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Abstract. Reconfiguration is an important aspect of industrial prod-
uct configuration. Once an industrial artefact has been built according
to an initial configuration, constant reconfigurations are necessary
during its lifetime due to changed requirements or a changed prod-
uct specification. This reconfigurations should affect as few parts of
the running system as possible. Due to the large number of involved
components, approaches based on optimization are often not usable
in practice. This paper introduces a novel approach for reconfigura-
tion based on a replay heuristic (the product is rebuilt from scratch
while trying to use as many decisions from the legacy configuration
as possible) and describes its realisation using the standard solving
technologies Constraint Satisfaction and Answer Set Programming.

1 INTRODUCTION
Configuration is the task of deriving a valid, complete and purposeful
system structure assembled from a set of components [14]. For non-
trivial configuration problems, like product configuration, we distin-
guish the following levels of models (cf. Table 1): the language used
to represent and solve the configuration problem (M4), the problem
domain model (M3), the problem instance model (M2), and the con-
figuration model (M1).

Table 1. Different levels of models in a configuration application.

M4 Modelling Lan-
guage

e.g. UML class diagrams and OCL,
CSP, ASP, ...

M3 Problem Domain
Model

Generic specification of the compo-
nent catalogue

M2 Problem Instance
Model

Requirements specification of a
concrete configuration problem

M1 Configuration
Model

Solution to M2: a configuration ob-
ject network

M3 is a generic specification of the problem domain. In an object-
oriented environment, this would be the class model. Constraints are
usually used to describe the different dependencies and restrictions
between the different objects. Such a model M3 defines the space
of all the technically feasible configuration solutions. Model M2 is
a concrete problem instance, containing specific requirement defi-
nitions which are usually formalized in terms of constraints, initial
configuration objects and requirement and resource parameters. M2
is based on M3 and uses its language and concepts (M4). Finally, M1
- a configuration - consists of all the instances, their properties and
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Figure 1. Reconfiguration scenarios.

relationships realizing a final system. If this configuration is com-
plete and consistent w.r.t. M3 and M2, M1 is said to be a solution of
the given configuration problem.

Reconfiguration is the task of changing a given configuration. Var-
ious scenarios are possible why a (partial) configuration becomes in-
consistent and reconfiguration is necessary (cf. Figure 1):

(a) The problem domain M3 has been changed. Reasons could be
changes in the product catalogue, changes in the structure of the
product line, regulation changes, etc. A legacy configuration al-
ready installed in the field may be inconsistent now to the new
problem domain description and must be reconfigured.

(b) The requirements in M2 has been changed or extended. Again, a
legacy configuration which is inconsistent now w.r.t. the changed
requirements must be adapted.

(c) A configuration (M1) has been changed by an external process
(e.g. by a manual user input or by reading a configuration from an
external repository) and is now inconsistent. Again, reconfigura-
tion must find a consistent modification of the configuration.

In all these cases, a crucial demand is that the reconfigured solu-
tion is as close as possible to the original configuration. The defini-
tion of the quality of a reconfiguration (How close is the new configu-
ration to the legacy configuration?) could get quite subtle. [Friedrich
et al., 2011], e.g., use cost functions for the different change opera-
tors. Reconfiguration is then the problem of minimizing the overall
modification costs. In this paper, we are using a more light-weight
approach: We don’t define cost functions but use a rather heuristic
and simple definition of minimality: the number of differences be-
tween the original and the reconfigured solution should be as small
as possible. This corresponds to equal cost values for all types of
modifications.
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We present methods how such reconfiguration problems can be
modelled and solved by variations of standard, complete solving
techniques (like SAT solving or backtracking). A challenge here is
that reconfiguration starts with an inconsistent configuration frag-
ment and standard solving (e.g. backtracking) would immediately re-
turn a failure result. Our idea is to start solving from scratch, but
trying to re-build the search tree following the decisions of a given
(inconsistent) legacy configuration. That’s why we call it replay-
based reconfiguration. The composition of a reconfiguration will de-
viate from the legacy configuration in cases where inconsistencies
are to be avoided.

Our main contributions in this work are: (1) An Answer Set Pro-
gramming (ASP) encoding of the reconfiguration problem using the
special predicate heuristic of clingo (Potassco [12]). (2) A
CSP encoding of the reconfiguration problem using a novel value
ordering heuristic which prefers value assignments from a legacy
configuration. (3) Experimental evaluation and indications of up to
which problem sizes these methods are applicable.

