
Learning Games for Configuration and Diagnosis Tasks
Alexander Felfernig1 and Michael Jeran1 and Thorsten Ruprechter1 and

Alexander Ziller1 and Stefan Reiterer1 and Martin Stettinger 1

Abstract. A goal of many Artificial Intelligence (AI) courses is
to teach properties of synthesis and analysis tasks such as configu-
ration and diagnosis. Configuration is a special case of design ac-
tivity where the major goal is to identify configurations that sat-
isfy the user requirements and are consistent with the configuration
knowledge base. If the requirements are inconsistent with the knowl-
edge base, changes (repairs) for the current requirements have to be
identified. In this paper we present games that can, for example, be
used within the scope of Artificial Intelligence courses to easier un-
derstand configuration and diagnosis concepts. We first present the
CONFIGURATIONGAME and then continue with two further games
(COLORSHOOTER and EATIT) that support the learning of model-
based diagnosis concepts.

1 Introduction
Theoretical problems of combinatorial games have long been studied
[8]. For example, Bodlaender [4] analyzes the properties of coloring
games were players have to color vertices of a graphs in such a way
that never two adjacent vertices have the same color. The player who
was last able to color a vertex in a consistent fashion wins the game.
Börner et al. [5] analyze complexity properties of different variants
of two-person constraint satisfaction [12] games were, for example,
two players alternately make moves and the first player tries to find
a solution whereas the second player tries to make the constraint sat-
isfaction problem (CSP) inconsistent. Different complexity classes
of such games are analyzed which primarily depend on the allowed
quantifiers – quantified constraint satisfaction problems (QCSPs) are
constraint satisfaction problems were some of the variables are uni-
versally quantified [9].

Bayer et al. [2] present an application that models Minesweeper
puzzles as a CSP [12]; the game supports players in finding a solution
and is primarily used as means to support students in understanding
the mechanisms of constraint-based reasoning. In a similar fashion,
Simonis [14] shows how to solve Sudoku puzzles on the basis of
constraint technologies. In addition to problem solving approaches,
the authors also focus on mechanisms for puzzle generation and pro-
pose measures for evaluating puzzle complexity. Finally, we want to
mention the application of constraint technologies in the context of
the generation of crossword puzzles. In crossword puzzle generation
[3], a crossword puzzle grid has to be filled with words from a dictio-
nary in such a way that none of the words in the dictionary is included
more than once in the grid.

In the line of previous work, we present the CONFIGURATION

GAME which is based on conventional CSP representations [12] and

1 Graz University of Technology, Institute for Software Technol-
ogy, Austria, email: {felfernig, jeran, reiterer, stettinger}@ist.tugraz.at
{thorsten.ruprechter, alexander.ziller}@student.tugraz.at

was implemented with the goal to support the learning of basic con-
cepts of knowledge-based configuration [6, 15]. Furthermore, we in-
troduce two games which focus on analysis in terms of model-based
diagnosis [13]. COLORSHOOTER and EATIT are based on the ideas
of model-based diagnosis and were developed to support students in
the understanding of the principles of hitting set determination [13].
To the best of our knowledge these are new types of games based
on conflict detection [10] and model-based diagnosis [7, 13]. All the
presented games are serious games [11] with the purpose of teaching
AI knowledge and also domain knowledge (EATIT).

The remainder of this paper is organized as follows. In Section 2
we introduce definitions of a configuration and a corresponding di-
agnosis task. The subsequently presented games are discussed on the
basis of these definitions. In Section 3 we introduce the CONFIGU-
RATIONGAME Android app and present the results of a correspond-
ing user study. In Section 4 we introduce the COLORSHOOTER diag-
nosis game and also present results of a user study. In Section 5 we
introduce a new diagnosis game embedded in the domain of healthy
eating. In Section 6 we discuss issues for future work. With Section
7 we conclude the paper.

2 Configuration and Diagnosis Task

Knowledge-based Configuration is one of the most successful tech-
nologies of Artificial Intelligence [6, 15]. Configurators determine
configurations for a given set of user requirements, for example, on
the basis of constraint technologies. In terms of a CSP, a configura-
tion task and a corresponding solution can be defined as follows.

Definition 1 (Configuration Task and Solution). A configura-
tion task can be defined as a constraint satisfaction problem
(V,D,C) where V = {v1, v2, ..., vn} is a set of variables, D =
∪dom(vi) represents the corresponding domain definitions, and
C = {c1, c2, ..., cm} is a set of constraints. Additionally, user
requirements are represented by a set of constraints CREQ =
{r1, r2, ..., rk}. A solution for a configuration task is an assignment
S = {inst(v1), inst(v2), ..., inst(vn)}where inst(vi) ∈ dom(vi)
which is consistent with the constraints in C ∪ CREQ.

