
META-LEARNING

AND

ALGORITHM SELECTION

WORKSHOP

-
ECMLPKDD 2015

MetaSel 2015
September 7, 2015

Porto, Portugal

Edited by

Joaquin Vanschoren, Pavel Brazdil, Christophe Giraud-Carrier and Lars Kotthoff

Preface

Algorithm Selection and configuration are increasingly relevant today. Researchers and practitioners from
all branches of science and technology face a large choice of parameterized machine learning algorithms,
with little guidance as to which techniques to use. Moreover, data mining challenges frequently remind us
that algorithm selection and configuration are crucial in order to achieve the best performance, and drive
industrial applications.

Meta-learning leverages knowledge of past algorithm applications to select the best techniques for
future applications, and offers effective techniques that are superior to humans both in terms of the end
result and especially in the time required to achieve it. In this workshop we will discuss different ways of
exploiting meta-learning techniques to identify the potentially best algorithm(s) for a new task, based on
meta-level information and prior experiments. We also discuss the prerequisites for effective meta-learning
systems such as recent infrastructure such as OpenML.org.

Many problems of today require that solutions be elaborated in the form of complex systems or work-
flows which include many different processes or operations. Constructing such complex systems or work-
flows requires extensive expertise, and could be greatly facilitated by leveraging planning, meta-learning
and intelligent system design. This task is inherently interdisciplinary, as it builds on expertise in various
areas of AI.

This ECMLPKDD 2015 workshop will provide a platform for researchers and research students inter-
ested to exchange their knowledge about:

– Problems and solutions of algorithm selection and algorithm configuration
– How to use software and platforms to select algorithms in practice
– How to provide advice to end users about which algorithms to select in diverse domains, including

optimization, SAT etc. and incorporate this knowledge in new platforms.

These proceedings include 15 contributions discussing the nature of algorithm selection which arises
in many diverse domains, such as machine learning, data mining, optimization and satisfiability solving,
among many others. We thank everybody for their sincere interest and their contributions, our programme
committee for reviewing all submissions, and especially our invited speakers:

– Bernd Bischl
Applying Model-Based Optimization to Hyperparameter Optimization in Machine Learning

– Bernhard Pfahringer
On a Few Recent Developments in Meta-Learning for Algorithm Ranking and Selection

We hope you will find it an interesting and inspiring workshop, leading to fruitful new collaborations.

Porto, September 2015
Joaquin Vanschoren

Pavel Brazdil
Christophe Giraud-Carrier

Lars Kotthoff

Main areas covered by the workshop

Of particular interest are methods and proposals that address the following issues:

– Algorithm / Model Selection and Configuration
– Meta-learning and exploitation of meta-knowledge
– Experimentation and evaluation of learning processes
– Hyper-parameter optimization
– Planning to learn and to construct workflows
– Applications of workflow planning
– Exploitation of ontologies of tasks and methods
– Exploitation of benchmarks and experimentation
– Representation of learning goals and states in learning
– Control and coordination of learning processes
– Meta-reasoning
– Layered learning
– Multi-task and transfer learning
– Learning to learn
– Intelligent design
– Performance modeling and process mining

Program Committee

– Pavel Brazdil, LIAAD-INESC TEC / FEP, University of Porto, Portugal
– André C. P. Carvalho, USP, Brasil
– Claudia Diamantini, Università Politecnica delle Marche, Italy
– Johannes Fuernkranz, TU Darmstadt, Germany
– Christophe Giraud-Carrier, Brigham Young Univ., USA
– Krzysztof Grabczewski, Nicolaus Copernicus University, Poland
– Frank Hutter, University of Freiburg, Germany
– Christopher Jefferson, University of St Andrews, UK
– Alexandros Kalousis, U Geneva, Switzerland
– Jörg-Uwe Kietz, U.Zurich, Switzerland
– Lars Kotthoff, University College Cork, Ireland
– Yuri Malitsky, University College Cork, Ireland
– Bernhard Pfahringer, U Waikato, New Zealand
– Vid Podpecan, Jozef Stefan Institute, Slovenia
– Ricardo Prudêncio, Univ. Federal de Pernambuco Recife (PE), Brasil
– Samantha Sanders, Brigham Young University, USA
– Michael Smith, Brigham Young University, USA
– Carlos Soares, FEP, University of Porto, Portugal
– Guido Tack, Monash University, Australia
– Joaquin Vanschoren, Eindhoven University of Technology
– Ricardo Vilalta, University of Houston, USA
– Filip Železný, CVUT, Prague, R.Checa

Table of Contents

Applying Model-Based Optimization to Hyperparameter Optimization in Machine Learning 1

Bernd Bischl

On a Few Recent Developments in Meta-Learning for Algorithm Ranking and Selection 2

Bernhard Pfahringer

The Potential Benefits of Data Set Filtering and Learning Algorithm Hyperparameter Optimization . 3

Michael R. Smith, Tony Martinez and Christophe Giraud-Carrier

Learning Data Set Similarities for Hyperparameter Optimization Initializations 15

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme

Limitations of Using Constraint Set Utility in Semi-Supervised Clustering . 27

Toon Van Craenendonck and Hendrik Blockeel

Dealing with Overlapping Clustering: A Constraint-based Approach to Algorithm Selection 43

Antoine Adam and Hendrik Blockeel

Algorithm Selection via Meta-learning and Sample-based Active Testing . 55

Salisu M. Abdulrahman, Pavel Brazdil, Jan N. van Rijn and Joaquin Vanschoren

Metalearning for Multiple-Domain Transfer Learning . 67

Catarina Félix, Carlos Soares, and Alı́pio Jorge

Meta-learning Recommendation of Default Hyper-parameter Values for SVMs in Classification Tasks 80

Rafael G. Mantovani, André L. D. Rossi, Joaquin Vanschoren, and André C. P. L. F. Carvalho

Sharing RapidMiner Workflows and Experiments with OpenML . 93

Jan N. van Rijn and Joaquin Vanschoren

Meta-QSAR: Learning How to Learn QSARs . 104

Ivan Olier, Crina Grosan, Noureddin Sadawi, Larisa Soldatova, and Ross D. King

Concept of Rule-based Configurator for Auto-WEKA Using OpenML . 106

Patryk Kiepas, Szymon Bobek and Grzegorz J. Nalepa

Generating Workflow Graphs Using Typed Genetic Programming . 108

Tomáš Křen, Martin Pilát, Klára Pešková, and Roman Neruda

Preference-Based Meta-Learning using Dyad Ranking: Recommending Algorithms in Cold-Start

Situations . 110

Dirk Schäfer and Eyke Hüllermeier

Towards a Collaborative Platform for Advanced Meta-Learning in Healthcare Predictive Analytics . . 112

Milan Vukicevic, Sandro Radovanovic, Joaquin Vanschoren, Giulio Napolitano, Boris Delibasic

Study on Meta-Learning Approach Application in Rank Aggregation Algorithm Selection 115

Alexey Zabashta, Ivan Smetannikov and Andrey Filchenkov

Applying Model-Based Optimization to

Hyperparameter Optimization in Machine
Learning

Bernd Bischl

Ludwig-Maximilians-Universität München, München, Germany,
bernd.bischl@stat.uni-muenchen.de

Abstract. This talk will cover the main components of sequential model-
based optimization algorithms. Algorithms of this kind represent the
state-of-the-art for expensive black-box optimization problems and are
getting increasingly popular for hyper-parameter optimization of ma-
chine learning algorithms, especially on larger data sets.

The talk will cover the main components of sequential model-based op-
timization algorithms, e.g., surrogate regression models like Gaussian
processes or random forests, initialization phase and point acquisition.

In a second part I will cover some recent extensions with regard to parallel
point acquisition, multi-criteria optimization and multi-fidelity systems
for subsampled data. Most covered applications will use support vector
machines as examples for hyper-parameter optimization.

The talk will finish with a brief overview of open questions and challenges.

1

On a few recent developments in Meta-Learning

for Algorithm Ranking and Selection

Bernhard Pfahringer

Waikato University, Hamilton, New Zealand,
bernhard@cs.waikato.ac.nz

Abstract. This talk has two main parts. The first part will focus on
the use of pair-wise meta-rules for algorithm ranking and selection. Such
rules can provide interesting insights on their own, but they are also very
valuable features for more sophisticated schemes like Random Forests. A
hierarchical variant is able to address complexity issues when the number
of algorithms to compare is substantial.

The second part of the talk will focus on meta-learning for data streams,
which is a very active area of research currently. Stream algorithms need
to be incremental, and be able to adapt to change in the distribution of
the data. This poses new challenges for meta-learning.

2

The Potential Benefits of Data Set Filtering and
Learning Algorithm Hyperparameter Optimization

Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier

Department of Computer Science, Brigham Young University,Provo, UT 84602 USA
msmith@axon.cs.byu.edu,martinez@cs.byu.edu,cgc@cs.byu.edu

http://axon.cs.byu.edu

Abstract. The quality of a model induced by a learning algorithm is dependent
upon the training dataand the hyperparameters supplied to the learning algo-
rithm. Prior work has shown that a model’s quality can be significantly improved
by filtering out low quality instances or by tuning the learning algorithm hyper-
parameters. The potential impact of filtering and hyperparameter optimization
(HPO) is largely unknown. In this paper, we estimate thepotentialbenefits of in-
stance filtering and HPO. While both HPO and filtering significantly improve the
quality of the induced model, we find that filtering has a greater potential effect
on the quality of the induced model than HPO, motivating future work in filtering.

1 Introduction

Given a set of training instances composed of input feature vectors and corresponding
labels, the goal of supervised machine learning is to inducean accurate generalizing
function (hypothesis) that maps feature vectors to labels.The quality of the induced
function is dependent on the learning algorithm’s hyperparametersand the quality of
the training data. It is known that no learning algorithm or hyperparameter setting is
best for all data sets (no free lunch theorem [26]) and that the performance of many
learning algorithms is sensitive to their hyperparameter settings. It is also well-known
that real-world data sets are typically noisy.

Prior work has shown that the generalization performance ofan induced model
can be significantly improved through hyperparameter optimization (HPO) [1], or by
increasing the quality of the training data using techniques such as noise correction [11],
instance weighting [17], or instance filtering [20]. Searching the hyperparameter space
and improving the quality of the training data have generally been examined in isolation
and the potential impact of their usage has not been examined. In this paper, we compare
the effects of HPO with the effects of improving the quality of the training data through
filtering. The results of our experiments provide insight into the potential effectiveness
of both HPO and filtering.

We evaluate 6 commonly used learning algorithms and 46 data sets. We examine
the effects of HPO and filtering by: 1) using a standard approach that selects the hyper-
parameters of an algorithm by maximizing the accuracy on a validation set and 2) using
an optimistic approach that sets the hyperparameters for analgorithm using the 10-
fold cross-validation accuracy. The standard and optimistic approaches are explained in

3

2 The Potential Benefits of Filtering and Hyperparameter Optimization

more detail in Section 4. Essentially, the optimistic approach indicates how well a tech-
niquecouldperform if the training set were representative of the test set and provides
insight into thepotentialbenefit of a given technique. The standard approach providesa
representative view of HPO and filtering in their present state and allows an evaluation
of how well current HPO and filtering techniques fulfill theirpotential.

Using the standard approach, we find that in most cases both HPO and filtering
significantly increase classification accuracy over using alearning algorithm with its
default parameters trained on unfiltered data. For the optimistic estimates of HPO and
filtering, we find thatfiltering significantly improves the classification accuracy over
HPO for all of the investigated learning algorithms–increasing the accuracy more than
HPO for almost all of the considered data sets. HPO achieves an average accuracy of
84.8% while filtering achieves an average accuracy of 89.1%.The standard approach
for HPO and filtering achieves an average accuracy of 82.6% and 82.0% respectively.
These results provide motivation for further research intodeveloping algorithms that
improve the quality of the training data.

2 Related Work

Smith et al. [21] found that a significant number of instancesare difficult to classify
correctly, that the hardness of each instance is dependent on its relationship with the
other instances in the training set and that some instances can be detrimental. Thus, there
is a need for improving how detrimental instances are handled during training as they
affect the classification of other instances. Improving thequality of the training data has
typically fallen into three approaches: filtering, cleaning, and instance weighting [7].

Each technique within an approach differs in how detrimental instances are iden-
tified. A common technique for filtering removes instances from a data set that are
misclassified by a learning algorithm or an ensemble of learning algorithms [3]. Re-
moving the training instances that are suspected to be noiseand/or outliers prior to
training has the advantage that they do not influence the induced model and generally
increase classification accuracy. A negative side-effect of filtering is that beneficial in-
stances can also be discarded and produce a worse model than if all of the training data
had been used [18]. Rather than discarding the instances from a training set, noisy or
possibly corrupted instances can be cleaned or corrected [11]. However, this could arti-
ficially corrupt valid instances. Alternatively, weighting weights suspected detrimental
instances rather than discards them and allows for an instance to be considered on a
continuum of detrimentality rather than making a binary decision [17].

Other methods exist for improving the quality of the training data, such as feature
selection/extraction [8]. While feature selection and extraction can improve the quality
of the training data, we focus on improving quality via filtering – facilitating a compar-
ison between filtering and HPO on the same feature set.

Much of the previous work in improving the quality of the training data artificially
corrupts training instances to determine how well an approach would work in the pres-
ence of noisy or mislabeled instances. In some cases, a givenapproachonly has a sig-
nificant impact when there are large degrees of artificial noise. In contrast, we do not
artificially corrupt a data set to create detrimental instances. Rather, we seek to identify

4

The Potential Benefits of Filtering and Hyperparameter Optimization 3

the detrimental instances that are already contained in a data set and show that correctly
labeled, non-noisy instances canalsobe detrimental for inducing a model of the data.
Properly handling detrimental instances can result in significant gains in accuracy.

The grid search and manual search are the most common types ofHPO techniques
in machine learning and a combination of the two approaches are commonly used [12].
Bergstra and Bengio [1] proposed to use a random search of thehyperparameter space.
The premise of random HPO is that most machine learning algorithms have very few
hyperparameters that considerably affect the final model while the other hyperparam-
eters have little to no effect. Random search provides a greater variety of the hyperpa-
rameters that considerably affect the model. Given the sameamount of time constraints,
random HPO has been shown to outperform a grid search. Randomsearch, while pro-
viding improvements over a grid-search, is unreliable for tuning the hyperparameters
for some learning algorithms such as deep belief networks [2]. Bayesian optimization
has also been used to search the hyperparameter space [23]. Bayesian optimization tech-
niques model the dependence of an error functionE on the hyperparametersλ asp(E|λ)
using, for example, random forests [10] or Gaussian processes [23].

3 Preliminaries

LetT represent a training set composed of a set of input vectorsX = {x1, x2, . . . , xn}
and corresponding label vectorsY = {y1, y2, . . . , yn}, i.e.,T = {〈xi, yi〉 : xi ∈ X ∧
yi ∈ Y }. Given that in most cases, all that is known about a task is contained in the set
of training instancesT , at least initially, the training instances are generally considered
equally. Most machine learning algorithms seek to induce a hypothesish : X → Y that
minimizes a specified loss functionL(·). As most real-world data sets contain some
level of noise, there is generally a model-dependent regularization termR(·) added to
L(·) that penalizes more complex models and aids in overfit avoidance. The noise in
T may arise from errors in the data collection process such as typos or errors in data
collection equipment. In addition to noise from errors, there may be non-noisy outlier
instances due to the stochastic nature of the task. A hypothesish is induced by a learning
algorithmg trained onT with hyperparametersλ (h = g(T, λ)), such that:

h∗ = argmin
h∈H

1

|T |
∑

〈xi,yi〉∈T

L(h(xi), yi) + αR(h) (1)

whereα is a regularization parameter greater than or equal to 0 thatdetermines how
much weight to apply to the regularization term andh(·) returns the predicted class for a
given input. The quality of the induced hypothesish is characterized by its empirical er-
ror for a specified error functionE on a test setV :E(h, V) = 1

|V |
∑

〈xi,yi〉∈V E(h(xi), yi)

whereV can beT or a disjoint set of instances. Ink-fold cross-validation, the empirical
error is the average empirical error from thek folds (i.e.,1/k E(hi, Vi)).

Characterizing the success of a learning algorithm at the data set level (e.g., accu-
racy or precision) optimizes over the entire training set and marginalizes the impact of
a single training instance on an induced model. Some sets of instances can be more
beneficial than others for inducing a model of the data and some can even be detri-
mental. Bydetrimental instances, we mean instances that have a negative impact on

5

4 The Potential Benefits of Filtering and Hyperparameter Optimization

the induced model. For example, outliers or mislabeled instances are not as beneficial
as border instances and are detrimental in many cases. In addition, other instances can
be detrimental for inducing a model of the data even if they are labeled correctly. For-
mally, a setD of detrimental instances is a subset of the training data that, when used
in training, increases the empirical error, i.e.,E(g(T, λ), V) > E(g(T −D, λ), V).

The effect of training with detrimental instances is demonstrated in the hypothetical
two-dimensional data set shown in Figure 1. Instances A and Brepresent detrimental
instances. The solid line represents the “actual” classification boundary and the dashed
line represents a potential induced classification boundary. Instances A and B adversely
affect the induced classification boundary because they “pull” the classification bound-
ary and cause several other instances to be misclassified that otherwise would have been
classified correctly.

A

B

Fig. 1. Hypothetical 2-dimensional data set that shows the potential effects of detrimental in-
stances in the training data on a learning algorithm.

Despite most learning algorithms having a mechanism to avoid overfitting, the pres-
ence of detrimental instances may still affect the induced model for many learning algo-
rithms. Mathematically, the effect of each instance on the induced hypothesis is shown
in Equation 1. The loss from each instance inT , including detrimental instances, is
equally weighted. Detrimental instances have the most significant impact during the
early stages of training where it is difficult to identify them [6]. The presence ofD
may also affect the value ofR(h). For example, removingD from T could produce a
“simpler” h that reducesR(h).

3.1 Hyperparameter Optimization

The quality of an induced model by a learning algorithm depends in part on the learning
algorithm’s hyperparameters. With hyperparameter optimization (HPO), the hyperpa-
rameter spaceΛ is searched to minimize the empirical error onV :

argmin
λ∈Λ

E(g(T, λ), V). (2)

The hyperparameters can have a significant effect on the quality of the induced model
as well as suppressing the effects of detrimental instances. For example, in a support
vector machine, [4] use the ramp-loss function which limitsthe penalty on instances that
are too far from the decision boundary rather than the more typical 0-1 loss function to

6

The Potential Benefits of Filtering and Hyperparameter Optimization 5

handle detrimental instances. Suppressing the effects of detrimental instances with HPO
improves the induced model, but does not change the fact thatdetrimental instancesstill
affect the model. Each instance is still considered during the learning process though its
influence may be lessened. We describe the method we use for HPO in Section 4.1.

3.2 Filtering

The quality of an induced model also depends on the quality ofthe training data where,
for example, the quality of the training data can be measuredby the amount of detrimen-
tal instances present. Low quality training data results inlower quality induced models.
Improving the quality of the training data involves searching the training set space to
find an optimal subset that minimizes the empirical error:

argmin
t∈P(T)

E(g(t, λ), V)

wheret is a subset ofT andP(T) is the power set ofT . The removed instances obvi-
ously have no effect on the induced model. In Section 4.2, we describe how we identify
detrimental instances and search for an optimal subset of the training data that mini-
mizes empirical error.

4 Implementation Details

4.1 Bayesian Hyperparameter Optimization

In this paper, we use Bayesian optimization for HPO. Specifically, we usesequential
model-based optimization(SMBO) [10] as it has been shown to yield better perfor-
mance than grid and random search [23,24]. SMBO is a stochastic optimization frame-
work that builds a probabilistic modelM that captures the dependence ofE on λ.
SMBO first initializesM. After initializingM, SMBO searches the search space by 1)
queryingM for a promisingλ to evaluate, 2) evaluating the lossE of using configura-
tion λ, and then 3) updatingM with λ andE . Once the budgeted time is exhausted, the
hyperparameter configuration with the minimal loss is returned.

To select a candidate hyperparameter configuration, SMBO relies on an acquisition
functionaM : Λ → R which uses the predictive distribution ofM to quantify how
useful knowledge aboutλ would be. SMBO maximizesaM overΛ to select the most
useful hyperparameter configurationλ to evaluate next. One of the most prominent
acquisition functions is thepositive expected improvement(EI) over an existing error
rateEmin [19]. If E(λ) represents the error rate of hyperparameter configurationλ,
then the EI function overEmin is: EIEmin(λ) = max{Emin − E(λ), 0}. As E(λ) is
unknown, the expectation ofE(λ) with respect to the current modelM can be computed
as:EM[EIEmin(λ)] =

∫ Emin

−∞ max{Emin − E , 0} · p(E|λ)dE .
SMBO is dependent on the model class used forM. Following [24], we use sequen-

tial model-based algorithm configuration (SMAC) [10] forM with EI asaM, although
others could be used such as the tree-structured Parzen estimator. To modelp(E|λ), we
use random forests as they tend to perform well with discreteand continuous input data.

7

6 The Potential Benefits of Filtering and Hyperparameter Optimization

Using random forests, SMAC obtains a predictive meanµλ and varianceσ2
λ of p(E|λ)

calculated using the predictions from the individual treesin the forest forλ. p(E|λ) is
then modeled as a Gaussian distributionN (µλ, σ

2
λ). To create diversity in the evaluated

configurations, every second configuration is selected at random as suggested [24]. For
k-fold cross-validation, thestandard approach finds the hyperparameters that mini-
mize the error for each of thek validation sets as shown in Equation 2. Theoptimistic
approach finds the hyperparameters that minimize thek-fold cross-validation error:
argminλ∈Λ

1
kE(g(Ti, λ), Vi) whereTi andVi are the training and validation sets for

the ith fold. The hyperparameter spaceΛ is searched using Bayesian hyperparameter
optimization for both approaches.

4.2 Filtering

Identifying detrimental instances is a non-trivial task. Fully searching the space of sub-
sets of training instances generates2N subsets of training instances whereN is the
number of training instances. Even for small data sets, it iscomputationally infeasible
to induce2N models to determine which instances are detrimental. Thereis no known
way to determine how a set of instances will affect the induced classification function
from a learning algorithm without inducing a classificationfunction with the investi-
gated set of instances removed from the training set.

The Standard Filtering Approach (G-Filter) Previous work in noise handling has
shown that class noise (e.g. mislabeled instances) is more detrimental than attribute
noise [15]. Thus, searching for detrimental instances thatare likely to be misclassified
is a natural place to start. In other words, we search for instances where the proba-
bility of the class label is low given the feature values (i.e., low p(yi|xi)). In general,
p(yi|xi) does not make sense outside the context of an induced hypothesis. Thus, using
an induced hypothesish from a learning algorithm trained onT , the quantityp(yi|xi)
can be approximated asp(yi|xi, h). After training a learning algorithm onT , the class
distribution for an instancexi can be estimated based on the output from the learn-
ing algorithm. Prior work has examined removing instances that are misclassified by a
learning algorithm or an ensemble of learning algorithms [3]. We filter instances using
an ensemble filter that removes instances that are misclassified by more thanx% of the
algorithms in the ensemble.

The dependence ofp(yi|xi, h) on a particularh can be lessened by summing over
the space of all possible hypotheses:

p(yi|xi) =
∑

h∈H
p(yi|xi, h)p(h|T). (3)

However, this formulation is infeasible to compute in most practical applications as
p(h|T) is generally unknown andH is large and possibly infinite. To sum overH, one
would have to sum over the complete set of hypotheses, or, sinceh = g(T, λ), over the
complete set of learning algorithms and their associated hyperparameters.

The quantityp(yi|xi) can be estimated by restricting attention to a diverse set of
representative algorithms (and hyperparameters). The diversity of the learning algo-
rithms refers to the likelihood that the learning algorithms classify instances differently.

8

The Potential Benefits of Filtering and Hyperparameter Optimization 7

Table 1.Set of learning algorithmsG used to estimatep(yi|xi).

LEARNING ALGORITHMS

* M ULTILAYER PERCEPTRON TRAINED WITHBACK PROPAGATION (MLP)
* D ECISION TREE (C4.5)
* L OCALLY WEIGHTED LEARNING (LWL)
* 5-NEARESTNEIGHBORS(5-NN)
* N EARESTNEIGHBOR WITH GENERALIZATION (NNGE)
* N AÏVE BAYES (NB)
* RI PPLEDOWN RULE LEARNER (RIDOR)
* RANDOM FOREST(RANDFOREST)
* REPEATEDINCREMENTAL PRUNING TO PRODUCEERRORREDUCTION (RIPPER)

A natural way to approximate the unknown distributionp(h|T) is to weight a set of
representative learning algorithms, and their associatedhyperparameters,G, a priori
with an equal, non-zero probability while treating all other learning algorithms as hav-
ing zero probability. We select a diverse set of learning algorithms using unsupervised
metalearning (UML) [13] to get a good representation ofH, and hence a reasonable
estimate ofp(yi|xi). UML uses Classifier Output Difference (COD) [16] measures the
diversity between learning algorithms as the probability that the learning algorithms
make different predictions. UML clusters the learning algorithms based on their COD
scores with hierarchical agglomerative clustering. Here,we consider 20 commonly used
learning algorithms with their default hyperparameters asset in Weka [9]. A cut-point
of 0.18 was chosen to create nine clusters and a representative algorithm from each
cluster was used to createG as shown in Table 1.

Given a setG of learning algorithms, we approximate Equation 3 to the following:

p(yi|xi) ≈
1

|G|

|G|∑

j=1

p(yi|xi, gj(T, λ)) (4)

wherep(h|T) is approximated as1|G| andgj is the jth learning algorithm fromG. As not
all learning algorithms produce probabilistic outputs, the distributionp(yi|xi, gj(T, λ))
is estimated using the Kronecker delta function in this paper.

The Optimistic Filtering Approach (A-Filter) To measure thepotential impact of
filtering, we need to know how removing an instance or set of instances affects the
generalization capabilities of the model. We measure this by dynamically creating an
ensemble filter fromG using a greedy algorithm for a given data set and learning algo-
rithm. This allows us to find a specific ensemble filter that is best for filtering a given
data set and learning algorithm combination. The adaptive ensemble filter is constructed
by iteratively adding the learning algorithmg from G that produces the highest cross-
validation classification accuracy wheng is added to the ensemble filter. Because we are
using the probability that an instance will be misclassifiedrather than a binary yes/no
decision (Equation 4), we also use a thresholdφ to determine which instances are detri-
mental. Instances with ap(yi|xi) less thanφ are discarded from the training set. A

9

8 The Potential Benefits of Filtering and Hyperparameter Optimization

constant threshold value forφ is set to filter the instances for all iterations. The baseline
accuracy for the adaptive approach is the accuracy of the learning algorithm without
filtering. The search stops once adding one of the remaining learning algorithms to the
ensemble filter does not increase accuracy, or all of the learning algorithms inG have
been used.

Even though all of the detrimental instances are included for evaluation, the adap-
tive filter (A-Filter) overfits the data since the cross-validation accuracy is used to de-
termine which set of learning algorithms to use in the ensemble filter. This allows us to
find the detrimental instances to examine the effects that they can have on an induced
model. This is not feasible in practical settings, but provides insight into the potential
improvement gained from filtering.

5 Filtering and HPO

In this section, we compare the effects of filtering with those of HPO using the op-
timistic and standard approaches presented in Section 4. The optimistic approach pro-
vides an approximation of the potential of HPO and filtering.In addition to reporting the
average classification accuracy, we also report the averagerank of each approach. The
average accuracy and rank for each algorithm is determined using 5 by 10-fold cross-
validation. Statistical significance between pairs of algorithms is determined using the
Wilcoxon signed-ranks test (as suggested by [5]) with an alpha value of 0.05.

5.1 Experimental Methodology

For HPO, we use the version of SMAC implemented in auto-WEKA [24] as described
in Section 4.1 Auto-WEKA searches the hyperparameter spaces for the learning al-
gorithms in the Weka machine learning toolkit [9] for a specified amount of time. To
estimate the amount of time required for a learning algorithm to induce a model of the
data, we ran our selected learning algorithms with ten random hyperparameter settings
and calculated the average and max running times. On average, a model was induced
in less than 3 minutes. The longest time required to induce a model was 845 minutes.
Based on this analysis, we run auto-WEKA for one hour for mostof the data sets. An
hour long search explores more than 512 hyperparameter configurations for most of the
learning algorithm/data set combinations. The time limit is adjusted accordingly for the
larger data sets. Following [24], we run four runs with different random seeds provided
to SMAC.

For filtering using the ensemble filter (G-filter), we use thresholdsφ of 0.5, 0.7, and
0.9. Instances that are misclassified by more thanφ% of the learning algorithms are
removed from the training set. TheG-filter uses all of the learning algorithms in the set
G (Table 1). The accuracy on the test set from the value ofφ that produces the highest
accuracy on the training set is reported.

To show the effect of filtering detrimental instances and HPOon an induced model,
we examine filtering and HPO in six commonly used learning algorithms (MLP trained
with backpropagation, C4.5,kNN, Naı̈ve Bayes, Random Forest, and RIPPER) on a set
of 46 UCI data sets [14]. The LWL, NNge, and Ridor learning algorithms are not used

10

The Potential Benefits of Filtering and Hyperparameter Optimization 9

Table 2.Results for maximizing the 10-fold cross-validation accuracy for HPO and filtering.