The rest of the paper is organized as follows: Section 2 sketches a
small hardware configuration problem which will serve as example
for the subsequent sections. Section 3 describes how the task of re-
configuration can be modelled and solved in 2 different frameworks:
ASP and standard CSP. We compare and evaluated these techniques
in Section 4 and conclude the work with a discussion of related works
and a conclusion.

2 EXAMPLE
A small example from the domain of railway interlocking hardware
should demonstrate the dynamics of the configuration problems we
want to model and solve. Of course, real-world problems are much
larger and the object network and dependencies between the objects
are more complex and varied.

Figure 2 shows the UML diagram and represents the problem do-
main M3 (cf. Table 1). A part of configuring an interlocking system is
to create appropriate control modules for each outdoor element (e.g.,
a signal or a switch point) and to place them into the right slots of a
frame, which in turn must be inserted into a rack. At the beginning,
only the outdoor elements are known. Racks, frames and modules
must be created during solving. In our example tracks require mod-
ules of type ’ModuleA’ and signals require modules of type ’Mod-
uleB’.

A concrete problem instance is defined by a set of outdoor ele-
ments of different kinds (model level M2). The goal is to find the
right set and constellation of racks, frames, and modules, such that
each element is connected to exactly one module. Of course, we aim
for a minimal set of hardware. Additionally, various types of con-
straints restrict the allowed constellations. Typical examples of such
constraints are: Some types of models should not be mixed within a
frame. Certain types of modules must not be mounted on neighbour-
ing places in the frame.

It shall be noted that for a concrete problem instance on model
level M2, it is not known beforehand how many racks, frames, and
modules are needed for a valid solution on model level M1. This is
why such kinds of problems are called dynamic problems in contrast
to static problems.

3 Approach
According to Fig. 1, inputs to the reconfiguration solver are the prob-
lem descriptions M3’ and M2’, and the legacy configuration M1’.

Figure 2. Problem domain model (M3) of a hardware configuration
problem example.

Output is M1” which should be consistent w.r.t. M3’ and M2’ and as
close as possible to M1’.

The basic of idea of our reconfiguration approach is to influence
a solver to search in the neighbourhood of the legacy configuration.
This is achieved by defining a heuristic for the solver to choose for
every decision the same value that has been used in the legacy con-
figuration, whenever possible. In a way this reconstruct the search
tree which was built creating the legacy configuration. Deviations
from that search tree should only happen when previously consistent
choices are inconsistent now.

Our approach will perform poorly, if there is no consistent con-
figuration close to an inconsistent legacy configuration. But the ap-
proach will perform well if only a small percentage of the overall
configuration is modified during reconfiguarion, which is the case in
most reconfiguration scenarios in practice especially for large con-
figurations. E.g., from our experience in the rail automation domain,
most system modifications are only very local changes in the outdoor
installation.

To show that our approach is applicable to different solving
paradigms we implemented it in two standard AI technologies, an-
swer set programming (ASP) and constraint satisfaction (CSP).

For the ASP implementation we used Potassco’s clingo which
allows to define domain specific heuristics within ASP with a special
predicate heuristic. With this predicate the solver can be influ-
enced to prefer certain atoms during solving. By giving the legacy
configuration as preferred heuristic facts we achieve a kind of replay
of the original configuration. Details are described in Chap. 3.1.

CSP systems often are more open to adaptations of the search pro-
cedure than ASP solvers. For our experiments, we used Choco which
allows to plug in your own variable and value ordering heuristics
used during backtrack search. We wrote variable and value ordering
heuristics which prefer the decisions of the legacy configuration. De-
tails are described in Chap. 3.2.

We chose Potassco and Choco for our experimental implemen-
tations because they are well recognized implementations of ASP
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and CSP technology. Potassco is very fast and regularly wins com-
petitions. Choco is a standard constraint solver in Java. Most likely
there are CSP systems with better performance, but we belief that all
solvers based on a backtracking scheme suffer from the same funda-
mental behaviour of sometimes running into heavy backtracking as
shown in our evaluation (cf. Sec. 4).

3.1 Answer set programming
ASP is a declarative problem solving approach, which originated in
the area of knowledge representation and reasoning [10]. To imple-
ment our approach we used the Potassco ASP implementation [12]
and our OOASP framework [16]. OOASP provides special predicates
for describing object-oriented knowledge bases in ASP. Our running
example can be declared in OOASP as follows:

ooasp_class("hw","Rack").
ooasp_class("hw","Frame").
ooasp_class("hw","Module").
ooasp_class("hw","ModuleA").
ooasp_class("hw","ModuleB").
ooasp_class("hw","Element").
ooasp_class("hw","Track").
ooasp_class("hw","Signal").

ooasp_subclass("hw","ModuleA","Module").
ooasp_subclass("hw","ModuleB","Module").
ooasp_subclass("hw","Track","Element").
ooasp_subclass("hw","Signal","Element").

ooasp_assoc("hw","Frame_modules",
"Frame",1,1,
"Module",0,5).

ooasp_attribute("hw","Module",
"position","integer").

ooasp_attribute_minInclusive("hw","Module",
"position",1).

ooasp_attribute_maxInclusive("hw","Module",
"position",5).

ooasp_assoc("hw","Module_element",
"Module",1,1,
"Element",1,1).

ooasp_assoc("hw","Rack_frames",
"Rack",1,1,
"Frame",0,4).

In a similar manner the predicates ooasp isa,
ooasp attribute value and ooasp associated are used to
define (partial) configurations i.e. instantiations of the object-model.

One standard reasoning task of OOASP is to complete a partial
configuration i.e. to add components to the partial configuration until
all constraints of the knowledge base are satisfied. For example given
a partial configuration consisting only of one track (represented by
the fact ooasp isa(”c”, ”Track”, ”A1”)), completing a configura-
tion will return all configurations containing one track, with at least
one module of type A, one frame and one rack.

3.1.1 Heuristic reconfiguration

Given an inconsistent legacy configuration the default reconfigura-
tion reasoning task in OOASP finds a valid configuration that is
cheapest in terms of some user defined cost function. The costs can

be either domain-specific or cardinality based. The cardinality based
cost function simply counts the difference (in number of facts) of the
legacy configuration and the reconfigured configuration. This default
reconfiguration task in OOASP is implemented using ASP optimiza-
tion statements. Unfortunately it has a bad performance for large
problem sizes due to the large number of possible configurations.
This was one of the motivations for developing a novel approach to
reconfiguration with OOASP based on heuristics.

Heuristic reconfiguration for OOASP de-
scribed in this paper uses the special predicates
heuristic(ATOM,TRUTHV ALUE,LEV EL) from

[11] to express heuristics in ASP . If during search
heuristic(ATOM,TRUTHV ALUE,LEV EL) can be

derived and LEVEL > 0 then the ASP solver will prefer setting
atom ATOM to TRUTHVALUE, if given a choice. With the heuristic
predicates the order in which solutions (answer sets) are found can
be influenced. It does not affect the set of found solutions.

To implement our heuristic approach we add the facts
describing the legacy configuration as heuristics facts
heuristic(FACTFROMLEGACY, true, 1) to the ASP

program and run the default OOASP configuration task with this
heuristic information. This way the ASP solver is expected to
find configurations that are close (cardinality based) to the legacy
configuration first.

For example given the heuristic information below the ASP solver
will try to assign track A1 first to the module M1 and set its position
to 4.

% user supplied fact
ooasp_isa("c","Track","A1")
% legacy configuration converted to heuristic
_heuristic(
ooasp_isa("c","ModuleA","M1"),
true,1).

_heuristic(
ooasp_attribute_value(

"c",
"position",
"M1",4),

true,1).
_heuristic(
ooasp_associated(

"c",
"Module_element",
"M1","A1"),

true,1).
...

3.2 Constraint satisfaction
The encoding of a dynamic problem with a standard constraint for-
malism (like MiniZinc2 or Choco3) makes it necessary to define a
maximum number of instances of each object type. If, e.g., we allow
at most 5 racks for our example problem in Section 2, the maximum
numbers of instances for the other types can be computed by cardi-
nality propagation: 20 frames, 320 modules and 320 elements. For
complex networks of classes, this cardinality propagation is not triv-
ial [4].