Example (Configuration Task and Solution). An example of a very
simple configuration task (and a corresponding solution S) repre-
sented as a constraint satisfaction problem is the following. Such
configuration tasks have to be solved by players of the CONFIGU-
RATION GAME (see Section 3). This example represents a simple
Map Coloring Problem were variables (V = {v1, v2, v3}) represent,
for example, countries on a map and the constraints (C = {c1, c2})
restrict solutions to colorings were neighborhood countries must be
represented by different colors. In our example we assume that the
neighborhood countries are {v1, v2} and {v2, v3} and the user re-
quirements are CREQ = {r1 : v1 = 1}. A player of the CONFIG-

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

111

jutiihon
Typewriter
Short paper



URATIONGAME has successfully solved a configuration task (found
a solution S) if consistent(S ∪ CREQ ∪ C).

• V = {v1, v2, v3}
• dom(v1) = dom(v2) = dom(v3) = {1, 2}
• C = {c1 : v1 6= v2, c2 : v2 6= v3}
• CREQ = {r1 : v1 = 1}
• S = {v1 = 1, v2 = 2, v3 = 1}

In configuration scenarios it is often the case that no solution can
be found for a given set of user requirements (CREQ ∪ C is incon-
sistent). In this context, users are in the need of additional support in
order to be able to identify reasonable changes to the current set of
requirements more efficiently. Model-based diagnosis [13] can help
to automatically identify minimal sets of requirements that have to
be deleted (or adapted) such that a solution can be identified. A diag-
nosis task related to the identification of faulty requirements can be
defined as follows (see Definition 2).

Definition 2 (Diagnosis Task and Diagnosis). A diagnosis task can
be defined by a tuple (C,CREQ) where C represents a set of con-
straints and CREQ represents a set of customer requirements. If the
requirements in CREQ are inconsistent with the constraints in C,
a diagnosis ∆ (∆ ⊆ CREQ) represents a set of requirements such
that CREQ−∆∪C is consistent (in this context we assume that the
constraints in C are consistent). ∆ is minimal if ¬∃∆′ : ∆′ ⊂ ∆.

Example (Diagnosis Task and Diagnosis). An example of a sim-
ple diagnosis task and a corresponding diagnosis ∆ is the following.
Similar diagnosis tasks have to be solved by players of the the COL-
ORSHOOTER and the EATIT game (see Sections 4 and 5). The fol-
lowing example represents a diagnosis task were the set of customer
requirements (CREQ) is inconsistent with the constraints in C. A
player of COLORSHOOTER and EATIT has successfully solved a di-
agnosis task (found a diagnosis ∆) if CREQ−∆∪C is consistent.

• V = {v1, v2, v3}
• dom(v1) = dom(v2) = dom(v3) = {0, 1}
• C = {c1 : ¬(v1 = 1) ∨ ¬(v2 = 1), c2 : ¬(v1 = 1) ∨ ¬(v3 =

1), c3 : ¬(v2 = 1) ∨ ¬(v3 = 1)}
• CREQ = {r1 : v1 = 1, r2 : v2 = 1, r3 : v3 = 1}
• ∆ = {r1, r2}

A wide-spread approach to determine diagnoses for a given diag-
nosis task is to identify minimal conflict sets [10] in CREQ and to
resolve these conflicts on the basis of a hitting set directed acyclic
graph (HSDAG) approach [13]. A (minimal) conflict set can be de-
fined as follows (see Definition 3).

Definition 3 (Conflict Set). A set CS ⊆ CREQ is a conflict set
if CS ∪ C is inconsistent (C is assumed to be consistent). CS is
minimal if 6 ∃CS′ with CS′ ⊂ CS.

On the basis of a set of identified minimal conflict sets [10] we
are able to automatically determine the corresponding minimal diag-
noses (see Figure 1). In our example, the minimal conflict sets are
CS1 : {r1 : v1 = 1, r2 : v2 = 1}, CS2 : {r2 : v2 = 1, r3 : v3 =
1}, and CS3 : {r1 : v1 = 1, r3 : v3 = 1}. The corresponding min-
imal diagnoses are ∆1 : {r1, r2},∆2 : {r1, r3}, and ∆3 : {r2, r3}.
Exactly this example pattern is implemented in the diagnosis games
presented in Section 4 and Section 5.

3 CONFIGURATIONGAME

User Interface. With this game (see Figure 2), one should be able
to gain first insights into the basic concepts of knowledge-based con-

Figure 1. Example hitting set directed acyclic graph derived from the
conflict sets CS1, CS2, and CS3.

figuration. Constraints of the underlying CSP are depicted in the up-
per left corner. Constraints represent incompatible combinations of
values, i.e., combinations that must not be positioned on adjacent
vertices of the grid depicted in Figure 2. This way, tasks such as the
map coloring problem [4] can be defined as a simple configuration
problem (similar examples can also be found in [6]).