MLP C4.5 kNN NB RF RIP
ORIG 82.28 (2.98) 81.30 (2.91) 80.56 (2.74) 77.66 (2.70) 82.98 (2.89) 79.86 (2.96)
HPO 86.37 (1.87) 84.25 (1.96) 83.89 (2.22) 80.89 (1.96) 86.81 (1.85) 82.08 (1.80)
VS ORIG 45,0,1 42,1,3 34,1,11 34,0,12 44,0,2 46,0,0
A-FILTER 89.96 (1.13) 88.74 (1.09) 91.14 (1.02) 82.74 (1.30) 91.02 (1.20) 88.16 (1.24)
VS ORIG 46,0,0 46,0,0 46,0,0 44,2,0 43,3,0 44,0,2
VS HPO 39,1,6 41,1,4 45,0,1 32,0,14 37,0,9 37,0,9

for analysis because they do not scale well with the larger data sets–not finishing due to
memory overflow or large amounts of running time.1

5.2 Optimistic Approach

The optimistic approach indicates how well a modelcould generalize on novel data.
Maximizing the cross-validation accuracy is a type of overfitting. However, using 10-
fold cross-validation accuracy for HPO and filtering, essentially measures the general-
ization capability of a learning algorithm for a given data set.

The results comparing the potential benefits of HPO and filtering are shown in Ta-
ble 2. Each section gives the average accuracy and average rank for each learning al-
gorithm as well as the number of times the algorithm is greater than, equal to, or less
than a compared algorithm. HPO and the adaptive filter significantly increase the clas-
sification accuracy for all of the investigated learning algorithms. The values in bold
represent if HPO or the adaptive filter is significantly greater than the other. For all of
the investigated learning algorithms, theA-filter significantly increases the accuracy
over HPO. The closest the two techniques come to each other isfor NB, where theA-
filter achieves an accuracy of 82.74% and an average rank of 1.30 while HPO achieves
an accuracy of 80.89% and an average rank of 1.96. For all learning algorithms other
than NB, the average accuracy is about 89% for filtering and 84% for HPO. Thus, fil-
tering has a greater potential for increase in generalization accuracy. The difficulty lies
in how to find the optimal set of training instances.

As might be expected, there is no set of learning algorithms that is the optimal en-
semble filter for all algorithms and/or data sets. Table 3 shows the frequency for which
a learning algorithm with default hyperparameters was selected for filtering by theA-
filter. The greatest percentage of cases an algorithm is selected for filtering for each
learning algorithm is in bold. The column “ALL” refers to theaverage from all of the
learning algorithms as the base learner. No instances are filtered in 5.36% of the cases.
Thus, given the right filter, filtering to some extent increases the classification accuracy
in about 95% of the cases. Furthermore, random forest, NNge,MLP, and C4.5 are the
most commonly chosen algorithms for inclusion in the ensemble filter. However, no
one learning algorithm is selected in more than 27% of the cases. The filtering algo-
rithm that is most appropriate is dependent on the data set and the learning algorithm.

1 For the data sets on which the learning algorithms did finish,the effects of HPO and filtering
on LWL, NNge, and Ridor are consistent with the other learning algorithms.

11

10 The Potential Benefits of Filtering and Hyperparameter Optimization

Table 3.The frequency of selecting a learning algorithm when adaptively constructing an ensem-
ble filter. Each row gives the percentage of cases that an algorithm was included in the ensemble
filter for the learning algorithm in the column.

ALL MLP C4.5 kNN NB RF RIP
NONE 5.36 2.69 2.95 3.08 5.64 5.77 1.60
MLP 18.33 16.67 15.77 20.0025.26 23.72 16.36
C4.5 17.17 17.82 15.26 22.82 14.49 13.33 20.74
5NN 12.59 11.92 14.23 1.28 10.00 17.18 16.89
LWL 6.12 3.59 3.85 4.36 23.72 3.33 3.59
NB 7.84 5.77 6.54 8.08 5.13 10.26 4.92
NNGE 19.49 26.67 21.15 21.03 11.1524.74 23.40
RF 21.14 22.95 26.54 23.33 15.77 15.13 24.20
RID 14.69 14.87 16.79 18.33 11.92 16.54 12.77
RIP 8.89 7.82 7.69 8.85 13.08 7.44 4.39

This coincides with the findings from [18] that the efficacy ofnoise filtering in the
nearest-neighbor classifier is dependent on the characteristics of the data set. Under-
standing the efficacy of filtering and determiningwhichfiltering approach to use for a
given algorithm/data set is a direction of future work.

Analysis. In some cases HPO achieves a lower accuracy than orig, showing the
complexity of HPO. TheA-Filter, on the other hand, never fails to improve the accuracy.
Thus, higher quality data can compensate for hyperparameter settings and suggests that
the instance space may be less complex and/or richer than thehyperparameter space.
Of course, filtering does not outperform HPO in all cases, butit does so in the majority
of cases.

5.3 Standard Approach

The previous results show the potential impact of filtering and HPO. We now examine
HPO and filtering using the standard approach to highlight the need for improvement
in filtering. The results comparing theG-filter, HPO, and using the default hyperparam-
eters trained on the original data set are shown in Table 4. HPO significantly increases
the classification accuracy over not using HPO for all of the learning algorithms. Fil-
tering significantly increases the accuracy for all of the investigated algorithms except
for random forests. Comparing HPO and the G-Filter, only HPOfor naı̈ve Bayes and
random forests significantly outperforms theG-filter.

Analysis. In their current state, HPO and filtering generally improve the quality of
the induced model. The results justify the computational overhead required to run HPO.
Despite these results, using the default hyperparameters result in higher classification
accuracy for 11 of the 46 data sets for C4.5, 12 forkNN, and 12 for NB, highlighting
the complexity of searching over the hyperparameter spaceΛ. The effectiveness of
HPO is dependent on the data set as well as the learning algorithm. Typically, as was
done here, a single filtering technique is used for a set of data sets with no model of
the dependence of a learning algorithm on the training instances. The accuracies for

12

The Potential Benefits of Filtering and Hyperparameter Optimization 11

Table 4.Performance comparison of using the default hyperparameters, HPO, and theG-filter.

MLP C4.5 kNN NB RF RIP
ORIG 82.28 (2.54) 81.3 (2.13) 80.56 (2.26) 77.66 (2.28) 82.98 (2.28) 79.86 (2.46)
HPO 83.08 (1.78) 82.42 (1.76) 82.85 (1.59)81.11 (1.63) 84.72 (1.54)81.15 (1.74)
VS ORIG 32,0,14 29,1,16 31,5,10 31,2,13 34,0,12 30,2,14
G-FILTER 84.17 (1.61) 81.9 (1.96) 81.61 (2.00) 79.49 (2.02) 83.49 (2.17) 81.25 (1.72)
VS ORIG 39,0,7 23,5,18 27,1,18 28,1,17 25,0,21 37,0,9
VS HPO 22,3,21 19,1,26 17,1,28 16,0,30 13,0,33 20,2,24

filtering and HPO are significantly lower than the optimisticestimate given in Section
5.2 motivating future work in HPO and especially in filtering.

6 Conclusion

In this paper, we compared the potential benefits of filteringwith HPO. HPO may re-
duce the effects of detrimental instances on an induced model but the detrimental in-
stances are still considered in the learning process. Filtering, on the other hand, removes
the detrimental instances–completely eliminating their effects on the induced model.

We used an optimistic approach to estimate the potential accuracy of each method.
Using the optimistic approach, both filtering and HPO significantly increase the classi-
fication accuracy for all of the considered learning algorithms. However,filtering has a
greater potential effecton average, increasing the classification accuracy from 80.8%
to 89.1% on the observed data sets. HPO increases the averageclassification accuracy
to 84.8%. Future work includes developing models to understand the dependence of
the performance of learning algorithms given the instancesused for training. To better
understand how instances affect each other, we are examining the results from machine
learning experiments stored in repositories that include which instances were used for
training and their predicted class [25,22]. We hope that thepresented results provide
motivation for improving the quality of the training data.

References

1. J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

2. J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter opti-
mization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 2546–2554. Curran Asso-
ciates, Inc., 2011.

3. C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. Journal of Artificial
Intelligence Research, 11:131–167, 1999.

4. R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. InPro-
ceedings of the 23rd International Conference on Machine learning, pages 201–208, 2006.

5. J. Demšar. Statistical comparisons of classifiers over multiple data sets.Journal of Machine
Learning Research, 7:1–30, 2006.

13

12 The Potential Benefits of Filtering and Hyperparameter Optimization

6. J. L. Elman. Learning and development in neural networks:The importance of starting small.
Cognition, 48:71–99, 1993.

7. B. Frénay and M. Verleysen. Classification in the presence of label noise: a survey.IEEE
Transactions on Neural Networks and Learning Systems, 25(5):845–869, 2014.

8. I. Guyon and A. Elisseeff. An introduction to variable andfeature selection.Journal of
Machine Learning Research, 3:1157–1182, 2003.

9. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,and I. H. Witten. The weka data
mining software: an update.SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

10. F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for gen-
eral algorithm configuration. InProceedings of the International Learning and Intelligent
Optimization Conference, pages 507–523, 2011.

11. J. Kubica and A. Moore. Probabilistic noise identification and data cleaning. InProceedings
of the 3rd IEEE International Conference on Data Mining, pages 131–138, 2003.

12. H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation
of deep architectures on problems with many factors of variation. InProceedings of the 24th
International Conference on Machine Learning, pages 473–480, 2007.

13. J. Lee and C. Giraud-Carrier. A metric for unsupervised metalearning. Intelligent Data
Analysis, 15(6):827–841, 2011.

14. M. Lichman. UCI machine learning repository, 2013.
15. D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types

of noise on the precision of supervised learning techniques. Artificial Intelligence Review,
33(4):275–306, 2010.

16. A. H. Peterson and T. R. Martinez. Estimating the potential for combining learning models.
In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75, 2005.

17. U. Rebbapragada and C. E. Brodley. Class noise mitigation through instance weighting. In
Proceedings of the 18th European Conference on Machine Learning, pages 708–715, 2007.

18. J. A. Sáez, J. Luengo, and F. Herrera. Predicting noise filtering efficacy with data complexity
measures for nearest neighbor classification.Pattern Recognition, 46(1):355–364, 2013.

19. M. Schonlau, W. J. Welch, and D. R. Jones.Global versus local search in constrained
optimization of computer models, volume Volume 34 ofLecture Notes–Monograph Series,
pages 11–25. Institute of Mathematical Statistics, Hayward, CA, 1998.

20. M. R. Smith and T. Martinez. Improving classification accuracy by identifying and remov-
ing instances that should be misclassified. InProceedings of the IEEE International Joint
Conference on Neural Networks, pages 2690–2697, 2011.

21. M. R. Smith, T. Martinez, and C. Giraud-Carrier. An instance level analysis of data com-
plexity. Machine Learning, 95(2):225–256, 2014.

22. M. R. Smith, A. White, C. Giraud-Carrier, and T. Martinez. An easy to use repository for
comparing and improving machine learning algorithm usage.In Proceedings of the 2014
International Workshop on Meta-learning and Algorithm Selection (MetaSel), pages 41–48,
2014.

23. J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimization of machine learning
algorithms. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,Advances in
Neural Information Processing Systems 25, pages 2951–2959. 2012.

24. C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: combined selection
and hyperparameter optimization of classification algorithms. Inproceedings of the 19th
International Conference on Knowledge Discovery and Data Mining, pages 847–855, 2013.

25. J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science in
machine learning.SIGKDD Explorations, 15(2):49–60, 2013.

26. D. H. Wolpert. The lack of a priori distinctions between learning algorithms.Neural Com-
putation, 8(7):1341–1390, 1996.

14

Learning Data Set Similarities for

Hyperparameter Optimization Initializations

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab
Universitätsplatz 1, 31141 Hildesheim, Germany

{wistuba,schilling,schmidt-thieme}@ismll.uni-hildesheim.de

Abstract. Current research has introduced new automatic hyperpa-
rameter optimization strategies that are able to accelerate this opti-
mization process and outperform manual and grid or random search in
terms of time and prediction accuracy. Currently, meta-learning methods
that transfer knowledge from previous experiments to a new experiment
arouse particular interest among researchers because it allows to improve
the hyperparameter optimization.

In this work we further improve the initialization techniques for sequen-
tial model-based optimization, the current state of the art hyperparame-
ter optimization framework. Instead of using a static similarity prediction
between data sets, we use the few evaluations on the new data sets to cre-
ate new features. These features allow a better prediction of the data set
similarity. Furthermore, we propose a technique that is inspired by active
learning. In contrast to the current state of the art, it does not greedily
choose the best hyperparameter con�guration but considers that a time
budget is available. Therefore, the �rst evaluations on the new data set
are used for learning a better prediction function for predicting the simi-
larity between data sets such that we are able to pro�t from this in future
evaluations. We empirically compare the distance function by applying
it in the scenario of the initialization of SMBO by meta-learning. Our
two proposed approaches are compared against three competitor meth-
ods on one meta-data set with respect to the average rank between these
methods and show that they are able to outperform them.

1 Introduction

Most machine learning algorithms depend on hyperparameters and their opti-
mization is an important part of machine learning techniques applied in practice.
Automatic hyperparameter tuning is catching more and more attention by the
machine learning community for two simple but important reasons. Firstly, the
omnipresence of hyperparameters a�ects the whole community such that every-
one is a�ected by the time-consuming task of optimizing hyperparameters either
by manually tuning them or by applying a grid search. Secondly, in many cases
the �nal hyperparameter con�gurations decides whether an algorithm is state of
the art or just moderate such that the task of hyperparameter optimization is as

15

important as developing new models [2,4,13,17,20]. Furthermore, hyperparame-
ter optimization has shown to be able to also automatically perform algorithm
and preprocessing selection by considering this as a further hyperparameter [20].

Sequential model-based optimization (SMBO) [9] is the current state of the
art for hyperparameter optimization and has proven to outperform alternatives
such as grid search or random search [17,20,2]. Recent research try to improve
the SMBO framework by applying meta-learning on the hyperparameter opti-
mization problem. The key concept of meta-learning is to transfer knowledge
gained for an algorithm on past experiments on di�erent data sets to new exper-
iments. Currently, two di�erent, orthogonal ways of transferring this knowledge
exist. One possibility is to initialize SMBO by using hyperparameter con�gura-
tions that have been best on previous experiments [5,6]. Another possibility is
to use surrogate models that are able to learn across data sets [1,19,23].

We improve the former strategy by using an adaptive initialization strategy.
We predict the similarity between data sets by using meta-features and features
that express the knowledge gathered about the new data set so far. Having a
more accurate approximation of the similarity between data sets, we are able
to provide a better initialization. We provide empirical evidence that the new
features provide better initializations in two di�erent experiments.

Furthermore, we propose an initialization strategy that is based on the active
learning idea. We try to evaluate hyperparameter con�gurations that are non-
optimal for the short term but promise better results than choosing greedily the
hyperparameter con�guration that will provide the best result in expectation.
To the best of our knowledge, we are the �rst that propose this idea in context
of hyperparameter optimization for SMBO.

2 Related Work

Initializing hyperparameter optimization through meta-learning was proven to
be e�ective [5,7,15,6]. Reif et al. [15] suggests to choose those hyperparameter
con�gurations for a new data set that were best on a similar data set in the
context of evolutionary parameter optimization. Here, the similarity was de-
�ned through the distance among meta-features, descriptive data set features.
Recently, Feurer et al. [5] followed their lead and proposed the same initializa-
tion for sequential model-based optimization (SMBO), the current state of the
art hyperparameter optimization framework. Later, they extended their work
by learning a regression model on the meta-features that predicts the similarity
between data sets [6].

Learning a surrogate model, the component in the SMBO framework that
tries to predict the performance for a speci�c hyperparameter con�guration on
a data set, that is not only learned on knowledge of the new data set but ad-
ditionally across knowledge from experiments on other data sets [1,19,23,16] is
another option to transfer knowledge as well as pruning [22]. This idea is related
but orthogonal to our work and can bene�t from a good initialization and is no
replacement for a good initialization strategy.

16

We propose to add features based on the performance of an algorithm on a
data set for a speci�c hyperparameter con�guration. Pfahringer et al. [12] pro-
pose to use landmark features. These features are estimated by evaluating simple
algorithms on the data sets of the past and new experiment. In comparison to
our features, these features are no by-product of the optimization process but
have to be computed and hence need additional time. Even though these are sim-
ple algorithms, these features are problem-dependent (classi�cation, regression,
ranking, structured prediction all need their own landmark features). Further-
more, �simple� classi�ers such as nearest neighbors as proposed by the authors
can become very time-consuming for large data sets which are those data sets
we are interested in.

Relative landmarks proposed by Leite et al. [10] are not and cannot be used
as meta-features. They are used within the hyperparameter optimization strat-
egy that is used instead of SMBO but are similar in that way that they are
also given as a by-product and are computed using the relationship between
hyperparameter con�gurations on each data set.

3 Background

In this section the hyperparameter optimization problem is formally de�ned. For
the sake of completeness, also the sequential model-based optimization frame-
work is presented.

3.1 Hyperparameter Optimization Problem Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter con�guration with Λ = Λ1 × . . .× ΛP being the P-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈M that
minimizes the objective function that linearly combines the loss function L and
the regularization term R:

Aλ

(
D(train)

)
:= arg min

Mλ∈M
L
(
Mλ, D

(train)
)
+R (Mλ) . (1)

Then, the task of hyperparameter optimization is �nding the hyperparameter
con�guration λ∗ that minimizes the loss function on the validation data set i.e.

λ∗ := argmin
λ∈Λ
L
(
Aλ

(
D(train)

)
, D(valid)

)
=: argmin

λ∈Λ
fD (λ) . (2)

3.2 Sequential Model-based Optimization

Exhaustive hyperparameter search methods such as grid search are becoming
more and more expensive. Data sets are growing, models are getting more com-
plex and have high-dimensional hyperparameter spaces Sequential model-based

17

optimization (SMBO) [9] is a black-box optimization framework that replaces
the time-consuming function f to evaluate with a cheap-to-evaluate surrogate
function Ψ that approximates f . With the help of an acquisition function such
as expected improvement [9], sequentially new points are chosen such that a
balance between exploitation and exploration is met and f is optimized. In our
scenario, evaluating f is equivalent to learning a machine learning algorithm on
some training data for a given hyperparameter con�guration and estimate the
models performance on a hold-out data set.

Algorithm 1 outlines the SMBO framework. It starts with an observation
history H that equals the empty set in cases where no knowledge from past
experiments is used [2,8,17] or is non-empty in cases where past experiments
are used [1,19,23] or SMBO has been initialized [5,6]. First, the surrogate model
Ψ is �tted to H where Ψ can be any regression model. Since the acquisition
function a usually needs some certainty about the prediction, common choices
are Gaussian processes [1,17,19,23] or ensembles such as random forests [8]. The
acquisition function chooses the next candidate to evaluate. A common choice
for the acquisition function is expected improvement [9] but further acquisition
functions exist such as probability of improvement [9], the conditional entropy
of the minimizer [21] or a multi-armed bandit based criterion [18]. The evalu-
ated candidate is �nally added to the set of observations. After T -many SMBO
iterations, the best currently found hyperparameter con�guration is returned.

Algorithm 1 Sequential Model-based Optimization

Input: Hyperparameter space Λ, observation history H, number of iterations T , ac-
quisition function a, surrogate model Ψ .

Output: Best hyperparameter con�guration found.
1: for t = 1 to T do

2: Fit Ψ to H
3: λ∗ ← argmaxλ∗∈Λ a (λ∗, Ψ)
4: Evaluate f (λ∗)
5: H ← H∪ {(λ∗, f (λ∗))}
6: return argmin(λ∗,f(λ∗))∈H f (λ

∗)

4 Adaptive Initialization

Recent initialization techniques for sequential model-based optimization com-
pute a static initialization hyperparameter con�guration sequence [5,6]. The ad-
vantage of this idea is that during the initialization there is no time overhead
for computing the next hyperparameter con�guration. The disadvantage is that
knowledge gained during the initialization about the new data set is not used for
further initialization queries. Hence, we propose to use an adaptive initialization
technique. Firstly, we propose to add some additional meta-features generated

18

from this knowledge, which follows the idea of landmark features [12] and rela-
tive landmarks [10], respectively. Secondly, we apply the idea of active learning
and try to choose the hyperparameter con�gurations that will allow to learn a
precise ranking of data sets with respect to their similarity to the new data set.

4.1 Adaptive Initialization Using Additional Meta-Features

Feurer et al. [5] propose to improve the SMBO framework by an initialization
strategy as shown in Algorithm 2. The idea is to use the hyperparameter con�g-
urations that have been best on other data sets. Those hyperparameter con�g-
urations are ranked with respect to the predicted similarity to the new data set
Dnew for which the best hyperparameter con�guration needs to be found. The
true distance function d : D × D → R between data sets is unknown such that
Feurer et al. [5] propose to approximate it by d̂ (mi,mj) = ‖mi −mj‖p where

mi is the vector of meta-features of data set Di. In their extended work [6], they

propose to use a random forest to learn d̂ using training instances of the form(
(mi,mj)

T
, d (Di, Dj)

)
. This initialization does not consider the performance

of the hyperparameters con�gurations already evaluated on the new data set.
We propose to keep Feurer's initialization strategy [6] untouched and only

add additional meta-features that capture the information gained on the new
data set. Meta-features as de�ned in Equation 3 are added to the set of meta-
features for all hyperparameter con�gurations λk,λl that are evaluated on the
new data set. The symbol ⊕ denotes an exclusive or. An additional di�erence is
that now after each step the meta-features and the model d̂ needs to be updated
(before Line 2).

mDi,Dj ,λk,λl
= I

(
fDi

(λk) > fDi
(λl)⊕ fDj

(λk) > fDj
(λl)

)
(3)

We make here the assumption that the same set of hyperparameter con�gu-
rations were evaluated across all training data sets. If this is not the case, this
problem can be overcome by approximating the respective value by learning sur-
rogate models for the training data sets as well. Since for these data sets much
information is available, the prediction will be reliable enough. For simplicity,
we assume that the former is the case.

The target d can be any similarity measure that re�ects the true similarity
between data sets. Feurer et al. [6] propose to use the Spearman correlation
coe�cient while we are using the number of discordant pairs in our experiments,
i.e.

d (Di, Dj) :=

∑
λk,λl∈Λ I

(
fDi

(λk) > fDi
(λl)⊕ fDj

(λk) > fDj
(λl)

)

|Λ| (|Λ| − 1)
(4)

where Λ is the set of hyperparameter con�gurations observed on the training
data sets. This change will have no in�uence on the prediction quality for the
traditional meta-features but is better suited for the proposed landmark features
in Equation 3.

19

Algorithm 2 Sequential Model-based Optimization with Initialization

Input: Hyperparameter space Λ, observation history H, number of iterations T , ac-
quisition function a, surrogate model Ψ , set of data sets D, number of initial hy-
perparameter con�gurations I, prediction function for distances between data sets
d̂.

Output: Best hyperparameter con�guration found.
1: for i = 1 to I do
2: Predict the distances d̂ (Dj , Dnew) for all Dj ∈ D.
3: λ∗ ← Select best hyperparameter con�guration on the i-th closest data set.
4: Evaluate f (λ∗)
5: H ← H∪ {(λ∗, f (λ∗))}
6: return SMBO(Λ,H, T − I, a, Ψ)

4.2 Adaptive Initialization Using Active Learning

We propose to extend the method from the last section by investing few initial-
ization steps by carefully selecting hyperparameter con�gurations that will lead
to good additional meta-features and provide a better prediction function d̂. An
additional meta-feature is useful if the resulting regression model d̂ predicts the
distances of the training data sets to the new data set such that the ordering
with respect to the predicted distances re�ects the ordering with respect to the
true distances. If I is the number of initialization steps and K < I is the number
of steps to choose additional meta-features, then the K hyperparameter con�g-
urations need to be chosen such that the precision at I −K with respect to the
ordering is optimized. The precision at n is de�ned as

prec@n :=
|{n closest data sets to Dnew wrt. d}∩{n closest data sets to Dnew wrt. d̂}|

n (5)

Algorithm 3 presents the method we used to �nd the best �rst K hyperparame-
ter con�gurations. In a leave-one-out cross-validation over all training data sets
D the pair of hyperparameter con�gurations (λj ,λk) is sought that achieves the
best precision at I−K on average (Lines 1 to 7). Since testing all di�erent com-
binations ofK di�erent hyperparameter con�gurations is too expensive, only the
best pair is searched. The remaining K − 2 hyperparameter con�gurations are
greedily added to the �nal set of initial hyperparameter con�gurations Λactive as
described in Lines 8 to 15. The hyperparameter con�guration is added to Λactive
that performs best on average with all hyperparameter con�gurations chosen so
far. After choosing K hyperparameter con�gurations as described in Algorithm
3, the remaining I−K hyperparameter con�gurations are chosen as described in
Section 4.1. The time needed for computing the �rst K hyperparameter highly
depends on the size of Λ. To speed up the process, we reduced Λ to those hyper-
parameter con�gurations that have been best on at least one training data set.

20

Algorithm 3 Active Initialization

Input: Set of training data sets D, set of observed hyperparameter con�gurations
on D Λ, number of active learning steps K, number of initial hyperparameter
con�gurations I.

Output: List of hyperparameter con�gurations that will lead to good predictors for
d̂.

1: for i = 1 to |D| do
2: Dtest ← {Di}
3: Dtrain ← D \ {Di}
4: for all λj ,λk ∈ Λ, j 6= k do

5: Train d̂ on Dtrain using the additional feature m·,·,λj ,λk (Eq. 3)

6: Estimate the precision at I −K of d̂ on Dtest.
7: Λactive ← {λj ,λk} with highest average precision.
8: for k = 1 to K − 2 do

9: for i = 1 . . . |D| do
10: Dtest ← {Di}
11: Dtrain ← D \ {Di}
12: for all λ ∈ Λ \ Λactive do
13: Train d̂ on Dtrain using the additional features (Eq. 3) implied by Λactive∪

{λ}.
14: Estimate the precision at I −K of d̂ on Dtest.
15: Add λ with highest average precision to Λactive.
16: return Λactive

5 Experimental Evaluation

5.1 Initialization Strategies

Following initialization strategies will be considered in our experiments.

Random Best Initialization (RBI) This initialization is a very simple initializa-
tion. I training data sets from the training data sets D are chosen at random
and its best hyperparameter con�gurations are used for the initialization.

Nearest Best Initialization (NBI) This is the initialization strategy proposed by
Reif et al. and Feurer et al. [5,15]. Instead of choosing I training data sets at
random, they are chosen with respect to the similarity between the meta-features
listed in Table 1. Then, like for RBI, the best hyperparameter con�gurations on
these data sets are chosen for initialization.

Predictive Best Initialization (PBI) Feurer et al. [6] propose to learn the distance
between data sets using a regression model based on the meta-features. These
predicted distances are used to �nd the most similar data sets to the new data
set and like before, the best hyperparameter con�gurations on these data sets
are chosen for initialization.

21

Adaptive Predictive Best Initialization (aPBI) This is our extension to PBI
presented in Section 4.1 that adapts to the new data set during initialization by
including the features de�ned in Equation 3.

Active Adaptive Predictive Best Initialization (aaPBI) Active Adaptive Predic-
tive Best Initialization is described in Section 4.2 and extends aPBI by using
the �rst K steps to choose hyperparameter con�gurations that will result in
promising meta-features. After the �rst K iterations, it behaves equivalent to
aPBI.

Table 1. List of all meta-features used.

Number of Classes Class Probability Max
Number of Instances Class Probability Mean
Log Number of Instances Class Probability Standard Deviation
Number of Features Kurtosis Min
Log Number of Features Kurtosis Max
Data Set Dimensionality Kurtosis Mean
Log Data Set Dimensionality Kurtosis Standard Deviation
Inverse Data Set Dimensionality Skewness Min
Log Inverse Data Set Dimensionality Skewness Max
Class Cross Entropy Skewness Mean
Class Probability Min Skewness Standard Deviation

5.2 Meta-Features

Meta-features are supposed to be discriminative for a data set and can be esti-
mated without evaluating f . Many surrogate models [1,19,23] and initialization
strategies [5,15] use them to predict the similarity between data sets. For the
experiments, the meta-features listed in Table 1 are used. For an in-depth ex-
planation we refer the reader to [1,11].

5.3 Meta-Data Set

For creating the two meta-data sets, 50 classi�cation data sets from the UCI
repository are chosen at random. All instances are merged in cases there were
already train/test splits, shu�ed and split into 80% train and 20% test. A
support vector machine (SVM) [3] was used to create the meta-data set. The
SVM was trained using three di�erent kernels (linear, polynomial and Gaus-
sian) and the labels of the meta-instances were estimated by evaluating the
trained model on the test split. The total hyperparameter dimension is six,
three dimensions for indicator variables that indicates which kernel was cho-
sen, one for the trade-o� parameter C, one for the width γ of the Gaussian
kernel and one for the degree of the polynomial kernel d. If the hyperparam-
eter is not involved, e.g. the degree if the Gaussian kernel was used, it is set

22

to 0. The test accuracy is precomputed on a grid C ∈
{
2−5, . . . , 26

}
, γ ∈{

10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103
}

and d ∈ {2, . . . , 10}
resulting into 288 meta-instances per data set. The meta-data sets is extended
by the meta-features listed in Table 1.

5.4 Experiments

Two di�erent experiments are conducted. First, state of the art initialization
strategies are compared with respect to the average rank after I initial hyper-
parameter con�gurations. Second, the long term e�ect on the hyperparameter
optimization is compared. Even though the initial hyperparameter con�guration
lead to good results after I results, the ultimate aim is to have good results at
the end of the hyperparameter optimization after T iterations.

We evaluated all methods in a leave-one-out cross-validation per data set.
All data sets but one are used for training and the data set not used for training
is the new data set. The results reported are the average over 100 repetitions.
Due to the randomness, we used 1,000 repetitions whenever RBI was used.

●
●

●

● ●
● ●

● ● ●

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8 9 10
Number of Initial Hyperparameter Configurations

A
ve

ra
ge

 R
an

k

●

●

●

●

●
●

● ● ● ●

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10
Number of Initial Hyperparameter Configurations

A
ve

ra
ge

 N
or

m
al

iz
ed

 M
C

R

● RBI NBI PBI aPBI aaPBI

Fig. 1. Five di�erent tuning strategies are compared. Our strategy aPBI is able to
outperform the state of the art. Our second strategy aaPBI is executed under the
assumption that it has 10 initial steps. The �rst steps are used for active learning and
hence the bad results in the beginning are not surprising.

Comparison to Other Initialization Strategies For all our experiments
10 initialization steps are used, I = 10. In Figure 1 the di�erent initialization
strategies are compared with respect to the average rank in the left plot. Our
initialization strategy aPBI bene�ts from the new, adaptive features and is able
to outperform the other initialization strategies. Our second strategy aaPBI uses
three active learning steps, K = 3. This explains the behavior in the beginning.
After these initial steps it is able to catch up and �nally surpass PBI but it
is not as good as aPBI. Furthermore, a distance function learned on the meta-
features (PBI) provides better results than a �xed distance function (NBI) which
con�rms the results by Feurer et al. [6]. All initialization strategies are able to

23

outperform RBI which con�rms that the meta-features contain information that
concludes information about the similarity between data sets. The right plot
shows the average misclassi�cation (MCR) rate where the MCR is scaled to 0
and 1 for each data set.

Comparison with Respect to the Long Term E�ect To have a look at
the long term e�ect of the initialization strategies, we compare the di�erent
initialization strategies in the SMBO framework using two common surrogate
models. One is a Gaussian process with a squared exponential kernel with au-
tomatic relevance determination [17]. The kernel parameters are estimated by
maximizing the marginal likelihood on the meta-training set [14]. The second
is a random forest [8]. Again, aPBI provides strictly better results than PBI
for both surrogate models and outperforms any other initialization strategy for
the Gaussian process. Our alternative strategy aaPBI performs mediocre for the
Gaussian process but good for the random forest.

●

●●

●●
●
●●●●●

●●●
●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●
●●●●●

●●●●
●●●●●●●●

2.5

3.0

3.5

4.0

20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

● RBI
NBI
PBI
aPBI
aaPBI

Gaussian Process
●

●●●

●●
●●

●●●
●●

●●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●

●
●●

●
●●●

●

●

●●●

2.5

3.0

3.5

4.0

20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

● RBI
NBI
PBI
aPBI
aaPBI

Random Forest

Fig. 2. The e�ect of the initialization strategies on the further optimization process in
the SMBO framework using a Gaussian process (left) and a random forest (right) as a
surrogate model is investigated. Our initialization strategy aPBI seems to be strictly
better than PBI while aaPBI performs especially well for the random forest in the later
phase.

6 Conclusion and Future Work

Predicting the similarity between data sets is an important topic for hyperpa-
rameter optimization since it allows to successfully transfer knowledge from past
experiments to a new experiment. We have presented an easy way of achieving
an adaptive initialization strategy by adding a new kind of landmark features.
We have shown for two popular surrogate models that these new features im-
prove over the same strategy without these features. Finally, we introduced a
new idea that in contrast to the current methods considers that there is a limit
of evaluations. It tries to exploit this knowledge by applying a guided exploita-
tion at �rst that will lead to worse decisions for the short term but will deliver
better results when the end of the initialization is reached. Unfortunately, the

24

results for this method are not fully convincing but we believe that it can be a
good idea to choose hyperparameter con�gurations in a smarter way but always
assuming that the next hyperparameter con�guration chosen is the last one.

In this work we were able to provide a more accurate prediction of the sim-
ilarity between data sets and used this knowledge to improve the initialization.
Since not only initialization strategies but also surrogate models rely on an exact
similarity prediction, we plan to investigate the impact on these models. For ex-
ample Yogatama and Mann [23] use a kernel that measures the distance between
data sets by using the p-norm between meta-features of data sets only. A better
distance function may help to improve the prediction and will help to improve
the SMBO beyond the initialization.

Acknowledgments. The authors gratefully acknowledge the co-funding of their
work by the German Research Foundation (Deutsche Forschungsgesellschaft)
under grant SCHM 2583/6-1.

References

1. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter
tuning. In: Dasgupta, S., Mcallester, D. (eds.) Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-13). vol. 28, pp. 199�207. JMLR
Workshop and Conference Proceedings (May 2013)

2. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems 24, pp. 2546�2554.
Curran Associates, Inc. (2011)

3. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1�27:27 (2011), software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

4. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised
feature learning. In: Gordon, G., Dunson, D., Dudík, M. (eds.) Proceedings of the
Fourteenth International Conference on Arti�cial Intelligence and Statistics. JMLR
Workshop and Conference Proceedings, vol. 15, pp. 215�223. JMLR W&CP (2011)

5. Feurer, M., Springenberg, J.T., Hutter, F.: Using meta-learning to initialize
bayesian optimization of hyperparameters. In: ECAI workshop on Metalearning
and Algorithm Selection (MetaSel). pp. 3�10 (2014)

6. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Con-
ference on Arti�cial Intelligence, January 25-30, 2015, Austin, Texas, USA. pp.
1128�1135 (2015)

7. Gomes, T.A., Prudêncio, R.B., Soares, C., Rossi, A.L., Carvalho, A.: Combin-
ing meta-learning and search techniques to select parameters for support vector
machines. Neurocomputing 75(1), 3 � 13 (2012), brazilian Symposium on Neural
Networks (SBRN 2010) International Conference on Hybrid Arti�cial Intelligence
Systems (HAIS 2010)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm con�guration. In: Proceedings of the 5th International Con-
ference on Learning and Intelligent Optimization. pp. 507�523. LION'05, Springer-
Verlag, Berlin, Heidelberg (2011)

25

9. Jones, D.R., Schonlau, M., Welch, W.J.: E�cient global optimization of expensive
black-box functions. J. of Global Optimization 13(4), 455�492 (Dec 1998)

10. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classi�cation algorithms with ac-
tive testing. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern
Recognition, Lecture Notes in Computer Science, vol. 7376, pp. 117�131. Springer
Berlin Heidelberg (2012)

11. Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learn-
ing, Neural and Statistical Classi�cation. Ellis Horwood, Upper Saddle River, NJ,
USA (1994)

12. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking
various learning algorithms. In: In Proceedings of the Seventeenth International
Conference on Machine Learning. pp. 743�750. Morgan Kaufmann (2000)

13. Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening
approach to discovering good forms of biologically inspired visual representation.
PLoS Computational Biology 5(11), e1000579 (2009), PMID: 19956750

14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (2005)

15. Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter opti-
mization of classi�ers. Machine Learning 87(3), 357�380 (2012)

16. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyperparameter
Optimization with Factorized Multilayer Perceptrons. In: Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015 (2015)

17. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems 25, pp. 2951�2959. Curran
Associates, Inc. (2012)

18. Srinivas, N., Krause, A., Seeger, M., Kakade, S.M.: Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In: Fürnkranz, J.,
Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine
Learning (ICML-10). pp. 1015�1022. Omnipress (2010)

19. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In: Burges,
C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in
Neural Information Processing Systems 26, pp. 2004�2012. Curran Associates, Inc.
(2013)

20. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined se-
lection and hyperparameter optimization of classi�cation algorithms. In: Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 847�855. KDD '13, ACM, New York, NY, USA (2013)

21. Villemonteix, J., Vazquez, E., Walter, E.: An informational approach to the global
optimization of expensive-to-evaluate functions. Journal of Global Optimization
44(4), 509�534 (2009)

22. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter Search Space
Pruning - A New Component for Sequential Model-Based Hyperparameter Opti-
mization. In: Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015 (2015)

23. Yogatama, D., Mann, G.: E�cient transfer learning method for automatic hy-
perparameter tuning. In: International Conference on Arti�cial Intelligence and
Statistics (AISTATS 2014) (2014)

26

Limitations of Using Constraint Set Utility in
Semi-Supervised Clustering

Toon Van Craenendonck and Hendrik Blockeel

Department of Computer Science
KU Leuven

Abstract. Semi-supervised clustering algorithms allow the user to in-
corporate background knowledge into the clustering process. Often, this
background knowledge is specified in the form of must-link (ML) and
cannot-link (CL) constraints, indicating whether certain pairs of ele-
ments should be in the same cluster or not. Several traditional clustering
algorithms have been adapted to operate in this setting. We compare
some of these algorithms experimentally, and observe that their perfor-
mances vary significantly, depending on the data set and constraints.
We use two previously introduced constraint set utility measures, con-
sistency and coherence, to help explain these differences. Motivated by
the correlation between consistency and clustering performance, we also
examine its use in algorithm selection. We find this consistency-based
approach to be unsuccessful, and explain this result by observing that
the previously found correlation between utility measures and clustering
performance is only present when we look at results of different data
sets jointly. This limits the use of these constraint set utility measures,
as often we are interested in using them in the context of a particular
data set.

Keywords: semi-supervised clustering, constraint set utility, algorithm
selection

1 Introduction

Clustering is the task of grouping data into clusters, or groups of similar ob-
jects. Traditional unsupervised clustering algorithms only rely on information
intrinsic to the data. In contrast, in semi-supervised clustering [2, 19, 20] the
user can provide background knowledge to guide the algorithm towards better
clusterings. Often, such background knowledge is given in the form of pairwise
constraints, stating whether elements should be in the same cluster (must-link)
or not (cannot-link). Semi-supervised extensions have been developed for most
of the traditional clustering algorithms, such as K-means [19], DBSCAN [10,14]
and spectral clustering [12]. A user who wants to cluster a data set, and influence
this clustering with pairwise constraints, has to select one of these algorithms.
In addition, appropriate values have to be chosen for the algorithm hyperparam-
eters. While these problems have received significant attention in the context of

27

supervised learning [3,16], little work has been done for clustering, both unsuper-
vised and semi-supervised. In this paper we focus on semi-supervised clustering,
which is closer to the well-studied supervised setting. The contributions of this
paper are (a) a comparison of a diverse set of semi-supervised clustering algo-
rithms on several UCI data sets and (b) the exploration of the semi-supervised
clustering algorithm selection strategy based on constraint-set utility measures
suggested in [18].

2 Semi-supervised clustering algorithms

Semi-supervised clustering algorithms can be broadly divided into three cat-
egories: methods that use the constraints to adapt their similarity measure,
methods that adapt the actual clustering procedure to satisfy the constraints,
and hybrid algorithms that combine these two approaches. In the remainder of
this section, we briefly discuss these three approaches and the algorithms that
we use in our experiments. We consider these algorithms in combination with
hyperparameter selection methods, as ultimately we are interested in mappings
of the following form:

Γ (X ,M, C) = y (1)

with X = {xi}ni=1 the data set, M = {(xi, xj)} a set of must-link constraints,
C = {(xi, xj)} a set of cannot-link constraints and y = {c1, c2, . . . , cK} s.t.
∪ici = X (we only consider partitional clusterings). Γ encapsulates the clustering
method as well as the hyperparameter selection procedure.

2.1 Methods that adapt the clustering algorithm directly

The first category consists of methods that alter the clustering procedure to
satisfy constraints. One such algorithm is COP-KMeans [19], an adaptation of
the traditional K-Means algorithm in which points are only assigned to clusters
if the assignment does not result in a constraint violation. Since the introduc-
tion of COP-K-Means, several other variants of the original K-means algorithm
have been developed. Semi-supervised extensions have also been developed for
other types of clustering algorithms, including density-based methods [10, 14]
and spectral clustering algorithms [9, 12]. In the remainder of this section we
discuss two such methods that are used in the experiments.

FOSC-OpticsDend
In [5] Campello et al. introduce FOSC, a “Framework for Optimal Selection
of Clusters” from clustering hierarchies. Given a local unsupervised clustering
quality measure (one that can be computed for each cluster individually) and
a set of constraints, FOSC determines a local cut of a given hierarchy that is
optimal with respect to the quality measure and the constraint set. The clus-
tering hierarchy on which FOSC operates can be provided by any hierachical

28

clustering algorithm. In our experiments, these hierarchies will be provided by
OPTICS, a density-based clustering algorithm (we use the implementation pro-
vided in the ELKI environment [1]). It produces a reachability plot, from which
a dendrogram is constructed using the algorithm by Sander et al. [15]. Campello
et al. also experiment with this combination and find that this approach, which
they call FOSC-OpticsDend, outperforms SSDBSCAN [10], a semi-supervised
extension of DBSCAN. OPTICS requires setting minPts, but as this parameter
is non-critical it is common to fix its value for all runs [5, 10]. As in [5], we set
it to minPts = 4. Often several cuts of the dendrogram yield a partitional clus-
tering that respects all constraints. In this case it is the unsupervised quality
measure that will determine the chosen cut. As in [5], we use cluster lifetime for
this purpose, which can be seen as the length along the dendrogram for which a
cluster exists.

Constrainted 1-Spectral Clustering
Constrained 1-Spectral Clustering (COSC) [12] is an extension of spectral clus-
tering to the semi-supervised setting.1 Spectral clustering methods aim to par-
tition a similarity graph such that edges within clusters have high weights and
edges between clusters have low weights [17]. Several types of similarity graphs
can be constructed from a set of data points. In our experiments we use a sym-
metric K-NN graph with local scaling as in [4], which avoids the need to select a
scaling parameter [21]. Parameter K, indicating the number of neighbors, is not
critical for the clustering result, and we set it to K = 10, as in [4]. The resulting
graph can be represented by an affinity matrix consisting of pairwise similari-
ties. Some semi-supervised spectral clustering algorithms incorporate must-link
and cannot-link constraints by modifiying this matrix directly. Others, such as
COSC, adapt the optimization objective of spectral clustering to incorporate
constraints and propose alternative optimization procedures. COSC requires set-
ting the number of clusters, k. In our experiments we run COSC for k ∈ [2, 10],
and select the clustering that violates the lowest number of constraints. If mul-
tiple solutions score equally on this measure, the clustering with the smallest
number of clusters is chosen.

2.2 Methods based on metric-learning

The second type of methods does not alter the clustering algorithm directly, but
modifies the underlying similarity measure. One of the first such methods was
proposed by Xing et al. [20], who introduce an algorithm to learn a Mahalanobis
distance measure that minimizes the distance between pairs involved in must-
link constraints, while keeping pairs involved in cannot-link constraints far apart.
Since the work of Xing et al., many others have focused on learning Mahalanobis
metrics, which can be defined as

dA(x, y) =
√

(x− y)TA(x− y) (2)

1 Code is available at http://www.ml.uni-saarland.de/code/cosc/cosc.htm

29

The formula simplifies to the Euclidean distance if A is the identity matrix. If a
diagonal matrix A is learned, this corresponds to feature weighting. Using a full
matrix corresponds to feature generation, with the newly generated features be-
ing linear combinations of existing ones [2]. Using a Mahalanobis metric defined
by A is equivalent to using the Euclidean distance in the transformed space ob-
tained by muliplying by A1/2, i.e. Xtransformed = A1/2X. Note that adapting an
algorithm’s similarity metric can only modify the bias of a clustering algorithm
to some extent. For example, with a Mahalanobis distance K-means can find par-
allel ellipsoidal clusters instead of only spherical ones, but still no non-parallel
ellipsoidal or non-convex clusters.

Information-Theoretic Metric Learning
In our experiments, we use the Information-Theoretic Metric Learning (ITML)
algorithm [7]2, which has been shown to outperform the earlier algorithm by
Xing et al. [7,8]. ITML requires setting one hyperparameter, γ, which determines
the importance of satisfying the constraints. For each data set and constraint
collection, we learn Mahalanobis matrices for γ ∈ {.01, .1, 1, 10} (the values
suggested in [7]), and select the best one as the one that results in the clustering
that violates the lowest number of constraints. If multiple solutions score equally,
we select the one that corresponds to the lowest value of γ. We learn a full metric
matrix A, transform the data using this matrix, and construct clusterings using
one of the following unsupervised algorithms:

– K-Means: We run the traditional K-Means algorithm for k ∈ [2, 10], and
experiment with two ways of selecting the “best” solution from the generated
candidates: (a) the one violating the lowest number of constraints, as before,
or (b) the one with the highest silhouette index, an unsupervised measure
[13]. In the latter case the silhouette index is calculated in the transformed
space.

– Self-Tuning Spectral Clustering: We also apply Self-Tuning Spectral
Clustering [21]3 to the transformed data, which does not require any pa-
rameters to be set. The affinity matrix is constructed using local scaling (as
with the COSC experiments), and the number of clusters is determined by
examining the structure of the eigenvectors of the Laplacian.

2.3 Hybrid methods

The last group consists of hybrid methods, which combine metric learning with
adapting the clustering procedure. A common representative of this type of al-
gorithms is MPCK-Means (Metric Pairwise Constrained K-Means, [2]4). Briefly,
MPCK-Means iterates between 1) assigning elements to clusters, in this step
the within-cluster sum of squares is minimized but also constraint satisfaction

2 Code is available at http://www.cs.utexas.edu/˜pjain/itml/
3 Code is available at http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
4 Code is available at http://www.cs.utexas.edu/users/ml/risc/code/

30

is incorporated 2) updating the means, just like in the traditional K-Means al-
gorithm and 3) re-estimating the metric, as to minimize the objective function.
Bilenko et al. [2] define several variants of this scheme. For example, one can
learn a separate metric for each cluster, or a global one. These metrics can ei-
ther be defined by full matrices, which corresponds to doing feature generation,
or diagonal ones, which corresponds to feature weighting. In our experiments
we use MPCK-Means with a single diagonal metric matrix. As before, we vary
the number of clusters k ∈ [2, 10] for each problem instance, and select the best
solution as either the one that violates the lowest number of constraints, or the
one that has the highest silhouette score.

3 Experiments

In this section we compare the performance of the previously discussed algo-
rithms on several UCI data sets.

3.1 Overview of algorithms and experimental methodology

In total, we compare 7 clusterers:

– FOSC-OpticsDend
– COSC: Constrained 1-Spectral Clustering, selecting k based on the con-

straints
– K-Means-ITML-NumSat: K-Means on ITML transformed data, selecting
k and γ based on the constraints

– K-Means-ITML-Silhouette: K-Means on ITML transformed data, select-
ing k and γ based on the silhouette index

– Self-Tuning-Spectral-ITML-NumSat: Spectral clustering, selecting γ
based on the constraints

– MPCK-Means-NumSat: MPCK-Means, selecting k based on the con-
straints

– MPCK-Means-Silhouette: MPCK-Means, selecting k based on the sil-
houette index

For each data set, we also show the results of four unsupervised variants of the
algorithms:

– K-Means-Unsup: the traditional K-Means algorithm, selecting k based on
the silhouette index

– Self-Tuning-Spectral-Unsup: Self-Tuning-Spectral clustering on the orig-
inal data

– FOSC-OpticsDend-Unsup: extraction of a partitional clustering from the
OPTICS dendrogram based on the unsupervised cluster lifetime measure

– MPCK-Means-Unsup: running MPCK-Means without constraints, which
is different from the traditional K-Means algorithm, as MPCK-Means also
performs unsupervised metric learning

31

For each constraint set size in {25, 100, 400, 1600}, we generate 10 constraint
sets in the following way:

1. We select 70% of the data set randomly
2. From this subset, pairs of elements are randomly selected and a must-link or

cannot-link constraint is added depending on whether the selected elements
belong to the same class or not.

Clusterings are evaluated using the adjusted Rand Index (ARI) [11], which is
calculated using only the elements of the 30% of the data that were not selected
in step one. The first step ensures that there will be enough elements (i.e. at least
30% of the data) to evaluate the clusterings on. For larger numbers of constraints
and relatively small data sets, it might otherwise occur that all elements are
involved in constraints, leaving none for evaluation.

3.2 Results and discussion

Figures 1 and 2 show the results of our experiments for the iris and wine data
sets. Similar figures for the dermatology, column, glass and ecoli data sets are
added in the appendix. For the iris data set, three algorithms show consistent
average improvement when constraints are added: FOSC-OpticsDend, K-Means-
ITML-NumSat and MPCK-Means-NumSat. In general, for iris the performance
seems to improve with constraints, or does at least not decline drastically (e.g.
for K-Means-ITML-Silhouette the performance remains largely constant).

25 100 400 1600
Number of pairwise constraints

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

ARI for increasing numbers of pairwise constraints

K-Means-Unsup
Self-Tuning-Spectral-Unsup
FOSC-OpticsDend-Unsup
MPCK-Means-Unsup
COSC-NumSat
FOSC-OpticsDend
K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-NumSat
MPCK-Means-Silhouette
Self-Tuning-Spectral-ITML-NumSat

Fig. 1. Scores for the iris data set (150 instances, 4 features, 3 classes). All unsupervised
algorithms produced the same clustering for this data set (only the MPCK-Means line
is visible in the plot, as they all overlap).

32

Figure 2 shows that the results are quite different for the wine data set. Most
clustering algorithms already attain a high ARI score without any constraints,
and in many cases adding constraints leads to an average decrease in perfor-
mance. For this data set, MCPK-Means-Silhouette and Self-Tuning-Spectral-
ITML seem to be the most robust in this aspect.

25 100 400 1600
Number of pairwise constraints

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

ARI for increasing numbers of pairwise constraints

K-Means-Unsup
Self-Tuning-Spectral-Unsup
FOSC-OpticsDend-Unsup
MPCK-Means-Unsup
COSC-NumSat
FOSC-OpticsDend
K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-NumSat
MPCK-Means-Silhouette
Self-Tuning-Spectral-ITML-NumSat

Fig. 2. Scores for the wine data set (178 instances, 13 features, 3 classes)

In general, from the results on these two data sets and the four others that
are added in the appendix, it is clear that no single semi-supervised clustering
algorithm outperforms all others in all scenarios. The preferable option for a
certain task depends on the data set, the size of the constraint set, and even the
specific constraint set under consideration. Often, the preferrable option even
seems to be to not make use of the constraints at all. This is quite counter-
intuitive, as one would expect constraints to “point the algorithm in the right
direction”. Davidson et al. [6, 18] also observe this potentially negative effect
of adding constraints. They point out that, while performance improves on av-
erage when more constraints are provided, individual constraint sets can have
a detrimental effect. In our experiments this happened frequently: clustering
performance decreased when constraints were added for 45% of the considered
runs (with a run we indicate a data set, particular constraint set and clusterer
combination).

33

Constraint set consistency and coherence
The observation that adding constraints can result in decreased performance is
of course crucial, as we are mostly interested in the performance gain that we can
obtain with one particular constraint set. To provide insight into this behaviour,
Davidson et al. propose two measures that characterize the utility of constraint
sets [6]:

– Consistency is defined by the number of constraints that are satisfied by
the clustering produced without any constraints. It is a property of both the
constraint set and the algorithm producing the clustering.

– Coherence measures the amount of agreement between constraints. In [18],
Wagstaff et al. define two variants of this measure: distance coherence and
direction coherence. We use the former one in our experiments, which is
defined as the fraction of constraint pairs (one ML and one CL constraint)
for which the distance between the points in the ML constraint is greater
than the distance between the points in the CL constraint [18]. This property
only depends on the data set and the constraints.

Wagstaff et al. show that consistency and coherence are strongly correlated
with clustering performance: if a consistent and coherent constraint set is pro-
vided, performance is likely to increase, whereas inconsistent and incoherent con-
straint sets have an adverse effect. They study these properties in the context
of MPCK-Means and variants thereof. Here, we verify whether this correlation
also holds for the diverse set of clustering algorithms used in our experiments.
We perform an analysis similar to the one in [18]. If the property holds, it may
provide insight into whether a particular constraint set should be used or not in
combination with a clustering algorithm.

Figure 3 shows the relation between the constraint utility measures and ARI,
illustrating that also in our experiments these are strongly correlated (Pearson
coefficient of 0.66 for consistency, Pearson coefficient of 0.75 for coherence). Ta-
ble 1 shows the correlation coefficients for the separate algorithms, providing
insight into the sensitivities of the different algorithms to constraint set incon-
sistency and incoherence. For example, the correlation between consistency and
performance is larger for the K-Means-ITML algorithms than for the MPCK-
Means algorithms, meaning that consistency might be a better predictor for
performance for the former ones. The correlation between consistency and per-
formance is lowest for COSC, but this can be explained by the fact that we used
the outcome of the Self-Tuning spectral clustering algorithm as an unsupervised
baseline for COSC, as otherwise we would not be able to select the number of
clusters k, which COSC requires.

Consistency-based algorithm selection
Given the correlation between consistency and clustering performance, Wagstaff
et al. [18] suggest the simple algorithm selection strategy of choosing the one
with the highest consistency, given a data set and constraints. We explore the

34

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Consistency

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-Silhouette
COSC-NumSat
FOSC-OpticsDend
S-T-Spectral-ITML-NumSat
MPCK-Means-NumSat

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Coherence

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-Silhouette
COSC-NumSat
FOSC-OpticsDend
S-T-Spectral-ITML-NumSat
MPCK-Means-NumSat

Fig. 3. (left) Consistency vs. ARI, Pearson correlation coefficient = 0.66 , (right) Co-
herence vs. ARI, Pearson correlation coefficient = 0.75

Algorithm
Consistency

vs.
ARI

Coherence
vs.
ARI

FOSC-OpticsDend 0.81 0.88
COSC-NumSat 0.45 0.62

K-Means-ITML-NumSat 0.83 0.82
K-Means-ITML-Silhouette 0.82 0.76

Self-Tuning Spectral-ITML-NumSat 0.56 0.69
MPCK-Means-NumSat 0.63 0.72

MPCK-Means-Silhouette 0.67 0.80
Table 1. Pearson correlation coefficients of consistency and coherence vs. ARI for each
algorithm

effectiveness of this strategy by applying it to our clustering experiments. For
each problem instance, which consists of a data set and constraints, we compute
the relative score for each algorithm as its ARI for this instance divided by the
largest ARI obtained for that problem instance by all algorithms. We compute
the average relative score for each algorithm over all 1680 problem instances
(6 data sets, 7 algorithms, 4 constraint set sizes and 10 constraint sets per
size). These averages are shown in Table 2. The table also shows the average
relative score that is obtained by using the consistency-based algorithm selection
strategy. It is clear that, despite the observed correlation between consistency
and clustering performance, the algorithm selection strategy does not perform
well, as we would be better of by simply picking the (on average) best algorithm
for each problem instance, which is MPCK-Means-Silhouette.

35

Algorithm
Avg. rel.
score

MPCK-Means-Sil 0.814
COSC-NumSat 0.798

K-Means-ITML-NumSat 0.770
ST-Spectral-ITML-NumSat 0.725
Consistency-based AS 0.713
MPCK-Means-NumSat 0.712

K-Means-ITML-Sil 0.695
FOSC-OpticsDend 0.638

Table 2. Average relative scores for each
algorithm, and also for the consistency-
based algorithm selection strategy (AS)

Data set

Consistency
vs.
ARI

Coherence
vs.
ARI

iris 0.20 -0.14
ecoli -0.06 0.04

column 2C -0.17 -0.19
glass -0.12 -0.10

dermatology 0.16 -0.07
wine 0.04 -0.07

Table 3. Pearson correlation coefficients of
consistency and coherence vs. ARI for each
data set

Why consistency-based algorithm selection does not work
In this section we explain the unsatisfactory results of the consistency-based al-
gorithm selection strategy, and in doing so identify an important property of the
consistency and coherence measures. We observe that, while these measures cor-
relate strongly with performance if we look at all problem instances combined,
this correlation disappears when we consider the data sets separately. This can
be seen in Figure 4, which is similar to Figure 3 but colored by data set instead
of algorithm. This visual observation is confirmed by looking at the correlation
coefficients for each data set separately, shown in Table 3. These results indicate
that, while consistency and coherence can be indicative of the difficulty of clus-
tering a particular data set given constraints, these measures cannot be used to
decide between clustering algorithms for a given data set.

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Consistency

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

iris
ecoli
column_2C
glass
dermatology
wine

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Coherence

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

iris
ecoli
column_2C
glass
dermatology
wine

Fig. 4. (left) Consistency vs. ARI (right) Coherence vs. ARI (same as Figure 3, but
colored by data set)

36

Furthermore, for a consistency-based algorithm selection strategy to be suc-
cesful, the different clusterers should produce significantly different clusterings
when no constraints are given. We verify whether this is actually the case for the
algorithms and data sets that are considered in the experiments, by comparing
the unsupervised clusterings using the adjusted Rand index (ARI). While ARI
is mostly used to compare a produced clustering to a ground truth one, it can
more generally be used to measure the similarity between any two clusterings.
When no constraints are given, all algorithms produce the same solution for
the iris data set (pairwise ARI scores of 1.0). Also for the wine and ecoli data
sets all clusterings are quite similar (ARIs > 0.9), except for the ones generated
by FOSC-OpticsDend (ARIs < 0.5). The clusterings generated for the derma-
tology, glass and column data sets are more diverse (with an average pairwise
ARI of 0.49, not taking into account the similarities between the K-Means and
MPCK-Means solutions, which are more similar with an average pairwise ARI
of 0.95). These observations complement the lack of correlation between con-
sistency and ARI in explaining the failure of the consistency-based algorithm
selection strategy for the iris, ecoli and wine data sets.

4 Conclusions

Semi-supervised clustering is a popular research topic, and its usefulness has
been demonstrated in several practical applications. Most major clustering algo-
rithms have been extended to incorporate domain knowledge, often in the form
of must-link and cannot-link constraints. It has been frequently demonstrated
that, on average, performance increases when constraints are added. However,
it is known that individual constraint sets can harm perfomance. We have ex-
perimented with a diverse set of semi-supervised clustering algorithms, and have
observed that this is indeed often the case. Given data to cluster and a set of
constraints, a user then has to determine which semi-supervised clustering algo-
rithm to use, if any. Previous work proposed to use constraint set consistency
and coherence for this purpose, two constraint set utility measures that were
shown to correlate strongly with clustering performance. We have experimented
with such consistency-based algorithm selection, but found it to be unsuccessful.
For some data sets, these results can be explained by the similarities between the
clusterings that are produced when no constraints are given. If these similarities
are high, comparing the corresponding consistency values is not informative.
More importantly, we also explain the unsatisfactory results of the selection
strategy for data sets for which the clusterings produced without constraints are
more diverse. We do this by showing that the utility measures only correlate
strongly with clustering performance if we look at problem instances from sev-
eral data sets combined, and that this correlation disappears when we consider
individual data sets. These results severely restrict the use of these measures
in semi-supervised clustering, as practitioners are mainly interested in applying
them in the context of a particular data set.

37

Acknowledgements

Toon Van Craenendonck is supported by the Agency for Innovation by Science
and Technology in Flanders (IWT).

References

[1] Elke Achtert, Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. Interactive
data mining with 3d-parallel-coordinate-trees. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013, pages 1009–1012, 2013.

[2] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating constraints
and metric learning in semi-supervised clustering. In Proceedings of the Twenty-
first International Conference on Machine Learning, ICML ’04, pages 11–, New
York, NY, USA, 2004. ACM.

[3] Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto da Costa. Ranking learning
algorithms: Using ibl and meta-learning on accuracy and time results. Machine
Learning, 50(3):251–277, 2003.

[4] Thomas Bühler and Matthias Hein. Spectral clustering based on the graph p-
laplacian. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 81–88, New York, NY, USA, 2009. ACM.

[5] Ricardo J.G.B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. A
framework for semi-supervised and unsupervised optimal extraction of clusters
from hierarchies. Data Mining and Knowledge Discovery, 27(3):344–371, 2013.

[6] Ian Davidson, Kiri L. Wagstaff, and Sugato Basu. Measuring constraint-set util-
ity for partitional clustering algorithms. In Knowledge Discovery in Databases:
PKDD 2006, volume 4213 of Lecture Notes in Computer Science, pages 115–126.
Springer Berlin Heidelberg, 2006.

[7] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.
Information-theoretic metric learning. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pages 209–216, New York, NY, USA,
2007. ACM.

[8] Amir Globerson and Sam T. Roweis. Metric learning by collapsing classes. In
Y. Weiss, B. Schölkopf, and J.C. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 451–458. MIT Press, 2006.

[9] Sepandar D. Kamvar, Dan Klein, and Christopher D. Manning. Spectral learning.
In In IJCAI, pages 561–566, 2003.

[10] Levi Lelis and Jörg Sander. Semi-supervised density-based clustering. In ICDM
’09. Ninth IEEE International Conference on Data Mining, 2009, pages 842–847,
Dec 2009.

[11] William M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(336):846–850, 1971.

[12] Syama S. Rangapuram and Matthias Hein. Constrained 1-spectral clustering.
In Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics (AISTATS-12), volume 22, pages 1143–1151, 2012.

[13] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53–65, 1987.

38

[14] Carlos Ruiz, Myra Spiliopoulou, and Ernestina Menasalvas. C-dbscan: Density-
based clustering with constraints. In Rough Sets, Fuzzy Sets, Data Mining and
Granular Computing, volume 4482 of Lecture Notes in Computer Science, pages
216–223. Springer Berlin Heidelberg, 2007.

[15] Jörg Sander, Xuejie Qin, Zhiyong Lu, Nan Niu, and Alex Kovarsky. Automatic
extraction of clusters from hierarchical clustering representations. In Proceedings
of the 7th Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining, PAKDD ’03, pages 75–87, Berlin, Heidelberg, 2003. Springer-Verlag.

[16] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-
WEKA: Combined selection and hyperparameter optimization of classification
algorithms. In International Conference on Knowledge Discovery and Data Min-
ing (KDD), page 847–855, 2013.

[17] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

[18] Kiri Wagstaff, Sugato Basu, and Ian Davidson. When is constrained clustering
beneficial, and why? In Proceedings, The Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Artificial In-
telligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, 2006.

[19] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-
means clustering with background knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 577–584, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[20] Eric P. Xing, Michael I. Jordan, Stuart Russell, and Andrew Y. Ng. Distance
metric learning with application to clustering with side-information. In Advances
in neural information processing systems, pages 505–512, 2002.

[21] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. Advances
in Neural Information Processing Systems 17, 2:1601–1608, 2004.

39

A Performance comparison for UCI data sets

25 100 400 1600
Number of pairwise constraints

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

ARI for increasing numbers of pairwise constraints

K-Means-Unsup
Self-Tuning-Spectral-Unsup
FOSC-OpticsDend-Unsup
MPCK-Means-Unsup
COSC-NumSat
FOSC-OpticsDend
K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-NumSat
MPCK-Means-Silhouette
Self-Tuning-Spectral-ITML-NumSat

Fig. 5. Scores for the ecoli data set (336 instances, 7 features, 8 classes)

40

25 100 400 1600
Number of pairwise constraints

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

ARI for increasing numbers of pairwise constraints

K-Means-Unsup
Self-Tuning-Spectral-Unsup
FOSC-OpticsDend-Unsup
MPCK-Means-Unsup
COSC-NumSat
FOSC-OpticsDend
K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-NumSat
MPCK-Means-Silhouette
Self-Tuning-Spectral-ITML-NumSat

Fig. 6. Scores for the dermatology data set (366 instances, 34 attributes, 6 classes)

25 100 400 1600
Number of pairwise constraints

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

ARI for increasing numbers of pairwise constraints

MPCK-Means-Unsup
FOSC-OpticsDend-Unsup
K-Means-Unsup
Self-Tuning-Spectral-Unsup
COSC-NumSat
FOSC-OpticsDend
K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-NumSat
MPCK-Means-Silhouette
Self-Tuning-Spectral-ITML-NumSat

Fig. 7. Scores for the column data set (310 instances, 6 attributes, 2 classes)

41

25 100 400 1600
Number of pairwise constraints

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

ARI for increasing numbers of pairwise constraints

K-Means-Unsup
Self-Tuning-Spectral-Unsup
FOSC-OpticsDend-Unsup
MPCK-Means-Unsup
COSC-NumSat
FOSC-OpticsDend
K-means-ITML-NumSat
K-means-ITML-Silhouette
MPCK-Means-NumSat
MPCK-Means-Silhouette
Self-Tuning-Spectral-ITML-NumSat

Fig. 8. Scores for the glass data set (214 instances, 9 attributes, 6 classes)

42

Dealing with overlapping clustering: a
constraint-based approach to algorithm selection

Antoine Adam and Hendrik Blockeel

KULeuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven,
Belgium

Abstract. When confronted to a clustering problem, one has to choose
which algorithm to run. Building a system that automatically chooses
an algorithm for a given task is the algorithm selection problem. Un-
like the well-studied task of classification, clustering algorithm selection
cannot rely on labels to choose which algorithm to use. However, in the
context of constraint-based clustering, we argue that using constraints
can help in the algorithm selection process. We introduce CBOvalue, a
measure based on must-link and cannot-link constraints that quantifies
the overlapping in a dataset. We demonstrate its usefulness by choosing
between two clustering algorithm, EM and spectral clustering. This sim-
ple method shows an average performance increase, demonstrating the
potential of using constraints in clustering algorithm selection.

Keywords: clustering, algorithm selection, constraints

1 Introduction

Constraints have been used to improve clustering performance by incorporating
some background knowledge in a clustering problem. In a study on constraint-
based clustering, Davidson et al. [4] show that using constraints can sometimes
decrease this performance. They introduce the notion of coherence between con-
straints, and show that the more incoherent a constraint set is, the more chance
it has to decrease clustering performance. Two constraints are called incoherent
if they carry information that is a priori contradictory. For instance, in figure 1,
the must-link constraint (in blue) implies that the left area must be clustered
with the right area, while the cannot-link constraint (in red) says the opposite.

Fig. 1. Incoherent constraints

43

Fig. 2. Overlapping clusters can lead to incoherent constraints

Beyond the possible presence of noise in the data, a problem that we will
ignore in this paper, we identified other circumstances where such incoherent
constraints can appear: overlapping clusters, as shown in figure 2. Overlapping
clusters is an issue that is not often tackled by clustering algorithms. Some
state-of-the-art algorithms such as spectral clustering [18], which is very good
at discovering arbitrary shaped clusters, will fail in the presence of overlapping.
On the contrary, the EM [6] algorithm has a bias towards spherical clusters but
can handle overlapping quite well as we show in section 3. As an example, we
artificially created a cross dataset, see figure 3, where two clusters overlap in the
middle. With a few random initialisations, EM is always able to find the correct
clusters, while spectral clustering always fails. What is more, the model built by
the EM algorithm incorporates the uncertainty about the cluster assignments in
the overlapping area.

Fig. 3. Cross dataset. Colours are from left to right: the generated clusters, clusters
found by EM, clusters found by spectral clustering.

This toy example illustrates the variety of clustering algorithms: different
algorithms will produce different partitionings. Moreover, in a real clustering

44

problem, we cannot say one of these partitionings is better as we do not know
the true labels. Even on the same dataset, two users might be interested in a
different partitioning of the data. Only if some constraints are specified can we
build a system that selects the algorithm best fitting a user requirements.

In this paper, we present some preliminary results in this direction. We intro-
duce the CBOvalue to measure the overlapping from must-link and cannot-link
constraints. We use this measure as a meta-feature in a basic meta-learning sys-
tem that chooses between EM and spectral clustering. The goal of the paper is
not to present an advanced meta-learning system, but to show the potential of
using constraints in clustering algorithm selection.

The content of the paper is organised as follows. In section 2, we present some
related work. In section 3, we define more concretely what we call overlapping
and show through experiments that EM performs better than spectral clustering
when it occurs. In section 4, we introduce the CBOvalue, an overlapping measure
based on equivalence constraints. In section 5, we show that a simple algorithm
selection method based on this measure increases clustering performance. In
section 6, we draw some conclusions and leads for future work.

2 Related work

2.1 Constraint-based clustering

Clustering is the unsupervised learning task of identifying groups of similar in-
stances in a dataset. Although these groups are initially unknown, some informa-
tion can be available as to what the desired solution is. This information takes
the form of constraints on the resulting clusters. These constraints can be pro-
vided to the clustering algorithm to guide the search towards a more desirable
solution. We then talk about constraint-based, constrained, or semi-supervised
clustering.

Constraints can be defined on different levels. On a cluster level, one can
ask for clusters that are balanced in size, or that have a maximum diameter in
space. On an instance level, one might know some partial labelling of the data.
A well-used type of constraints are must-link and cannot-link constraints, also
called equivalence constraints. These are pair-wise constraints which state that
two instances must be or cannot be in the same cluster.

Multiple methods have been developed to use these constraints, some of which
are mentioned below. A metric can be learnt that complies with the constraints
[2]. The constraints can be used in the algorithm for the cluster assignment in
a hard [19] or soft way [13], [15], [20]. Some hybrid algorithms use constraints
for both metric learning and clustering [3], [9]. Other approaches include con-
straints in general solver methods like constraint programming [7] or integer
linear programming [1].

2.2 Algorithm selection for clustering

Not much research has been conducted on algorithm selection for clustering.
Existing methods usually predict the ranking of clustering algorithms [5], [16],

45

[14] [8]. The meta-features used are unsupervised and/or domain-specific. None
of these approaches use constraints.

3 Overlapping clustering

3.1 Overlapping

We talk about overlapping when two clusters are present in the same area of
the data space. It is a local property of a dataset as it happens in some parts
only. Several reasons can produce overlapping clusters: there might be noise in
the data, the features may not capture all the necessary information to clearly
separate clusters or the overlap may be inherent to the processes that produced
the data. It is a problem for algorithms that assume a clear separation of the
clusters, or at least a zone of lower density points. As already mentioned for the
cross dataset, spectral clustering cannot cluster it correctly. With a few random
initialisations, EM always finds the right partition and what is more, the model
includes that the cluster assignment is uncertain in the overlapping area.

3.2 Rvalue

Fig. 4. Rvalue, k = 6, θ = 1.

To numerically measure overlapping, we use the Rvalue introduced by [11].
The principle is illustrated in figure 4. For each object of a dataset, the labels of

46

its k neighbours are checked. If stricly more than θ are from another class, it is
counted as overlapped. The Rvalue of the dataset is the proportion of overlapped
objects. It is a local measure that requires two parameters, k and θ. In all our
experiments, we use k = 6 and θ = 1, i.e. we allow one neighbour to be of another
class. This limits the false overlapping measurement when two clusters are next
to each other but not overlapping. As an example, the cross dataset figure 3
has an Rvalue of 0.41 which means that 41% of the data points are overlapping.
Figure 5 shows the distribution of the Rvalue for 14 datasets from the UCI
repository, namely iris, glass, ionosphere, wine, vertebral, ecoli, seeds, students,
yeast, zoo, breast cancer wisconsin, mammographic, banknote, haberman. Each
feature of these datasets is normalised to an average of 0 and standard value of 1
and the metric used is the euclidean distance. This normalisation and metric are
kept throughout all experiments. We can see from this figure that overlapping
is not uncommon in real world datasets.

Fig. 5. Rvalue of UCI datasets, k = 6, θ = 1.

3.3 Clustering performance

We now compare two clustering algorithms, namely EM [6] and spectral clus-
tering [18] that we will call SC. EM is run 10 times with randomly initialised
gaussians while SC is run with various parameter settings. The right number
of clusters was given to both algorithms, whose performances were measured in
terms of ARI (Ajusted Rand Index, [10]) and AMI (Ajusted Mutual Informa-
tion, [17]). The best run was kept for comparison, as we want to compare the
potential of each algorithm. On figure 6, we show the ARI of EM (in red) and
SC(in blue) on the same datasets, as well as on 22 artificially made datasets.

As expected, both algorithms lose performance when overlapping increases.
However, EM decreases more slowly than SC, as it is presented in table 1. These
results show that EM can handle overlapping better than SC.

4 Detecting overlapping from constraints

In a clustering problem, the Rvalue cannot be directly computed as the labels are
unknown. However, a user might have some partial knowledge of the clustering

47

Fig. 6. Clustering performance vs Rvalue.

UCI EM SC

Rvalue < 0.11 0.509 0.65
Rvalue > 0.11 0.452 0.36

ALL EM SC

Rvalue < 0.11 0.511 0.728
Rvalue > 0.11 0.443 0.38

Table 1. Average clustering performance measured with ARI.

he is looking for. This is the setting of semi-supervised clustering, presented in
section 2. We now present our method to detect overlapping based on these
constraints. Like the Rvalue, it is based on the idea that overlapping is a local
property.

