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Evaluating Answer Set Programming with Non-Convex
Recursive Aggregates

Mario Alviano

Department of Mathematics and Computer Science,
University of Calabria, 87036 Rende (CS), Italy
alviano@mat.unical.it

Abstract. Aggregation functions are widely used in answer set programming
(ASP) for representing and reasoning on knowledge involving sets of objects col-
lectively. These sets may also depend recursively on the results of the aggregation
functions, even if so far the support for such recursive aggregations was quite lim-
ited in ASP systems. In fact, recursion over aggregates was restricted to convex
aggregates, i.e., aggregates that may have only one transition from false to true,
and one from true to false, in this specific order. Recently, such a restriction has
been overcome, so that the user can finally use non-convex recursive aggregates
in ASP programs, either on purpose or accidentally. A preliminary evaluation of
ASP programs with non-convex recursive aggregates is reported in this paper.

Keywords: answer set programming, aggregation functions, non-convex recur-
sive aggregates

1 Introduction

Answer set programming (ASP) is a declarative language for knowledge representa-
tion and reasoning [9]. ASP programs are sets of disjunctive logic rules, possibly using
default negation under stable model semantics [21,22]. Several constructs were added
to the original, basic language in order to ease the representation of practical knowl-
edge. Of particular interest are aggregate functions [5, 14, 17,23,27,32], which allow
for expressing properties on sets of atoms declaratively. In fact, in many ASP programs
functional dependencies are enforced by means of COUNT aggregates, or equivalently
using SUM aggregates; for example, a rule of the following form:

1+ R(X), suM[1,Y : R(X,Y,Z)| < 1

constrains relation R to satisfy the functional dependency X — Y, where X UY U Z
is the set of attributes of R, and R’ is the projection of R on X . Aggregate functions are
also commonly used in ASP to constrain a nondeterministic guess. For example, in the
knapsack problem the total weight of the selected items must not exceed a given limit,
which can be modeled by the following rule:

L+ SuM[W, O : object(O, W, C), in(0)] < limit.

Mainstream ASP solvers [15, 20] almost agree on the semantics of aggregates [14,
17], here referred to as F-stable model semantics, even if several valid alternatives were



M.Alviano Evaluating ASP with Non-Convex Recursive Aggregates

also considered in the literature [23, 30, 31, 33]. It is interesting to observe that F-stable
model semantics was proposed more than a decade ago, providing a reasonable seman-
tics for aggregates also in the recursive case. Indeed, it is based on an extension of
the original program reduct, and on a minimality check of the stable model candidate
resembling the disjunctive case. Despite this, for many years the implementation of F-
stable model semantics was incomplete, and recursion over aggregates was restricted to
convex aggregates [28], the largest class of aggregates for which the common reason-
ing tasks still belong to the first level of the polynomial hierarchy in the normal case
[3]. In fact, convex aggregates may have only one transition from false to true, and one
from true to false, in this specific order, a property that guarantees tractability of model
checking in the normal case.

However, non-convex aggregations may arise in several contexts while modeling
complex knowledge [1, 11, 13], and there are also minimalistic examples that are easily
encoded in ASP using recursive non-convex aggregates, while alternative encodings
not using aggregates are not so obvious. One of such examples is provided by the X1-
complete problem called Generalized Subset Sum [6]. In this problem, two vectors u
and v of integers as well as an integer b are given, and the task is to decide whether the
formula J2Vy(ux + vy # b) is true, where = and y are vectors of binary variables of
the same length as u and v, respectively. For example, for v = [1,2], v = [2, 3], and
b = 5, the task is to decide whether the following formula is true: 31 2oVy y2 (1 - 1 +
2-x9+2-y1 +3-y2 # 5). Any natural encoding of such an instance would include
an aggregate of the form SUM[1 : x1,2 : 22,2 : y1,3 : ya2] # 5. Luckily, a complete
implementation of F-stable model semantics for common aggregation functions has
been achieved this year by means of a translation combining disjunction and saturation
in order to eliminate non-convexity from aggregates [4].

The aim of this paper is to evaluate a few problems that can be encoded in ASP using
recursive non-convex aggregates. The tested programs are processed by the rewritings
presented in [4], which are implemented in a prototype system written in Python that
uses GRINGO and CLASP. In a nutshell, aggregates are represented by specific standard
atoms, so that the grounding phase can be delegated to GRINGO [19], and the numeric
output of GRINGO is then processed to properly encode aggregates for the subsequent
stable model search performed by CLASP [20]. The focus of the paper is on programs
using SUM aggregates, even if the tested system also supports several other common
aggregation functions such as COUNT, AVG, MIN, MAX, EVEN, and ODD.

2 Background

Let V be a set of propositional atoms including L. A propositional literal is an atom
possibly preceded by one or more occurrences of the negation as failure symbol ~. An
aggregate literal, or simply aggregate, is of the following form:

SUM[wy : l1,...,w, : 1] ®D (1
where n > 0, b, wy, ..., w, are integers, l1, ..., 1, are propositional literals, and ® €
{<,<,>,>,=,#}. (Note that [wy : l1,...,w, : l,] is a multiset.) A literal is either a
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propositional literal, or an aggregate. A rule r is of the following form:
PLV VP =l A Ay, 2)

where m > 1, n > 0, py,...,p, are propositional atoms, and [y, ...,[, are liter-
als. The set {p1,...,pm} \ {L} is referred to as head, denoted by H(r), and the set
{l1,...,1n} is called body, denoted by B(r). A program 7 is a finite set of rules. The
set of propositional atoms (different from 1) occurring in a program 7 is denoted by
At(II), and the set of aggregates occurring in I is denoted by Ag(IT).

Example 1. Consider the following program II:

Tq 4 ~~T To ¢ ~~Xo Y1 < unequal Yo < unequal 1+ ~unequal
unequal <— SUM[1 : 21,2 : 29,2 : 41,3 : y2] #5

As will be clarified after defining the notion of a stable model, /77 encodes the instance
of Generalized Subset Sum introduced in Section 1. [ |

An interpretation I is a set of propositional atoms such that 1 ¢ I. Relation = is
inductively defined as follows:

- forpeV, I =pifpel,

T~ T L

= I EsuMwy i, wy 2] © b Y 0y reg, wi © b

— foraruler, [ = B(r)if I =lforalll € B(r),and I |=rif H(r) NI # () when
I't= B(r);

— foraprogram I, I = ITif I |=r forall r € II.

For any expression m, if I |= w, we say that I is a model of 7, I satisfies 7, or 7 is
true in I. In the following, T will be a shorthand for ~_1, i.e., T is a literal true in all
interpretations.

The reduct of a program II with respect to an interpretation [ is obtained by remov-
ing rules with false bodies and by fixing the interpretation of all negative literals. More
formally, the following function F'(I, ) is inductively defined:

forp eV, F(I,p) :=p;

F(I,~l):=TifI £, and F(I,~l) := L otherwise;
F(I,suM[wy : l1,...,wp : 1,]©b) := SUM[w; : F(I,11),...,w, : F(1,1,)]©b;
for arule r of the form (2), F'(I,r) :==p1 V-V < F(L, L) AN---ANF(I,1,);
— for a program I1, F(I,IT) := {F(I,r) | r € II,I = B(r)}.

Program F'(I,IT) is the reduct of IT with respect to I. An interpretation I is a stable
model of a program IT if I |= IT and there is no J C I such that J |= F'(I,IT). Let
SM (IT) denote the set of stable models of II.