Each individual task to be solved by a player can be interpreted as
a configuration task (V,D,C) (see Definition 1). In the setting shown
in Figure 2, V = {v1, v2, ..., v14} represents a set of 14 intercon-
nected hexagons (in the center of the user interface). Furthermore,
it is assumed that each variable has the same domain (in Figure 3,
dom(vi)={1,2,3,4}) and possible variable instantiations are repre-
sented by the values (hexagons) in the lower right corner. Constraints
C = {c1, c2, ..., c16} represent incompatible colorings of adjacent
vertices, for example, c1 : ¬(v1 = 1 ∧ v2 = 1) ∧ ¬(v1 = 2 ∧ v2 =
2)∧¬(v1 = 3∧ v2 = 3)∧¬(v1 = 4∧ v2 = 4)∧¬(v1 = 4∧ v2 =
3)∧¬(v1 = 3∧v2 = 4)∧¬(v1 = 1∧v2 = 2)∧¬(v1 = 2∧v2 = 1).
Incompatibilities are defined by red lines between individual values
(left upper corner of Figure 2). A self-referring red line expresses an
incompatibility on the same value, i.e., two adjacent vertices must
not have to the same value. A proprietary constraint solver is used to
generate individual tasks with increasing complexity in terms of the
grid size (vertices and arcs) and the number of possible values and
also to check proposed solutions for consistency.

Figure 2. CONFIGURATIONGAME user interface.

The task of a player is to move values (hexagons) from the bot-
tom to corresponding (empty) hexagons depicted in the middle of
Figure 2. A player has found a solution if the grid instantiation S is

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

112



Figure 3. Results of a usability analysis of the CONFIGURATIONGAME on the basis of the system usability scale (SUS) [1].

consistent with the constraints in C.2 A screenshot of an intermedi-
ate state of the CONFIGURATIONGAME is shown in Figure 4. The
CONFIGURATIONGAME allows to define constraints that go beyond
typical patterns of map coloring problems [4] since different types of
incompatible adjacent vertices can be defined (in contrast to the map
coloring problem where only incompatibilities regarding the same
value (color) are defined). Instances of the configuration game are
generated automatically.

Figure 4. CONFIGURATIONGAME user interface (after the completion of
some configuration steps).

Empirical Study. N=28 subjects of a usability study evaluated the
CONFIGURATIONGAME. A first prototype of the game was made
available to the subjects in the Google Play Store. The questionnaire
was based on the system usability scale (SUS) [1] and thus focused
on analyzing usability aspects of the system under investigation. The

2 In the CONFIGURATIONGAME we assume that CREQ = {}.

system was considered as easy to understand and well integrated.
Results of the study are summarized in Figure 3.

4 COLORSHOOTER

User Interface. The COLORSHOOTER game (see Figure 5) fo-
cuses on providing first insights into the concepts of model-based
diagnosis [13]. The game is available online in the Apple App Store
(as an iOS application). The columns of the game represent mini-
mal conflict sets (see Definition 3) – related diagnoses (see Defini-
tion 2) are represented by minimal color3 sets such that at least one
color from each row is included. The game consists of twenty dif-
ferent levels and inside each level of 30 different individual COLOR-
SHOOTER tasks. Individual tasks are pre-generated in an automated
fashion where the #colums, #rows, # of different colors, and diagno-
sis cardinality are major impact factors for determining the complex-
ity of one COLORSHOOTER instance. Correct solutions (diagnoses)
are pre-generated on the basis of a HSDAG [13].

Figure 5. Example of a COLORSHOOTER diagnosis task.

Empirical Study. After two lecture units on model-based diag-
nosis [13], we investigated in which way COLORSHOOTER type
games can actively support a better understanding of the principles

3 For readability purposes we annotated the colored circles with numbers.

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

113



of model-based diagnosis. N=60 subjects (students) participated in a
user study where each participant was assigned to one of three dif-
ferent settings (see Table 1).

Participants of the first setting used the COLORSHOOTER game di-
rectly before solving two diagnosis tasks. Participants of the second
setting interacted with COLORSHOOTER one day before complet-
ing the two diagnosis tasks. Finally, participants of the third setting
never interacted with COLORSHOOTER but only solved the two di-
agnosis tasks. The two diagnosis tasks where designed in such a way
that a participant had to figure out all minimal diagnoses for each of
two predefined inconsistent constraint sets (C1 and C2). C1 included
4 constraints, 4 variables of domain size [1..3], and 3 related diag-
noses. C2 included 5 constraints, 4 variables of domain size [1..3]
and 6 related diagnoses. Preliminary results in terms of the number
of successfully completed diagnosis tasks are depicted in Table 1. In
the case of the more complex constraint set C2 we can observe a per-
formance difference between users who applied COLORSHOOTER

and those who did not.

setting
all minimal

diagnoses found
(C1)

all minimal
diagnoses found

(C2)
played directly before 33% 20%
played one day before 20% 20%

did not play before 23% 10%

Table 1. User study with three different settings: subjects played directly
before solving two diagnosis tasks, subjects played one day before, and

subjects did not use COLORSHOOTER.