We briefly sketch here the CSP encoding of configuration prob-
lems we used in our implementation. We use a pseudo code notation,

2 http://www.minizinc.org/
3 http://choco-solver.org/
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which could directly be translated to a concrete CSP notation (e.g.
Choco). To represent the instances of a class, we use an array of
boolean variables representing which element is actually used in a
solution and which not. E.g., let r be that variable array for the class
Rack. nr be the maximum number of racks.

ri ∈ {0, 1}, ∀i ∈ {1, ..., nr}

The following symmetry breaking constraints states that unused
instances are always in the rear part of the array:

ri = 0→ rj = 0, ∀i,j ∈ {1, ..., nr}, i < j

Attribute encoding is straight-forward. For each possible in-
stance of a class, a CSP attribute variable is used. E.g., attribute
modulePos of modules is represented by the variable array mp
(let nm be the maximum number of modules):

mpi ∈ {−1, 1, ..., 16}, ∀i ∈ {1, ..., nm}

We provide a special attribute value (-1 for mp) for attributes
of unused components. The following constraint states that unused
components must have this special value, and used components must
have a value from the regular domain of the attribute.

mi = 0↔ mpi = −1, ∀i ∈ {1, ..., nm}

The interesting part of the model is the encoding of associations.
A very general approach is to represent each association by a ma-
trix of boolean variables on the instances of the two involved classes.
A matrix entry mij = 1 means that object with index i is associ-
ated to object with index j. This representation needs a lot of CSP
variables and makes the formulation of consistency constraints on
associations quite intricate, causing low solving performance. An-
other approach [7] models association links as ports; an object has
n association variables, where n is the maximum cardinality of the
association.

We use a simpler representation: For a 1:n-association, we use a
variable array on the n side of the association. Each such variable
points to the associated object, or has value -1, if not connected. Ex-
ample: The association

Rack Frame
1

0..4

is represented as an integer variable fr for each frame:

fri ∈ {−1, 1, ..., nr}, ∀i ∈ {1, ..., nf}

The special value -1 is used if a frame is not associated to a rack
at all. This special value is also used for unused frames.

fi = 0→ fri = −1, ∀i ∈ {1, ..., nf}

Additional consistency constraints are needed to rule out invalid
association constellations. Each used frame must be connected to a
rack:

fi = 1→ fri ∈ {1, ..., nr}, ∀i ∈ {1, ..., nf}

Frames can only be connected to used racks:

fri ≥ 1→ rfri = 1, ∀i ∈ {1, ..., nf}

Only up to 4 frames are allowed in a rack:

| {frj | j ∈ {1, ..., nf }, frj = i } | ≤ 4, ∀i ∈ {1, ..., nr}

Example for a constraint on attributes and associations: All mod-
ules in a frame must have different module positions:

mfi = mfj∧mfi ≥ 1→ mpi 6= mpj , ∀i,j ∈ {1, ..., nm}, i < j

It should be noted that such object-constraint mapping on dy-
namic problems (where the number of instances in a solution is not
known beforehand) has many disadvantages: (1) The representation
of objects as a flat set of constraint variables is very unnatural and
hard to read, debug, and maintain. This can be mitigated by an
automatic translation from objects to constraints. (2) A maximal set
of possible object instances must already be provided at problem
formulation. Decisions on maximum values are in general not easy;
too few objects could rule out possible solutions; too many objects
blows up the problem size. (3) Current constraint solvers (mainly
based on backtracking) are very sensitive to changes. Small changes
in the variable structure or of the constraints could hugely influence
solving performance, which makes a repeated tuning of the variable
and value ordering heuristics necessary. (4) The representation of
associations is crucial. A simple representation, as described above,
does not directly support n:m associations and ordered associations.
More elaborate encodings are difficult to handle in terms of con-
straint formulations, and often impair performance. (5) Modelling
of inheritance additionally increases representation complexity. (6)
Attributes of more complex types, like reals, multi-valued variables,
or strings, are often not supported at all in constraint systems.

To formalize reconfiguration in terms of standard CSP, we first
need to define a metric to have a notion of the distance between
a legacy configuration and a reconfigured solution. Let (V,D,C)
be a CSP with variables V , their domains D, and constraints C.
An assignment is a tuple (v, d), v ∈ V , d ∈ Dv , represent-
ing the assignment of value d to variable v. Let A be a set of
assignments. vars(A) is the set of variables in A: vars(A) =
{v | (v, d) ∈ A}. vars(A1, A2) is the set of variables both in A1
and A2: vars(A1, A2) = {v | v ∈ vars(A1), v ∈ vars(A2)}.
diff(A1, A2) is the number of assignments with different values on
the common variables in A1 and A2:

diff(A1, A2) = | {v | v ∈ vars(A1, A2),

(v, d1) ∈ A1, (v, d2) ∈ A2, d1 6= d2} |

diff defines a simple metric on the space of all assignment sets of
a CSP. The CSP reconfiguration problem can now be simply defined
as follows: Let (V,D,C) be a CSP. Let A be an assignment on V
or a subset on V . A is potentially inconsistent w.r.t. the constraints
C. A reconfiguration A′ is a consistent assignment on the variables
V (i.e., A′ is a solution of the corresponding CSP) which minimizes
diff(A,A′).

Reconfiguration can be simply implemented by slightly changing
the backtracking search procedure. We can’t start with the legacy
configuration (a variable assignment), because it is potentially incon-
sistent and standard backtracking would stop with output failure
immediately. But we could solve the problem from scratch and use
the legacy configuration to guide expanding the search tree. Each
time when a value for the current variable is selected, the value of
the legacy configuration - if an assignment tuple for that variable is
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part of the legacy configuration - is preferably chosen. Of course, if
that value is inconsistent with the current constellation, an alternative
value is taken. But basically, the legacy configuration is replayed, and
changes are made only because of inconsistent states. The result is a
consistent configuration which is very similar to the legacy configu-
ration, which is exactly what we want - we want minimal reconstruc-
tion of the system in the field.

A brief note on our implementation: We used the constraint solver
Choco V3.2.2 to represent and solve configuration problems (as de-
scribed in the first part of this subsection) and replay-based reconfig-
uration. Choco allows to plug in your own value selector by imple-
menting the interface IntValueSelector. With only a few lines
of code, we extended the standard value selector of Choco by pre-
ferring the values stored in a given legacy configuration. If a legacy
value for the current variable is not available or inconsistent, standard
Choco value selection is used.

Advantages: (1) This method is light-weight, i.e., no additional
modelling concepts (like cost functions) are needed. Changes in the
existing backtracking search procedures are minimal. (2) Most of the
existing backtracking algorithms (intelligent backtracking, etc.) and
variable and value ordering heuristics can still be used with only min-
imal adaptations. (3) Replay-based reconfiguration can be applied
to inconsistent configuration fragments, which is not the case for
standard backtracking and consistency algorithms. (4) The method
is complete (a solution is found, if one exists).

Disadvantages: (1) It is not guaranteed, that a solution with mini-
mal changes is found. The quality of the solution depends on the vari-
able/value ordering heuristics used. Nevertheless, results of our pro-
totypical implementation have shown, that the reconfiguration solu-
tions are often the optimum or very close to the optimum. (2) Replay-
ing an inconsistent configuration may lead search into inconsistent
branches which may heavily impair performance. (3) The approach
is suited only for domains where a cardinality based cost function is
applicable, e.g. homogeneous hardware configuration problems.

4 EVALUATION

We did experimental evaluations on our ASP (cf. Section 3.1) and
CSP (cf. Section 3.2) implementations using randomly generated
problem instances for the example problem domain sketched in
Fig. 2. We ran the tests on a standard Windows 7 machine with a
Intel dual-core i5 CPU and 8 GB RAM. We used clingo V4.4.0 from
the Potassco suite for the ASP implementation, and Choco V3.2.2
for the CSP implementation.

It should be mentioned that we intentionally didn’t use a high-
performance hardware setting and we did not do any coding opti-
mizations. Of course, ASP and CSP experts could find encodings
which would perform better, but we wanted to test if AI techniques
like ASP and CSP could be used by engineers with just standard
skills in these techniques.

The input values for our HW configuration problem are the num-
ber and types of Elements. We generated randomly a set of in-
put problem instances, solved them, made random changes to the
solutions and applied the heuristic replay-based solvers (both ASP
and CSP) to solve the reconfiguration problem. We measured solv-
ing time, memory consumption, and quality of the reconfiguration
solution (i.e., how close is the result to the original configuration).

It should be mentioned that integration of reasoning functionality
into our configuration infrastructure – an object-oriented data model
and environment implemented in Java – was easier with Choco than
with clingo, because Choco provides a Java API.

4.1 Performance: Time
Figures 3 and 4 show the solving time results for our ASP and CSP
implementations. The x-axis shows the different problem sizes in
terms of number of Elements. Note that the number of objects
in a configuration solution is far higher than these values, because all
the HW elements (racks, frames, modules) and internal variables are
created during solving. The y-axis shows the solving execution time
in seconds. For ASP, this is the sum of grounding and SAT solving
time.

We incremented the problem size, i.e. the number of Elements,
in steps of 10. We generated 40 different configurations per problem
size, modified them randomly and solved the reconfiguration prob-
lem. Black circles in the plots are the measured times for each run.
Blue squares are the mean runtime values for that problem size. Red
triangles indicate timeouts (time > 2 minutes).
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Figure 3. ASP solving times.
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Figure 4. CSP solving times.

We made the following interesting observations:

• ASP is much more robust than CSP. For problems up to a size of
ca. 90 Elements ASP finds a solution in a well predictable time.
In contrast, CSP often needs a lot of time even for small problems
and very often runs into timeout.

• Consequently, the sizes of problems where ASP finds a solution in
acceptable time is also well predictable. In our test environment,
ca. 100 Elements are the upper limit for ASP.

• CSP is much more sensitive to the input problem constellation. If
the backtracking procedure makes invalid choices in the first part
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of the search tree, backtracking gets out of hand. This is why CSP
runs very often into timeout even for small problem sizes. In cases
without or with little backtracking, CSP is very fast, even for large
problems.
If one is willing to tune the variable and value ordering heuristics
for her/his specific problem instance, CSP can solve much bigger
problems than ASP very efficiently. The key is to avoid backtrack-
ing.

• The variance of runtime continuously grows with problem size
for ASP. This is not the case for CSP. If CSP manages to solve the
problem, it can do it most of the time very quickly. For the solvable
problem sizes, there is rarely a difference in the CSP runtimes
depending on the size of the input variables.

4.2 Performance: Memory
For all the test cases, we also measured indicators for memory con-
sumption (cf. Fig. 5). For ASP, we used grounding size in MBytes.
For CSP, we counted the number of CSP variables used. Note that,
aside from user-defined variables (cf. Section 3.2), Choco creates a
lot of additional, internal variables. Of course, grounding memory
size for ASP and numbers of variables in CSP cannot be compared
directly, but they give good indicators about the memory growth rate
depending on the input configuration size.
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Figure 5. (a) ASP grounding memory size. (b) CSP number of variables.

Not surprisingly, memory of both ASP and CSP grows with ac-
celerated speed depending on the problem size. ASP grows with a
slightly higher rate. Not only in the context of reconfiguration, ASP
often shows its limits at grounding. Most of the execution time and a
big amount of memory is used for grounding.

To give estimations of consumed memory for CSP is a bit more
subtle. As shown in Fig. 5(b), we used the number of variables as
memory indicator. A rough memory profile using Choco’s statistics
functionality has shown, that for 100,000 variables ca. 20 MByte
RAM is consumed (for the cases without heavy backtracking). This
means that CSP’s footprint is roughly 20 times smaller than ASP’s
footprint.

4.3 Performance: Quality
To evaluate the quality of a reconfiguration we measured the distance
of the original, legacy configuration to the reconfigured solution. We
used a graph-based difference metric counting the differences in the
rack/frame/module constellation of the legacy configuration to the
reconfiguration.

The first and simplest case is to provide a legacy configuration
which is already consistent. This means that a reconfiguration should

reproduce the legacy configuration without any changes. Both ASP
and CSP did this in many test cases of various sizes.

The more interesting case is a legacy configuration which is in-
consistent to the problem description. For each problem size (start-
ing from 10 Elements up to 80 Elements in steps of 10), we ran-
domly modified up to 20% of a valid configuration. For each problem
size, we did 40 different tests.
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Figure 6. ASP and CSP reconfiguration quality.

The results are shown in Fig. 6. ASP most of the time finds so-
lutions of high quality. In fact, for smaller problem sizes we could
manually verify that ASP nearly all the times finds the optimal solu-
tion. With CSP, the mean distance to the legacy configuration is a bit
higher than with ASP, but has an acceptable quality on most of the
cases.

4.4 Evaluation Summary

Table 2 gives a summarized comparison of our ASP and CSP re-
configuration encodings and the results of our experimental evalua-
tions. For solving placement problems like our hardware example,
there is no clear winner. If the problem is of moderate size, ASP
provides a sound, predictable and easy-to-use reasoning functional-
ity. For larger problem, CSP may be better, but probably additional
coding is needed for tuning search.

5 RELATED WORKS

Related to our work presented in this paper are all techniques for
finding a valid reconfiguration for a given, possibly inconsistent con-
figuration (fragment). The main research approaches are:

Repair-based approaches. Repair-based approaches aim for find-
ing diagnoses and repairs to conflicting requirements or con-
straints [5]. Usually, methods from model-based diagnosis are used
(e.g., minimal hitting sets). Repair-based approaches are mainly stud-
ied in the context of recommender systems [6]. These approaches are
complete, they are based on a clean, formal theory, and they typically
take user needs into account. Those repairs are in favour which may
be of most usefulness for the user. When applied in a configuration
context based on consistency and search algorithms, repair-based
methods introduce additional reasoning techniques which must be in-
tegrated into the configurator framework. Our heuristic, replay-based
approach uses conventional solving techniques with slight modifica-
tions for reconfiguration.
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Minimization of modification costs. The basis of these approaches
is the definition of cost functions for the different modification op-
erations [9]. Reconfiguration is then finding a valid modification
of the configuration which minimizes the sum of all modification
costs. Such techniques have been, e.g., intensively studied in the re-
search project RECONCILE4. The possibility of defining elaborate
cost functions for configuration modifications along with a complete
optimization search procedure (in [9], based on ASP) is a great ad-
vantage for applications where modifications in the field are expen-
sive. But this comes at the price of considerable additional modelling
concepts for cost functions and often declined solving performance.
Compared to that, our approach is light-weight in the sense that no
additional modelling is necessary, and most of the advanced back-
tracking algorithms with only minimal adaptations are applicable.

Table 2. Comparison of ASP and CSP reconfiguration modelling and
behaviour.

ASP CSP

Robustness High
Predictable

Low
Very sensitive to input con-
stellation and problem for-
mulation

Performance Good for small problem
sizes
Does not scale for larger
problems

Very good, if no or little
backtracking, else timeout
Probability of timeout
grows with problem size

Memory
footprint

High (grounding!) Low

Solution
quality

Very good
Most of the time the opti-
mum or close to the opti-
mum

Never better than ASP, but
most of the time acceptable

Integrability Typically, ASP systems are
not as easy to integrate into
a Java environment as CSP
systems.
The ASP solvers Potassco5

and Smodels6 provide C++
libraries, DLV7 recently
provided a Java interface
(JDLV8).

Many CSP solvers sup-
port APIs to programming
languages like Java (e.g.
Choco9, JaCoP10) or C++
(e.g. Gecode11, Minion12).

Problem
encoding

Favoured is an automatic
transformation from the
object-oriented problem
description to ASP. Direct
ASP encoding is also
possible, because ASP has
a compact syntax and is
readable.

Direct encoding of an
object-oriented data model
with a CSP system is quite
intricate and error-prone.
Automatic transformation
is highly recommended.

Local search methods. The main alternatives to backtracking-like
search are so-called heuristic (or local) search strategies which try

4 http://isbi.aau.at/reconcile/
5 http://potassco.sourceforge.net/
6 http://www.tcs.hut.fi/Software/smodels/
7 http://www.dlvsystem.com/
8 http://www.dlvsystem.com/jdlv/
9 http://choco-solver.org/
10 http://www.jacop.eu/
11 http://www.gecode.org/
12 http://minion.sourceforge.net/

to find solutions in a hill-climbing manner (e.g. greedy search algo-
rithms, genetic algorithms). In the context of product configuration,
Generative CSP (GCSP) is an extension of standard CSP and has
been introduced in [8] for large, dynamic configuration problems. In
GCSP, mainly local search techniques - repair-based local search -
are used because no fast complete search methods are available yet
for dynamic systems. Repair-based local search tries to find local
modifications of an inconsistent or incomplete configuration. Thus,
this technique intrinsically can deal with inconsistent configuration
(fragments). Complex, dynamic problems can be modelled in a very
natural way using object-oriented concepts. The main disadvantage
of local search methods is that they are incomplete – they may get
stuck in a local optimum during search and may not find a solution,
even if one exists. Compared to that, our approach is complete, be-
cause it is based on an exhaustive tree search (backtracking).

Rule-based approaches. Especially in model-driven engineering,
a lot of research in model synchronization has been done and is still
on-going. Correspondences between two models are defined as trans-
formation rules, describing how values from one model are mapped
to another model. Examples of such systems are triple graph gram-
mars [13] or JTL [2]. Model synchronization (corresponding to re-
configuration in our definition) is done by triggering the transforma-
tion rules. Applying such methods to a reconfiguration problem in
product configuration means that all necessary types of modification
operations for transforming an invalid configuration to a valid one
must be specified explicitly. Our heuristic, replay-based approach
does not need any additional knowledge like transformation rules.
Reconfiguration is guided by a legacy configuration and a declara-
tive problem specification (models M3 and M2 in Tab. 1).

Common to all these approaches – at least to a certain degree –
is that reconfiguration actions are modelled on a declarative level.
The specification of potential modification operations and reconfig-
uration reasoning are separated. Another approach used in industry
(e.g. in factory facilities, steel plants) is to offer upgrade or modern-
ization packages. There the focus lies on finding and recommending
modernization packages which are appropriate to add functionalities
to a system in the field.

6 CONCLUSION AND FUTURE WORK

There is no standard way of doing reconfiguration for product con-
figuration especially for large problem sizes. In this paper we showed
the implementation of a heuristic approach to reconfiguration us-
ing standard solving techniques and the applicability up to moder-
ate problem sizes. The main challenge for using these techniques in
an industrial setting are grounding size and solving time. Ground-
ing size typically can be influenced by finding a better encoding or
by problem decomposition. Solving time is also influences by the
encoding of the problem and by finding the right heuristic for the
domain.

Because of the heterogeneous nature of the constraints in prod-
uct configuration coming up with a good encoding and heuristics for
a problem is currently as much an art as a science and requires an
experienced knowledge engineer. Also it requires experiments with
different solving paradigms as SAT, ASP, CSP, MIP etc. Therefore
we welcome the further integration of AI and OR solving techniques
that have taken place in the last years as we believe there will not be
THE solving technique for product (re-)configuration in the foresee-
able future.

For the future we plan to further study and improve heuristic re-
configuration solving techniques and to apply them to fields beyond
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product configuration. As we have seen in our experiments, CSP
solving – though it is very fast and produces good results if it doesn’t
fall into a heavy backtracking trap – currently isn’t robust enough to
be applied in an industrial environment. We believe that the integra-
tion of additional heuristics which are automatically derived from the
problem domain or techniques like lazy clause generation [17] will
fix this problem of poor robustness. Also the integration of CSP and
ASP (CASP [1]) looks promising.

Interesting fields beyond product configuration, where reconfigu-
ration methods could be applied, are:

• Production configuration: With the increasing demand for indi-
vidualized products, the need for flexible production processes,
modular factories and intelligent production infrastructures is also
increasing. Factories of the future are generic production facili-
ties, that can be easily adapted to the needs of the product to be
manufactured [3]. This means, before the factory can manufacture
products of a product line, it has to be physically reconfigured for
the specific production setting. This includes reconfiguration of
the cyber-physical components of the factory [15], and therefore
the need for fast, flexible and robust reconfiguration technologies.

• Model synchronization: In model-driven engineering, model syn-
chronization is the task of finding a mapping between overlap-
ping concepts of two different models. Typically, the overlaps of
the two models are described as a correspondence model, includ-
ing constraints which define the dependencies and interactions be-
tween the models. This situation can be seen as a reconfiguration
problem: Given are two models (e.g., configuration instances of
two different configuators) which have been changed in the course
of a new system version, and a correspondence model. The recon-
figuration problem is now to find changes in the two evolved mod-
els which are (a) consistent to their domain model, (b) consistent
to the correspondence model, and (c) as close as possible to the
original models.

• Case-based reasoning: In case-based reasoning, a database of so-
lutions from previous problems are used to find a solution to a new
problem [18]. Usually, no perfectly fitting solution could be found,
but one which solved a similar problem. We think that our heuris-
tic, replay-based reconfiguration procedures could be applied to
the reuse/revise phase of case-based reasoning: To solve a new
problem try to rebuild the configuration of a solved problem.
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