Example 2. Continuing with Example 1, the models of Iy, restricted to the atoms in
At(Iy), are X, X U{x1}, X U{x2}, and X U{z1, 22}, where X = {unequal, y1, y2}.
Of these, only X U {1} is a stable model. Indeed, the reduct F'(X U {x1}, IT;) is

x4 T Y1  unequal Yo < unequal
unequal < SUM([1 : 21,2 : 22,2 : 41,3 : ya2] 5
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and no strict subset of X U {1} is a model of the above program. On the other hand,
the reduct F'(X U {x2}, IT) is

To — T Y1  unequal Yo < unequal
unequal < SUM([1 : 21,2 : 22,2 : 41,3 : ya2] #5

and {x2,y2} is a model of the above program. Similarly, it can be checked that X and
X U {x1,z2} are not stable models of IT;. [ ]

An aggregate A is convex (in program reducts) if J = F(I, A) and L |= F(I, A)
implies K = F(I,A),forall J C K C L C I CV.If Aisconvex then I E A
and J = F(I,A) implies K = F(I,A), for all J C K C I. Note that aggregate
SUMI[L : 21,2 : 22,2 : y1,3 : y2] # 5 from Example 1 is non-convex.

3 Non-Convex Aggregates Elimination

ASP solvers can only process sums of the form (1) in which all numbers are non-
negative integers, and the comparison operator ® is >. This is due to the numeric format
encoding the propositional program produced by the grounder. However, thanks to the
rewritings proposed by [4], all sums can be rewritten in the form accepted by current
ASP solvers. Following [4], strong equivalences can be used to restrict sums in the
input program to only two forms, which are essentially (1) with ©® € {>,#}. These
first rewritings are given by means of strong equivalences [16, 25, 34].

Definition 1. Let w := I; A --- A l, be a conjunction of literals, for some n > 1.
A pair (J, 1) of interpretations such that J C I is an SE-model of 7 if I = 7 and
JEF(,l))N---ANF(1,l,). Two conjunctions 7,7’ are strongly equivalent, denoted
by m =gg 7', if they have the same SE-models.

Strong equivalence means that replacing m by 7’ preserves the stable models of any
logic program.

Proposition 1 (Lifschitz et al. 2001; Turner 2003; Ferraris 2005). Let w, 7’ be two
conjunctions of literals such that m =gg 7'. Let II be a program, and II' be the pro-
gram obtained from II by replacing any occurrence of w by . It holds that IT =, IT’'.

The following strong equivalences can be proven by showing equivalence with re-
spect to models, and by noting that ~ is neither introduced nor eliminated:

(ED) SUM[w1 : ll, ce,Why t ln] >b=gg SUM[’UJl ll, , Wh, ln} >b+1;
(E2) SUM[wy : 1, ... wy i 1] < b=gE SUM[—wy : 1y, ...,—wy @ 1] > =b;
(E3) suM[wy : 11, ..., wy : 1p] < b=gg SUM[wy : ll, y Wy L] <b =15
(E4) SUM[w1 : ll, ce,Wh t ln] =b=gg SUM[wl l1,.. , Wp, - ln] <bA
SUM[U)l 2, , Wh ln] >b

For example, (E1) and (E3) are easy to obtain because b is integer by assumption. Simi-
larly, (E4) is immediate by the semantics introduced in Section 2. For (E2), instead, the
following equivalences can be observed:
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(i) I ESuM[wy : ly,...,wy 1] < b;
(D) D icpr. ), 1, wi <05
(i) Zie[l..n], I=l; —w; = —b;
(iv) I = SsuM[—wy :ly,...,—wy : 1] > =b;

where (iii) above is obtained by multiplying both sides of the inequality (ii) by —1, and
the equivalence of (i) and (ii), and of (iii) and (iv), is immediate by the semantics of
sums. It is important to observe that the application of (E1)—(E4), from the last to the
first, to a program IT gives an equivalent program pre(II) whose aggregates are sums
with comparison operators > and .

Theorem 1. Let IT be a program. It holds that II =y, pre(IT).

After this preprocessing, the structure of the input program is further simplified
by eliminating non-convex aggregates. To ease the presentation, and without loss of
generality, hereinafter aggregates are assumed to be of the following form:

SUM[—’U}l 1Py, W5 L Dy,
—Wjt1 : ~jgay e, —wE L~
3)
W41 * Pk+1y--+5Wm - Pm,
Wm+1 * Nlm+17 ey Wh Nln} ® b
wheren >m >k > j > 0, wy, ..., w, are positive integers, each p; is a propositional

atom, each [; is a propositional literal, ® € {>,#}, and b is an integer. Intuitively,
aggregated elements of (3) are partitioned in four sets, namely positive literals with
negative weights, negative literals with negative weights, positive literals with positive
weights, and negative literals with positive weights.

Let IT be a program whose aggregates are of the form (3). Program rew(IT) is
obtained from II by replacing each occurrence of an aggregate of the form (3) by a
fresh, hidden propositional atom aux [10, 24]. Moreover, if ® is >, then the following
rule is added:

. F L F
auz < SUM[wy : py,...,w; 1 p;,
Wi41 - ~~lj+1,...,wk : ~~l;€, (4)
wk+1 :pk+17"'7wm  Pm,
Wil ~lmgdy ooy Wy o~y > 04+ w1 + -+ -+ wi

where each pf is a fresh, hidden atom associated with the falsity of p;, forall i € [1..5],
and the following rules are also added to rew(IT):

Pl ~pi (5)
pf — auzx (6)
Di \/pfF — ~~aux @)
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Similarly, if ® is #, then the following rules are added to rew(I1):

aumeSUM[wlzpf,...,wj:pf,
Wj41 - NNljJrl, ey, WE ~~lk, (8)
Wht1 : Phtls-- Wi © Dms
Wil ~mg1y oWy i~ 204+ 1T+ wy + -+ + wy
aux < SUM[wy : p1,...,w; : Dj,
Wit~y wr o~
P F )
Wi 1 : Ps1s- > Win & Py
Wing1 P ~~ g1y ey Wy oy ] > =+ 1+ wpgr + -+ wy

together with rules (5)—(7) for each new pf . Intuitively, any atom of the form pZF in-
troduced by the rewriting must be true whenever p; is false, but also when auz is true,
so to implement what is usually referred to as saturation in the literature. Rules (5) and
(6) encode such an intuition. Moreover, rule (7) guarantees that at least one between p;
and p!” belongs to any model of reducts obtained from interpretations containing auz.
It is interesting to observe that when auz belongs to I the satisfaction of the associated
aggregate can be tested according to all subsets of I in the reduct F'(I1,I).

The intuition behind (4) is that an interpretation [ satisfies an aggregate of the form
(3) such that ® is > if and only if the following inequality is satisfied:

J k m n
—wi - I(pi)+ Y, —wi- I(~)+ Y wi-I(pi)+ Y wi-I(~l;) > b (10)
=1 i=j+1 i=kt1 i=m+1

where I(l) = 1if I =1, and I(I) = 0 otherwise, for all literals /. Moreover, inequality
(10) is satisfied if and only if the following inequality is satisfied:

7 k m
—w; - I(pi) + Z —w; - I(~l;) + Z w; - I(p;) +
i=1 i=j+1 i=k+1 an
+ D> wi I(L) w4 w2 b4y wy
i=m+1 i=1
and by distributivity (11) is equivalent to the following inequality:
J k
Yowi (L=Im) + Y wi- (1= I(~1) +
- = (12)
m n k
+ ) wi Ip) + Y wi I~ 2 b+ w
i=k+1 i=m+1 i=1

Note that 1 —I(I) = I(~I) for all literals [, and p!” is associated with the falsity of p;, for
all ¢ € [1..5]. It is important to observe that negation was not used for positive literals
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in order to avoid oversimplifications in program reducts. Indeed, as already explained,
for all i € [1..5], atom p!” will be derived true whenever p; is false, but also when the
aggregate is true.

The intuition behind (8)—(9) is similar. Essentially, an aggregate SUM(S) # b of
the form (3) is true if and only if either SUM(S) > b+ 1 or sUM(S) < b — 1 is true,
and (E2) is applied to the second aggregate in order to use the previously explained
rewriting. Let rew™ denote the composition rew o pre.

Example 3. Consider again program I7; from Example 1. Its rewriting rew*(I11) is as
follows:

Ty 4 ~~E Lo — ~~Xo Y1 unequal Yo < unequal L <— ~unequal

unequal < auzx aur + SUM[1 : 22 2l 2y F: 3yl > 4
aux < SUM[1 : 2132 : 932 : 4133 : y2] > 6
a:f — ~x1 xf < aur T \/xf $— ~aUT
zg — ~Tg a:g < aur To V x2F &~ OUT
Yy~ yi < aux g1 Vyf < ~~auz
Y3 <~y yd < aux Yy Vy§ < ~~aux

The only stable model of rew* (1) is {1, unequal, y1, y2, auz, v¥" 2Ly y&}. A
Correctness of the rewriting can be established by slightly adapting the proof by [4].

Theorem 2 (Correctness). Let I1 be a program. It holds that 11 = s (ypy rew™ (I1).

4 Implementation

The rewritings introduced in Section 3 have been implemented in a prototype sys-
tem written in Python and available at the following URL: http://alviano.net/
software/f-stable-models/. The prototype accepts an input language whose
syntax is almost conformant to ASP Core 2.0 [2]. It is a first-order language, meaning
that propositional atoms are replaced by first-order atoms made of a predicate and a list
or terms, where each term is an object constant, an object variable, or a composed term
obtained by combining a function symbol with other terms. As usual in ASP, all vari-
ables are universally quantified, so that the propositional semantics given in Section 2
can be used after a grounding phase that replaces variables by constants in all possible
ways.

The only exception to the ASP Core 2.0 format is that sums have to be encoded
using the standard predicates f_sum and f_set. Moreover, only positive literals can
occur in aggregation sets. In more detail, a sum of the form SUM[w; : p1,...,w, :
Pn] ®b, where n > 0, b, w1, . . ., w, are integers, p1, . . . , p, are (first-order) atoms, and
©® € {<, <, >,>,=,+#}is encoded by the following first-order atom:

f-sum(id, 1(®),b)

where p(®) equals "<", "<=", ">="_nsn on_n_ or " 1="_and {d is an identified for
the aggregation set, encoded by the following rules:

f*set(idawhpl) —P1 f,set(z'd,wn,pn) <~ Pn
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where a body p; (¢ € [1..n]) can be omitted if p; has no variables. (It is also possible
to extend a body of the above rules in order to further constrain the aggregation set;
for example, arithmetic expressions can be used to restrict the selection of atoms in the
aggregation sets.)

Example 4. Program II; from Example 1 is encoded as follows:

Xy :— not not x3. unequal : — f_sum(uneq, " !=",5).
X5 1 — not not xs. f_set(uneq, 1,x).
y1 : — unequal. f_set(uneq, 2, x5).
y2 : — unequal. f_set(uneq, 2,y1).
:— not unequal. f_set(uneq, 3,y,).

where not encodes the negation as failure symbol ~, and rules with empty head are
integrity constraints, i.e., rules whose head is equivalent to L.

Alternatively, instances of Generalized Subset Sum can be specified by means of
facts involving predicates ezists, all, and bound. For example, the instance above is
encoded by the following facts:

exists(xy,1). all(ys, 2). bound(5).
exists(xy,2). all(ys, 3).

A program encoding the Generalized Subset Sum problem for instances encoded by
these predicates is the following:

true(X,C) : — exists(X,C), not not true(X,C).
true(X,C) : — all(X,C), unequal.

:— not unequal.

unequal : — f_sum(uneq, " !=",B), bound(B).
f_set(uneq, C, true(X,C)) : — true(X, C).

where X, C, and B are object variables. |

Given a program encoded as described above, the prototype obtains its propositional
version by means of the grounder GRINGO. During the grounding phase, instances of
predicate f_sum are considered external, i.e., they are assigned the truth value unde-
fined in order to prevent their elimination. These instances and those of predicate f _set
are identified and mapped in data structures of the prototype, so to have an internal rep-
resentation of all sums occurring in the propositional program. The rewritings presented
in Section 3 are then applied to these sums in order to eliminate any non-convexity. The
new sums, and any additional rule introduced by the rewriting process, are added to
the propositional program. Finally, the propositional program is printed to the standard
output using the numeric format of GRINGO, so that CLASP can be used for computing
its F-stable models, which eventually coincide with the F-stable models of the original
program because additional atoms are hidden.
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5 Experiment

The implemented rewritings were tested on a few domains that can be encoded us-
ing recursive sums. One of them is the Generalized Subset Sum problem presented in
the introduction, which is of particular relevance in this experiment because its natu-
ral encoding in ASP requires a recursive non-convex sum. In fact, an ASP encoding
for this problem that does not rely on recursive sums is not available, and therefore
in this case the performance of the prototype was compared with an SMT encod-
ing fed into Z3. The other two problems considered in this experiment are k-Clique-
Coloring and 2-QBF, Y¥-complete problems whose natural encodings in ASP do not
rely on recursive sums. In these two cases, an alternative encoding using recursive sums
can be obtained, even if usually paying an overhead on the running time. The aim of
the experiment for these two problems is to evaluate such an overhead. All tested in-
stances are available at the following URL: http://archives.alviano.net/
publications/2015/RCRA2015-experiment.zip.

The experiment was run on an Intel Xeon CPU 2.4 GHz with 16 GB of RAM. CPU
and memory usage were limited to 900 seconds and 15 GB, respectively. GRINGO,
CLASP, and Z3 were tested with their default settings. Their performances were mea-
sured by PYRUNLIM (http://alviano.net/software/pyrunlim/). The re-
sults are reported in Table 1, where each row reports the number of instances and, for
each tested ASP encoding, the number of solved instances, the average execution time
and the average memory consumption. Data for Z3 are not reported in the table because
it was run only on Generalized Subset Sum, discussed below.

Generalized Subset Sum [6]. Two vectors v and v of integers as well as an integer b are
given, and the task is to decide whether the formula 3zVy(uz+vy # b) is true, where x
and y are vectors of binary variables of the same length as u and v, respectively. For an
instance such that u = uq, ..., Uy (M > 1) and v = v1,...,v, (n > 1) the following
ASP encoding was tested (actually, its non-propositional version):

Xy 4 oy Vi € [1..m]

Yi < unequal Vi € [1..n]

1+ ~unequal

unequal < SUM[UT : T1, ... U & Ty U1 5 Yly-evs U i Yn] £ D

Table 1. Performance of GRINGO+CLASP (number of solved instances; average execution time
in seconds; average memory consumption in MB).