5 EATIT

EATIT (see Figure 6) is an application currently under development,
i.e., no related user studies have been conducted up to now. The major
ideas of the game are the following: (1) similar to COLORSHOOTER,
students should be able to more easily understand the concepts of
model-based diagnosis. (2) there is a serious game [11] line of learn-
ing which is directly related to the underlying application domain:
users of the system should learn about, for example, which vitamins
are contained in which food. In EATIT, ”conflicts” are represented by
food items assigned to the same shelf (each food item contains the
vitamin represented by the shelf) and diagnoses represent minimal
sets of food items that are needed to cover all vitamins.

6 Future Work
In the CONFIGURATIONGAME our major goal for future work is to
extend the expressiveness of constraints that can be defined for con-
figuration tasks. A higher degree of expressiveness will allow the
inclusion of further tasks such as scheduling and resource balancing.
Furthermore, EATIT will be extended with functionalities that help
to include user preferences and menu quality. In the current version
of EATIT such aspects are not taken into account. In our future re-
search we will also analyze in more detail which specific game types
better help to increase understandability. Furthermore, we will an-
alyze to which extent the games can be exploited to develop better
configurator user interfaces and interaction schemes.

7 Conclusions
The overall goal of the (serious) games presented in this paper is to
help to better understand the concepts of configuration and model-
based diagnosis. Results of empirical studies are promising in the

Figure 6. Screenshot of EATIT. Each shelf represents food that contains a
specific vitamin (e.g., A, B1, ...). A solution (diagnosis) is found if the

selected food on the plate covers all vitamins.

sense that the apps are applicable and can have a positive impact on
the learning performance. Two of the presented games are already
available: COLORSHOOTER in the Apple App Store and the CON-
FIGURATIONGAME in the Google Play Store.

REFERENCES
[1] A. Bangor, P. Kortum, and J. Miller, ‘An Empirical Evaluation of

the System Usability Scale (SUS)’, International Journal of Human-
Computer Interaction, 24(6), 574–594, (2008).

[2] K. Bayer, J. Snyder, and B. Choueiry, ‘An Interactive Constraint-Based
Approach to Minesweeper’, in AAAI 2006, pp. 1933–1934, (2006).

[3] A. Beacham, X. Chen, J. Sillito, and P. vanBeek, ‘Constraint Program-
ming Lessons Learned from Crossword Puzzles’, in AI 2001, LNAI, pp.
78–87. Springer, (2001).

[4] H. Bodlaender, ‘On the Complexity of Some Coloring Games’, LNCS,
484, 30–40, (1991).

[5] F. Börner, A. Bulatow, H. Chen, P. Jeavons, and A. Krokhin, ‘The Com-
plexity of Constraint Satisfaction Games and QCSP’, Information and
Computation, 207(9), 923–944, (2009).

[6] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

[7] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing (AI EDAM), 26(1), 53–
62, (2012).

[8] A. Fraenkel, ‘Complexity, Appeal and Challenges of Combinatorial
Games’, Theoretical Computer Science, 313(3), 393–415, (2004).

[9] I. Gent, P. Nightingale, and K. Stergiou, ‘A Solver for Quantified Con-
straint Satisfaction Problems’, in IJCAI 2005, pp. 138–142, (2005).

[10] Ulrich Junker, ‘QUICKXPLAIN: preferred explanations and relax-
ations for over-constrained problems’, in 19th Intl. Conference on Artif-
ical Intelligence (AAAI’04), eds., Deborah L. McGuinness and George
Ferguson, pp. 167–172. AAAI Press, (2004).

[11] H. Kelly, K. Howell, E. Glinert, L. Holding, C. Swain, A. Burrow-
bridge, and M. Roper, ‘How to build Serious Games’, Communications
of the ACM, 50(7), 44–49, (2007).

[12] A. Mackworth, ‘Consistency in Networks of Relations’, Artificial Intel-
ligence, 8(1), 99–118, (1977).

[13] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[14] H. Simonis, ‘ Sudoku as a constraint problem’, in CP Workshop on
Modeling and Reformulating Constraint Satisfaction Problems, pp. 13–
27, (2005).

[15] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

114


	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary



