
Loop Analysis and Repair

Nafi Diallo, PhD Candidate
Department of Computer Science

Advisor: Ali Mili

New Jersey Institute of Technology

Abstract. This doctoral work proposes to use invariant relations to an-
alyze and repair loops. We discuss how invariant relations allow us to
derive loop properties such as termination, correctness and incorrectness
and to generate invariant assertions. We also present a method to stati-
cally repair a loop using invariant relations, to what we refer as “Debug-
ging without Testing”.

1 Introduction

Software quality is of critical importance due to the pervasiveness of software
in modern societies, its use in critical applications and its growing size and com-
plexity. The demands on software technology are putting relentless pressure on
software research to deliver ever more capable methods, tools, and processes.
For imperative programming languages,still most prevalent in software pro-
duction, loops still constitute a main source of complexity and to analyze a
loop, one must re-engineer the inductive argument that underlies its construc-
tion.
Due to the usual difficulty of this task, many approaches proceed by unrolling
the loop a number of times, and analyzing the resulting program as a sequential
code. In this work, we explore an orthogonal approach based on the concept
of invariant relations, which allow approximating the function of a loop. The
choice between capturing all the functional details of a loop whose iterations
are bounded, and approximating its function for all possible executions, can
be viewed as a trade-off between knowing everything about some executions
and knowing something about all executions. We argue for the latter approach
on the grounds that knowing everything is not necessary (many properties of
interest can be established with partial information) and that making claims
about bounded executions is not sufficient (a property may hold for bounded
executions and fail to hold for unbounded executions).
This work contributes the following:

– A definition of the concept of loop convergence as the integration of termi-
nation and abort-freedom

– Proofs of correctness and incorrectness of while loops
– A method to statically prove that a fault is removed and that the resulting

program is more correct.

24 N. Diallo

– An automated loop analysis tool via analysis of the source code (to compute
artifacts such as convergence condition, loop function, correctness verifica-
tion)

In the following sections, we discuss related work, describe the proposed meth-
ods, and present a description of the plan of evaluation of this work.

2 Background and Related Work

This work is part of an ongoing project. [13] propose to use the relational ap-
proach for automated loop function computation via static analysis of the source
code. In this context, they provide a definition of invariant relations and how it
can be applied to compute the loop function and pre/post conditions.
This work builds on their results and investigates the use of invariant relations
for loop analysis and repair with the aim to develop an automated tool for in-
variant relation generation and the implementation of the proposed methods.

2.1 Loop Analysis

Analysis of loop termination is a very mature area of research starting with
the work of Alan Turing. This area can be characterized by a separation be-
tween two concerns: termination as a finite number of iterations and termi-
nation as abort-freedom. Termination as a finite number of iterations, which
has also received the most attention, involves the discovery of well-founded
ranking functions, namely transition invariants [2, 15] and size-change graphs
[9]. In [2], Cook et. al. give a comprehensive survey of loop termination, in
which they discuss transition invariants which are approximations of (T ∩B)+

while invariant relations are approximations of (T ∩B)∗. This slight difference
of form has a significant impact on the properties and uses of these distinct con-
cepts. While transition invariants are used by Cook et al. to characterize the well
founded property of (T ∩ B)+, we use invariant relations to approximate the
function of a loop, and its domain. Abstract interpretation [3], Model Checking
and Bounded Model Checking [6] are techniques aimed at capturing aspects
of abort-freedom. Abstract interpretation is a broad scoped technique used to
infer properties of programs by successive approximations of their execution
traces and thus resembles most our approach. Model checking consists of ex-
haustively traversing all the reachable states of the system to verify the desired
properties. Bounded model checking is a specialization of model checking in
which the traversal is halted after a given number of iterations, in which case it
is decided that no counter example exists and the property holds.
Overall, our work distinguishes itself with the approaches described above in
that, with invariant relations, we can model the termination of while loops in a
broad sense; we do that by merging the condition that the number of iterations
is finite and the condition that every single iteration executes without causing
an abort.

Loop Analysis and Repair 25

Traditionally, proof of correctness of loops involves two aspects: proof of par-
tial correctness in the sense of Floyd/Hoare Logic and termination [7]. Another
approach is based the weakest precondition theory [5].

2.2 Loop Repair

Most existing repair approaches rely on execution traces to identify faults. [8,
10, 11].
In [12] the authors consider an original program P and a variation P ′ of P ,
extract semantic information from P , and use it to instrument P ′ (by means
of executable assertions). They then reason about semantic guarantees which
can be inferred about the instrumented version of P ′ and analyze the condi-
tion under which both programs can execute without causing an abort (due
to attempting an illegal operation), which they approximate by sufficient con-
ditions and necessary conditions. They implement the VMV (Verification Mod-
ulo Versions) system aimed at exploiting semantic information about P in the
analysis of P ′, and ensuring that the transition from P to P ′ happens without
regression to decide that P ′ is correct relative to P . Their definition of relative
correctness differs from the approach of this work, in several aspects: whereas
[12] talk about relative correctness between an original program and a subse-
quent version in the context of adaptive maintenance (where P and P ′ may be
subject to distinct requirements), we talk about relative correctness between an
original (faulty) software product and a revised version of the program (possi-
bly still faulty yet more-correct) in the context of corrective maintenance with
respect to a fixed requirements specification; whereas [12] use a set of assertions
inserted throughout the program as a specification, we use a relation that maps
initial states to final states to specify the standards against which absolute cor-
rectness and relative correctness is defined; whereas [12] represents program
executions by execution traces, we represent program executions by functions
mapping initial states into final states; finally, while [12] define a successful ex-
ecution as a trace that satisfies all the relevant assertions, we define a successful
one as simply an initial state/ final state pair that falls with the specification
(relation).
In [8] Lahiri et al. introduce Differential Assertion Checking for verifying the rel-
ative correctness of a program with respect to a previous version of the pro-
gram. They explore applications of this technique as a tradeoff between sound-
ness (which they concede) and lower costs (which they hope to achieve). Like
the approach of the authors of [12] (from the same team), their work uses ex-
ecutable assertions as specifications, represents executions by execution traces,
defines successful executions as traces that satisfy all the executable assertions,
and targets abort-freedom as the main focus of the executable assertions. They
define relative correctness between programs P and P ′ as the property that P ′

has a larger set of successful traces and a smallest set of unsuccessful traces
than P ; and they introduce relative specifications as specifications that capture
functionality of P ′ that P does not have. Our approach differs from [8] in that
we reason in terms of the initial and final states, characterize correct executions

26 N. Diallo

by such pairs that belong to the specification, and we make no distinction be-
tween abort-freedom and normal functional properties.
In [11], the authors introduce a definition of relative correctness similar to that
of [8]. Programs are modeled with trace semantics, and execution traces are
compared in terms of executable assertions inserted into P and P ′; in order for
the comparison to make sense, programs P and P ′ have to have the same (or
similar) structure and/or there must be a mapping from traces of P to traces of
P ′. When P ′ is obtained from P by a transformation, and when P ′ is provably
correct relative to P , the transformation in question is called a verified repair.
The authors introduce an algorithm specialized in deriving program repairs
from a predefined catalog targeted to specific program constructs, such as: con-
tracts, initializations, guards, floating point comparisons, etc. Similarly to ([12,
8]), the authors model programs by execution traces and distinguish between
two types of failures: contract violations, when functional properties are not
satisfied; and run-time errors, when the execution causes an abort; for the rea-
sons we discuss above, we do not make this distinction, and model the two
aspects with the same relational framework. They implement their approach in
an automated tool based on the static analyzer cccheck, and assess their tool for
effectiveness and efficiency.
In [14], Nguyen et al. present an automated repair method based on symbolic
execution, constraint solving, and program synthesis; they call their method
SemFix, on the grounds that it performs program repair by means of semantic
analysis. This method combines three techniques: fault isolation by means of
statistical analysis of the possible suspect statements; statement-level specifica-
tion inference, whereby a local specification is inferred from the global specifi-
cation and the product structure; and program synthesis, whereby a corrected
statement is computed from the local specification inferred in the previous step.
The method is organized in such a way that program synthesis is modeled as a
search problem under constraints, and possible correct statements are inspected
in the order of increasing complexity. When programs are repaired by Sem-
Fix, they are tested for (absolute) correctness against some predefined test data
suite; as we argue throughout [4], it is not sensible to test a program for abso-
lute correctness after a repair, unless we have reason to believe that the fault we
have just repaired is the last fault of the program (how do we ever know that?).
By advocating to test for relative correctness, we enable the tester to focus on
one fault at a time, and ensure that other faults do not interfere with our as-
sessment of whether the fault under consideration has or has not been repaired
adequately.

3 Semantics

We assume the reader familiar with elementary relational mathematics and
generally use the notation adapted from [1].
Given a set S defined by the values of some program variables, say x and y,
elements of S are denoted by s and expressed as s = 〈x, y〉. We represent the

Loop Analysis and Repair 27

x-component and (resp.) y-component of s as x(s) and y(s). When there is no
ambiguity, we refer to x(s) as x and x(s′) as x′ for elements s and s′ of S. We
refer to S as the state space of the program and to elements of S, denoted by s,
as the states of the program.
A relation on S is a subset of the Cartesian product S × S.
Of interest to us are the following constant relations on some set S:

– the universal relation, denoted by L = S × S,
– the identity relation, denoted by I = {(s, s′)|s = s′},
– and the empty relation, denoted by φ.

Given that by definition relations are sets, set theoretic operations such as union(∪),
intersection(∩) and complement(R, for a relation R) apply to them.
Operations on relations also include:

– the domain, dom(R), of R defined by dom(R) = {s|∃s′ : (s, s′) ∈ R},
– the range, rng(R), of R, defined rng(R) = {s′|∃s : (s, s′) ∈ R},.
– The converse, denoted by R̂, and defined by R̂ = {(s, s′)|(s′, s) ∈ R}.
– The product of relations, say R and R′, denoted by R ◦ R′ (or RR′) and

defined by R ◦R′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}.
– The nucleus of relation R, denoted by µ(R) and defined by µ(R) = RR̂.
– The nth power of relation R, for natural number n, denoted by Rn and de-

fined by R0 = I , and Rn = R ◦Rn−1, for n ≥ 1.
– The transitive closure of relation R, denoted by R+ and defined by R+ =
{(s, s′)|∃i > 0 : (s, s′) ∈ Ri}.

– The reflexive transitive closure of relation R, denoted by R∗ and defined by
R∗ = I ∪ R+. We admit without proof that R∗R∗ = R∗ and that R∗R+ =
R+R∗ = R+.

– The pre-restriction (resp. post-restriction) of relation R to predicate t is the
relation {(s, s′)|t(s) ∧ (s, s′) ∈ R} (resp. {(s, s′)|(s, s′) ∈ R ∧ t(s′)}).

Given a program p on state space S, we letP be the function of p.P is defined as:
P = {(s, s′)|p starts execution on s, then it terminates normally in state s′}
Normal termination means that the program terminates after a finite number of
operations, without causing an abort and returns a well-defined final state.
We consider while loops written in some C-like programming language, of the
form while (t) {b} and the semantic following definition:

[{while (t) {b}}] ≡ (T ∩B)∗ ∩ T̂ .
B is the function of b and T is the vector defined by: {(s, s′)|t(s)}

4 Invariant Relations

Informally, an invariant relation can be described as a binary relation between
input states and their corresponding output states obtained by applying zero or
more iterations of the loop body. More formally, we define an invariant relation
as follows:

28 N. Diallo

Definition 1. Given a while loop of the formw =while t {b} on space S, a relation
R on S is said to be an invariant relation for w if and only if it is a reflexive and
transitive superset of (T ∩B).

To illustrate the concept of invariant relation, we consider the loop below on
state space S = N× N× N where N is the set of natural numbers. A state s ∈ S
is defined by the integer variables n, f , and k such that a state s =< n, f, k >.

while (k !=n) {k=k +1; f = f ∗k ;}

We consider the following relation: R =
{

(s, s′)| f
k! = f ′

k′!

}
.

This relation is reflexive and transitive, since it is the nucleus of a function; to
prove that it is a superset of (T ∩ B) we compute the intersection R ∩ (T ∩ B)
and easily find that it equals (T ∩B).
Other invariant relations include:
R1 = {(s, s′)|n′ = n} R2 = {(s, s′)|k ≤ k′}.
One of the main attributes of invariant relations is that they allow us to de-
rive invariant assertions, a key concept in the established approach for proving
correctness of while loops. In [7], an invariant assertion α for a while loop w:
while t {b} with respect to precondition φ and postcondition ψ is defined as
a predicate on S such that the following are true:

– φ⇒ α,
– {α ∧ t}b{α},
– α ∧ ¬t⇒ ψ.

We consider the factorial example given above to which we add initialization
of the variables involved.

w: n=n0 ; k =0; f =1; while (k !=n) {k=k +1; f = f ∗k ;}

The reader can easily verify that f = k! and n = n0 are invariant assertions for
the loop with respect to the precondition n = n0; f = 1; k = 1; and postcondi-
tion f = n0!
As expressed above, an invariant assertion depends on both the loop body and
the context of the loop, namely its precondition and its post condition while in-
variant relations only involve the loop body.To make the comparison between
invariant assertions and invariant relations meaningful, we redefine invariant
assertions to be assertions that satisfy the condition {α ∧ t}b{α} since it is the
only condition that depends exclusively on the loop and does not depend on
the precondition (as ψ ⇒ α) nor the postcondition (as α ∧ ¬t ⇒ ψ). Given a
predicate α, let A be defined as a vector on S by: A = {(s, s′)|α(s)}

Definition 2. Vector A is said to be an invariant assertion for the while loop w:
while t {b} if and only if it satisfies the following condition: (A ∩ T ∩ B) ⊆ Â
where T is a vector defined by predicate t

The following two propositions, describe the relationships between invariants
assertions and invariant relations.

Loop Analysis and Repair 29

Proposition 1. Let R be an invariant relation of w: while t {b} on space S and
let C be an arbitrary vector on S. Then R̂C is an invariant assertion for w.

Proposition 2. Given an invariant assertion A, there exists an invariant relation R
and a vector C such that A = R̂C.

5 Loop Analysis

5.1 Convergence

In the spirit of merging the two aspects of termination described in related
work, we introduce the concept of convergence as the integration of these two
aspects. The following theorem provides a general framework for convergence
and illustrates how we only need to model one aspect or another or both by our
choice of invariant relation.

Theorem 1. We consider a while loop w of the form w: while (t) {b} on space
S, and we let R be an invariant relation for w. Then: WL ⊆ RT.

While this result provides that any invariant relation gives a necessary condi-
tion of termination, smaller invariant relations are favored as they can lead to
both a necessary and sufficient condition. In [4], we present a theorem that pro-
vides means of capturing aspects of abort-freedom by generating invariant rela-
tions of this form : R = {(s, s′)|∀u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ⇒ u ∈ dom(B)},
where B′ is a superset of B. In practice, B′ is an approximation of B, derived
by focusing on the variables that are involved in abort-prone statements and
recording how B transforms them while dom(B) is modeled using the abort
condition of interest. For example, to model

– the condition that arithmetic operations inB does not cause overflow, dom(B)
will express a clause to the effect that all operations produce a result within
the range of representable values.

– the condition of non-zero division in the execution of B, a condition is
added in dom(B) that ensures that all divisors in B are non-zero;

To illustrate the concept of convergence, we consider the following example
where we assume that we want to avoid a division by zero (variable j).

while (i ! = 0) { i =i −1; j = j +1 ; k=k−k/ j ;}

We find the following invariant relations:

– R1 = {(s, s′)|j ≤ j′}
– R2 = {(s, s′)|i ≥ i′}
– R3 = {(s, s′)|i+ j == iP + jP}
– R4 = {(s, s′)|∀h : j ≤ h < j′, 1 + h 6= 0}

Using these relations, we compute the following convergence condition:
(i = 0 ∨ (i ≥ 1 ∧ j ≥ 0) ∨ (i > 0 ∧ 1 + i+ j ≤ 0))

30 N. Diallo

5.2 Correctness Verification

In [4], two propositions are introduced for computing necessary and sufficient
conditions of correctness using invariant relations. We use them to derive an
algorithm which generates successive invariant relations, and tests a necessary
condition of correctness and a sufficient condition of correctness, until one of
three conditions arises:

– either the sufficient condition is true, then we diagnose the loop as correct.
– or the necessary condition is false, then we diagnose the loop as incorrect.
– or we run out of invariant relations before we reach the conclusions above;

in which case we exit with the conclusion that we do not know enough
about the loop to rule on its correctness.

6 Loop Repair

Simply put, loop repair consists of removing a fault and proving that the fault
has been removed. Our proposed method for loop repair consists of the follow-
ing.

1. Observation of failure (loop is diagnosed as incorrect by finding an invari-
ant relation that violates the necessary condition of correctness)

2. fault diagnosis (statements involving variables of the invariant relation above
are targeted)

3. fault removal (deriving a new invariant that verifies the necessary condition
of correctness)

4. proof of relative correctness (defined below)

6.1 Relative Correctness

Definition 3. LetR be a specification on state space S and let p and p′ be two programs
on space S whose functions are respectively P and P ′.

– We say that program p′ is more-correct than program p with respect to specifica-
tion R (abbreviated by: P ′ wR P) if and only if: (R ∩ P ′)L ⊇ (R ∩ P)L.

– Also, we say that program p′ is strictly more-correct than program p with respect
to specificationR (abbreviated by: P ′ AR P) if and only if (R∩P ′)L ⊃ (R∩P)L.

where L be the universal relation on S

(R ∩ P)L is referred to as the competence domain of program p; it represents
the set of initial states for which the program agrees with the specification R.
Thus to be more-correct means to have a larger competence domain. Note for
program p′ to be more-correct than program p, it does not have to duplicate
the behavior of p over the competence domain of p: it may have a different
behavior (since R is potentially non-deterministic) provided this behavior is
also correct with respect to R; In [4], We illustrate the concept with an example
for which (R ∩ P)L = {1, 2, 3, 4} × S, (R ∩ P ′)L = {1, 2, 3, 4, 5} × S, where
S = {0, 1, 2, 3, 4, 5, 6}. Hence p′ is more-correct than p with respect to R.

Loop Analysis and Repair 31

7 Proving Relative Correctness for Loops

In [4], we propose a theorem and an algorithm to the effect that we can achieve
the four steps mentioned above for loop repair. To illustrate loop repair, we con-
sider the following loop, where all the variables except t are of type double,
and where a and b are positive constants.

w: while (abs (r−p)>upsi lon)
{ t = t +1;n=n+x ; m=m−1; l = l ∗(1+b) ; k=k +1000; y=n+k ;
w=w+z ; z=(1+a)+ z ; v=w+k ; r =(v−y)/y ; u=(m−n)/n ; d=r−u ; }

We consider the following specification:

R = {(s, s′)|b < a < 1 ∧ x′ = x ∧ w′ = w − z × 1−(1+a)t′−t

a

∧k′ = k+1000×(t′−t)∧t ≤ t′∧0 < l ≤ l′∧z > 0∧ l×(1+b)−t = l′×(1+b)−t′}.

Analysis of this loop by our invariant relation generator derives fourteen in-
variant relations, five of which are found to be incompatible with the specifi-
cation. We select the following incompatible invariant relation for remediation:

Q = {(s, s′)|l × (1 + b)−
z

1+a = l′ × (1 + b)−
z′

1+a }. To fix this incompatibility,
we must alter variable z or variable l. We compute the condition on z and l
under which a change in these variables does not alter any of the relevant com-
patible relations, and we find: z′ ≥ z ∧ (l = l′ ∨ l × (l′ − l) > 0). z is chosen
and common mutation operators are applied to the statement {z=(1+a)+z}
while preserving the condition z′ ≥ z; for each mutant of this statement, we
recompute the new invariant relation that substitutes for Q and check whether
it is compatible with R. We find that the statement {z=(1+a)*z} produces a
compatible invariant relation, and conclude that the loop w′ obtained when we
replace {z=(1+a)+z} by {z=(1+a)*z} is more-correct than w with respect to
R. Running the invariant relations generator on the new loop produces four-
teen invariant relations, one of which is incompatible with R (hence w′ is in-
deed incorrect); it seems that by removing the earlier fault we have remedied
four invariant relations at once. Applying the same process to w′, we find the
following loop, which is correct with respect to R:

wc : while (abs (r−p)>upsi lon)
{ t = t +1;n=n+x ; m=m+1; l = l ∗(1+b) ;
k=k +1000; y=n+k ;w=w+z ; z=(1+a)∗ z ;
v=w+k ; r =(v−y)/y ; u=(m−n)/n ; d=r−u ; }

8 Conclusions and Prospects

Presently, we are developing and evolving the tool to automate the methods
described above. It currently covers numeric data types and provide artifacts
related to convergence and correctness verification. The results of the experi-
ments are promising and encouraging. We intend to assess the effectiveness of

32 N. Diallo

the proposed approach and tool by comparing the tool with tools from other
approaches[Astree, Genprog],using relevant benchmarks. While evolving the
tool to include more application domains, we plan to further explore the impli-
cations and applications of relative correctness, to further derive techniques for
proving relative correctness by static analysis of the source code. We also intend
to create a new benchmark for convergence and analysis of program repair with
relative correctness. This should all contribute as evidence of the significance of
this work.

References

1. C. Brink, W. Kahl, and G. Schmidt. Relational Methods in Computer Science. Springer
Verlag, New York, NY and Heidelberg, Germany, 1997.

2. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Commu-
nications of the ACM, 54(5), 2011.

3. P. Cousot. Abstract interpretation. Technical Report www.di.ens.fr/c̃ousot/AI/,
Ecole Normale Superieure, Paris, France, August 2008.

4. N. Diallo, W. Ghardallou, and A. Mili. Correctness and relative correctness. In
Proceedings, 37th International Conference on Software Engineering, Firenze, Italy, May
20–22 2015.

5. E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
6. S. Falke, D. Kapur, and C. Sinz. Termination analysis of imperative programs using

bitvector arithmetic. In VSTTE, pages 261–277, 2012.
7. C. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576 – 583, Oct. 1969.
8. S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential assertion

checking. In Proceedings, ESEC/ SIGSOFT FSE, pages 345–455, 2013.
9. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program

termination. In ACM SIGPLAN Notices, volume 36, pages 81–92. ACM, 2001.
10. C. LeGoues, S. Forrest, and W. Weimer. Current challenges in automatic software

repair. Software Quality Journal, 21(3):421–443, 2013.
11. F. Logozzo and T. Ball. Modular and verified automatic program repair. In Proceed-

ings, OOPSLA, pages 133–146, 2012.
12. F. Logozzo, S. Lahiri, M. Faehndrich, and S. Blackshear. Verification modulo ver-

sions: Towards usable verification. In Proceedings, PLDI, 2014.
13. A. Mili, S. Aharon, and C. Nadkarni. Mathematics for reasoning about loop. Science

of Computer Programming, pages 989–1020, 2009.
14. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair

via semantic analysis. In Proceedings, ICSE, pages 772–781, 2013.
15. A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings, 19th Annual

Symposium on Logic in Computer Science, pages 132–144, 2004.