Aggregates Alternative

Benchmark inst sol time mem sol time mem

Generalized Subset Sum 46 38 1.1 44 n/a n/a n/a
k-Clique Coloring 60 60 177.2 863 60 20.9 205

Preprocessing Track 17 8 64.8 171 9 98.3 171
QBFLib Track 32 1 0.1 101 1 0.1 102
Application Track 48 13 126.1 45 19 22.7 45

2-QBF
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As for 73, the following SMT encoding was tested:

Yyp - Vyn (ite(xy,u1,0) + - - - 4 ite(@pm, um, 0) +
ite(y1,v1,0) + -+ - + ite(yn, vn, 0) # b)

where x4, ...,z and y1, . . ., y, are Boolean constants and variables, respectively, and
ite(¢, t1,t2) is an if-then-else expression, i.e., its interpretation is ¢; if ¢ is true, and to
otherwise. As reported in the table, the ASP encoding leads to an excellent performance
in many cases, with 38 solved instances and an average execution time of around 1.1
seconds. The performance achieved within the SMT encoding is instead less attractive,
with only 14 solved instances and an average execution time of around 34.7 seconds.
The tested ASP solver is also more efficient in memory, using 44 MB on average, while
148 MB are used by z3 to solve the SMT instances. The reason of such different per-
formances is that SMT is a more expressive language, allowing arbitrary alternations of
quantifies, while in ASP at most one alternation can be simulated by means of satura-
tion techniques. It turns out that ASP solvers can implement more optimized algorithms
for problems on the second level of the polynomial hierarchy.

k-Clique-Coloring [29]. Given a graph G = (V, E) with n nodes, and an integer k > 2,
is possible to assign k colors to vertices in V' such that each maximal clique K of G
contains two vertices of different colors? The tested encoding using non-convex sums
is reported below (again, its non-propositional version was actually tested).

T & ~~T¢ Vo € V, Ve € [1..k]
1<« SuM[l:@q,...,1 2] # 1. Ve eV
1 < ~saturate
Mg V out, VeV
ng < saturate Ve eV
out, < saturate Ve eV
saturate < ing, in, Ve,yeV, x#£vy, (v,y) ¢ E
saturate < ing, Ny, Tc, Ya Va,y €V, Ve,d € [1..k], c £ d
saturate < out,,SUM[n : saturate,
—1:ing,...,—1:in,, .,
Liing,...,1:in,] >0 Vx € V, where

{yla s 7yn—1} =V \ {.13},

{712 ={2| (z,2) € E}
Intuitively, a color is assigned to each vertex, and the saturation is activated whenever
one of the following conditions is verified:

— the guessed K contains two non-adjacent nodes, i.e., K is not a clique;

— the guessed K contains two nodes with different colors;

— there is a vertex € V' \ K such that x is adjacent to all vertices in K, i.e., K is
not a maximal clique.

The alternative encoding not using recursive sums is obtained by replacing the last rule
above with the following rule:

saturate <— outy, ouly, , ..., outy, VreV

10
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where {y1,...,y;} = {y € V\ {z} | (z,y) ¢ E}. Intuitively, in this case the third
condition leading to saturate is the following:

— there is a vertex © € V' \ K such that all vertices in V' that are not adjacent to x do
not belong to K, i.e., K is not a maximal clique.

For this problem, both encodings lead to solve all tested instances, which are the graphs
submitted to the 4th ASP Competition [2] for the Graph Coloring problem. However,
the overhead due to the use of recursive non-convex aggregates slows the computation
down by a factor of 8, and also the memory consumption is around 4 times higher.

2-OBF. Given a 2-DNF JzVy¢, is the formula valid? The tested encoding not using
sums is the following:

X 4=~ Vrex
1 ¢ ~saturate

y' vyt Vyey
y? < saturate Vyey
y¥ < saturate Vyey

saturate <— p(l), ..., u(l,) Viy A ANl €Ep, n>1

where y(x) = x and pu(—x) = ~x for all z € 7, and p(y) = y* and p(-y) = y¥ for
all y € §. An equivalent encoding using non-convex sums can be obtained by replacing
all rules with T or y" in the head with the following rules:

yT' < suM[l : saturate, —1 : y¥'] > 0 Yy ey
y¥ < suM(l : saturate, —1 : y*] >0 Vyey

The tested instances are all the 2-QBF instances in the QBF Gallery 2014 (http:
//agbf.satisfiability.org/gallery/results.html). Also in this case
there is an overhead due to the unnatural use of non-convex sums. It impacts signifi-
cantly on the Application Track, where the difference in terms of solved instances is 6.

6 Related Work

F-stable model semantics [14, 17] is implemented by widely-used ASP solvers [15, 20].
The original definition in [14, 17] is slightly different than the one provided in Sec-
tion 2. In fact, propositional formulas can be arbitrarily nested in [17], while a more
constrained structure is assumed in this paper in order to achieve an efficient imple-
mentation. On the other hand, double negation is not permitted in [14], even if it can be
simulated by means of auxiliary atoms: a rule p <— ~~p can be equivalently encoded
by using a fresh atom p’” and the following subprogram: {p < ~p, pf' « ~p}.
Similarly, negated literals cannot occur in the aggregates considered by [14] but again
can must be encoded by means of auxiliary atoms. Another difference with [14] is on
negated aggregates, which are not permitted by the language considered in this paper
because [17] and [14] actually assign different semantics to programs with negated ag-
gregates. As a final remark, the reduct of [14] does not remove negated literals from

11
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satisfied bodies, which however are necessarily true in all counter-models because dou-
ble negation is not allowed.

Techniques to rewrite logic programs with aggregates into equivalent programs with
simpler aggregates were investigated in the literature right from the beginning [32]. In
particular, rewritings into LPARSE-like programs, which differ from those presented in
this paper, were considered in [26]. As a general comment, since disjunction is not
considered in [26], all aggregates causing a jump from the first to the second level of
the polynomial hierarchy are excluded a priori. This is the case for aggregates of the
form SUM(SS) # b, AVG(S) # b, and COUNT(S) # b, as first noted by [33], but also for
comparators other than # when negative weights are involved. In fact, in [26] negative
weights are eliminated by a rewriting similar to the one in (4), but negated literals
are introduced instead of auxiliary atoms, which may lead to unintuitive results [18].
A different rewriting was presented by [17], whose output are programs with nested
expressions, a construct that is not supported by current ASP systems. Other relevant
rewriting techniques were proposed in [8, 7], and proved to be quite efficient in practice.
However, these rewritings produce aggregate-free programs preserving F-stable models
only in the stratified case, or if recursion is limited to convex aggregates. On the other
hand, it is interesting to observe that the rewritings of [8, 7] are applicable to the output
of the rewritings presented in this paper in order to completely eliminate aggregates,
thus preserving F-stable models in general.

Several other stable model semantics were proposed for interpreting logic programs
with aggregates. Many of these semantics rely on stability checks that are not based
on minimality [30,31,33], and therefore the rewritings presented by [4] and recalled
in Section 3 cannot be used for these semantics. A more recent proposal is based on
a stability check that essentially eliminates aggregates from program reducts [23], and
therefore the rewritings by [4] cannot help also in this case. Finally, there are other ASP
constructs that are semantically close to aggregates, such as DL [13] and HEX [12]
atoms, for interacting with external knowledge bases possibly expressed in different
languages; as these constructs cannot be compactly reduced to sums in general, the
rewritings by [4] do not apply to these languages as well.

7 Conclusion

ASP takes advantage of several constructs to ease the representation of complex knowl-
edge. Aggregation functions are among the most commonly used constructs in ASP
specifications. The rewritings proposed by [4] provide a concrete simplification of the
structure of aggregations in input programs, so to improve the efficiency of low-level
reasoners. Such rewritings are implemented in a prototype system, presented in this
paper, which reported a reasonable performance on benchmarks for which more tai-
lored encodings using disjunction in rule heads exist. More relevant, when such an
aggregate-free encoding is unknown or untuitive, for example in the Generalized Sub-
set Sum problem, the rewritings implemented in the prototype are particularly useful.
Indeed, in this specific benchmark ASP solving significantly outperforms an alternative
encoding in the more expressive language of SMT.

12
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It must be remarked that this is only a preliminary evaluation of recursive non-
convex aggregates in ASP. For the future, we plan to collect more encodings for prob-
lems that can be easily represented by using recursive non-convex aggregates, so to
obtain a more suitable test suite for evaluating the efficiency of ASP solvers in pres-
ence of aggregations of this kind. Moreover, we will investigate alternative mappings
of common aggregation functions into sums, with the aim of simplifying some of the
rewritings by [4]. In particular, concerning ODD and EVEN, the rewritings by [4] are
quadratic in size, and hence an interesting question to answer is whether there exist
alternative rewritings of these aggregations whose sizes remain linear.
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Abstract. Answer Set Programming (ASP) is a well-known declarative pro-
gramming language for knowledge representation and non-mono&asgoming.
ASP solvers are usually written in C/C++ with the aim of extremely optimiz-
ing their performance. Indeed, C/C++ allow for several low level opttins,
which however come at the price of a less portable implementation. This is a
problem for some real world use cases which do not actually requierteamely
efficient computation, but would benefit from a platform-independendteasily-
deployable implementation. Motivated by such use cases, we develosr, a
new ASP solver written in Java and extending the open source libradgin or-

der to process ASP programs with atomic heads. We also report oliraipagy
experiment assessing the performancevaisp, whose results are encouraging:
JWASPIs a good candidate as an alternative ASP solver for platform-independe
applications, which cannot rely on current ASP solvers.

1 Introduction

Answer Set Programming (ASP) [5] is a declarative programgnpiaradigm, which has
been proposed in the area of non-monotonic reasoning aitaggramming. The idea
of ASP is to represent a given computational problem by alpgigram whose answer
sets correspond to solutions, and then use a solver to find [tile The availability of
solvers has made possible the application of ASP for soleamgplex problems arising
in several areas [1, 6], including Al, knowledge represiémteand reasoning, databases,
bioinformatics. Recently ASP has been also used to solvardauof industry-level
applications [7, 21].

Answer set programming is computationally hard, and mo#&m solvers are usu-
ally based on one of two alternative approaches. The firdtexdfe approaches consists
in implementing a native algorithm by adapting SAT solvieghniques [22]. In par-
ticular, CDCL backtracking with learning, restarts, andftiot-driven heuristics is ex-
tended with ASP-specific propagation techniques such gsostipference via Clark’s
completion, and well-founded inference via source po#f28]. The second approach
resorts on rewriting techniques into SAT formulas, whicé tiren evaluated by an off
the shelf SAT solver [13].

ASP solvers, like SAT solvers, are developed having in ntied dften well-deserved)
goal of maximizing performance. For this reason, ASP sehaze usually written in
C/C++, a programming language that is suited for implenmgrgieveral low level opti-
mizations, but at the price of a reduced portability. This jgoblem for some real world
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use cases which do not actually require the highest availaiformance in computa-
tion, but would benefit from a platform-independent andlgadployable implemen-
tation. For example, the iTravel system [20] takes advantdgsome ASP-based web
services implemented as Java servlets interacting miith [16] via the DLV WRAP-
PERAPI [19]. Usually, Java servlets are easily exportable asVgéchives, which are
then deployable to different servers by simply copying ttehiaes. Such a simplicity
was not possible with the ASP-based web services becaueeedif versions obLv
were required for servers running different operatingesyst A similar issue also af-
fects the distribution oAsrPIDE [9], an IDE for ASP developed in Java which must
include different versions of an ASP solver for differeneagting systems. An ASP
solver implemented in Java would simplify the distributmihASPIDE, not preventing
the possibility to run other ASP solvers written in C/C++ dated.

If on the one hand Java provides all the means for implemgiatiplatform-inde-
pendent ASP solver, on the other hand the following questi@ave to be answered:
How much overhead is introduced? Is the performance of ansd8fr written in Java
acceptable when compared with state of the art ASP solveni¥afed by the needs
arising in different use cases, and in order to answer thesguestions, we developed
JWAsP(https://github. com dodaro/jwasp. gi t), a new ASP solver writ-
ten in JavaJwAspis based on the open source libramar4J [15]. In particularJwAsp
extendssAT4J in order to process ASP programs with atomic heads.

A preliminary experiment assessing the performancer@fsphas been conducted
on benchmarks from the previous ASP competitions [1, 6].drtipular, IWASP was
compared with the following state of the art ASP solvers:riagvecLAsP 3.1.1 [11]
andwaAsP [3]; the rewriting-based P2sAT endowed bycLUCOSE[4]; andLP2SAT en-
dowed bysAT4J[15]. The results are encouraging. In fact, evenihspcannot match
the performance af LASP, which is actually expected, it can compete with a prominent
rewriting-based ASP solver usir@.UCOSE Our experiment highlights thatvAaspis
a good candidate as an alternative ASP solver for platfoieppendent applications,
where conventional solvers cannot be used or might not béartably integrated.

2 Preliminaries

Syntax and semantics of propositional logic and propasicASP are briefly intro-
duced in this section.

2.1 Propositional Logic

Syntax.Let A be a fixed, countable set of (Boolean) variables, or (prdjoosil) atoms,
including L. A literal ¢ is either an atonu, or its negation—-a. A clauseis a set of
literals representing a disjunction, and a propositioloamiula ¢ is a set of clauses
representing a conjunction, i.e., only formulasconjunctive normal forn{CNF) are
considered here.

SemanticsAn interpretatior/ is a set of literals over atoms id \ {_L}. Intuitively, lit-
erals inI are true, literals whose complement id/iare false and the remaining literals
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are undefined. An interpretatiahis total if there are no undefined literals, otherwise
I is partial. An interpretatiod is inconsistent if for an atom botha and—a are inlI.
Relationf= is inductively defined as follows: far € A, I = aif a € I, and] E —a

if —a € I, foraclause:, I | cif I = ¢ for somel € ¢; for a formulap, I = ¢ if

I cforallc € ¢. If I = thenl is amodelof ¢, I satisfiesp, andyp is true w.r.t.
I.If I = ¢ thenl is not a model ofp, I violatesy, andy is false w.r.t.I. Similar for
literals, and clauses. A formula is satisfiableif there is an interpretatiofi such that

I |= ¢; otherwisey is unsatisfiable

Example 1.Consider the following formula:
{a,=b}  {b,ma}  {-a}  {e}  {e, b}

¢ is satisfiable and the interpretatidér= {—a, —b, c} is a model. <

2.2 Answer Set Programming

Syntax. Let ~ denotenegation as failureA ~-literal (or just literal when clear from
the context) is either an atom (a positive literal), or amafweceded by- (a negative
literal). A logic program/T is a finite set of rules of the following form:

aebl,...,bk,ka+1,...,~bm (1)
wherem > 0, anda, b1, . . ., b, are atoms ind. For a ruler of the form (1), se{a} is
calledheadof r, and denoted{ (r); conjunctionby, . .., by, ~bg41, . . . , ~by, IS NamMed

bodyof r, and denoted(r); the set{by, ..., b, } and{bx41, ..., by} oOf positive and
negative literals inB(r) are denoted3™ (r) and B~ (r), respectively. Aconstraintis a
rule r such thatd (r) = {L}.

Semantics An interpretation/ is a set of~-literals over atoms itd \ { L}. Relationj=
is extended as follows: for a negative literal, I = ~a if ~a € I; for a conjunction
ly,....0, (n > 0)of literals, I = ¢y,...,¢, if I = ¢; forall i € [1..n]; for a rule
r, I Erif H(r)NnI # 0 wheneverl = B(r); foraprogramll, = ITif I = r
for all » € IT. The definition of a stable model is based on a notion of progieduct
[12]: Let IT be a normal logic program, andan interpretation. The reduct éf w.r.t.
I, denotedl1’, is obtained fromVT by deleting each rule such thatB—(r) N I # 0,
and removing negative literals in the remaining rules. Aeripretation/ is an answer
set forIl if I = IT and there is no total interpretatiohsuch that/ N A ¢ I N A and
J |= IT'. The set of all answer sets of a progrdfris denotedS M (IT). ProgramiT is
coherentif SM (IT) # 0; otherwise,IT is incoherent

Example 2.Consider the following progran:

a+c a <+ b,~e b+ a,~e
c < ~d d < ~c e <+ ~d
I ={a,~b,c,~d,e} is an answer set afl. <
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preprocessing choose undefined literg

[learnt loop formula]

[consistent]

well founded propagatio)
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restore consistengy [no undefined literals|

backjumping
[succeed]

®

INCOHERENT COHERENT

Fig. 1. Computation of an answer setiwASP.

3 Answer Set Computation inJWASP

In this section we first review the algorithms implementedwaspfor the computa-
tion of an answer set, and then we describe how these wererinepited by extending
SAT4J. The presentation is properly simplified to focus on the npainciples.

3.1 Main Algorithms

The main algorithm is depicted in Figure 1.

Preprocessing.The first step is a preprocessing of the input progédnthat is trans-
formed into a propositional formula called ti#ark’s completionof the program/7,
denoted”omp(IT). This step is performed since answer sets are supportedsiadg

A modelT of a programiT is supportedf eacha € I N.Ais supported, i.e., there exists
aruler € IT such thatH (r) = a, andB(r) C I. In more detail, given a rule € 11,
let auz,- denote a fresh atom, i.e., an atom not appearing elsewhereptnpletion of
IT consists of the following clauses:

- {—a,auz,,,...,auz, } for each atonu occurring inII, wherery, ..., r, are the
rules of IT whose head is;

- {H(r), ~auz, } and{auz, } UU,c p+ () 7@ U U,ep- () a for each ruler € I7;

— {—aux,, £} for eachr € II and( € B(r).
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After computing the Clark’s completio@'omp(II), the input is further simplified ap-
plying classical preprocessing techniques of SAT solg&;sahd then the nondetermin-
istic search takes place.

CDCL Algorithm. The main ASP solving algorithm is similar to the CDCL proceslu
of SAT solvers. In the beginning a partial interpretatibiis set to). Function unit
propagation extends with those literals that can be deterministically inferré@this
function returns false if an inconsistency (or conflict) &etted, true otherwise. When
an inconsistency is detected, the algorithm analyzes g@Bistent interpretation and
learns a clause using tHeUIP learning scheme [18]. The learned clause models the
inconsistency in order to avoid exploring the same searahdbr several times. Then,
the algorithm unrolls choices until consistency lofs restored, and the computation
resumes by propagating the consequences of the clauseddarthe conflict analysis.
If the consistency cannot be restored, the algorithm testeBreturningNCOHERENT.
When no inconsistency is detected, the well founded propagédetailed in the fol-
lowing) checks whethef is unfounded-freeln casel is not unfounded-free a clause
is added tacComp(II) and unit propagation is invoked. Ifis unfounded-free and the
interpretation/ is total then the algorithm terminates returnibfgHERENTand/ is an
answer set of/. Otherwise, an undefined literal, séyis chosen according to some
heuristic criterion. The computation then proceeds/an {¢}. Unit propagation and
well founded propagation are described in more detail ifaHewing.

Propagation rules.Jwasrimplements two deterministic inference rules for prunimg t
search space during answer set computation. These prapagales are namednit
andwell founded Unit propagation is applied first. It returns false if andnsistency
arises. Otherwise, well founded propagation is appliedl idended propagation may
learn an implicit clause i, in which case unit propagation is applied on the new
clause. More in details, unit propagation is as in SAT savAn undefined literaf is
inferred by unit propagation if there is a clausthat can be satisfied only iy i.e.,c

is such that € cis undefined and all literals ia\ {¢} are false w.r.tI. Concerning
well founded propagation, we must first introduce the notiban unfounded set. A
set X of atoms isunfoundedif for each ruler such thatH(r) N X # 0, at least
one of the following conditions is satisfied: (i) a litetak B(r) is false w.r.t.I; (ii)
BT(r) N X # (. Intuitively, atoms inX can have support only by themselves. Well
founded propagation checks whether the interpretatiotaimman unfounded séf. In
this case, it learns a clause forcing falsity of an atorXirClauses for other atoms i
will be learned on subsequent calls to the function, unlass@nsistency arises during
unit propagation. In case of inconsistencies, indeed, tifi@unded sek is recomputed.

3.2 Implementation

The implementation of a modern and efficient ASP solver meguhe implementation
of at least three modules. The first module is the parser obangt ASP program.
The second module computes the Clark’s completion. The thiodule implements
the CDCL backtracking algorithm extended by applying weliided propagation as
presented in Section 3.1. Concerning the pamsessPaccepts as input normal ground
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programs expressed in the numeric formatcaiNnGo [10]. The Clark’s completion is
computed after the whole program has been parsed. The tloddilmis implemented
by Jwaspexploiting the open source Java libraayT4J [15]. In particular,SAT4J pro-
vides an implementation of the base CDCL algorithimvasp extends this algorithm
by modifying the propagate function afat4J, which in our solver includes the well
founded inference rule. In particular, specific data stmes and the algorithm for com-
puting unfounded sets are introducedwaspPwhich are not provided bgaTt4J.

4 Experiment

The performance afwaspwas compared witltLAsP 3.1.1 and.P2SAT [13]. CLASP

is a native state of the art ASP solver, while2sSAT is an ASP solver based on a rewrit-
ing of the ASP program into a SAT formula that is evaluatecigisi SAT solver. Two
variants ofLP2SAT were considered, namely2GLucoseandLP2SAT4J, which use
GLUCOSE [4] and sAT4J [15] as SAT solver, respectively. All the ASP solvers use
GRINGO [10] as grounder. The experiment concerns a comparisoneogahvers on
publicly available benchmarks used in the 3rd and 4th ASPpetitions [1, 6]. The
experiment was run on a four core Intel Xeon CPU X3430 2.4 Giith 16 GB of
physical RAM, and operating system Debian Linux. Time andnwoy limits were set
to 600 seconds and 15 GB, respectively. Performance wasunegiagsing the tools
pyrunlim and pyrunnet t ps: // gi t hub. coni al vi ano/ pyt hon).

