and time because branch-and-bound explores longer plans
and hence may visit more states. On the other hand, the advantage of branch-
and-bound is that it can find some plan even if finding (and proving) optimal
plan is hard (recall, that iterative deepening returns only optimal plans). So the
second hypothesis is that when looking for any plan, branch-and-bound could
be a better planning approach. Nevertheless, due to depth-first-search nature,
branch-and-bound requires good control knowledge to find an initial plan. The
final hypothesis is that if none or weak control knowledge is part of the domain
model then iterative deepening is a more reliable planning approach.

We used the following domains from the deterministic sequential track of
IPC’14 [8]: Barman, Cavediving, Childsnack, Citycar, Floortile, GED, Parking,
Tetris, and Transport. All of the encodings are available at: picat-lang.org/
ipc14/. The experiment run on Intel Core i5 (Broadwell) 5300U(2.3/2.9GHz)
with 4 GB RAM (DDR3 1600 MHz). For each problem, we used timeout of 30
minutes and memory limit 1 GB. We compared the following search procedures:

– plan(InitState,CostLimit,Plan,PlanCost),
– best plan(InitState,CostLimit,Plan,PlanCost),
– best plan bb(InitState,CostLimit,Plan,PlanCost),

using 99, 999, 999 as the initial cost limit (10, 000 for the GED domain).
We first report the number of solved problems with respect to time and

memory consumed. Note that best plan/4 and best plan bb/4 return cost-
optimal plans while plan/4 returns some (possibly sub-optimal) plan. Figure 1
shows the number of solved problems within a given time. Figure 2 shows the
number of solved problems based on memory consumed.

The results confirm the first and second hypotheses, that is, iterative deep-
ening requires less time and less memory than branch-and-bound when solving
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Fig. 1. The number of solved problems within a given time.

Fig. 2. The number of solved problems dependent on memory consumption.

problems optimally, but branch-and-bound has the advantage of providing some
(possibly sub-optimal) plan fast. If looking for any plan then branch-and-bound
also requires less memory.

Describing dependence of planner efficiency on the model is more tricky
as it is hard to measure model quality quantitatively. We annotated each in-
volved domain model by information about using control knowledge and domain-
dependent heuristics in the model. Table 3 shows the annotation of domain
models based on these two criteria.

Based on Table 3 we can classify the Picat domain models into following
groups:

– The Picat domain model for Barman is probably closest to the PDDL encod-
ing; it only uses the structured representation of states, which alone seems
to be advantage over PDDL as Table 1 shows. GED uses a bit specific model
based on a PDDL model different from that one used in the IPC – this model
uses some macro-actions – and hence it is not really tuned for Picat.
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Table 3. The properties of domain models.

Domain control knowledge heuristics

Barman no no

Cave Diving strong no

Childsnack strong no

Citycar no yes

Floortile strong no

GED macro yes

Parking weak yes

Tetris no yes

Transport weak yes

– Citycar and Tetris are domains where useful admissible heuristics are used,
but no control knowledge is implemented to guide the planner.

– The Picat domain models for Parking and Transport use some weak control
knowledge in the form of making selection of some actions deterministic (see
the example earlier in the paper). They also exploit admissible heuristics.

– Cave Diving, Childsnack, and Floortile are domains, where we use strong
control knowledge and no heuristics. Control knowledge is used there to
describe reasonable sequencing of actions either via finite state automata or
macro-actions. The domain model for Cave Diving is described in detail in
[3]; the domain model for Childsnack is almost deterministic as this problem
does not require real planning; and the domain model for Floortile uses
macro-actions to force reasonable action sequences, see [24] for details.

From each class of domain models we selected one representative to demon-
strate how different solving approaches behave (the other domains gave similar
results). Figure 3 shows the number of solved problems for these representa-
tives. If the Picat domain model is very close to the original PDDL model,
then iterative deepening has a clear advantage when finding optimal plans, see
the Barman domain. This corresponds to popularity of this solving approach in
planners based on SAT techniques [9]. In case of Barman the branch-and-bound
approach can still find some plans as the model itself guides the planner reason-
ably well (there are no extremely long plans). However, for the GED domain,
only iterative deepening can find (optimal) plans while branch-and-bound was
not able to find any plan due to being lost in generating extremely long plans
not leading to the goal.

Adding admissible heuristics makes iterative deepening even more successful,
see the Tetris domain. Finding optimal plans by iterative deepening is close to
finding any plan by branch-and-bound. Also the gap between finding any plan
and finding an optimal plan by branch-and-bound is narrower there. Obviously,
this also depends on the quality of first plan found.

An interesting though not surprising observation is that adding even weak
control knowledge makes finding any plan by branch-and-bound much more
successful and decreases further the gap between iterative deepening and branch-
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Fig. 3. The number of solved problems within a given time for specific domains.
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and-bound when looking for optimal plans, see the Parking domain. The role
of control knowledge is even more highlighted in the Childsnack domain, which
shows that strong control knowledge has a big influence on efficiency of branch-
and-bound. Longer runtimes of iterative deepening are caused by exploring short
plans that cannot solve the problem before discovering the necessary length of
the plan to reach the goal. Still control knowledge helps iterative deepening to
find a larger number of optimal plans though it takes longer than for branch-
and-bound.

The experimental results justify the role of control knowledge for solving
planning problems and confirm the last hypothesis that control knowledge is
important for the branch-and-bound approach especially if the dead-ends can
be discovered only in very long plans.

6 Summary

This paper puts in contrast two approaches for searching for sequential plans,
iterative deepening used in [24] and branch-and-bound used in [3]. We demon-
strated that the modeling framework proposed for the Picat planner module is
competitive with state-of-the-art planning approaches and we showed some rela-
tions between the modeling techniques and used search algorithms. In particular,
we demonstrated the role of control knowledge in planning and we showed that
control knowledge is more important for branch-and-bound though it also con-
tributes to efficiency of iterative deepening. The role of heuristics is known in
planning as for a long time heuristic-based forward planners are the leading
academic planners. Note however that Picat is using heuristics in a different
way. Rather than guiding the planner to promising areas of the search space,
the heuristics are used to cut-off sub-optimal plans earlier. Hence the role of
heuristics is stronger for iterative deepening than for branch-and-bound.

This paper showed some preliminary results on the relations between various
modeling and solving techniques for planning problems. The next step is a deeper
study of influence of various modeling techniques on efficiency of planning.
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Abstract. In this paper we test how efficiently state-of-the art solvers
are capable of solving credulous and sceptical argument-acceptance for
lower-order extensions. As our benchmark we consider two different ran-
dom graph-models to obtain random Abstract Argumentation Frame-
works with small-world characteristics: Kleinberg and Watt-Strogatz. We
test two reasoners, i.e., ConArg2 and dynPARTIX, on such benchmark,
by comparing their performance on NP/co-NP-complete decision prob-
lems related to argument acceptance in admissible, complete, and stable
semantics.

1 Introduction

An Abstract Argumentation Framework (AAF ) [8], or System, is simply a pair
〈A,R〉 consisting of a set A of arguments, and of a binary relation R on A, called
the “attack” relation. An abstract argument is not assumed to have any specific
structure but, roughly speaking, an argument is anything that may attack or
be attacked by another argument. Two main styles of argumentation semantics
definition can be identified in the literature: extension-based and labelling-based.
In this work we exploit the extension-based approach, where a given semantics
definition (related to varying degrees of scepticism or credulousness) specifies
how to derive a set of extensions from an AAF, which basically consist in conflict-
free subsets of A with different properties.

In this paper we are interested in the acceptance (or justification) state of
arguments: intuitively an argument is regarded as accepted if it is at least once
(credulously) or always (sceptically) present in all the extensions satisfying a
given semantics. The kind of semantics (from le least to the most binding), and
its acceptance state (e.g., credulous or sceptical) point to a strength evaluation
of an argument.

In this work we move along the line activated in our previous works [5, 2,
4, 3]. Differently from these papers, here we extend [3] by considering networks
with small-world topologies [15, 18]: in [3] we present a benchmark assembled
with random trees, scale-free networks [1], and just random graphs [13]. The
motivation is to study topologies possibly shown by advanced social debating
platforms, as DebateGraph1, which allow a discussion to be less rigidly structured

1 http://debategraph.org
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than a tree, as instead commonly offered in today’s digital fora. Hence, in this
paper we consider Kleinberg [15] and Watts-Strogatz [18] topologies.

The problems we tackle in this work correspond to the credulous acceptance
in admissible, complete, and stable semantics (all NP-complete problems), and
the sceptical acceptance in the stable semantics (a coNP-complete problem). We
test two different solvers ConArg2 [7] and dynPARTIX [10], in order to have
a comparison between them and a more informative analysis on the most effi-
cient relation “technology against AAF topology” (i.e., Constraint Programming
against Dynamic Programming).

Note that in this work we do not consider higher-order semantics, e.g., pre-
ferred or grounded [8], which can be defined from lower-order ones by selecting
only the maximal or minimal ones w.r.t. set inclusion; for instance, preferred ex-
tensions are the maximal (w.r.t. set inclusion) admissible extensions. We leave
their testing to future work (see Sec. 5).

2 Preliminaries

In this section we focus on the basic definitions of an AAF, and on the extension-
based semantics that will be tested in our comparison (see Sec. 4).

Definition 1 (Abstract AFs). An Abstract Argumentation Framework (AAF)
is a pair F = 〈A,R〉 of a set A of arguments and a binary relation R ⊆ A×A,
called the attack relation. ∀a, b ∈ A, aR b (or, a � b) means that a attacks b.
An AAF may be represented by a directed graph (an interaction graph) whose
nodes are arguments and edges represent the attack relation. A set of arguments
S ⊆ A attacks an argument a, i.e., S � a, if a is attacked by an argument of
S, i.e., ∃b ∈ S.b� a.

The following notion of defence [8] is fundamental to AAFs.

Definition 2 (Defence). Given an AAF, F = 〈A,R〉, an argument a ∈ A is
defended (in F ) by a set S ⊆ A if for each b ∈ A, such that b � a, also S � b
holds. Moreover, for S ⊆ A, we denote by S+

R the set S ∪ {b | S � b}.

The “acceptability” of an argument [8], defined under different semantics,
depends on the frequency of its membership to some argument subsets, called
extensions: such semantics characterise a collective “acceptability”. In Def. 3 we
report only the semantics of interest in this study.

Definition 3. Let F = 〈A,R〉 be an AAF. A set S ⊆ A is conflict-free (in F),
denoted S ∈ cf(F ), iff there are no a, b ∈ S, such that (a, b), (b, a) ∈ R. For
S ∈ cf(F ), it holds that

– S ∈ adm(F ), if each a ∈ S is defended by S;
– S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S holds;
– S ∈ stb(F ), if for each a ∈ A\S, S � a, i.e., S+

R = A;
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Table 1: Some known complexity results for the credulous and sceptical accep-
tance [16, Ch. 5]: in bold, the problems we test in this study.

adm com stb
Credulous acc. NP-c NP-c NP-c
Sceptical acc. trivial P-c coNP-c

a b c d e

Fig. 1: A graphical example of an AAF.

We recall that for each AAF, stb(F ) ⊆ com(F ) ⊆ adm(F ) holds, and that
adm(F ) 6= ∅, and com(F ) 6= ∅ always hold, while stb(F ) = ∅ may happen
instead.

Definition 4 (Acceptance state). Given a semantics σ (e.g., stb) and a
framework F , an argument a is i) sceptically accepted iff ∀E ∈ σ(F ), a ∈ E,
and ii) credulously accepted if ∃E ∈ σ(F ), a ∈ E.

Checking the credulous/sceptical acceptance of an argument is sometimes a
(time) complex problem (e.g., with the grounded semantics they are polynomial):
in Tab. 1 we report in bold the complexity class of the problems we tackle in
this paper, i.e., the credulous acceptance in the admissible, complete, and stable
semantics (all NP-complete problems), and the sceptical acceptance in the stable
semantics (a coNP-complete problem).

Consider the F = 〈A,R〉 in Fig. 1, withA = {a, b, c, d, e} andR = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, e)}. We have that stb(F ) = {{a, d}}. The admissible exten-
sions of F are adm(F ) = {∅, {a}, {c}, {d}, {a, c}, {a, d}}, while the complete ones
are com(F ) = {{a}, {a, c}, {a, d}}. For instance, argument a is both credulously
and sceptically accepted in stb(F ) and com(F ), while it is only credulously ac-
cepted in adm(F ).

3 Tools and Graphs

In this section we introduce how we performed our tests, by describing the
analysed tools (Sec. 3.1) and the generated AAFs (Sec. 3.2).

3.1 Tools

dynPARTIX2 is a system based on decomposition and dynamic program-
ming; it is motivated by the theoretical results in [10]. The underneath algo-
rithms make use of the graph-parameter tree-width, which measures the “tree-
likeness” of a graph. More specifically, tree-width is defined via the so-called

2 http://www.dbai.tuwien.ac.at/proj/argumentation/dynpartix/
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tree-decompositions. A tree decomposition is a mapping from an AAF to a tree
where the nodes in the tree contain bags of arguments from the AAF. Each ar-
gument appears in at least one bag, adjacent arguments are together in at least
one bag, and bags containing the same argument are connected. The benchmarks
in [9] show that the run-time performance of dynPARTIX heavily depends on
the tree-width of the considered graph: for example, with instances of small
tree-width, dynPARTIX outperforms ASPARTIX [12], while with a high tree-
width ASPARTIX still performs comparably (better on credulous acceptance,
still worse on sceptical acceptance). In our tests we use the new 64-bit version
(2.0) of dynPARTIX, which has recently become available.

ConArg2. ConArg3 [7] is our solver based on the Java Constraint Program-
ming solver4 (JaCoP), a Java library that provides a Finite Domain Constraint
Programming paradigm [17]. The tool comes with a graphical interface, which
visually shows all the obtained extensions for each problem. ConArg is able to
solve also the weighted and coalition-based problems presented in [6]. Moreover,
it can import/export AAFs with the same text format of ASPARTIX. Recently,
we have extended the tool to its second version, i.e., ConArg2 (freely download-
able from the same Web-page of ConArg), in order to improve its performance:
we implemented all the models in Gecode5, which is an open, free, and efficient
C++ environment where to develop constraint-based applications. Hence, we
model each semantics as a Constraint Satisfaction Problem (CSP) [17]. We have
also dropped the graphical interface, having a textual output only, with the pur-
pose to have a tool exclusively oriented to performance. So far, on classical AAFs,
ConArg2 is able to find all conflict-free, admissible, complete, stable, grounded,
preferred, semi-stable, and ideal extensions; moreover, it solves the credulous
and sceptical acceptance of arguments given the admissible, complete, and sta-
ble semantics, and the existence of a stable extension (which is an NP-complete
problem).

3.2 Graphs

The justification behind using Kleinberg and Watts-Strogatz models is that sev-
eral works in the Argumentation literature investigate AAFs extracted from
social networks [14]. However, benchmarks collected with such tools are still not
available.

To generate random graphs we adopted two different libraries. The first one
is the Java Universal Network/Graph Framework (JUNG6), which is a Java soft-
ware library for the modelling, generation, analysis and visualization of graphs.
With JUNG we generate Kleinberg [15] graphs. The second library we use is Net-
workX 7, and it consists of a Python software package for the creation, manipu-

3 http://www.dmi.unipg.it/conarg/
4 http://www.jacop.eu
5 http://www.gecode.org
6 http://jung.sourceforge.net
7 http://networkx.github.io
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Model/Nodes Edges Shortest Path Clustering C. Diam. InDeg. Cycles Min-Max Deg.
KL/16 47 1.6 0.3 2.9 5 Yes 5-11
KL/25 74 1.9 0.19 3 5 Yes 5-11
KL/36 107 2.2 0.14 3.9 5 Yes 5-11
KL/49 146 2.4 0.11 4 5 Yes 5-11
KL/64 191 2.57 0.8 4.2 5 Yes 5-12
KL/81 242 2.7 0.07 4.8 5 Yes 5-11
WS/25 50 2.4 0.22 4.7 2 Yes 2-8
WS/50 100 3.4 0.28 6.7 2 Yes 2-8
WS/80 240 2.6 0.09 4.9 3 Yes 3-13
WS/100 400 2.4 0.12 4 4 Yes 4-15

Table 2: Analysis of the generated random-AFs: values are averaged over the
generated 100 AFs in each class. The considered models are Kleinberg (KL) and
Watts-Strogatz (WS).

lation, and study of the structure, dynamics, and functions of complex networks.
With NetworkX we generate Watts-Strogatz [18] graphs.

The Kleinberg [15] graph-model adds a number of directed long-range ran-
dom links to an n × n lattice network. Links have a non-uniform distribution
that favours edges to close nodes over more distant ones (in the number of hops).
In the implementation provided by JUNG, each node u has four local connec-
tions, one to each of its neighbours, and in addition, one or more long-range
connections to some node v, where v is randomly chosen according to probabil-
ity proportional to d−θ where d is the lattice distance between u and v and θ is
the clustering exponent. In our generation we set θ = 0.9, in order to have a high
clustering coefficient. Given a node, each link is directed towards its neighbours:
edges are created in both directions between neighbours. Each long-distance edge
has the tail in the considered node.

The Watts-Strogatz model [18] consists in a ring over n nodes. each node
in the ring is connected with its k nearest neighbours (k − 1 neighbours if k is
odd). Then shortcuts are created by replacing some edges as follows: for each
edge (u, v) in the underlying “n-ring with k nearest neighbours with probability
p replace it with a new edge (u,w) with uniformly random choice of existing
node w. Varying p makes it possible to interpolate between a regular lattice
(p = 0) and an Erdős-Rényi graph (p = 1). In our graph generation we set
k = (n/10) − 2 and p = 0.1: in this way we obtain a high clustering coefficient
(the max is with k = n/2, i.e., a complete graph) without increasing the number
of edges (attacks) too much; we also obtain a graph structure closer to a lattice (p
is low). Note that, since NetworkX generates undirected Watts-Strogatz graphs,
we orient each edge in one of the two directions (0.5 of probability each).

For each set of 100 networks we also collected the following parameters, shown
in Tab. 2: the Average Number of Edges, the Average Shortest Path (between
all the couples of nodes), the Average Clustering Coefficient (the fraction of
all the possible triangles through a node), the Average Diameter, the Average
InDegree, the presence of Simple Cycles (closed paths where no node appears
twice, except that the first and last node are the same), and the Max and Min
degree for a node over the whole class.
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Fig. 2: Avg. time dynPARTIX ( ), ConArg2 ( ), % Unsuc. instances dyn-

PARTIX ( ).

4 Tests and Discussion

Performance results have been collected on an Intel(R) Core(TM) i7 CPU 970
@3.20GHz (6 core, 2 threads per core), and 16GB of RAM. For both the tools,
the output has been redirected to /dev/null, and the standard error to file.
To test dynPARTIX we adopted its 64-bit version, by calling commands like
./dynpartix -f barabasi graph -s admissible --skept d. Flag -f speci-
fies the input file, -s the considered semantics (admissible in this case), and
--skept sets argument with id d to be checked for sceptical acceptance. We
could flag -n semi, i.e., the semi-normalised tree-decomposition (more perfor-
mant than the default normalised one, as stated by the authors of dynPARTIX)
only for the admissible semantics, because it is not currently implemented for
the other two semantics. We set a timeout of 300 seconds to interrupt the search
of each of the two tools.

In Fig. 2 and Fig. 3 we show the tests collected on the whole database pre-
sented in Tab. 2, for the credulous and sceptical acceptance respectively. For
each of the reported number of nodes (on the x axis), the left y axis reports the
CPU time averaged over 100 different instances of AAFs, and 10% random ar-
guments chosen on that class. Acceptance and non-acceptance have been forced
to be equally distributed within such random sample (5% each). On the right
y axis we also report the percentage of instances that are not solved within the
timeout (“% Unsuccessful”).
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Fig. 3: Avg. time dynPARTIX ( ), ConArg2 ( ), % Unsuc. instances dyn-

PARTIX ( ).

As we can appreciate from Fig. 2 and Fig. 3, we can state that constraint
propagation in ConArg2 works very well with credulous/sceptical acceptance
of arguments: most of the problems are solved almost instantaneously, while
dynPARTIX is not able to return an answer within the timeout. Note that the
performance of dynPARTIX on sceptical acceptance are proven to be better
(with low tree-width graphs) or comparable (with high tree-width graphs) to
the performance of ASPARTIX, while ASPARTIX works definitely better with
high tree-width and credulous acceptance [9].

5 Conclusion

In the paper we have compared two reasoners (dynPARTIX and ConArg2). The
main goal has been to study how efficiently state-of-the-art reasoners behave
on hard problems related to credulous and sceptical acceptance in lower-order
semantics, i.e., admissible, complete, and stable.

In the future we will implement in ConArg2 all the other hard problems re-
lated to higher-order semantics [16, Ch. 5]; in particular, credulous/sceptical
acceptance in preferred (NP-c/ΠP

2 -c), semi-stable (ΣP
2 -c/ΠP

2 -c), and stage se-
mantics (ΣP

2 -c/ΠP
2 -c), with the purpose to compare our tool with dynPARTIX

again, but also with CEGARTIX8 [11], since it computes sceptical acceptance
for the preferred semantics, and both sceptical and credulous acceptance for
semi-stable and stage semantics. Moreover, in order to have an engine as more
comprehensive as possible, we plan to solve other hard problems (not currently
implemented in any other solver) related to the preferred semantics, e.g., its
verification (co-NP-complete), and non-emptiness (NP-complete).

To solve higher-order semantics, we will need to work on branch-and-bound
search itself, with the result to better manage maximality/minimality of set
inclusion directly at the search level; the reason is that it is usually not possible
to express such requirements as constraints.

8 http://www.dbai.tuwien.ac.at/proj/argumentation/cegartix/

S.Bistarelli et al. Testing Credulous and Sceptical Acceptance in Small-World Networks

45



References

1. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

2. S. Bistarelli, F. Rossi, and F. Santini. Benchmarking hard problems in random
abstract AFs: The stable semantics. In Computational Models of Argument - Pro-
ceedings of COMMA, volume 266 of FAIA, pages 153–160. IOS Press, 2014.

3. S. Bistarelli, F. Rossi, and F. Santini. Efficient solution for credulous/sceptical
acceptance in lower-order Dung’s semantics. In 26th International Conference on
Tools with Artificial Intelligence, ICTAI, pages 800–804. IEEE Computer Society,
2014.

4. S. Bistarelli, F. Rossi, and F. Santini. Enumerating extensions on random abstract-
afs with argtools, aspartix, conarg2, and dung-o-matic. In Computational Logic in
Multi-Agent Systems - 15th International Workshop, CLIMA XV, volume 8624 of
LNCS, pages 70–86. Springer, 2014.

5. S. Bistarelli, F. Rossi, and F. Santini. A first comparison of abstract argumen-
tation reasoning-tools. In ECAI 2014 - 21st European Conference on Artificial
Intelligence, volume 263 of FAIA, pages 969–970. IOS Press, 2014.

6. S. Bistarelli and F. Santini. A common computational framework for semiring-
based argumentation systems. In ECAI 2010 - 19th European Conference on Ar-
tificial Intelligence, volume 215 of FAIA, pages 131–136. IOS Press, 2010.

7. S. Bistarelli and F. Santini. Conarg: A constraint-based computational frame-
work for argumentation systems. In 23rd International Conference on Tools with
Artificial Intelligence, ICTAI, pages 605–612. IEEE Computer Society, 2011.

8. P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–357, 1995.
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Abstract. We define a new protocol rule, Now or Never (NoN), for
bilateral negotiation processes which allows self-motivated competitive
agents to efficiently carry out multi-variable negotiations with remote
untrusted parties, where privacy is a major concern and agents know
nothing about their opponent. By building on the geometric concepts
of convexity and convex hull, NoN ensures a continuous progress of the
negotiation, thus neutralising malicious or inefficient opponents. In par-
ticular, NoN allows an agent to derive in a finite number of steps, and
independently of the behaviour of the opponent, that there is no hope to
find an agreement. To be able to make such an inference, the interested
agent may rely on herself only, still keeping the highest freedom in the
choice of her strategy.
We also propose an actual NoN-compliant strategy for an automated
agent and evaluate the computational feasibility of the overall approach
on instances of practical size.

1 Introduction

Automated negotiation among rational agents is crucial in Distributed Arti-
ficial Intelligence domains as, e.g., resource allocation [3], scheduling [16], e-
business [7], and applications where: (i) no agent can achieve her own goals
without interaction with the others (or she is expected to achieve more utility
with interaction), and (ii) constraints of various kinds (e.g., security or privacy)
forbid the parties to communicate their desiderata to others (the opponent or a
trusted authority), hence centralised approaches cannot be used.

We present a framework which allows two self-motivated, competitive agents
to negotiate efficiently and find a mutually satisfactory agreement in a particu-
larly hostile environment, where each party has no information on constraints,
preferences, and willingness to collaborate of the opponent. This means that also
the bounds of the domains of the negotiation variables are not common knowl-
edge. Our framework deals with negotiations over multiple constrained variables
over the type of real numbers, regarding integer or categorical variables as special
cases.

The present setting is very different from what is often assumed in the liter-
ature: the set of possible agreements is infinite and agents do not even know (or
probabilistically estimate) possible opponent’s types, variable domain bounds
or most preferred values. It is not a split-the-pie game as, e.g., in [6] although
with incomplete information, as in [11], and computing equilibrium or evaluating
Pareto-optimality is not possible.
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A major problem in our setting is that even termination of the negotiation
process is not granted: it is in general impossible for the single agent to recognise
whether the negotiation is making some progress, or if the opponent is just
wasting time or arbitrarily delaying the negotiation outcome.

We solve this problem by proposing a new protocol rule, Now or Never (NoN)
(Section 3), explicitly designed as to ensure a continuous progress of the nego-
tiation. The rule (whose fulfilment can be assessed independently by each party
using only the exchanged information) forces the agents to never reconsider
already taken decisions, thus injecting a minimum, but sufficient amount of effi-
ciency in the process. This leads to the monotonic shrinking of the set of possible
agreements, which in turn allows each agent to derive in a finite number of steps,
independently of the behaviour of the opponent, that there is no hope to find an
agreement.

Furthermore, we discuss the notion of non-obstructionist agents, i.e., agents
who genuinely aim at efficiently finding an agreement, even sacrificing their pref-
erences (among the agreements they would accept). If both agents are non-
obstructionist, the NoN rule guarantees that, whenever the termination con-
dition arises, then no agreement actually exists. Hence, in presence of non-
obstructionist agents, our approach is both complete and terminates.

We also propose (Section 4) a full NoN-compliant strategy for an agent which
ensures termination independently of the behaviour of the opponent. The strat-
egy, which takes into full account the presence of a utility function on the set of
acceptable deals, is inspired to the well-known mechanism of Monotonic Conces-
sions (MC) [13] and allows the agent to perform a sophisticated reasoning, based
on the evidence collected so far on the behaviour of the opponent, to select the
best deals to offer at each step and keep the process as efficient as possible.

Section 5 specialises NoN to discrete and categorical variables and Section 6
presents experimental results showing that enforcing the NoN rule in practical
negotiation instances is computationally feasible.

2 Preliminaries and Negotiation Framework

In the following, we denote with R the set of real numbers and with N+ the set
of strictly positive integers.

Our framework deals with (possibly multi-deal) negotiations between two
agents (agent 0 and agent 1) over multiple constrained variables. Agents do not
have any information about constraints, goals, preferences, reasoning capabili-
ties, willingness to collaborate, and strategy of the opponent. The only knowledge
common to both agents is the set of negotiation variables and the protocol rules.

Definition 1 introduces the main concepts of our framework. Some of them are
standard in the literature and are adapted to our framework to ease presentation
of the following definitions and results.

Definition 1 (Negotiation process). A negotiation process is a tuple π =
〈V, s, k,R〉 where V is a finite set of negotiation variables, s ∈ {0, 1} is the
agent starting the negotiation, and R is the set of protocol rules.

The negotiation space is the multi-dimensional real vector space R|V|. Each
point D ∈ R|V| is a deal. A proposal for π is a set of at most k deals or the
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distinguished element ⊥. Value k ∈ N+ is the maximum number of deals that
can be included in a single proposal.

Negotiation proceeds in steps (starting from step 1) with agents (starting
from agent s) alternately exchanging proposals. The proposal exchanged at any
step t ≥ 1 is sent by agent ag(t), defined as s if t is odd and 1− s if t is even.

The status of negotiation process π at step t ≥ 1 is the sequence P =
P1,P2, . . .Pt of proposals exchanged up to step t.

At each step, the status of π must satisfy the set R of procotol rules, a set
of boolean conditions on sequences of proposals.

A strategy for agent A ∈ {0, 1} for π is a function σA that, for each step
t such that ag(t) = A and each status P = P1,P2, . . .Pt−1 of π at step t − 1,
returns the proposal Pt to be sent by agent A at step t, given the sequence of
proposals already exchanged (σA is constant for t = 1 and A = s).

Our alternating offers [14] based framework primarily focuses on real vari-
ables. In Section 5 we discuss how more specialised domains (e.g., integers, cate-
gories) can be handled as special cases, and which is the added value of primarily
dealing with real variables. Also, as each proposal can contain up to k deals, our
framework supports multi-deal negotiations when k > 1. Section 4 discusses the
added value given by the possibility of exchanging multi-deal proposals.

Protocol rules are important to prevent malicious or inefficient behaviour.
Well-designed rules are of paramount importance when the process involves self-
motivated and/or unknown/untrusted opponents. For protocol rules to be effec-
tive, agents must be able at any time to verify them using the current negotiation
status only.

We will use Example 1 as a running example throughout the paper.

Example 1 (Alice vs. Bob). Alice wants to negotiate with her supervisor Bob to
schedule a meeting. At the beginning, agents agree on the relevant variables V:
(i) the start day/time t; (ii) the meeting duration d.

Deals are assignments of values to variables, as, e.g., D = 〈t = “Mon 11 am”,
d = “30 min”〉. Deals can be easily encoded as points in R2.

Definition 2 (Negotiation outcomes). Let π = 〈V, s, k,R〉 be a negotiation
process whose status at step T > 1 is P = P1,P2, . . .PT . We say that π ter-
minates at step T if and only if T is the smallest value such that one of the
following two cases holds:

– success: PT = {D} ⊆ PT−1 (ag(T ) accepts deal D proposed by ag(T − 1) at
step T − 1)

– opt-out: PT =⊥ (ag(T ) opts-out).

If no such a T exists, then π is non-terminating ( non-term).
Success, opt-out and non-term are the possible negotiation outcomes.

A negotiation process can be infinite (case non-term) or terminate in a finite
number of steps, either with an agreement found (case success, where point D is
the agreement) or with a failure (case opt-out, where one of the agents proposes
⊥, which aborts the process).

For a deal to be acceptable to an agent, some constraints must be satis-
fied. Such constraints, which are private information of the single agent, are
formalised by Definition 3.
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Definition 3 (Feasibility region). Let π = 〈V, s, k,R〉 be a negotiation pro-
cess. The feasibility region of agent A ∈ {0, 1}, denoted by RA, is the subset of
the negotiation space R|V| of deals acceptable to A.

For agent A, any deal in RA is better than failure. An agreement is thus any
deal D ∈ R0 ∩R1.

Example 2 (Alice vs. Bob (cont.)). Alice wants the meeting no later than Wednes-
day. Normally she needs at least 30 minutes and does not want the meeting to
last more than one hour; however, if she has to wait until Wednesday, she would
have time during her Tuesday’s trip to prepare new material to show; in this case
she wants the meeting to last at least one hour, but no more than 75 minutes.
Conversely, Bob has his own, private, constraints.

Fig. 1a shows Alice’s feasibility region in a 2D space, as the areas delimited
by the three polygons. The region takes into account duties in her agenda (e.g.,
Alice is busy on Monday from 1pm to 4pm).

Agents may have preferences on the deals in their feasibility region. Such
preferences are often represented by a private utility function. Fig. 1a shows
that, e.g., Alice prefers a long meeting on Monday. We will handle the agent
utility function in Section 4 when we present a full strategy for an agent.

We assume (as typically done, see, e.g., [5,12]) that agents offer only deals
in their feasibility region (i.e., agents do not offer deals they are not willing to
accept). This does not limit our approach, as suitable ex-post measures (e.g.,
penalties) can be set up to cope with the case where a deal offered by an agent
(but not acceptable to her) is accepted by the other.

3 Now or Never

We are interested in negotiations which are guaranteed to terminate in a finite
number of steps (note that, being negotiation variables real-valued, the set of po-
tential agreements is infinite), so we want to avoid case non-term of Definition 2.
In this section we define a protocol rule, the Now or Never (NoN) rule, which is
our key to drive a negotiation process towards termination, avoiding malicious
or inefficient agents behaviour. The rule relies on the notions of Definition 4.

Definition 4 (Convex region, convex hull, operator
⋃
♦ ). Let Rn be the

n-dimensional real vector space (for any n > 0). Region R ⊆ Rn is convex if,
for any two points D1 and D2 in R, the straight segment D1D2 is entirely in R.

Given a finite set of points D ⊂ Rn, the convex hull of D, conv(D), is the
smallest convex region of Rn containing D.

Given a collection of finite sets of points D,
⋃
♦D is the union of the convex

hulls of all sets in D:
⋃
♦D =

⋃
D∈D{conv(D)}.

Convexity arises often in feasibility regions of agents involved in negotiations.
An agent feasibility region is convex if, for any two acceptable deals D1 and D2,
all intermediate deals (i.e., those lying on D1D2) are acceptable as well. In some
cases [2,12,4] the feasibility region of an agent is entirely convex (consider, e.g.,
a negotiation instance over a single variable, the price of a good). In other cases
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this does not hold. However, a feasibility region may always be considered as
the union of a number of convex sub-regions. Furthermore, in most real cases,
this number is finite and small. Also, in most practical situations, the closer two
acceptable deals D1 and D2, the higher the likelihood that intermediate deals
are acceptable as well.

Example 3 (Alice vs. Bob (cont.)). Knowing that deals 〈t = “Mon at 11am”,
d = “30 min”〉 and 〈t = “Wed at 3pm”, d = “1 hour”〉 are both acceptable
to Bob would not be a strong support for Alice to assume that also 〈t =
“Tue at 1pm”, d = “45 min”〉 would be acceptable to him. On the other hand,
if 〈t = “Mon at 9am”, d = “40 min”〉 and 〈t = “Mon at 9.30am”, d = “20 min”〉
are both acceptable to Bob, it would not be surprising if also 〈t = “Mon at 9.15am”,
d = “30 min”〉 is acceptable.

Before formalising the NoN rule (Definition 6), we introduce it using our
example.

Example 4 (Alice vs. Bob (cont.)). Steps below are shown in Fig. 1.

Steps 1 and 2. Alice starts the negotiation by sending proposal P1 = {Aa1 , Ab1}. As
a reply, she receives P2 = {Ba2 , Bb2} (see Fig. 1b). As none of Bob’s counteroffers,

Ba2 and Bb2, belong to conv({Aa1 , Ab1}) = Aa1A
b
1, all such deals are removed from

further consideration (by exploiting NoN). The rationale is as follows:

(a) Bob had no evidence that conv({Aa1 , Ab1}) includes deals outside RAlice
(i.e., at the end of step 1 Bob had no evidence that this portion of RAlice is not
convex).

(b) Given that Bob has not proposed any such deal therein, then either
RBob∩conv({Aa1 , Ab1}) = ∅ (in which case, Bob has no interest at all in proposing
there), or Bob has chosen not to go for any such a deal now (as, e.g., he currently
aims at higher utility).

(c) In the latter case, NoN forbids Bob to reconsider that decision anymore
(never).

Step 3. Alice, having no evidence that conv({Ba2 , Bb2}) includes deals outside
RBob, proposes P3 containing deal Aa3 ∈ conv({Ba2 , Bb2}) ∩ RAlice (see Fig. 1c):
by proposing Aa3 she aims at closing the negotiation successfully now, believing
that such a deal (intermediate to Ba2 and Bb2) is likely to be acceptable also to
Bob. Alice also includes in P3 deal Ab3.

Step 4. It’s Bob’s turn again. By receiving P3 = {Aa3 , Ab3}, Bob knows that such
deals belong to RAlice. Assume that Bob rejects P3 by sending a counteroffer. As
there is no evidence that conv({Aa1 , Aa3 , Ab3}), conv({Ab1, Ab3}), or conv({Ab1, Aa3})
(the 3 light-grey areas in Fig. 1c) include deals outside RAlice, NoN forces him
to take a decision: either his counteroffer P4 contains some deals in one of such
regions, or he must forget those regions forever. Note that NoN does not apply
to, e.g., conv({Ab1, Aa3 , Ab3}), as this region contains Bb2, which was part of a Bob’s
proposal already rejected by Alice. Hence, there is already evidence that some of
the deals in conv({Ab1, Aa3 , Ab3}) are acceptable to Bob and NoN does not forbid
agents to further explore that region.
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Fig. 1: Alice vs. Bob (Example 4)

Definition 5 (Sets Never and NoN ). Let π = 〈V, s, k,R〉 be a negotiation
process and P = P1,P2, . . .PT its status at step T ≥ 1. For each agent A ∈ {0, 1}
and each step 1 ≤ t ≤ T , let dealsA(t) be the set of all the deals in P proposed
by A up to step t (included). Sets Never (t) and NoN (t) are defined inductively
for each t ≥ 1 as follows:

t=1: Never (1) = ∅, NoN (1) = {P1}
t>1:

Never (t) =

{
Never (t−2)∪NoN (t−1) if Pt∩

⋃
♦ NoN (t−1)=∅

Never (t−2)∪{{D} | D∈NoN (t−1)} otherwise

NoN (t) =
{
D ⊆ dealsag(t)(t)| conv(D) ∩⋃♦ Never (t) = ∅

}

where Pt is the proposal sent by ag(t) at step t and Never (0) = ∅.

At each step t,
⋃
♦ NoN (t) represents the region, defined by ag(t)’s deals, for

which the other agent 1 − ag(t) needs, in the next step (t + 1) to take a NoN
decision: to offer a deal therein (showing to ag(t) that she is potentially interested
to that region) or to neglect that region forever. Similarly,

⋃
♦ Never (t) represents

the region, defined by (1 − ag(t))’s deals, for which ag(t) has taken a never
decision. Deals therein cannot be offered any more. Note that

⋃
♦ Never (t) ⊇⋃

♦ Never (t−2) for all t ≥ 2 (i.e., sequences Never (t) for odd and even values of t
are monotonically non-decreasing). Fig. 1 shows NoN and Never regions at all
steps of the previous example.

Definition 6 formalises our NoN protocol rule, which forbids agents to recon-
sider never decisions already taken.

Definition 6 (Now or Never rule). Status P = P1,P2, . . .PT of negotiation
process π = 〈V, s, k,R〉 satisfies the NoN protocol rule if, for all steps 2 ≤ t ≤ T ,
Pt ∩

⋃
♦ Never (t− 2) = ∅.

Proposition 1 shows that the NoN rule of Definition 6 allows agents to infer
when no further agreements are possible. All proofs are omitted for lack of space.

Proposition 1 (Termination condition). Let π = 〈V, s, k,R〉 be a nego-
tiation process where the NoN rule is enforced and let P = P1,P2, . . .PT be the
status of π at step T ≥ 2.

If Rag(T ) ⊆
⋃
♦ Never (T − 1) ∪ ⋃♦ Never (T − 2) and PT is not a singleton

{D} ⊆ PT−1, then:
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(a) there exists no extension P ′ = P1,P2, . . . , PT−1, PT , . . . , PT ′ of P to
step T ′ > T such that PT ′ ={D}⊆PT ′−1

(b) for all D ∈ R0 ∩R1, there exists 1 < tD < T such that D ∈ ⋃♦ NoN (tD −
1) ∩⋃♦ Never (tD).

A consequence of (a) is that, if at step T ≥ 2, Rag(T ) ⊆
⋃
♦ Never (T − 1) ∪⋃

♦ Never (T −2) and agent ag(T ) cannot or does not want to accept a deal offered
in the last incoming proposal PT−1, she can safely opt-out by proposing PT =⊥,
as she has no hope to reach an agreement in the future. Also, from (b), for
every mutually acceptable agreement D, there was a step tD < T in which agent
ag(tD) took a never decision on a NoN region containing D. This means that
ag(tD), although knowing that D ∈ Rag(tD) was likely to be acceptable also to
the opponent (because she had no evidence, at that time, that the portions of
the opponent region defined by deals in NoN (tD−1) were not convex), explicitly
decided not to take that chance and proposed elsewhere.

As a matter of fact, NoN can be thought as a deterrent, for each agent, to de-
lay the negotiation by ignoring plausible agreements which, although acceptable
to her, do not grant herself the utility she currently aims at. As NoN forbids the
agents to propose such deals in the future, any such “obstructionist” behaviour
has a price in terms of opportunities that must be sacrificed forever.

Definition 7 defines non-obstructionist agents.

Definition 7 (Non-obstructionist agent). Let π = 〈V, s, k,R〉 be a negotia-
tion process where the NoN rule is enforced. Agent A ∈ {0, 1} is non-obstructionist
if her strategy satisfies the following conditions for all t ≥ 2 such that ag(t) = A:

1. if Pt−1 ∩RA 6= ∅, then Pt = {D} ⊆ Pt−1
2. else if

⋃
♦ NoN (t−1)∩RA 6=∅, then Pt∩

⋃
♦ NoN (t−1) 6=∅.

A non-obstructionist agent A accepts any acceptable deal D ∈ RA and takes
a now decision at all steps t when

⋃
♦ NoN (t−1) intersects RA. Non-obstructionist

agents genuinely aim at finding an agreement efficiently, even sacrificing their
preferences among deals they would accept. However, they are not necessarily
collaborative, as they do not disclose to the opponent their constraints and
preferences.

Proposition 2 shows that, in a negotiation process between two non-obstruct-
ionist agents, if one of the parties reaches the termination condition of Proposi-
tion 1, then no agreement exists (i.e., R0 ∩R1 = ∅).

Proposition 2 (Completeness). Let π = 〈V, s, k,R〉 be a negotiation
process between two non-obstructionist agents where the NoN rule is enforced.

If π reaches, at step T − 1 ≥ 2, status P = P1,P2, . . .PT−1 s.t. Rag(T ) ⊆⋃
♦ Never (T − 1) ∪⋃♦ Never (T − 2), then R0 ∩R1 = ∅.

4 A Terminating Strategy Based on Monotonic
Concessions

Propositions 1 and 2 show that the Now or Never (NoN) rule allows each agent
to detect when the negotiation process can be safely terminated, as no agree-
ment can be found in the sequel. However, still the termination condition may
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not arise in a finite number of steps. In this section we show that, with NoN,
termination can be enforced by any agent alone, without relying on the willing-
ness to terminate of the counterpart. To this end, from now on we focus on one
agent only, which we call agent A (A can be either 0 or 1). To ease presentation,
the other agent, agent 1−A, will be called agent B.

We make some assumptions on the feasibility region of agent A: (a) RA is
bounded and defined as the union P1 ∪ · · · ∪ Pq of a finite number q of convex
sub-regions; (b) each convex sub-region Pi (1 ≤ i ≤ q) of RA is defined by linear
constraints, hence is a (bounded) polyhedron in R|V|. Any bounded feasibility
region can be approximated arbitrarily well with a (sufficiently large) union of
bounded polyhedra. However, in many practical cases, a finite and small number
of polyhedra suffices.

Deals in RA may not be equally worth for agent A, who may have a (again,
private) utility function uA to maximize. We assume that uA is piecewise-linear
and defined (without loss of generality) by a linear function uiA for each poly-
hedron Pi of RA (1 ≤ i ≤ q). For this definition to be well founded, if a deal D

belongs to two different polyhedra Pi and Pj of RA, it must be uiA(D) = ujA(D).
Note that, again, any differentiable utility function can be approximated ar-
bitrarily well with a piecewise-linear utility, provided RA is decomposed in an
enough number of polyhedra.

In this setting, we define a full strategy for agent A for negotiation processes
π = 〈V, s, k,R〉 for which k ≥ 2, i.e., in which exchanged proposals can contain
multiple deals. Although our strategy is correct independently of the opponent
region shape, it is designed for the common cases where agent A believes that
the opponent feasibility region is the union of a small number of convex sub-
regions (not necessarily polyhedra). Hence, a task of agent A while following the
strategy is to discover non-convexities of the opponent region during negotiation
and take them into account.

Our strategy is inspired by (but different from) the well-known mechanism
of Monotonic Concessions (MC) [13]. It has three phases, utility-driven, non-
obstructionist, and terminating phases, which are executed in the given order.

4.1 Utility-Driven Phase

Agent A keeps and dynamically revises two utility thresholds, α and u, which
are, respectively, the responding and the proposing threshold. At each step t such
that ag(t) = A, agent A uses: (a) threshold α to decide whether to take a now
decision (if t > 1), by including, in the proposal Pt she will propose next, a deal
in
⋃
♦ NoN (t − 1) (possibly accepting one deal in Pt−1), and (b) threshold u to

select the other deals to include in Pt (t ≥ 1).
By generalising [6,12], α is a function of the agent A utility of the best deal

Dnext that would be chosen in step (b). In particular, α is uA(Dnext)− span · ξ,
where span is the absolute difference of the extreme values of uA in RA and
0 ≤ ξ ≤ 1 is a parameter (possibly varying during the negotiation) called respond
policy. Hence, if ξ = 1, agent A accepts all acceptable deals and takes a now
decision whenever possible, behaving in a non-obstructionist way (Definition 7).
On the other extreme, if ξ = 0 the agent accepts only incoming deals D ∈ RA
that are not worse than the best proposal Dnext that would be chosen next in
step (b), upon rejection of D.
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Our strategy for this phase is decomposed into responding, proposing and
conceding sub-strategies as in [8], after an initialisation phase where agent A
sets u to the highest utility of deals in RA (as in the spirit of MC).

Responding. At step t ≥ 2, after that agent A has received proposal Pt−1 6=⊥,
proposal Pt is chosen as follows. Let RαA = {D ∈ RA | uA(D) ≥ α}.

(1) If Pt−1 contains deals in RαA −
⋃
♦ Never (t− 2), then Pt = {D}, where D

is one such a deal giving agent A the highest utility (i.e., agent A accepts the
best deal D among those acceptable in Pt−1 granting herself at least utility α).
Otherwise:

(2) Pt contains a deal in (
⋃
♦ NoN (t− 1) ∩ RαA)−⋃♦ Never (t− 2) if and only

if this region is not empty (now decision taken).
Given that the closer deals in a set D defining NoN (t− 1) (see Definition 5)

the more likely they belong to a single convex sub-region of RB , as for (2) agent
A selects a deal with the highest utility in a set D having the minimum diameter.

Proposing. At any step t ≥ 1 such that ag(t) = A, if agent A has not accepted
an incoming deal (case (1) of the responding sub-strategy), proposal Pt contains
additional deals (as to make |Pt| = k ≥ 2). Let RuA = {D ∈ RA | uA(D) ≥ u}
(which is again a union of bounded polyhedra, as uA is piecewise-linear). Deals
to be proposed in Pt are carefully selected among vertices of RuA (some of them
can be vertices of the overall region RA) which do not belong to

⋃
♦ Never (t− 2),

as agent A needs to comply with the NoN rule. If t > 1, vertices of RuA to be
proposed will be carefully selected by reasoning on the evidence provided by the
past opponent behaviour. The reasoning is as follows.

Let n̂(t) be the minimum number of convex sub-regions that must compose
RB −

⋃
♦ Never (t − 1), i.e., the opponent region minus the regions for which

the opponent has taken a never decision (and in which, by the NoN rule, no
agreements can be found in the sequel): n̂(t) is the minimum value such that
there exists a n̂(t)-partition {D1, . . . ,Dn̂(t)} of dealsB(t− 1) (i.e., a mapping of
each opponent deal to one sub-region) such that for all 1 ≤ j ≤ n̂(t), conv(Dj)∩⋃
♦ Never (t− 1) = ∅.

Agent A temporarily focuses on n̂(t), assuming that RB −
⋃
♦ Never (t − 1)

is the union of exactly n̂(t) convex sub-regions. We call this assumption Non-
obstructionist Opponent Assumption (NOA). Under NOA, agent A tries to re-
gard the past opponent behaviour as non-obstructionist, hence interprets the
already taken never decisions as an admission that RB ∩

⋃
♦ Never (t − 1) = ∅

(Proposition 2). Value n̂(t) is the minimum number of convex sub-regions that
must compose RB which is consistent with this (optimistic) hypothesis.

Agent A computes the subsets D of the opponent deals that might belong
to the same convex sub-region of RB −

⋃
♦ Never (t − 1), provided that NOA is

correct. We call these sets of deals Possible Opponent Clusters (POCs):

K(t)=

{
D⊆dealsB(t−1)

∣∣∣∣
∃ n̂(t)-partition

{
D1, . . . ,Dn̂(t)

}
of dealsB(t−1)

s.t. ∀j∈[1, n̂(t)] conv(Dj)∩
⋃
♦ Never (t−1)=∅

}
(1)

Let proj(R,R′) (the projection of region R onto R′) be the set of points X for
which there exists Y ∈ R such that XY intersects R′ [2]. Region proj(R,R′) is
an unbounded polyhedron if both R and R′ are polyhedra (see Fig. 2a, where
proj(R,R′) is the unbounded grey area) and proj(R,R′ ∪ R′′) = proj(R,R′) ∪
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proj(R,R′′). Provided that NOA is correct, agent A can derive (Proposition 3)
that region

Π(t) =
⋂
D∈K(t)

proj(conv(D),
⋃
♦ Never (t− 1))

does not contain agreements that can be still reached.

Proposition 3. If, at step t ≥ 3 s.t. ag(t) = A, NOA is correct, then Π(t) ∩
(RB −

⋃
♦ Never (t− 1)) = ∅.

Example 5 (Alice vs. Bob (cont.)). Consider Fig. 2b. At step 4 Bob sent Alice
proposal P4 = {Ba4}. At step 5 (Alice’s turn), n̂(5) is 3, as it is clear that Ba2 , Bb2,
and Ba4 belong to all-different convex sub-regions of RBob −

⋃
♦ Never (4). POCs

are K(5) = {{Ba2}, {Bb2}, {Ba4}}. Region Π(5) is the area in light-grey: if NOA
is correct (RBob−

⋃
♦ Never (4) or, equivalently, RBob if Bob is non-obstructionist,

consists of exactly 3 convex sub-regions), then no X ∈ Π(5) can belong to
RBob −

⋃
♦ Never (4).

Besides always ignoring vertices in
⋃
♦ Never (t−2) (as to comply with the NoN

rule), as a result of Proposition 3 agent A (exploiting NOA) can temporarily
ignore vertices of RuA in Π(t) while choosing deals to propose at step t. By
exploiting the fail-first principle, we define the following criterion (best vertex
under NOA) to select the next vertices in RuA−Π(t) (and not in

⋃
♦ Never (t−2))

to propose: those that, if rejected, would make the highest number of vertices
be excluded in the next step, under NOA.

Conceding. When no more vertices in RuA −Π(t) (and not in
⋃
♦ Never (t− 2))

can be proposed, agent A reduces threshold u, if possible, by a given amount
∆u, whose value, possibly varying during time (see, e.g, [5]), depends on the
application. Reducing u is in the spirit of MC (where the agent increases during
time the opponent utility of the proposed deals). Differently from MC, here agent
A reduces own utility of the deals she proposes (with the goal of approaching
opponent’s demand), as she has no information about opponent utility.

Let T̂ (ag(T̂ ) = A) be the step in which agent A reduces u and RuA becomes

equal to RA (i.e., u cannot be further reduced). From step T̂ onwards, the
strategy of agent A moves to the non-obstructionist phase.

4.2 Non-Obstructionist Phase

Our strategy for this phase is decomposed into responding and proposing sub-
strategies. As utility threshold u has already reached its minimum, in this phase
there is no conceding sub-strategy.

Responding. The responding sub-strategy is identical to that of the utility-
driven phase with α = u. Given that in the non-obstructionist phase u is at
its minimum, agent A accepts any incoming acceptable deal and takes a now
decision whenever possible. Thus, the agent is now certainly non-obstructionist,
independently of the value of her respond policy ξ.

Proposing. As a result of acting in a non-obstructionist way, from step T̂ on-
wards the following result holds:
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Proposition 4. For each step t ≥ T̂ such that ag(t) = A, RA∩
⋃
♦ Never (t−2) =

RA ∩
⋃
♦ Never (T̂ − 2).

Hence, for each step t ≥ T̂ such that ag(t) = A, if agent A has not accepted
an incoming deal, the region in which the additional deals to propose will be
selected (as to make |Pt| = k ≥ 2 whenever possible), i.e., RA −

⋃
♦ Never (t− 2),

is steadily equal to RA −
⋃
♦ Never (T̂ − 2).

In this phase, agent A aims at proposing vertices of RA −
⋃
♦ Never (T̂ − 2)

with the goal of eventually covering it within the never set of the opponent,
as to reach the termination condition of Proposition 1. Unfortunately, as both
RA and

⋃
♦ Never (T̂ − 2) are unions of polyhedra, their difference might not be

represented as a union of polyhedra. Anyway, it can be always represented as
a union of Not Necessarily Closed polyhedra (i.e., polyhedra possibly defined
by some strict inequalities, with some of their faces and vertices not belonging
to them). In order to comply with the NoN rule, the agent must not propose

vertices of RA −
⋃
♦ Never (T̂ − 2) not belonging to that region, as they would

belong to
⋃
♦ Never (T̂ −2). The problem is solved by computing a suitable under-

approximation bRA −
⋃
♦ Never (T̂ − 2)c ⊆ RA −

⋃
♦ Never (T̂ − 2) which can be

defined as a union of bounded (and closed) polyhedra. Note that such an under-
approximation can be computed in order to make the error

Rerr
A = (RA −

⋃
♦ Never (T̂ − 2))− bRA −

⋃
♦ Never (T̂ − 2)c

arbitrarily small. As a special case, if agent A was non-obstructionist from the
beginning of the negotiation process, RA ∩

⋃
♦ Never (T̂ − 2) = ∅ and Rerr

A = ∅.
Agent A continues to use both NOA and Π(t) as defined in the utility-

driven phase. In particular, the agent proposes vertices of bRA−
⋃
♦ Never (T̂−2)c

which are not in Π(t). When no more such vertices can be proposed, NOA is
gradually relaxed (i.e., n̂(t) is gradually increased) and the remaining vertices of

bRA −
⋃
♦ Never (T̂ − 2)c are enabled. By construction, n̂(t) cannot grow beyond

the number of deals proposed by the opponent so far. If also in that case Π(t)

covers bRA −
⋃
♦ Never (T̂ − 2)c, the agent sets Π(t) to

⋃
♦ Never (t − 1), hence

assumes that RB consists of at least one convex sub-region not yet disclosed by
the opponent (i.e., not containing any of the past incoming deals).

As it happens in the utility-driven phase, given that multi-deal proposals are
allowed (k ≥ 2), all vertices will be proposed within a finite number of steps inde-
pendently of the number of now decisions taken. When all vertices have been pro-
posed and no agreement has been reached, agent A enters the terminating phase.

4.3 Terminating Phase

In this phase, agentA continues by sending empty proposals until she receives and
accepts an acceptable deal or infers RA−Rerr

A ⊆
⋃
♦ Never (T−1)∪⋃♦ Never (T−2).

Proposition 5 states that also this condition will arise in a finite number of steps.

Proposition 5. Let π = 〈V, s, k,R〉 be a negotiation process (k ≥ 2) where the
NoN rule is enforced. If any agent A ∈ {0, 1} uses the strategy above, then, within

a finite number of steps T ≥ T̂ ≥ 2 such that ag(T ) = A, either an agreement is
found or condition RA −Rerr

A ⊆ ⋃♦ Never (T − 1) ∪⋃♦ Never (T − 2) is satisfied.
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Fig. 2

Condition of Proposition 5 can be considered the termination condition of
Proposition 1 in case agent A had admissible region RA − Rerr

A . Given that
region Rerr

A can be chosen as to be arbitrarily small, agent A can terminate the
negotiation when this condition is reached. Any possible remaining acceptable
deals would be in the (arbitrarily small) region Rerr

A .
We stress again that, in case agent A is non-obstructionist from the begin-

ning, for all t ≥ T̂ such that ag(t) = A, Rerr
A can be made empty. Hence, as it

happens for any acceptable deal in RA ∩
⋃
♦ Never (t− 2) = RA ∩

⋃
♦ Never (T̂ − 2),

any acceptable deal in Rerr
A can be considered as an opportunity (with arbitrarily

small Euclidean distance to RA ∩
⋃
♦ Never (T̂ − 2)) that agent A had to sacrifice

for having behaved in an obstructionist way (at most) up to step T̂ − 2.

5 Handling Discrete and Categorical Variables

The NoN rule works also when (some of) the variables are discrete (e.g., integer),
if we consider the union of the integer hulls [15] of the polyhedra in the NoN and
Never sets of Definition 5. Integer Linear Programming results tell us that the
integer hull of a polyhedron can still be represented with linear (plus integrality)
constraints. Vertices of this new polyhedron have integer coordinates. Hence, the
NoN rule as well as the strategy above and the underlying projection-based rea-
soning can be adapted to prune the space of the possible agreements: only the
branches that deal with now decisions need to be refined (deals in

⋃
♦ NoN (t− 1)

proposed at step t need to have integer coordinates). Also, RA−
⋃
♦ Never (T̂ −2)

can always be represented by an union of closed polyhedra, hence Rerr
A can be

always made empty. Categorical variables can be tackled by fixing an ordering of
their domain (common to both parties) and mapping them onto integers. Fig. 2c
shows Alice’s region in a variation of Example 1 where variables are categorical.

6 Implementation and Experiments

Our framework has at its core well-studied tasks in computational geometry and
(integer) linear programming [15]. However, to our knowledge, the exact com-
plexity of the agent’s reasoning is unknown, as these core tasks must be repeated
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on sets of exchanged deals. Still, existing libraries of computational geometry al-
gorithms can manage the size of instances needed for practical scenarios. We
have implemented a system that uses the Parma Polyhedra Library (PPL) [1]
to compute polyhedra, convex hulls, and projections, and an all-solutions SAT
solver [9] to revise n̂(t) and Possible Opponent Clusters (POCs) (the problem is
reduced to hypergraph-colouring). Performance on these sub-problems are very
good: PPL completes most of the required tasks within very few seconds (on a
reasonably small set of variables, e.g., 3–4) and the generated SAT instances are
trivial. Although the number of sets in NoN and Never can grow exponentially,
by keeping only (depending on the case) their ⊆-maximal or ⊆-minimal members
(which is enough to enforce the NoN rule and to perform the needed reasoning),
the overall memory requirements become, in the instances we consider below,
compatible with the amount of RAM available on an ordinary PC.

In the following we present an empirical evaluation of the computational
feasibility of the approach. Negotiations have been performed between two iden-
tical agents. We evaluated our implementation on both random and structured
instances using a single computer (a PC with a dual-core AMD Opteron 3GHz
and 8GB RAM) for both agents. At each step, agents can exchange contracts of
at most k = 2 deals. Note that, as our approach requires agents to comply with
the NoN rule, it cannot be evaluated against other negotiators.

Random Instances. We generated 100 random negotiation instances over 3
variables. Feasibility regions are unions of 3 random polyhedra, each with at
most 10 vertices. In about 44% of the instances R0 ∩ R1 6= ∅. The average vol-
ume of the intersection is 2.19% of the volume of each agent’s region (stddev
is 4.5%). Agents have random piecewise-linear utilities and concede constant
∆u = 0.2span each time all vertices of Rua (a ∈ {0, 1}) belong to Π.

Such negotiations terminate in < 5 minutes and 20–30 steps. Agreements
were found in > 95% of the instances for which R0∩R1 6= ∅. Fig. 3 shows average
time, success rate (i.e., number of negotiations closed successfully / number of
negotiations such that R0∩R1 6= ∅), and average quality of the agreement found
for each agent (the quality of an agreement D for agent a ∈ {0, 1} is (ua(D) −
La)/(Ha−La), where Ha and La are, respectively, the highest and lowest values
of agent a utility in R0∩R1) as a function of the respond policies used (ξ0 and ξ1).

It can be seen that moderate respond policies (intermediate values of ξ) lead
to very high probabilities (> 97%) of finding an agreement if one exists; more-
over, the quality of such agreements for the two agents is similar if their respond
policies are similar (fairness). Conversely, if agents use very different values for ξ,
the more conceding agent unsurprisingly gets lower utility with the agreement,
but negotiations are more often aborted by the other, more demanding, agent.

Structured Instances. We evaluated our system on the 6 scenarios in Table 1a:
two scenarios (AB1, AB2) of the Alice vs. Bob example, two scenarios (SU1,
SU2) of a negotiation problem regarding the rental of a summerhouse, and two
scenarios (EZ1, EZ2) of a variation of the England-Zimbabwe problem of [10]
adapted to our domain (real variables and no known bounds for their domains).
A description of these negotiation scenarios is omitted for space reasons.

Table 1a shows also some relevant properties of these negotiation scenarios.
Column “vars” gives the number of negotiation variables. Columns “polys” and
“con” give, respectively, the number of polyhedra and the overall number of
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Fig. 3: Experimental results for random instances

Scenario vars
R0 R1 vol(R0∩R1)

vol(R0)
vol(R0∩R1)

vol(R1)
polys con. polys con.

AB1 2 3 12 3 12 < 10−8% < 10−8%
AB2 2 3 12 5 20 – –
SU1 3 3 12 4 16 1.5% 2.0%
SU2 3 3 12 4 16 – –
EZ1 4 2 8 2 8 0.10% 0.05%
EZ2 4 2 8 2 8 0.15% 0.04%

(a) Properties of negotiation scenarios

Scenario ξ0 ξ1
agr.

steps
time

polys
found (sec)

AB1 1 1 Y 20 1.09 321
AB1 0 0 N 24 1.21 450
AB2 1 1 N 20 1.33 466
SU1 0 0 N 417 38.44 20 413
SU1 0.4 0 Y 347 15.22 5679
SU2 1 1 N 513 63.12 29 148
EZ1 0 0 Y 80 1237 3 115 508
EZ2 0 0 Y 92 2836 8 057 011

(b) Experimental results

Table 1: Structured instances

linear constraints defining each agent feasibility region, R0 and R1. The two last
columns give the ratio of the volume of R0 ∩R1 (i.e., the volume of the space of
the possible agreements) with respect to the volume of the feasibility region of
each agent (“–” means that R0 ∩R1 is empty, hence no agreement is possible).

Table 1b shows some results on the above negotiation scenarios, under dif-
ferent values of the respond policies of each agent (ξ0 and ξ1). All instances have
been run with k (the maximum number of deals in a proposal) equal to 2. For
each instance, column “agr. found” tells whether an agreement has been found
(an agreement exists if and only if R0 ∩ R1 6= ∅, see Table 1a), column “steps”
gives the number of negotiation steps needed to conclude the negotiation pro-
cess, column “time” gives the overall negotiation time, and column “polys” gives
the overall number of polyhedra computed by PPL during the process. For each
negotiation instance, the number of all-SAT instances solved to compute POCs
(see formula (1)) is equal to the number of negotiation steps.

Our results show that enforcing NoN is computationally feasible: negotiation
processes with hundreds of interaction steps could be performed in minutes, even
when NoN enforcement and agents reasoning require the computation of millions
of polyhedra and the resolution of hundreds of all-SAT instances.

7 Conclusions

In this paper we defined a new protocol rule, Now or Never (NoN), for bi-
lateral negotiation processes which allows self-motivated competitive agents to
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efficiently carry out multi-variable negotiations with remote untrusted parties,
where privacy is a major concern and agents know nothing about their oppo-
nent. NoN has been explicitly designed as to ensure a continuous progress of the
negotiation, thus neutralising malicious or inefficient opponents.

We have also presented a NoN-compliant strategy for an agent that, under
mild assumptions on her feasibility region, allows her to derive, in a finite number
of steps and independently of the behaviour of her opponent, that there is no
hope to find an agreement. We finally evaluated the computational feasibility of
the overall approach on random and structured instances of practical size.

Acknowledgements. This research was founded by the EU 7th Framework Pro-
gramme under grant agreements n. 317761 (SmartHG) and n. 600773 (PAEON).
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3 POLCOMING, Università di Sassari, Viale Mancini n. 5 – 07100 Sassari – Italy
lpulina@uniss.it

Abstract. Twelve years have elapsed since the first QBF evaluation
was held as an event linked to SAT conferences. During this period,
researchers have strived to propose new algorithms and tools to solve
challenging problems, with evaluations periodically trying to assess the
current state of the art. In this paper, we present an experimental account
of solvers and benchmarks with the aim to understand the progress, if
any, in the QBF arena. Unlike typical evaluations, the analysis is not
confined to the snapshot of submitted solvers and problems, but rather
we consider several tools that were proposed over the last decade, and
we run them on different problem sets. The main contribution of our
analysis, which is also the message we would like to pass along to the
research community is that some faded-to-oblivion techniques turn out
to be still quite effective.

1 Introduction

The first non-competitive QBF solvers evaluation (QBFEVAL’03) [3] was held as
an associated event of the SAT 2003 conference. If the purpose of QBFEVAL’03
was to assess the state of the art in the relatively young – in the time – QBF
reasoning field, the ensuing QBFEVAL series was established with the purpose
of measuring the progress in QBF reasoning techniques – see, e.g., [18]. Since
the last evaluation, what has been the progress (if any) in the QBF arena? After
more than a decade of new solvers being developed and new challenge problems
being proposed, we believe that QBFEVAL and, more recently, QBF Gallery [6]
events offer a series of snapshots about QBF solving and related aspects, but
somehow fail to provide a long-term picture about what has been achieved.

Covering the whole time span of QBFEVAL and QBF Gallery events, our
experiments enable us to assess the progress in the QBF field, and put the
current state of the art in a historical perspective. In order to achieve this goal,
the experimental setup is not confined to a snapshot in time offered by recently
proposed systems. In particular, as far as systems are concerned, we consider
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some legacy solvers, i.e., tools that were proposed in the literature, but are not
considered in more recents comparative events, e.g., because they are no longer
maintained or updated. We call new solvers all the other tools that we consider
and which are not legacy. In particular, out of 9 solvers considered, the legacy
ones are AIGSolve [19], aqme [21], quantor [4], QuBE [8], sKizzo [1], and
StruQS [22]. These tools are chosen among winners of at least one category
in the past QBFEVAL events, conditioned to their maintenance ending before
2010. The set of new solvers is assembled by including the winners of the last
QBF Gallery 2014, namely depqbf [15], ghostq [13] and rareqs [10]. As for
problems, we consider two different pools, namely QBF Gallery 2014 Track 1
and QBF Gallery 2014 Track 2. Overall, the problem set is purposefully biased
towards more recently submitted instances, in order to (try to) assess legacy
solvers on problems that are probably “unseen” to them, i.e., for which their
developers did not have a chance to optimize the solver.

The main conclusion that we draw by analyzing the results of our compar-
ison is that the techniques implemented in legacy solvers are far from being
outdated. Just to get an idea of what we observe – more details can be found
in Section 4 – consider that, if we rank the tools using the number of prob-
lems solved, then it turns out that at least two legacy solvers rank among the
first three solvers, for all the pools considered. Further evidence in this direction
can be obtained considering the “state-of-the-art” (SOTA) solver abstraction,
i.e., the ideal system that always fares the best time among the systems in a
solver portfolio. If we build “legacy-SOTA” and “new-SOTA” solvers based on
the corresponding portfolios of legacy and new solvers, then we observe that
legacy-SOTA outperforms new-SOTA – and this remains true even looking at
specific subcategories in most cases. While it is difficult to single out the con-
tribution of specific algorithmic techniques by looking at the performances of
implemented systems – most of which are closed source – the results we observe
strongly suggest that, while new solvers are better engineered than legacy ones,
the latter have some combination of techniques that are probably worth taking
into account for further developments.

The rest of the paper is structured as follows. In Section 2 we review QBF
syntax and semantics. In Section 3 we briefly describe the solvers and the prob-
lems used in our experiments. Section 4 presents the results, while in Section 5
we conclude the paper with some final remarks.

2 Preliminaries

In this section we consider the definition of QBFs and their satisfiability as given
in the literature of QBF decision procedures (see, e.g., [9, 2, 4]), and we define
features describing the structure of QBFs.

Syntax and Semantics A variable is an element of a set P of propositional letters
and a literal is a variable or the negation thereof. We denote with |l| the variable
occurring in the literal l, and with l the complement of l, i.e., ¬l if l is a variable

P.Marin et al. An Empirical Perspective on Ten Years of QBF Solving

63



and |l| otherwise. A literal is positive if |l| = l and negative otherwise. A clause
C is an n-ary (n ≥ 0) disjunction of literals such that, for any two distinct
disjuncts l, l′ in C, it is not the case that |l| = |l′|. A propositional formula
is a k-ary (k ≥ 0) conjunction of clauses. A quantified Boolean formula is an
expression of the form

Q1z1 . . . QnznΦ (1)

where, for each 1 ≤ i ≤ n, zi is a variable, Qi is either an existential quantifier
Qi = ∃ or a universal one Qi = ∀, and Φ is a propositional formula in the
variables {z1, . . . , zn}. The expression Q1z1 . . . Qnzn is the prefix and Φ is the
matrix of (1). A literal l is existential if |l| = zi for some 1 ≤ i ≤ n and ∃zi
belongs to the prefix of (1), and it is universal otherwise.

The semantics of a QBF ϕ can be defined recursively as follows. A QBF
clause is contradictory exactly when it does not contain existential literals. If
the matrix of ϕ contains a contradictory clause then ϕ is false. If the matrix of
ϕ has no conjuncts then ϕ is true. If ϕ = Qzψ is a QBF and l is a literal, we
define ϕl as the QBF obtained from ψ by removing all the conjuncts in which l
occurs and removing l from the others. Then we have two cases. If ϕ is ∃zψ, then
ϕ is true exactly when ϕz or ϕ¬z are true. If ϕ is ∀zψ, then ϕ is true exactly
when ϕz and ϕ¬z are true. The QBF satisfiability problem (QSAT) is to decide
whether a given formula is true or false. It is easy to see that if ϕ is a QBF
without universal quantifiers, solving QSAT is the same as solving propositional
satisfiability (SAT).

Representing QBFs To correlate the structure of QBFs with the performances
of solvers, we extract representative features from QBFs — see, e.g., [21]. A first
class is given by syntactic features:

– c, total number of clauses; c1, c2, c3 total number of clauses with 1, 2 and
more than two existential literals, respectively; ch, cdh total number of Horn
and dual-Horn clauses, respectively;

– v, total number of variables; v∃, v∀, total number of existential and universal
variables, respectively; ltot, total number of literals; vs, vs∃, vs∀, distribution
of the number of variables per quantifier set, considering all the variables,
and focusing on existential and universal variables, respectively; s, s∃, s∀,
number of total, existential and universal, quantifier sets;

– l, distribution of the number of literals in each clause; l+, l−, l∃, l∃+, l∃−, l∀,
l∀+, l∀−, distribution of the number of positive, negative, existential, pos-
itive existential, negative existential, universal, positive universal, negative
universal number of literals in each clauses, respectively.

– r, distribution of the number of variable occurrences r+, r−, r∃, r∃+, r∃−, r∀,
r∀+, r∀−, distribution of the number of positive, negative, existential, pos-
itive existential, negative existential, universal, positive universal, negative
universal variable occurrences, respectively.

We also take into account the following combined features:
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– c
v , the classic clauses-to-variables ratio, and for each x ∈ {l, r} the following
ratios (on mean values):

• x+

x , x−
x , x+

x−
, balance ratios;

• x∃
x , x∃+

x , x∃−
x , x∃+

x∃
, x∃−

x∃
, x∃+
x∃−

, x∃+
x+

, x∃−
x−

, balance ratios (existential part);

• x∀
x , x∀+

x , x∀−
x , x∀+

x+
, x∀−

x−
, x∀+

x∀
, x∀−

x∀
, x∀+

x∀−
, balance ratios (universal part);

– c1
c , c2

c , c3
c , ch

c , cdh
c , ch

cdh
, i.e., balance ratios between different kinds of clauses.

A second class of features is computed on graph models of QBFs. From previous
related work on SAT, see, e.g. [17], we borrow variable graphs (VG) and the
clause graphs (CG). The former has a node for each variable and an edge between
variables that occur together in at least one clause, while the latter has nodes
representing clauses and an edge between two clauses whenever they share a
negated literal. For each graph, we consider the average value on their node
degree. Finally, we also consider a treewidth measure twp which accounts for
the treewidth of the VG adjusted to keep into account that only elimination
orders compatible to the prefix p are viable — see [20, 23] for details, and also
for extensive empirical evidence about the correlation of twp with hardness of
QBFs.

3 Setup

In this section we present solvers and problems that we selected for our analysis.
As for solvers, we consider systems participating to QBF Gallery 20141 as well
as solvers participating to past QBFEVAL editions. Considering the former, we
choose the winners of Track 1 and Track 2 [12] which are shortly described in
the following.

depqbf (v. 3.0.4) [15] is a search-based solver performing non-chronological
backtracking from conflicts and solutions; depqbf can select branching vari-
ables without following the prefix order by leveraging a compact representa-
tion of the dependencies among variables.

ghostq (v. qdimacs-gal-2014) [13] is a non-prenex DPLL-based solver which
makes use of auxiliary variables to force necessary assignments, i.e., to force a
value to an existential (resp. universal) variable if the opposite value directly
makes the formula evaluate to false (resp. true). Additionally, it features a
CEGAR-based learning to further prune the search space when the last
decision literal is existential (resp. universal) and a conflict (resp. solution)
is detected.

rareqs (v. 1.1) [10] is a counterexample guided abstraction refinement (CE-
GAR) based solver which performs a kind of resolution and expansion pro-
cedure but in a depth-first way, i.e., by expanding first only one value of a
variable, and learns abstractions of the local partial solutions to refine the
global solution.

1http://qbf.satisfiability.org/gallery
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We did not consider the system hiqqer [12] because we could not find a version
available for download. In the remainder of the paper, we refer to this pool of
solvers as s-new.

Solvers participating to past editions of QBFEVAL – to which we refer as
s-legacy from now on – are described in the following.

AIGSolve [19] uses And-Inverter Graphs (AIGs) as the main data structure,
and AIG-based operations to reason about the input formula. The solver
includes preliminary phases devoted to simplification, structure extraction
and early quantification of the input formula.

aqme [21] is a multi-engine solver, i.e., a tool using Machine Learning tech-
niques to select among its reasoning engines the one which is more likely to
yield optimal results. The reasoning engines of aqme are a subset of those
submitted to QBFEVAL’06, namely 2clsQ, quantor, QuBE, sKizzo, and
sSolve. Engine selection is performed according to the adaptive strategy de-
scribed in [21].

quantor [4] is based on Q-resolution (to eliminate existential variables) and
Shannon expansion (to eliminate universal variables), plus a number of fea-
tures, such as equivalence reasoning, subsumption checking, pure literal de-
tection, unit propagation, and also a scheduler for the elimination step.

QuBE [8] is a solver that first applies, among other simplification techniques,
deep equivalence reasoning and removes variables by Q-Resolution. Then, it
uses a search-based decision procedure that performs monotone and “don’t
care” literal propagation, non-chronological backtracking from conflicts and
solutions, in which it produces and removes less clauses/terms made tauto-
logical by blocking universal/existential literals than its predecessor.

sKizzo [1] is a reasoning engine for QBF featuring several techniques, including
search, resolution and skolemization.

StruQS [22] main feature is a dynamic combination of search – with solution-
and conflict-backjumping – and variable-elimination. The key point in this
approach is to implicitly leverage graph abstractions of QBFs to yield struc-
tural features which support an effective decision between search and variable
elimination.

We included AIGSolve because it is the only system employing AIG-based
operations to reason on input QBF. We involved aqme for its multi-engine archi-
tecture; as a by-product, it can return an approximated picture of state-of-the-art
QBF solvers back in 2006, so it can be used as “yardstick” to assess improve-
ments. quantor, QuBE, and sKizzo implement key QBF solution techniques,
namely resolution and expansion, DPLL-search, and Skolemization, respectively.
Finally, we included StruQS because it represents the first — and, to the best of
our knowledge, the only — attempt to combine dynamically very different solu-
tion techniques. Almost all the s-legacy solvers also collected accolades in past
QBF evaluations. AIGSolve was the winner of the QBFEVAL’10 small hard
track, while aqme was the system able to solve the highest number of formulas
in QBFEVAL’07, ’08, and in the main track of QBFEVAL’10. quantor was the
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winner of QBFEVAL’04, while QuBE won the 2QBF track of QBFEVAL’10.
Finally, sKizzo has been the winner of QBFEVAL’05 and ’07.

We evaluate the above mentioned systems on different pools of problem in-
stances. The syntax of the instances is prenex-CNF using the qdimacs 1.1 format.
The problem pools we consider are briefly outlined in the following.

– The formulas included in QBF Gallery 2014 Track 1. These are 276 instances
collectively denoted as qbfg-t1.

– The formulas included in QBF Gallery 2014 Track 2. These are collectively
denoted as qbfg-t2.

The pool qbfg-t2 includes formulas coming from six different families, namely:

bomb and dungeon [14] are encodings of conformant planning problems with
optimal length and uncertainty of the initial state.

complexity [11] result from a QBF encoding of automatic reduction between
decision problems. The original problem is undecidable in general, but it can
be reduced to Σp

2 if the dimension of the reduction is fixed and given, and
the size of the inputs is bounded.

hardness [16] Black-Box bounded model checking instances for an incomplete
parametrized arbiter of a bus system.

planning [5] This instance set include different planning problems encoded into
QBF using two different strategies: the first one is based on the iterative
squaring formulation, and the second one relies on a more compact tree-like
encoding.

testing [24] The solutions to these problems are test patterns for sequential
circuits coming from ISCAS 89 and ITC 99 benchmarks having a maximum
amount of inputs set to don’t care.

4 Experimental Analysis

In this section we report and analyze the results of our empirical evaluation.
All the experiments ran on a cluster of Intel Xeon E3-1245 PCs at 3.30 GHz
equipped with 64 bit Ubuntu 12.04. All solvers were limited to 600 seconds of
CPU time and to 4GB of memory.

4.1 QBF Gallery 2014 formulas – Track 1

The aim of our first experiment is to evaluate the selected solvers in the qbfg-
t1 pool of instances. In Table 1 we report the raw results of such evaluation.
Looking at the results, we can see that only 6 solvers out of 9 were able to
solve at least 25% of the test set. If we rank solvers according to the number of
problems solved within the time limit, then the best system is AIGSolve, which
can solve about 42% of the test set, followed by QuBE and aqme. To find the
best solver in s-new, namely ghostq, we must go down to the fourth position.
ghostq performs only slightly worse than aqme, and it tops at 33% of the
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Solver Total True False Unique
# Time # Time # Time # Time

AIGSolve 116 5333.01 56 2177.45 60 3155.56 22 1458.26

QuBE 106 8764.73 53 3997.78 53 4766.95 8 1195.58

aqme 97 3287.20 39 1098.00 58 2189.20 – –

ghostq 91 4814.73 48 2912.38 43 1902.17 4 158.97

depqbf 88 2388.32 39 1163.15 49 1225.17 5 454.77

rareqs 79 2588.64 32 1593.25 47 995.39 6 787.33

sKizzo 51 948.81 18 556.76 33 392.06 – –

quantor 50 1498.37 28 911.72 22 586.65 2 161.67

StruQS 43 6092.64 31 4052.98 12 2039.66 1 16.53

Table 1. Runtime of solvers on qbfg-t1. For each solver, the table reports its name
(column “Solver”), the total number of instances solved and the cumulative time to
solve them (columns “#” and “Time”, group “Total”), the number of instances found
satisfiable and the time to solve them (columns “#” and “Time”, group “True”), the
number of instances found unsatisfiable and the time to solve them (columns “#” and
“Time”, group “False”), and, finally, the number of instances uniquely solved and the
time to solve them (columns “#” and “Time”, group “Unique”); a “–” (dash) means
that the solver did not solve any instance. The table is sorted in descending order
according to the number of instances solved, and, in case of a tie, in ascending order
according to the cumulative time taken to solve them.

test set. This result is relevant for our case in point, particularly if we consider
that both AIGSolve and QuBE are systems dating back to 2010, while aqme
combines solvers dating back to QBFEVAL 2006. Finally, despite quantor and
StruQS were not able to solve more than 20% of qbfg-t1, still they were the
only ones able to solve some instances — 2 and 1, respectively.

If we consider the structure of the instances comprised in qbfg-t1, then we
can observe several structural differences between those solved by at least one
solver and those that remained unsolved. For instance, if we focus on the formula
size in terms of variables v and clauses c, then we can see that unsolved instances
feature, on average, higher values of both parameters, i.e., they are somewhat
larger. Looking at the median values v̂ and ĉ of the parameters v and c, we can
see that v̂ = 3412 if the population is restricted to solved instances, whereas
v̂ = 10188 on the population of unsolved ones. A similar picture holds for c,
with ĉ = 14818 and ĉ = 57130 for solved and unsolved instances, respectively.
As expected, twp is also indicative of this spread, since t̂wp = 486 for solved
instances, whereas t̂wp = 1102 for unsolved ones.

Another perspective about the results of Table 1 can be obtained by resorting
to the state-of-the-art solver abstraction (sota in the following), i.e., the ideal
solver that always fares the best time among all the solvers in a portfolio. In
this case, sota was able to cope with about 73% of qbfg-t1 (202 formulas).
What is more relevant is that all the systems contributed to its composition. In
particular, the main contributors — in percentage — were AIGSolve, depqbf,
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variables clauses

avg clause length treewidth

Fig. 1. Box-plots of different features distributions related to QBFs comprised in qbfg-
t1. Features are v and c (top-left and top-right, respectively), l (bottom left), and twp

(bottom right). Each distribution in the plots is labeled as follows: “SOTA-L” and
“SOTA-N” are placeholders for sota-legacy and sota-new, respectively, while “S”
and “U” – in parentheses – stand for “solved” and “unsolved”. For each plot, we show
a box-and-whiskers diagram representing the median (bold line), the first and third
quartile (bottom and top edges of the box), the minimum and maximum (whiskers at
the top and the bottom) of a distribution. An approximated 95% confidence interval
for the difference in the two medians is represented by the notches cut in the boxes: if
the notches of two plots do not overlap, this is strong evidence that the two medians
differ. Finally, in the y-axes of each plot are reported the values of the related features.

and rareqs with 22%, 20%, and 17%, respectively. Notice that 2 out of 3 of the
main contributors are indeed in s-new.

With the aid of the sota abstraction we can also compare the overall perfor-
mances of solvers in s-legacy vs. those in s-new. In order to do that, we com-
pute two abstractions, namely sota-legacy — considering only legacy systems
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— and sota-new— considering only new solvers. The rationale of this analysis
is twofold: on one hand, we want to evaluate the advancement of the state of
the art with respect to legacy systems (and related solving techniques); on the
other, we want to look for patterns, expressed by means of features, enabling
us to spot differences in the type of QBFs solved by old and new systems. As
far as advancing the state of the art is concerned, we report that sota-legacy
solves 185 formulas — about 92% of those solved by sota — while sota-new
tops at 70% (142 instances). In view of these results, and considering that most
of the formulas in qbfg-t1 where not available at the time in which the solvers
in s-legacy were developed, there does not seem to be a stark advancement in
solvers’ abilities from s-legacy to s-new.

As for the nature of the instances solved by legacy vs. new solvers, we can
try to observe differences in the structure of QBFs solved by solvers in sota-
legacy and solvers in sota-new. In Figure 1 we present the distributions of four
features across four different populations obtained by combining sota-legacy,
sota-new with solved and unsolved formulas. In the figure, we can see that
the parameter l (average clause length) is not significantly different among the
various classes of problems — all the notches overlap. If we consider v (number of
variables) then we see that for sota-new the value of v̂ is significantly different
between solved and unsolved instances, while the same is not true for sota-
legacy. Therefore, it seems that the sheer number of variables matters most for
solvers in sota-new. However, also notice that there is no significant difference
between sota-legacy and sota-new when considering (un)solved formulas.
As for c (number of clauses) both sota-legacy and sota-new are sensitive to
this parameter: higher values of c imply harder formulas. Also in this case, no
significant difference can be spotted when considering sota-legacy and sota-
new on (un)solved formulas. Finally, looking at the distributions of twp, we can
see that its median value is not a significant hardness predictor for solvers in
sota-new, whereas it is a hardness predictor for solvers in sota-legacy, but
there are no differences when considering (un)solved formulas. Overall, we can
conclude that no clear pattern emerges that could help to differentiate (un)solved
formulas between solvers in sota-new and sota-legacy, at least looking at
the parameters shown in Figure 1.

4.2 QBF Gallery 2014 formulas – Track 2

Our next experiment aims at assessing solvers on the pool qbfg-t2. Before delv-
ing into the analysis, we wish to point out that there are structural differences
between the formulas in qbfg-t2 and those in qbfg-t1. On average, they are
characterized by a smaller number of median variables v̂ (3374 vs. 4708), but a
considerably larger number of median clauses ĉ (29492 vs. 17397). Formulas in
qbfg-t2 are also characterized by a relatively small value of universal variables
since v̂∀

v̂ = 0.006 in the case of qbfg-t2, while the same ratio is 0.02 in the case
of qbfg-t1. Finally, we report that qbfg-t1 formulas usually have a higher
value of average clause length since l̂ = 2.58, whereas the same value is 2.37 for
qbfg-t2.
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Family Solver Total True False Unique
# Time # Time # Time # Time

AIGSolve 83 1003.23 40 165.20 43 838.03 – –
rareqs 83 1420.61 34 165.41 49 1255.19 6 1094.71
quantor 82 923.25 53 217.92 29 705.33 – –
aqme 80 674.38 53 345.02 27 329.36 – –

bomb depqbf 67 2410.16 40 1693.36 27 716.79 – –
(132) sKizzo 57 609.41 31 2.39 26 607.03 – –

ghostq 56 532.47 29 42.66 27 489.81 – –
QuBE 47 1168.86 23 470.47 24 698.39 – –
StruQS 36 1051.46 19 813.58 17 237.88 – –

rareqs 75 1559.65 29 466.77 46 1092.88 15 1148.51
depqbf 49 1553.73 22 1086.35 27 467.38 – –
ghostq 42 1791.86 11 499.21 27 467.38 – –
QuBE 39 1273.95 19 277.87 20 996.09 – –

complexity aqme 33 528.28 15 188.76 18 339.52 – –
(104) quantor 26 170.44 11 11.29 15 159.14 – –

StruQS 21 1855.53 13 1677.81 8 177.72 – –
AIGSolve 15 70.26 7 12.24 8 58.02 – –
sKizzo 9 316.60 4 315.82 5 0.78 – –

quantor 104 525.30 18 54.81 86 470.48 – –
aqme 104 1121.43 18 86.11 86 1035.32 – –
AIGSolve 87 1220.22 17 417.12 70 803.10 – –
rareqs 57 1870.73 18 54.89 39 1815.85 – –

dungeon depqbf 44 535.22 18 300.44 26 234.77 – –
(107) QuBE 34 1429.60 7 212.89 27 1216.71 – –

ghostq 7 385.11 4 4.62 3 380.49 – –
sKizzo 2 0.99 – – 2 0.99 – –
StruQS 1 21.96 1 21.96 – – – –

StruQS 88 7826.42 1 372.74 87 7453.68 12 3033.19
QuBE 76 1346.11 – – 76 1346.11 2 328.75
ghostq 51 2649.30 2 239.56 49 2409.74 1 224.22
aqme 50 265.14 – – 50 265.14 – –

hardness rareqs 14 1431.05 – – 14 1431.05 – –
(114) AIGSolve 12 2038.84 – – 12 2038.84 – –

depqbf 8 617.99 – – 8 617.99 – –
quantor – – – – – – – –
sKizzo – – – – – – – –

AIGSolve 147 2371.36 38 114.02 109 2257.34 10 861.70
rareqs 137 1093.01 38 125.66 99 967.35 – –
quantor 131 6750.13 37 122.68 94 6627.44 – –
aqme 123 9263.25 37 464.97 86 8798.28 – –

planning sKizzo 74 71.57 34 24.02 40 47.55 – –
(147) depqbf 57 5134.24 29 1876.90 28 3257.34 – –

QuBE 14 1270.35 12 743.61 2 526.74 – –
ghostq 11 2155.26 8 1420.71 3 734.55 – –
StruQS 4 1229.67 4 1229.67 – – – –

aqme 71 2675.64 64 2339.68 7 335.95 1 3.00
StruQS 65 1770.09 63 1488.09 2 282.00 4 236.18
depqbf 57 692.38 46 672.96 11 19.42 2 359.15
AIGSolve 51 4194.44 46 4163.65 5 30.79 2 11.88

testing QuBE 41 765.08 31 734.85 10 30.23 1 1.24
(131) rareqs 34 428.00 22 317.04 12 110.95 1 0.53

ghostq 32 269.13 29 66.10 3 203.03 – –
quantor 26 121.15 25 110.52 1 10.63 – –
sKizzo 1 0.02 1 0.02 – – – –

Table 2. Performances of QBF solvers on qbfg-t2: The table is split in six horizontal
parts, one for each family. The first column contains families names, as well as its total
amount of instances. The rest of the table is organized as Table 1.
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In Table 2, we show the results of our experiments on qbfg-t2. The formulas
in bomb, when compared to the whole qbfg-t2 formulas, are characterized by
higher median values of l−

l (0.96 vs 0.84), c
v (13.61 vs 8.74), and twp (914 vs

758). On this subcategory, the best systems are AIGSolve, rareqs, and quan-
tor, which are the only ones able to solve more than 60% of the total. Also in
this case, two of the top three performers are solvers in s-legacy. However, we
should also point out that rareqs is the only system able to solve instances
uniquely. Overall, it seems that the solvers which are not purely search-based
are also the most effective ones in this subcategory. This difference cuts across
the separation between s-legacy and s-new, and it could be due to the fact
that these formulas are relatively easy to expand into SAT instances, so solvers
featuring this technique, e.g., quantor and rareqs, handle them more effec-
tively. Indeed, if we consider the sota abstraction, its major contributors are
quantor and rareqs, with 41 and 38 formulas, respectively. Overall, sota is
able to solve 77% of the total (102 instances out of 132). In spite of the very
good performances of rareqs, still sota-legacy solved 96 instances, while
sota-new 89, thus confirming the picture that we observed in qbfg-t1.

Regarding the results on complexity, looking at Table 2 we can see that the
best solvers are all comprised in s-new. Noticeably, this is the only subcategory
of qbfg-t2 and the only case throughout our experimental analysis in which this
is true. rareqs, depqbf, and ghostq are able to solve 75, 49, and 42 instances,
respectively. In particular, rareqs solves 15 of them uniquely. Looking at the
structure of QBFs, we can see that complexity instances are smaller than bomb

ones: the median values of c, v, and l are 1101, 2533, and 6601, respectively.
Moreover, with respect to bomb, we also report a smaller values of v̂∀

v̂ , and of

median clause-to-variable ratio c
v . On the other hand, the parameter l̂ on these

formulas is 2.66, higher than qbfg-t2 (2.37) and bomb (2.07). Since depqbf
and ghostq do not perform very well on bomb and also on other subcategories
in qbfg-t2, we conjecture that (i) relatively small instances with (ii) relatively
small number of universally quantified variables even with (iii) relatively long
clauses, could correlate with positive performances of depqbf and ghostq.
Considering the sota abstraction, we report that it solves the same number of
formulas solved by the best solver (rareqs). Unsurprisingly, in this case sota-
new outperforms sota-legacy — 75 and 44 solved instances, respectively.

Considering dungeon, we can see that the three best solvers are comprised
in s-legacy. quantor and aqme solved 97% of dungeon, while AIGSolve
topping at about 81%. The structure of dungeon is characterized by large values
of v̂, ĉ, and l̂ (27781, 128155, and 265184, respectively). On the other hand,

we report small values of l̂ (1.99) and v̂∀ (5). Moreover, it is worth noticing
that dungeon formulas have a large amount of c1 and ch (number of unary and
Horn clauses, respectively) with respect to the whole QBFs in qbfg-t2. The
value of ĉ1 related to dungeon is 20299, while the one reported for qbfg-t2 is
3. Considering ĉh, the values in dungeon and qbfg-t2 are 125611 and 23277,
respectively. Given, e.g., the large number of unary and Horn clauses, these
formulas should not be particularly challenging in general. Despite that, looking
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at the result we can see that otherwise effective solvers such as ghostq solved
only 6% of the total. This fact makes us conjecture that for this family sheer size
becomes an issue for some solvers. Finally, we report that sota can solve all but
one formula (106 solved out of 107) and, in this case, sota-legacy outperforms
sota-new (106 and 57 solved instances, respectively).

Considering hardness, looking at Table 2 we can see that the best system
is StruQS with 88 solved formulas, followed by QuBE and ghostq with 76
and 51 solved instances, respectively. This result is quite surprising because,
considering the results described so far, StruQS always ranks among the worst
three solvers. To investigate this phenomenon, we analyzed the structure of the
instances comprised in hardness. First, we report that, on one hand, both v̂
and ĉ are relatively small (2191 and 7793, respectively); on the other, we can

report for hardness the highest value of several features, such as l̂ (9.80), v̂∀
v̂ (in

percentage, 5%), and the number of quantified sets ŝ (26, against a value of 3
reported for qbfg-t2). This can partially explain the performance of StruQS
because its hybrid resolution-search algorithm works best with small formu-
las having many quantifier alternations. Finally, we report that sota was able
to solve 91 instances, and its best contributors – in percentage – are QuBE,
StruQS, and ghostq, with 65%, 16%, and 13% of the total, respectively. Also
in this case, sota-legacy outperformed sota-new (90 and 51 solved instances,
respectively).

Concerning the results on planning, we can see from Table 2 the best solver
is AIGSolve, able to deal with all the instances in the family. It is followed
by rareqs and quantor, that solved 137 and 131 instances, respectively. The
picture seems to be very similar to bomb and, indeed we can report that this
family is characterized by a low value of v̂ (1947 vs. 3374 of qbfg-t2), but

large values of ˆltot) (326955 vs 96532) and ĉ (112826 vs 29492). These data also
implies that planning has the largest value of the median clause to variable
ratio. Finally, we report that variables in planning are highly connected: the
median value of the VG node degree is 170.05, while the same value in qbfg-t2
is 21.61. As a final comment, we report that the performances of sota-legacy
and sota-new are quite close in this case, with 147 and 137 instances solved,
respectively.

To conclude, looking at the results on testing, we can see that aqme is the
best solver, dealing with about 54% of the instances. It is worth noticing that
aqme solved 13% of the instances running sSolve [7], a system dating back
to year 2000. Second and third are StruQS and depqbf, solving about 50%
and 43%, respectively. Values of dimensional features of these formulas are quite
similar to bomb, with the noticeable exception of the total amount of universal
variables (more than 2% of the total), that makes the family more similar to
hardness, which may also can explain the good performances of StruQS. As
a final consideration, we report that sota solved 69% of the total, and its ma-
jor contributors is depqbf (53%). Notice that also in this case sota-legacy
outperforms sota-new (85 and 65 solved instances, respectively).
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5 Conclusions

In the paper we have shown the results of a massive evaluation of QBF solvers
and benchmarks. The picture that we have obtained is significant both because
it is the first historical perspective on QBF solving technologies, and because of
the results that emerged clearly from the analysis. In particular, we have shown
that recently proposed solvers might benefit from some techniques implemented
in legacy ones which defy aging. Indeed, new solvers seems to be fairly well en-
gineered – the majority of the overall SOTA solver is made by new systems –
and they made a relevant contribution to the QBF field, as witnessed by the fact
that they are most often among the ones solving a formula uniquely. However,
by comparing the sota-legacy and sota-new abstractions we have also shown
that legacy systems still outperform the new ones in many problem categories.
Therefore, we believe that it would be interesting to blend new techniques, e.g.,
CEGAR or dependency schemas, with legacy ones – modulo the inevitable engi-
neering challenges that might arise – in order to really push forward the state of
the art in the QBF arena. A contribution to the development and optimization of
such blended solvers might come, e.g., from the significant number of problems
that emerged as challenging throughout our evaluation.
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Abstract. We describe encodings in Answer Set Programming for ab-
ductive reasoning in First Order Logic in acyclic Horn theories in the
presence of value invention and in the absence of Unique Names Assump-
tion. We perform experiments using the Accel benchmark for abductive
plan recognition in natural language processing. Results show, that our
encodings cannot compete with state-of-the-art realizations of First Or-
der Logic abduction, mainly due to large groundings. We analyze reasons
for this bad performance and outline potential future improvements.

1 Introduction

Abduction [29] is reasoning to the best explanation, which is an important topic
in diverse areas such as diagnosis, planning, and natural language processing.

We experiment with the Accel benchmark [27] for abduction in acyclic First
Order Logic (FOL) Horn theories and model this problem in Answer Set Pro-
gramming (ASP) [25]. Existing methods for solving Accel use backward-chaining
search [28], Markov Logic [22, 2], or Integer Linear Programming (ILP) [19].

In this work we realize abduction for Accel in the declarative mechanism of
Answer Set Programming. Our motivated is twofold: (a) it will allow for adding
complex constraints and optimization criteria more flexibly than in search-based
realizations of abduction, moreover (b) it can provide insights for managing other
problems with prohibitively large groundings in ASP.

Tackling this problem in ASP seems possible, because a recent solution for
Accel is based on first creating an ILP theory (in Java) and then solving it [19].

Yet there are two major challenges when realizing FOL abduction in ASP.
– The Unique Names Assumption (UNA) is not applicable in FOL in general.

In particular the Accel benchmark requires a partial UNA that holds only
for sort names. In ASP, on the contrary, UNA holds for all ground terms.

– Backward-chaining requires instantiation of body variables with new con-
stant terms. In ASP this is equivalent to existential variables in rule heads,

⋆ This work has been supported by Scientific and Technological Research Council of
Turkey (TUBITAK) Grant 114E777.
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i.e., variables that are absent in the rule body which makes the rule unsafe.
In ASP rules must be safe, therefore we need to encode value invention.

Note that value invention makes FOL abduction undecidable in general. The
Accel knowledge base is an acyclic theory,1 therefore undecidability is not an
issue and we can realize value invention in ASP using Skolemization.

Partial UNA has the effect that we must encode equivalence classes between
terms and effects of these equivalences in ASP. Sort names make the problem
of finding the smallest set of abducibles that explains a goal nontrivial (without
sort names the smallest explanation is those where all terms are equivalent).

Both value invention and partial UNA make an ASP solution tricky, in par-
ticular the size of the instantiated program can become problematic easily.

In this study we approach these challenges and analyze problems that become
apparent. We describe three encodings which use different rewritings of the Accel
knowledge base and an observation that should be explained into ASP:
– BackCh models a backward-chaining algorithm and the notion of ‘factoring’

(to deal with equivalence) similar to the algorithm proposed by Ng [28],
– BwFw defines potential domains of predicates (as in Magic Sets [33]), gues-

ses all potential atoms as abducibles, infers truth of atoms using the original
axioms from the knowledge base, and checks if this explains the observation,

– Simpl realizes a simplified abduction with closed domain and UNA.

BackCh and BwFw realizing existential quantification using uninterpreted
functions to build Skolem terms. Simpl serves as a performance baseline.

Our experiments with Accel show, that only small instances can be solved
within reasonable resource limits, and that memory as well as proving optimality
of solutions are problematic issues. We analyze the main reasons for these ob-
servations using solver statistics, and we outline possibilities for achieving better
results in future work.

Section 2 gives preliminaries of abduction and ASP, Section 3 describes
rewritings and ASP encodings, Section 4 reports on experiments, and Section 5
concludes with related work and an outlook on future work.

2 Preliminaries

We give a brief introduction of Abduction in general and First Order Horn
abduction in specific, moreover we give brief preliminaries of ASP.

Notation: variables start with capital letters and constants with small letters.

2.1 Abduction

Abduction, originally described in [29], can be defined logically as follows. Given
a set T of background knowledge axioms and an observation O, find a set H

1 This should be true according to [28]. Actually we had to deactivate one cyclic axiom
in the knowledge base to make this property true.

P.Schüller Modeling Abduction over Acyclic First-Order Logic Horn Theories in ASP

77



of hypothesis atoms such that T and H are consistent, and reproduce the ob-
servation, i.e., T ∪H /⊧ � and T ∪H ⊧ O. In this work we formalize axioms and
observations in First Order Logic (FOL) as done by Ng [28]: the observation (in
the following called ‘goal’) O is an existentially quantified conjunction of atoms

∃V1, . . . , Vk ∶ o1(V1, . . . , Vk)∧⋯∧ om(V1, . . . , Vk) (1)

and an axiom in T is a universally quantified Horn clause of form

c(V1, . . . , Vk) ⇐ p1(V1, . . . , Vk)∧⋯∧pr(V1, . . . , Vk). (2)

or an integrity constraints (like (2) but without a head).
The set H of hypotheses can contain any predicate from the theory T and

the goal O, hence existence of a solution is trivial. Explanations with minimum
cardinality are considered optimal. A subset of constants is declared as sort
names that cannot be abduced as equivalent with other constants.

Example 1 (Running Example). Consider the following text

‘Mary lost her father. She is depressed.’

which can be encoded as the following FOL goal, to be explained by abduction.

name(m,mary)∧lost(m,f)∧fatherof (f,m)∧inst(s, female)∧is(s,depressed)

Given the set of axioms

inst(X,male) ⇐ fatherof (X,Y ) (3)
inst(X, female) ⇐ name(X,mary) (4)

importantfor(Y,X) ⇐ fatherof (Y,X) (5)
inst(X,person) ⇐ inst(X,male) (6)
is(X,depressed) ⇐ inst(X,pessimist) (7)
is(X,depressed) ⇐ is(Y,dead)∧ importantfor(Y,X) (8)

lost(X,Y ) ⇐ is(Y,dead)∧ importantfor(Y,X)∧ inst(Y,person) (9)

and sort names

person male female dead depressed (10)

we can use abduction to infer the following: (a) loss of a person here should be
interpreted as death, (b) ‘she’ refers to Mary, and (c) her depression is because
of her father’s death because her father was important for her.

This is reached by abducing the following atoms and equivalences.

name(m,mary) fatherof (f,m) is(f,dead) m = s (11)
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The first two atoms directly explain goal atoms. We can explain the remaining
goal atoms by showing inferring truth of the following atoms.

inst(f,male) [infered via (3) using (11)] (12)
inst(m, female) [infered via (4) using (11)] (13)
inst(s, female) [goal, factored from (13) using (11)]

importantfor(f,m) [infered via (5) using (11)] (14)
inst(f,person) [infered via (6) using (12)] (15)

is(m,depressed) [infered via (8) using (11) and (14)] (16)
is(s,depressed) [goal, factored from (16) using (11)]

lost(m,f) [goal, infered via (9) using (11), (14), and (15)]

Note that there are additional possible inferences but they are not necessary
to explain the goal atoms. Moreover note that another abductive explanations
(with higher number of abduced atoms and therefore higher cost) would be to
abduce all goal atoms, or to abduce inst(m,pessimist) and lost(m,f) instead of
abducing is(f,dead). ◻

Complexity-wise we think that deciding optimality of a solution is harder than
for cardinality minimal abduction on (non-ground) logic programs under well-
founded semantics [11, Sec. 4.1.3] because value invention provides a ground
term inventory of polynomial size in the number of constants in the goal. The
propositional case has been analyzed in [3, 10]. See also Section 5.1.

2.2 Answer Set Programming

We assume familiarity with ASP [16, 25, 12, 14] and give only brief preliminaries
of those part of the ASP-Core-2 standard [5] that we will use: logic programs with
(uninterpreted) function symbols, aggregates, choices, and weak constraints. A
logic program consists of rules of the form

α ← β1, . . . , βn,not βn+1, . . . ,not βm.

where α and βi are head and body atoms, respectively, and not denotes negation
as failure. We say that a rule is a fact if m=0, and it is a constraint if there
is no head α. Atoms can contain constants, variables, and function terms, and
programs must obey safety restrictions (see [5]) to ensure a finite instantiation.
Anonymous variables of form ‘_’ are replaced by new variable symbols.

An aggregate literal in the body of a rule accumulates truth values from a
set of atoms, e.g., 2=#count{X ∶ p(X)} is true iff the extension of p (in the
answer set candidate) contains exactly 2 elements.

Choice constructions can occur instead of rule heads, they generate a solution
space if the rule body is satisfied; e.g., 1≤{p(a);p(b);p(c)}≤2 in the rule head
generates all solution candidates where at least 1 and at most 2 atoms of the
set are true. The bounds can be omitted. The colon symbol ‘:’ can be used
to define conditions for including atoms in a choice, for example the choice
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{p(X) ∶ q(X),not r(X)} encodes a guess over all p(X) such that q(X) is true
and r(X) is not true.

A weak constraint of form

↜ p(X). [1@1,X]

denotes that an answer set I has cost equivalent to the size of the extension of p
in I. Answer sets of the lowest cost are considered optimal. Note that the syntax
[A@B,X] denotes that cost A is incurred on level B, and costs are summed over
all distinct X (i.e., X ensures each atom p(X) ∈ I is counted once).

Semantics of an answer set program P are defined using its Herbrand uni-
verse, ground instantiation, and the GL-reduct [16] which intuitively reduces the
program using assumptions in an answer set candidate.

3 Modeling Abduction in ASP

We next describe two encodings for modeling abduction with partial UNA and
with value invention in ASP (Sections 3.1 and 3.2) and one simpler encoding
with UNA for all constants and without value invention (Section 3.3).

All atoms in Accel have arity 2. For practical reasons we represent an atom
of the form pred(arg1, arg2) as c(pred, arg1, arg2).

Goals in Accel have no variables, hence we can represent them as facts. For
our example we represent the goal as the following set of ASP facts.

goal(c(name,m,mary)). goal(c(lost ,m, f)). goal(c(fatherof , f,m)).
goal(c(inst , s, female)). goal(c(is, s,depressed)).

Sorts are encoded as facts as follows.

sortname(person). sortname(male). sortname(female).
sortname(dead). sortname(depressed).

3.1 Modeling Backward-Chaining (BackCh)

Our first encoding represents the abduction algorithm by Ng [28] in the ASP
grounder: (i) backward-chain from the goal and invent new constants on the
way, (ii) factor atoms with other atoms in the goal or with atoms discovered in (i)
and abduce equivalences between constant terms, (iii) mark atoms that have not
been inferred or factored as abduced, and (iv) search for the solution with the
minimum number of abduced atoms while obeying integrity constraints. Note
that this is the most straightforward modeling idea, although we consider it the
least declarative one because it is oriented towards realizing an algorithm and
does not realize abduction as usually done in ASP (for that see next section).

First, everything that is a goal is defined to be true, and everything true
must either be abduced, inferred, or factored.

true(P ) ← goal(P ).
1≤{abduce(P ); infer(P ); factor(P )}≤1 ← true(P ). (17)
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We prefer solutions with a minimum number of abduced terms.

↜ abduce(P ). [1@1, P ] (18)

Backward chaining is realized by rewriting each axiom of form (2) into two
parts: a guess whether the head is inferred via this rule, and for each body atom
that it must be inferred, abduced, or factored, if the head was inferred.

For example axiom (8) is translated into

0≤{inferVia(r1, c(is,X,depressed))}≤1←
infer(c(is,X,depressed)). (19)

inferenceNeeds(c(is,X,depressed), r1, c(importantfor , s1(X),X))←
inferVia(r1, c(is,X,depressed)). (20)

inferenceNeeds(c(is,X,depressed), r1, c(is, s1(X),dead))←
inferVia(r1, c(is,X,depressed)). (21)

where r1 is a unique identifier for axiom (8); rule (19) guesses if inferring
is(X,depressed) happens via r1; and rules (20) and (21) define that this in-
ference requires to justify atoms importantfor(s1(X),X) and is(s1(X),dead).
Note that s1(⋅) is a Skolem function unique to axiom (8).

For each atom that is inferred, we add a constraint that it must be inferred
via at least one rule. Moreover each atom required by such inference is defined
as true and hence must be justified according to (17).

← infer(P ), 0≤#count{A,P ∶ inferV ia(A,P )}≤0.
true(Body) ← inferenceNeeds(Head,Axiom,Body).

For factoring we need to handle absence of the UNA, so we obtain the Herbrand
Universe (HU) and obtain the ‘User Herbrand Universe’ (UHU) of constants
that are not sort names and can be equivalent to other constants.

hu(C) ← true(c(_,C,_)).
hu(C) ← true(c(_,_,C)).
uhu(C) ← hu(C),not sortname(C).

We guess if a member of UHU is represented by another member of UHU.

0≤{rep(X,Y ) ∶ uhu(X),X < Y }≤1 ← uhu(Y ). (22)

This guesses at most one representative for each member of UHU. Note that
operator ‘<’ in (22) realizes lexicographic comparison of ground terms; this means
the representative of an equivalence class of UHU terms is always the smallest
term in that class (this reduces symmetries in the search space).

The following rules ensure that no ground term is both represented and
representing another one using rep.

representative(X) ← rep(X,Y ). (23)
represented(Y ) ← rep(X,Y ). (24)

← representative(X), represented(X). (25)
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Rules (22)–(25) generate all possible equivalence relations over UHU terms, en-
coded as mappings to representative terms. If a term has neither a representative
nor is representing another term, it is a singleton equivalence class.

Given rep, we define a mapping map for all HU terms to their representative,
where singletons and sort names are their own representatives.

map(X,Y ) ← rep(X,Y ). (26)
map(X,X) ← hu(X),not represented(X). (27)

Now that we generate and represent equivalence classes, we can perform
factoring. We experiment with three formulations: all of them define a predicate
factorOk(P ) if factoring is allowed, and they share the following three rules:
(28) requires factorOk to be true for factored atoms, while (29) and (30) define
the factoring base which is the set of inferred or abduced atoms, i.e., the set of
atoms that other atoms can be factored with.

← factor(P ), not factorOk(P ). (28)
factoringbase(A) ← infer(A). (29)
factoringbase(A) ← abduce(A). (30)

The three factoring variations are as follows.
● Factoring (a) uses the map predicate to match factored atoms to the factoring
base and is realized as follows.

factorOk(c(P,A1,B1)) ← factor(c(P,A1,B1)), factoringbase(c(P,A2,B2)),
map(A,A1),map(A,A2),map(B,B1),map(B,B2).

● Factoring (b) defines a canonical factoring base using the map predicate and
matches factored elements with that canonical base using the following rules.

cfactoringbase(c(P,A,B)) ← factoringbase(c(P,A1,B1)),
map(A,A1),map(B,B1).

factorOk(c(P,A1,B1)) ← cfactoringbase(c(P,A,B)),
factor(c(P,A1,B1)),map(A,A1),map(B,B1).

● Factoring (c) defines a relation for canonicalizing atoms using the map predi-
cate and defines factorOk using that relation.

noncanonical(P ) ← factor(P ).
noncanonical(Q) ← factoringbase(Q).

canonical(c(P,A,B), c(P,A1,B1)) ← noncanonical(c(P,A1,B1)),
map(A,A1),map(B,B1).

factorOk(P1) ← factor(P1), factoringbase(P2),
canonical(P,P1), canonical(P,P2).
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3.2 Skolemized Domain and Standard ASP Abduction (BwFw)

This encoding follows an idea similar to Magic Sets [33]: starting from the goal
(in Magic Sets the query) we represent the domain of each argument of each
predicate. Subsequently we define domains of predicates in the body of an axiom
based on the domain of the predicate in heads of that axiom, deterministically
expanding the domain with Skolem terms whenever there are variables in the
axiom body that are not in the axiom head. Once we have the domains, we
can follow the usual ASP approach for abduction: (i) guess (using the domain)
which atoms are our abduction hypothesis, (ii) use axioms to infer what becomes
true due to the abduction hypothesis; and (iii) require that the observation is
reproduced. In BackCh, equivalence was used for factoring (which reduces the
number of abducibles required to derive the goal). In BwFw, we instantiate the
whole potential proof tree, so we do not need factoring between atoms in rules,
it is sufficient to factor abducibles with one another. Hence in this encoding we
handle equivalences by defining an atom to be true if its terms are equivalent
with the terms of an abduced atom.

We next give the encoding in detail.
Predicates in Accel have arity 2, so we represent the domain as dom(P,S,O),

i.e., predicate P has ⟨S,O⟩ as potential extension. We seed dom from the goal.

dom(P,S,O)← goal(c(P,S,O)).

Domains are propagated by rewriting axioms of form (2) as indicated above. For
example (8) is translated into the following rules.

dom(importantfor , s1(X),X) ← dom(is,X,depressed). (31)
dom(is, s1(X),dead) ← dom(is,X,depressed). (32)

Additionally we rewrite each axiom into an equivalent rule in the ASP rep-
resentation, for example we rewrite (8) into the following rule.

true(c(is,X,depressed)) ← true(c(importantfor , Y,X)),
true(c(is, Y,dead)). (33)

For guessing representatives we first define UHU for first and second argu-
ments of each predicate and we define HU over all arguments.

dom1(P,X) ← dom(P,X,_).
dom2(P,Y ) ← dom(P,_, Y ).
uhu1(P,X) ← dom1(P,X),not sortname(X).
uhu2(P,Y ) ← dom2(P,Y ),not sortname(Y ).

hu(X) ← dom1(_,X).
hu(Y ) ← dom2(_, Y ).

We guess representatives, i.e., equivalence classes, only among those UHU ele-
ments that can potentially be unified because they are arguments of the same
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predicate at the same argument position.2

0≤{rep(X1,X2) ∶ uhu1(P,X2),X1 <X2}≤1 ← uhu1(P,X1).
0≤{rep(Y1, Y2) ∶ uhu2(P,Y2), Y1 < Y2}≤1 ← uhu2(P,Y1).

We reuse (23)–(27) from the BackCh encoding to ensure that rep encodes an
equivalence relation and to define map. (Note also that hu is used in (27).)

We abduce atoms using the domain under the condition that the domain
elements are representatives of their equivalence class (symmetry breaking).

{abduce(c(P,S,O)) ∶dom(P,S,O),not represented(S),not represented(O)}.

We define that abduced atoms are true, and we use map to define that atoms
equivalent with abduced atoms are true.

true(A) ← abduce(A).
true(c(P,A,B)) ← abduce(c(P,RA,RB)),map(RA,A),map(RB,B). (34)

This makes all consequences of the abduction hypothesis in the axiom theory
true while taking into account equivalences.

Finally we again require that the observation is reproduced, and we again
minimize the number of abduced atoms. (Note that term equivalence has been
taken care of in (34) hence we can ignore it for checking the goal.)

← goal(A),not true(A). (35)
↜ abduce(P ). [1@1, P ] (36)

3.3 Closed Domain and UNA (Simpl)

This encoding propagates domains differently from the previous one: it does
not introduce Skolem terms but always the same null term for variables in
axiom bodies that are not contained in the axiom head. Abduction substitutes
all possible constants for these null terms, hence this encoding does not realize
an open domain. Moreover, this encoding uses the UNA for all terms.

This encoding is less expressive than the previous ones, it is incomplete but
sound: Simpl finds a subset of solutions that other encodings find, and for this
subset each solution has same cost as in other encodings. We use Simpl pri-
marily for comparing memory and time usage with other encodings and other
approaches. For readability we repeat some rules from previous encodings.

As in BwFw, the domain is seeded from the goal.

dom(P,S,O)← goal(c(P,S,O)).

The rewriting is different, however: instead of rewriting the example axiom (8)
into (31) and (32) we create the following rules.

dom(importantfor ,null ,X) ← dom(is,X,depressed).
dom(is,null ,dead) ← dom(is,X,depressed).

2 A more naive encoding showed significantly higher memory requirements.
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Status Resources

Encoding OPT SAT OOT OOM Space (osp) Time (otm/grd/slv)
sum sum sum sum MB/avg s/avg

BackCh (a) 40 0 0 460 4636 (1375) 148 (152/142/ 6)
BackCh (b) 238 2 0 260 3537 (2339) 175 (147/135/ 41)
BackCh (c) 36 4 0 460 4612 (1146) 126 (152/117/ 9)
BwFw 10 0 0 490 4884 ( 524) 212 ( 12/211/ 0)
Simpl 132 258 10 100 1875 ( 208) 380 (107/ 52/323)

Table 1. Experimental Results, accumulated over 10 runs of each of the 50 instances of
Accel: OPT, SAT, OOT, and OOM denote that the solver found the optimal solution,
found a solution without proving optimality, exceeded the time limit (10 min), and
exceeded the memory (5 GB), respectively. Numbers in brackets are the space and
time usage of runs that found the optimum (osp/otm), the time spent in grounding
(grd), and the time spent in solving (slv). Averages are computed over all runs, except
for (osp) and (otm) that are averaged over runs where the optimum was found.

Here, null is used instead of Skolem terms.
We define the HU as all domain elements except null .

hu(X) ← dom(_,X,_),X ≠ null .

hu(Y ) ← dom(_,_, Y ), Y ≠ null .

Now we define a mapping that maps null to each element of (implicit) UHU and
contains the identity mapping for HU.

nullrepl(X,X) ← hu(X).
nullrepl(null ,X) ← hu(X),not sortname(X). (37)

We abduce atoms using this mapping and define that abduced atoms are true.

{abduce(c(P,S′,O′))} ← dom(P,S,O),nullrepl(S,S′),nullrepl(O,O′).
true(c(P,A,B)) ← abduce(c(P,A,B)).

We propagate truth as in BwFw using the rewriting exemplified in (33).
We again require goals to be true and minimize the number of abduced atoms.

← goal(A), not true(A).
↜ abduce(P ). [1@1, P ]

Note that, although this encoding solves an easier problem than the other
encodings, we will see that it does not necessarily perform better.

4 Experimental Results

To test the above encodings, we performed experiments using the Accel bench-
mark3 [28]. This benchmark consists of 50 instances (i.e., goals) with between 5
3 ftp://ftp.cs.utexas.edu/pub/mooney/accel
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and 26 atoms in a goal (12.6 atoms on average), and a knowledge base consisting
of 190 first order Horn rules with bodies of size between 1 and 11 atoms (2.2 on
average). Our encodings and instances used in experiments are available online.4

The benchmarks were performed on a computer with 48 GB RAM and two
Intel E5-2630 CPUs (total 16 cores) using Ubuntu 14.04 and Clingo 4.5.0 [15].
Each run was limited to 10 minutes and 5 GB RAM, HTCondor was used as a job
scheduling system, each run was repeated 10 times and no more than 8 jobs were
running simultaneously. For Clingo we used the setting --configuration=handy.

Table 1 shows results of the experiments.
Exceeding the memory of 5 GB turns out to be a significant problem in

all encodings, even for Simpl where (only) 10 instances exceeding the memory.
Memory was always exceeded during grounding, never during solving.

Our encodings perform much worse than the state-of-the-art for solving Accel
which is less than 10 s per instance on average [19].

Encoding Simpl is able to ground more instances than the other encodings,
however it only finds the optimal solution for 132 runs while BackCh (b) finds
optimal solutions for 238 runs, although Simpl encodes a sound approximation
of the problem encoded in BackCh and BwFw.

Encoding BwFw, which is most similar to classical abduction encodings in
ASP, performs worst due to memory exhaustion: only one instance can be solved.
In BwFw the high space complexity comes from the full forward-instantiation
of the whole knowledge base after guessing representatives for the domain of
each abduced atom. Although BwFw first backward-chains the domain using
a deterministic set of rules, it seems to instantiate a much larger part of the
rules necessary for solving the problem, in particular in comparison with the
BackCh encoding. Observe that we split the representation for UHU which
might seem unintuitive as we do not do this in other encodings. However, when
we experimented with a more naive encoding for BwFw (replacing uhu1 and
uhu2 by a single uhu) this encoding could not even solve a single instance within
the 5 GB memory limit.

The BackCh encodings perform best and show big differences among the
factoring variations. Factoring (b) is clearly superior to (a) and (c): it uses sig-
nificantly less memory (only 260 out-of-memory runs) and once grounding is
successful it solves many instances (238) within the timeout. The reason for this
can be found in the rules defining factorOk : factoring (a) contains 4 atoms of
map with six joining 6 variables, hence its instantiation contains (in worst case)
O(n6) rules, where n is the size of HU; moreover (c) defines canonical from map
with by defining O(n3) distinct atoms and joins these atoms to define factorOk ,
again resulting in O(n6) rules. Encoding (b) on the other hand defines O(n3)
distinct atoms with predicate cfactoringbase and joins them to 2 instances of
map, resulting in O(n5) rules defining factorOk .
Single Instance Analysis. To analyze performance differences between en-
codings, we looked at instance # 8 which is the smallest instance and the single
instance where all encodings found an optimal solution.
4 https://bitbucket.org/knowlp/supplement-rcra2015-asp-fo-abduction/
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Encodings BackCh (a) and BackCh (c) require 117 s and 244 s grounding
time, respectively, and both groundings contain ∼150 k ASP rules. Although
BackCh (b), BwFw, and Simpl stay below 10 s grounding time, BwFw pro-
duces an amazing 803 k ASP rules. The reason is, that (34) creates many po-
tentially true atoms, which instantiates many axioms. As a consequence BwFw
grounds comparatively fast but at the same time produces the biggest grounding.

The smallest grounding is produced by Simpl, which also has fewest OOM
results. Yet Simpl finds the optimal solution for fewer instances than BackCh
(b). Solver statistics show that Simpl requires 463 k choice points in the solver
and creates 4 k conflict lemmas for instance 8, while BackCh (b) proves opti-
mality using 737 choice points and 150 lemmas. We conjecture that these choice
points originate in the naive substitution of null with UHU elements in (37),
which produces a big grounding and a big hypothesis space with many symmet-
ric solutions of equal cost. Such symmetries makes it difficult to prove optimality.

Additional Observations. As suggested by a reviewer we ran our encodings
with and without projection to abduce atoms. This did not change run times
significantly, however it greatly reduced log file size.

5 Discussion and Conclusion

We presented encodings for realizing abduction with an open domain in the
absence of the UNA and performed experiments using the Accel benchmark.

Experiments show clear differences between our encodings, and they all per-
form much worse than the state-of-the-art for Accel [19]. Hence we consider this
work a negative result. Nevertheless we observed huge performance variation
between our encodings, and we think there is still potential for finding better
encodings (and solver parameters).

5.1 Related Work

The idea of abduction goes back to Peirce [29] and was later formalized in logic.
Abductive Logic Programming (ALP) is an extension of logic programs with

abduction and integrity constraints. Kakas et al. [20] discuss ALP and applica-
tions, in particular they relate Answer Set Programming and abduction. Fung
et al. describe the IFF proof procedure [13] which is a FOL rewriting that is
sound and complete for performing abduction in a fragment of ALP with only
classical negation and specific safety constraints. Denecker et al. [8] describe
SLDNFA-resolution which is an extension of SLDNF resolution for performing
abduction in ALP in the presence of negation as failure. They also describe a
way to ‘avoid Skolemization by variable renaming’ which is a strategy that can
be mimicked in ASP by using HEX for value invention (instead of uninterpreted
function terms). Kakas et al. describe the A-System for evaluating ALP using
an algorithm that interleaves instantiation of variables and constraint solving
[21]. The CIFF framework [26] is conceptually similar to the A-System but it
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allows a more relaxed use of negation. The SCIFF framework [1] relaxes some
restrictions of CIFF and provides facilities for modeling agent interactions.

Implementations of ALP have in common that they are based on evaluation
strategies similar to Prolog [26]. CIFF is compare with ASP on the example
of n-queens and the authors emphasize that CIFF has more power due to its
partial non-ground evaluation [26]. However they also show a different CIFF
encoding that performs much worse than ASP. Different from CIFF and earlier
ALP implementations, our ASP encodings are first instantiated and then solved.

Weighted abduction (called cost-based abduction by some authors) [18] is
FOL abduction with costs that are propagated along axioms in a proof tree.
The purpose of costs is to find the most suitable abductive explanations for
interpretation of natural language. The solver Henry-n700 [19] realizes weighted
abduction by first instantiating an ILP instance with Java and then finding
optimal solutions for the ILP instance. Our approach is similar and therefore
our work is related more to weighted abduction than to ALP.

Probabilistic abduction was realized in Markov Logic [30] in the Alchemy
system [23] although without an open domain [2, 32], which makes it similar to
the Simpl encoding. (Alchemy naively instantiates existential variables in rule
heads with all known ground terms just as Simpl does.)

5.2 Future Work

As the Accel benchmark problems can be solved much faster (i.e., within a few
seconds on average) with a classical backward chaining implementation in Java
and an ILP solver [19], we conjecture that a solution in ASP has the potential
to be similarly fast. In the future we want to develop encodings that perform
nearer to the state-of-the-art. We believe that we can gain increased flexibility if
we model this problem in ASP as opposed to creating an ILP theory using Java.

Our experiments show that small changes in encodings can lead to big per-
formance changes regarding grounding size, grounding speed, finding an initial
solution, and proving optimality. We are currently investigating alternative en-
codings, in particular to replace guessing of representatives by a more direct
guessing of the equivalence relation.

As large groundings are a major issue in our work, interesting future work
includes using dlv [24] which is known to be strong in grounding, or solvers that
perform lazy grounding such as idp [7] or OMiGA [6]. Another possible improve-
ment of grounding is to replace grounding-intensive constraints by sound approx-
imations with lower space complexity, and create missing constraints on demand
when they are violated. An equivalent strategy is used in Henry-n700 where and
it is called Cutting Plane Inference and described as essential for the performance
of the ILP solution for weighted abduction [19]. In ASP such strategies are used
by state-of-the-art solvers for on-demand generation of loop-formula nogoods.
User-defined on-demand constraints can be realized using a custom propagator
in Clingo [15] or on-demand constraints in HEX [9, Sec. 2.3.1].

Potentially beneficial for future improvements of this work are Open Answer
Set Programming (OASP) [17] which inherently supports open domains, and
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Datalog± [4] which supports existential constructions in rule heads. Both for-
malisms have been used for representing Description Logics in ASP and could
provide insights for future work about modeling FOL abduction in ASP.

So far we prefer the least number of abduced atoms to find optimal solu-
tions. In the future we want to consider more sophisticated preferences based on
Coherence [27] and based on Relevance Theory [31].
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