Table 1 summarizes the number of solved instances and thag@/eunning time
in seconds for each solver. In particular, the first colunports the considered bench-
marks; the remaining columns report the number of solvedimtes within the time-out
(solved), and the running time averaged over solved ins&ftime). The first obser-
vation is thattwaspoutperforms the rewriting-base®#2sat4J. In fact, swaspsolved
17 more instances tharP2sAT4J and it is in general faster. The advantagerehsp
is obtained in 3 different benchmarks, namely KnightTouaz&iGeneration, and Num-
berlink, whereswaspsolves 5, 7, and 3 more instances th&2sAT4J. Once the SAT
solver backhand is replaced by ucoSE a clear improvement of performance is mea-
sured.LP2GLUCOSE s clearly faster (it solves 20 instances more) tha@saT4J. In

Table 1. Solved instances and average running time.

LP2SAT4J JWASP LR2GLUCOSE WASP CLASP

Track # sol. avgt sol. avgt sol. avgt sol. avgt sol. avgt

GraphColouring 30 8 47.45 7 31.07 14 124.02 866.15 13 129.98
HanoiTower 30 2712080 26166.57 30 1041 3033.83 28 53.18
KnightTour 10 2 67.66 7 52.03 3 24.37 8 439 10 57.95
Labyrinth 30 1422234 1715844 18 151.70 2672.64 26 48.05
MazeGeneration 10 333246 10 5.06 4 164.15 10 3.10 10 1.04
Numberlink 10 4 98.05 7 7.67 5 164.67 812.71 8 791
SokobanDecision 10 6 46.57 7 6142 10 59.34 99215 10 42091
Total 130 64 133.72 8110050 84 82.45 994475 105 52.48
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this case, since the rewriting technique is the same, tferéifce of performance is due
to the fact thaGLucosEoutperformsLP2sAT4J. The performance gap between C++
and Java implementations can be observed also by comparisg and JWASP. In
particular,wAsP solves 18 more instances thawasp. The differences are noticeable
in Labyrinth wherewasp solves 9 more instances thawAsp. Similar considerations
hold by comparingcLAsP and JWASP. In fact, the former is in general faster solving
24 more instances than the latter. Finally, it is importamdte thatwasPris basically
comparable in performance witlP2GLUCOSE(the latter solves only 3 instances more
than the former). An in-depth analysis shows thanspris faster in KnightTour and
MazeGeneration solving 4 and 6 instances more tlR2GLUCOSE respectively. On
the contraryLP2GLUCOSEIs faster tharmwaspPin GraphColouring, HanoiTower, and
SokobanDecision. We observe that the main advantagave$pr over LP2GLUCOSE

is registered (as expected) in the benchmarks in which thefeeended propagation
(implemented natively bywasp) is applied, such as KnightTour and MazeGeneration.

5 Discussion

During recent years, ASP has obtained growing interesesfficient implementations
were available. For reason of efficiency, most of the mode®® Aolver are imple-
mented in C++. To the best of our knowledge, the only previava-based ASP solver
wasJSMODELS[14], which is not developed anymormsMoODELSwas based oeBMOD-

ELs featuring the DPLL algorithm and lookahead heuristicsnram abstract point of
view, JWASPis more similar to modern ASP solvers, likanspP[2, 3] andcLASP[11].

In fact, all the three solvers are based on CDCL algorithmsamdce pointers for the
computation of unfounded sets. Howewvaraspis implemented in Java and thus itis a
cross-platform and more portable implementation. An aliive to the development of

a native solver is to rewrite the input program into a CNF folanas done by the family
of solversLP2sAT [13]. This alternative approach can be applied to obtairva-based
solver by endowing P2sSAT with a Java-based SAT solver such s@sr4J. This ap-
proach is less efficient tharwasrin the experimental analysis reported in this paper. It
is worth noting that, botbwaspPandLpP2sAT apply the Clark’s completion [17]. Thus,
the main difference betweemwaspandLP2SAT4J consists of the native computation
of unfounded set ofwAask, which is obtained by using an algorithm based on source
pointers introduced bgMODELS[23].

In this paper we reported on the new Java-based ASP solvesp built on the
top of the SAT solversaT4J. The new solver was compared with both C++ and Java-
based approaches. In our experimewtAsp outperforms the Java-based alternative
LP2SAT4), and it is competitive with P2GLUCOSE However, as expectedwASPis in
general slower than the native solvers. This confirms thati@plementations are usu-
ally much faster than Java-based approaches as also n¢1&dl.iRuture work concerns
the extension ofwAspfor handling optimization constructs and cautious reaspni
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Searching for Sequential Plans
Using Tabled Logic Programming

Roman Bartdk and Jindfich Vodrazka
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Abstract. Logic programming provides a declarative framework for mod-
eling and solving many combinatorial problems. Until recently, it was not
competitive with state of the art planning techniques partly due to search
capabilities limited to backtracking. Recent development brought more
advanced search techniques to logic programming such as tabling that
simplifies implementation and exploitation of more sophisticated search
algorithms. Together with rich modeling capabilities this progress brings
tabled logic programing on a par with current best planners. The paper
brings an initial experimental study comparing various approaches to
search for sequential plans in the Picat planning module.

Keywords: planning; tabling; iterative deepening; branch-and-bound

1 Introduction

Automated planning was an important area for Prolog. PLANNER [5] was de-
signed as a language for proving theorems and manipulating models in a robot,
and it is perceived as the first logic programming (LP) language. Nevertheless,
since the design of STRIPS planning model [6], planning approaches other than
LP were more successful. SAT-based planning [9] is probably the closest ap-
proach to logic programming that is competitive with best automated planners.

For decades the so called domain-independent planning has been perceived
as the major direction of Al research with the focus on “physics-only” planning
domain models. This attitude is represented by International Planning Compe-
titions (IPC) [8] that accelerated planning research by providing a set of stan-
dard benchmarks. On the other hand and despite the big progress of domain-
independent planners in recent years, these planning approaches are still rarely
used in practice. For example, it is hard to find any of these planners in areas
such as robotics and computer games. This is partly due to low efficiency of
the planners when applied to hard real-life problems and partly due to missing
guidelines about how to describe planning problems in such a way that they are
efficiently solvable.

IPC accelerated research in domain-independent planning by providing en-
codings (domain models) for many benchmark problems. On the other hand, as
everyone is using IPC benchmark problems to evaluate the planners, there has
not been almost any research about how to encode the planning problems effi-
ciently. Also, though the role of domain knowledge is well known in planning [4],
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the domain-dependent planners were banned from IPC which further decreased
interest in alternative approaches to model and solve planning problems.

Recently, tabling has been successfully used to solve specific planning prob-
lems such as Sokoban [20], the Petrobras planning problem [2], and several plan-
ning problems used in ASP competitions [23]. This led to development of the
planner module of the Picat programming language. This general planning sys-
tem was applied to various domains in IPC and compared with best domain-
independent optimal planners [24] as well as best domain-dependent planners
[3]. In this paper we summarize the modeling and solving capabilities of Picat
and we focus on their deeper experimental comparison.

2 Background on Planning

Classical Al planning deals with finding a sequence of actions that change the
world from some initial state to a goal state. We can see Al planning as the task
of finding a path in a directed graph, where nodes describe states of the world
and arcs correspond to state transitions via actions. Let (s, a) describe the state
after applying action a to state s, if a is applicable to s (otherwise the function is
undefined). Then the planning task is to find a sequence of actions (a1, as, . .., ay)
called a plan such that, sp is the initial state, for each i € {1,...,n}, a; is
applicable to the state s;_1 and s; = v(s;_1, a;), and, finally, s,, satisfies a given
goal condition. For solving cost-optimization problems, each action has assigned
a non-negative cost and the task is to find a plan with the smallest cost.

As the state space is usually huge, an implicit and compact representation
of states and actions is necessary. Since the time of Shakey, the robot [15, 6], a
factored representation of states is the most widely used. Typically, the state of
the world is described as a set of predicates that hold in the state or by a set of
values for multi-valued state variables. Actions are then describing changes of the
states in the representation, for example, actions make some predicates true and
other false or actions change values of certain states variables. The Planning
Domain Definition Language (PDDL) [13] is the most widely used modeling
language for describing planning domains using the factored representation of
states. This is also the language of IPC competitions.

In Picat we will preserve the state-transition nature of classical Al planning,
but instead of factored representation we will use a structured representation of
states. Like in the PDDL, each action will have pre-conditions verifying whether
the action is applicable to a given state. However, the precondition can be any
Picat call. The action itself will specify how the state should be changed; we will
give some examples later.

3 Background on Picat
Picat is a logic-based multi-paradigm programming language aimed for general-

purpose applications. Picat is a rule-based language, in which predicates, func-
tions, and actors are defined with pattern-matching rules. Picat incorporates
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many declarative language features for better productivity of software devel-
opment, including explicit non-determinism, explicit unification, functions, list
comprehensions, constraints, and tabling.

In Picat, predicates and functions are defined with pattern-matching rules.
Picat has two types of rules: a non-backtrackable rule (also called a commitment
rule) Head,Cond => Body, and a backtrackable rule Head, Cond ?=> Body. In
a predicate definition, the Head takes the form p(tq,...,t,), where p is called
the predicate name, and n is called the arity. The condition Cond, which is
an optional goal, specifies a condition under which the rule is applicable. For
a call C, if C matches Head and Cond succeeds, then the rule is said to be
applicable to C'. When applying a rule to call C', Picat rewrites C into Body. If
the used rule is non-backtrackable, then the rewriting is a commitment, and the
program can never backtrack to C'. However, if the used rule is backtrackable,
then the program will backtrack to C' once Body fails, meaning that Body will
be rewritten back to C, and the next applicable rule will be tried on C.

Briefly speaking, Picat programming is very similar to Prolog programming.
By providing features like functions, list comprehensions etc., Picat programs are
even more compact and declarative than equivalent Prolog programs. Moreover,
the possibility of explicit non-determinism and unification gives the programmer
better control of program execution to make the code even more efficient. More
details about the Picat language can be found in the Picat documentation [16].

3.1 Tabling

The Picat system provides a built-in tabling mechanism [21] that simplifies cod-
ing of some search algorithms. Tabling is a technique to memorize answers to
calls and re-using the answer when the same call appears later. Tabling im-
plicitly prevents loops and brings properties of graph search (not exploring the
same state more than once) to classical depth-first search used by Prolog-like
languages. Both predicates and functions can be tabled; linear tabling [21] is
used in Picat. In order to have all calls and answers of a predicate or a function
tabled, users just need to add the keyword table before the first rule. For a pred-
icate definition, the keyword table can be followed by a tuple of table modes
[7], including + (input), - (output), min, max, and nt (not tabled). These modes
specify how a particular attribute of the predicate should be handled. For a pred-
icate with a table mode declaration that contains min or max, Picat tables one
optimal answer for each tuple of the input arguments. The last mode can be nt,
which indicates that the corresponding argument will not be tabled [22]. Ground
structured terms are hash-consed [19] so that common ground terms are tabled
only once. For example, for three terms c(1,c(2,¢c(3))), c(2,c(3)), and c(3),
the shared sub-terms c(2,c(3)) and c(3) are reused from c(1,c(2,c(3))).
Mode-directed tabling has been successfully used to solve specific planning
problems such as Sokoban [20], and the Petrobras planning problem [2]. A plan-
ning problem is modeled as a path-finding problem over an implicitly specified
graph. The following code gives the framework used in all these solutions:
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table (+,-,min)
path(S,Path,Cost), final(8) => Path = [], Cost = 0.

path(S,Path,Cost) =>
action(S,S1,Action,ActionCost),
path(S1,Pathl,Costl),
Path = [Action|Pathi],
Cost = Costl+ActionCost.

The call path(S,Path,Cost) binds Path to an optimal path from S to a final
state. The predicate final(S) succeeds if S is a final state, and the predicate
action encodes the set of actions in the problem.

3.2 Resource-Bounded Search

As mentioned in the previous section, the tabling mechanism supports solving
optimization problems, such as looking for the shortest path, using the table
modes min and max. When applied to the single-source shortest path problem,
linear tabling is similar to Dijkstra’s algorithm, except that linear tabling tables
shortest paths from the encountered states to the goal state rather than shortest
paths to the encountered states from the initial state. When looking for the
shortest path from a single initial state to some goal state only, such as in
planning, classical tabling may be too greedy as it visits the states that could
be farther from the initial state than the length of the shortest path from start
to goal. Resource-bounded search is a way to overcome this inefficiency.

Assume that we know the upper bound for the path length, let us call it a
resource. Fach time, we expand some state, we decrease available resource by
the cost of the action used for expansion. Hence less quantity of resource will be
available for expansion of the next state (if action costs are positive). The idea
of resource-bounded search is to utilize tabled states and their resource limits to
effectively decide when a state should be expanded and when a state should fail.
Let S denote a state with an associated resource limit, R. If R is negative, then
ST immediately fails. If R is non-negative and S has never been encountered
before, then S is expanded by using a selected action. Otherwise, if the same
state S has failed before and R’ was the resource limit when it failed, then S
is only expanded if R > R/, i.e., if the current resource limit is larger than the
resource limit was at the time of failure.

4 Planning in Picat

The Picat system has a built-in module planner for solving planning problems.
The planning problem is described as an abstract state transition diagram and
solved using techniques exploiting tabling. By abstraction we mean that states
and actions are not grounded, but described in an abstract way similar to model-
ing operators in PDDL. In this section we briefly introduce the planner module,
give an example of planning domain model in Picat, and describe available search
techniques to solve the planning problems.
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4.1 The planner Module of Picat

The planner module is based on tabling but it abstracts away tabling from
users. For a planning problem, users only need to define the predicates final/1
and action/4, and call one of the search predicates in the module on an initial
state in order to find a plan or an optimal plan.

— final(S): This predicate succeeds if S is a final state.

— action(S,NextS, Action, ACost): This predicate encodes the state tran-
sition diagram of a planning problem. The state S can be transformed to
NextS by performing Action. The cost of Action is ACost, which must be
non-negative. If the plan’s length is the only interest, then ACost = 1.

These two predicates are called by the planner. The action predicate specifies
the precondition, effect, and cost of each of the actions. This predicate is normally
defined with nondeterministic pattern-matching rules. As in Prolog, the planner
tries actions in the order they are specified. When a non-backtrackable rule is
applied to a call, the remaining rules will be discarded for the call.

4.2 Modeling Example

To demonstrate how the planning domain is encoded in Picat, we will use the
Transport domain from IPC’14. Given a weighted directed graph, a set of trucks
each of which has a capacity for the number of packages it can carry, and a set
of packages each of which has an initial location and a destination, the objective
of the problem is to find an optimal plan to transport the packages from their
initial locations to their destinations. This problem is more challenging than the
Nomystery problem that was used in IPC’11, because of the existence of multiple
trucks, and because an optimal plan normally requires trucks to cooperate. This
problem degenerates into the shortest path problem if 