4.1 CBOvalue: Constraint-Based Overlapping value

Overlapping translates in two cases in terms of equivalence constraints: one short
cannot-link constraint or two close parallel must-link and cannot-link constraints.

CLOvalue: Cannot-Link Overlapping value. A short cannot-link means
that in a close neighbourhood, two points are in two distinct clusters. Figure 7
illustrates the principle. For a cannot-link constraint cl between points x1 and
x2, we define

CLOvalue(cl) = exp(−1

2
(
dist(x1, x2)

max(ε1, ε2)
)p)

48

where εi the distance between xi and it’s kth nearest neighbour.

Fig. 7. CLOvalue for k=6.

Unlike for the Rvalue, we take a soft approach with the exponential because
experience showed that for a limited number of constraints a hard approach was
too sensitive to noise. However, the usual p = 2 of a gaussian turned out to
be a bit too soft hence we also experiment with p = 4. This provides a soft
neighbourhood with still a major drop at the epsilon. Using k = 6 produced
relatively low values, so we also consider a broader neighbourhood by raising k
to 10.

With CL the set of cannot-link constraints, we define

CLOvalue =
1

|CL|
∑

cl∈CL
CLOvalue(cl)

MLCLOvalue: Must-Link and Cannot-link Overlapping value. The case
of two close must-link and cannot-link constraints was shown figure 2. Figure 8
illustrates the principle of the measure. It is defined for a cannot-link constraint
cl between points x1 and x2 and a must-link constraint ml between two other
points. We name these points x3 and x4 such that dist(x1, x3) + dist(x2, x4) ≤
dist(x1, x4) + dist(x2, x3). This ensures that we pair up neighbour points to-
gether. For instance in figure 8, we want to compare x3 with x1 and not x2. We
then define

MLCLOvalue(ml, cl) =
exp(− 1

2 (d1+d2
max(ε1,ε3)+max(ε2,ε4)

)p)

2

49

where εi the distance between xi and its kth neighbour, d1 = dist(x1, x3) and
d2 = dist(x2, x4).

Fig. 8. MLCLOvalue.

If CL is the set of cannot-link constraints and ML the set of must-link
constraints, we define

MLCLOvalue =
1

|CL| × |ML|
∑

cl∈CL,ml∈ML

MLCLOvalue(ml, cl)

CBOvalue =
CLOvalue+MLCLOvalue

2

For each dataset, we randomly generated 100 equivalence constraints from
the real classes and we computed the CBO value for k ∈ {6, 10}. Figure 9 plots
the CBO-value versus the Rvalue. The correlation is not perfect, but is enough
for the algorithm selection as we will see in the next section.

5 Algorithm selection

Now that we have an overlapping measure from the constraints, we can build
a system that picks which algorithm to use based on this measure. For each
parameter setting, we put a threshold at the optimal position in terms of ARI.
For example on figure 10 where the CBOvalue is computed with k=6 and p=4, we
put a threshold at 0.011. If the CBOvalue is bigger, we use EM, otherwise we use
SC. We call this method AS for Algorithm Selection. To provide an upper bound,
we compute the performance of an oracle that would always pick the algorithm
with highest performance. Table 2 compares the average performance of EM,
SC, AS, and oracle. To visualise the improvement of the algorithm selection
method, we plot on figure 11 the loss of each method for the UCI datasets. The

50

Fig. 9. CBOvalue with k=6 and p=4 vs Rvalue with k=6 and th=1.

Fig. 10. Clustering performance vs CBOvalue for k=6 and p=4.

51

EM SC AS oracle
k=6 k=10

p=2 p=4 p=2 p=4

UCI
ARI 0.464 0.422 0.497 0.5 0.497 0.522 0.526
AMI 0.481 0.47 0.508 0.514 0.487 0.487 0.534

ALL
ARI 0.477 0.554 0.58 0.585 0.58 0.593 0.605
AMI 0.522 0.614 0.626 0.631 0.626 0.638 0.642

Table 2. Average clustering performance of EM, SC (Spectral Clustering), AS (a
selection between the two based on the CBOvalue for several parameters), and oracle(an
ideal system that would keep the best between the EM and SC).

Fig. 11. Performance loss to oracle.

loss is simply the difference between the average performance of a method and
the oracle average performance.

In all experiments, AS performs on average better than EM and SP, in terms
of ARI or AMI. The meta-learning system used here is very simplistic: we con-
sider only one meta-feature and two clustering algorithms. However, the goal
here is not so much to build a very elaborate system, but to show the potential
of using constraints in clustering algorithm selection. We see here that despite
the simplicity of the selection process, the Constraint-Based Overlapping value
increases the average clustering performance.

52

6 Conclusion

In this paper, we introduced the CBOvalue to measure the amount of overlapping
in a dataset based on must-link and cannot-link constraints. On the basis that
the EM algorithm handles overlapping better than spectral clustering, we select
which algorithm to run depending on the CBOvalue. This simple algorithm
selection system shows an increase in average performance compared to the two
algorithms. Through this promising result, we demonstrate the potential of using
constraints in clustering algorithm selection.

More in-depth research on the CBOvalue still has to be conducted to answer
remaining questions: How robust is this measure? How sensitive is it with respect
to the constraint set? How does high dimensionality affect it? We should also
integrate the CBOvalue in a more complex meta-learner that uses constrained
and unconstrained features.

The approach we used can be generalised as follows. A first step is to identify
the strong and weak point of different algorithms, in our case the fact that EM
can produce overlapping clusters. In a second step, a measure is engineered
based on constraints and/or data to discriminate situations where algorithms
perform differently. Finally, these measures can be used as meta-features in an
algorithm selection system which can then make use of the strong points of each
algorithm. Despite the remaining questions on the CBOvalue, we believe the
encouraging results promote the validity of this approach for the problem of
clustering algorithm selection.

Acknowledgements This work is funded by the KU Leuven Research Fund
(project IDO/10/012). Experiments have been implemented in python with the
scikit-learn package [12].

References

1. Behrouz Babaki, Tias Guns, and Siegfried Nijssen. Constrained clustering using
column generation. In Integration of AI and OR Techniques in Constraint Pro-
gramming, pages 438–454. Springer, 2014.

2. Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning
a mahalanobis metric from equivalence constraints. Journal of Machine Learning
Research, 6(6):937–965, 2005.

3. Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrating constraints
and metric learning in semi-supervised clustering. In Proceedings of the twenty-first
international conference on Machine learning, page 11. ACM, 2004.

4. Ian Davidson, Kiri L Wagstaff, and Sugato Basu. Measuring constraint-set utility
for partitional clustering algorithms. Springer, 2006.

5. Marcilio CP De Souto, Ricardo BC Prudencio, Rodrigo GF Soares, Rodrigo GF
De Araujo, Ivan G Costa, Teresa B Ludermir, Alexander Schliep, et al. Ranking
and selecting clustering algorithms using a meta-learning approach. In Neural Net-
works, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on, pages 3729–3735. IEEE, 2008.

53

6. Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

7. Khanh-Chuong Duong, Christel Vrain, et al. Constrained clustering by constraint
programming. Artificial Intelligence, 2015.

8. Daniel Gomes Ferrari and Leandro Nunes de Castro. Clustering algorithm selec-
tion by meta-learning systems: A new distance-based problem characterization and
ranking combination methods. Information Sciences, 301:181–194, 2015.

9. Pan Hu, Celine Vens, Bart Verstrynge, and Hendrik Blockeel. Generalizing from
example clusters. In Discovery Science, pages 64–78. Springer, 2013.

10. Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classifica-
tion, 2(1):193–218, 1985.

11. Sejong Oh. A new dataset evaluation method based on category overlap. Comput-
ers in Biology and Medicine, 41(2):115–122, 2011.

12. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

13. Dan Pelleg and Dorit Baras. K-means with large and noisy constraint sets. In
Machine Learning: ECML 2007, pages 674–682. Springer, 2007.

14. Ricardo BC Prudêncio, Marcilio CP De Souto, and Teresa B Ludermir. Selecting
machine learning algorithms using the ranking meta-learning approach. In Meta-
Learning in Computational Intelligence, pages 225–243. Springer, 2011.

15. Carlos Ruiz, Myra Spiliopoulou, and Ernestina Menasalvas. C-dbscan: Density-
based clustering with constraints. In Rough Sets, Fuzzy Sets, Data Mining and
Granular Computing, pages 216–223. Springer, 2007.

16. Rodrigo GF Soares, Teresa B Ludermir, and Francisco AT De Carvalho. An analy-
sis of meta-learning techniques for ranking clustering algorithms applied to artificial
data. In Artificial Neural Networks–ICANN 2009, pages 131–140. Springer, 2009.

17. Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures
for clusterings comparison: Variants, properties, normalization and correction for
chance. The Journal of Machine Learning Research, 11:2837–2854, 2010.

18. Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

19. Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-
means clustering with background knowledge. In ICML, volume 1, pages 577–584,
2001.

20. Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 563–572. ACM, 2010.

54

Algorithm Selection via Meta-learning
and Sample-based Active Testing

Salisu Mamman Abdulrahman1, Pavel Brazdil1,2,
Jan N. van Rijn3, and Joaquin Vanschoren4

1 LIAAD-INESC Tec, Porto, Portugal
salisu.abdul@gmail.com

2 FEP, Univiversity of Porto, Porto, Portugal
pbrazdil@inesctec.pt

3 Leiden University, Leiden, Netherlands
j.n.van.rijn@liacs.leidenuniv.nl

4 Eindhoven University of Technology, Eindhoven, Netherlands
j.vanschoren@tue.nl

Abstract. Identifying the best machine learning algorithm for a given
problem continues to be an active area of research. In this paper we
present a new method which exploits both meta-level information ac-
quired in past experiments and active testing, an algorithm selection
strategy. Active testing attempts to iteratively identify an algorithm
whose performance will most likely exceed the performance of previously
tried algorithms. The novel method described in this paper uses tests on
smaller data sample to rank the most promising candidates, thus opti-
mizing the schedule of experiments to be carried out. The experimental
results show that this approach leads to considerably faster algorithm
selection.

Keywords: Algorithm selection, Meta-learning, Active testing, Algo-
rithm Ranking

1 Introduction

A large number of data mining algorithms exist, rooted in the fields of machine
learning, statistics, pattern recognition, artificial intelligence, and database sys-
tems, which are used to perform different data analysis tasks on large volumes
of data. The task to recommend the most suitable algorithms has thus become
rather challenging. Moreover, the problem is exacerbated by the fact that it is
necessary to consider different combinations of parameter settings, or the con-
stituents of composite methods such as ensembles.

The algorithm selection problem, originally described by Rice [17], has at-
tracted a great deal of attention, as it endeavours to select and apply the best or
near best algorithm(s) for a given task [4, 19]. The algorithm selection problem
can be cast as a learning problem: the aim is to learn a model that captures the

55

relationship between the properties of the datasets, or meta-data, and the algo-
rithms, in particular their performance. This model can then be used to predict
the most suitable algorithm for a given new dataset.

This paper presents a new method, which builds on ranking approaches for
algorithm selection [2, 3] in that it exploits meta-level information acquired in
past experiments. Moreover, the proposed method combines this information
with an algorithm selection strategy known as active testing [10, 11]. The aim of
active testing is to iteratively select and evaluate a candidate algorithm whose
performance will most likely exceed the performance of previously tested algo-
rithms.

The method described in this paper differs from earlier approaches in var-
ious aspects. First, two methods presented earlier [10, 11] were combined, and
adapted to optimize a multi-objective measure, called A3R, that combines pre-
dictive accuracy and time. The first method is known as an average ranking
method, as it calculates an average ranking for all algorithms over all datasets.
The upgrade here consists of using A3R as the measure to optimize, rather than
simply accuracy. The second method uses fast sample-based tests instead of full
cross-validation (CV) tests to identify the most promising candidates by evalu-
ating them on small data samples. Again, we will use A3R, instead of accuracy,
in the process of identifying the best competitor of the current alternative.

Fast sample-based tests allow selecting a good algorithm in less time, but are
less reliable. This needs to be taken into account in the design of the method.
One further contribution of this work is to show how the sample-based tests
should be integrated with the elaboration of the ranking.

Finally, the experimental results are presented in the form of loss-time curves,
where time is represented on a log scale. This representation is very useful in
the evaluation of rankings representing schedules, as was shown in recent find-
ings [18].

The remainder of this paper is organized as follows. In the next section we
present an overview of work in related areas. Section 3 is dedicated to the descrip-
tion of our new method of active testing. We explain how it relates to earlier
proposals. Section 4 presents the empirical evaluation of the newly proposed
method. The final section presents conclusions and future work.

2 Related Work

In this paper we are addressing a particular case of the algorithm selection
problem [17], oriented towards the selection of classification algorithms. Various
researchers addressed this problem in the course of the last 25 years. One very
common approach that could now be considered as “the classical approach” uses
a set of measures to characterize datasets and establish their relationship to
algorithm performance. This information is often referred to as meta-data.

The meta-data typically includes a set of simple measures, statistical mea-
sures, information-theoretic measures and/or the performance of simple algo-
rithms referred to as landmarkers [4, 14, 19]. The aim is to obtain a model that

56

characterizes the relationship between the given meta-data and the performance
of algorithms evaluated on these datasets. This model can then be used to pre-
dict the most suitable algorithm for a given new dataset, or alternatively, provide
a ranking of algorithms, ordered by their suitability for the task at hand. Many
studies conclude that ranking is in fact better, as it enables the user to iterative
test the top candidates to identify the algorithms most suitable in practice. This
strategy is sometimes referred to as the Top-N strategy [4].

The Top-N strategy has the disadvantage that it is unable to leverage what
is learned from previous evaluations. For instance, if the top algorithm performs
worse than expected, this may tell us something about the given dataset that
can be used to update the ranking. Indeed, very similar algorithms are now also
likely to perform worse than expected. This led researchers to investigate an al-
ternative testing strategy, known as active testing [11]. This strategy intelligently
selects the most useful cross-validation tests using the concept of relative land-
markers [7]. These landmarkers estimate the relative probability that a particular
algorithm will outperform the current best candidate.

The method presented in [10] exploits partial learning curves created on
small samples of the data, as suggested by the authors of [15]. It makes pairwise
algorithm comparisons and represents the results in the form of a partially or-
dered ranking. The method can be evaluated by comparing the predicted partial
order of algorithms to the actual partial order, representing the golden stan-
dard obtained by exhaustive testing. An extension to this method was presented
in [11]. It relies on earlier performed cross-validation tests to calculate relative
landmarkers. The authors showed that this led to better results than traditional
top-N ranking strategies.

The novel aspect of the method described in this paper is the use of relatively
fast sample-based tests to reorder the algorithms in the top-N ranking. Using
tests on small data samples represents a trade-off in that they lead to less accu-
rate performance estimation. Indeed, the tests carried out on small data samples
are less reliable and thus the best algorithms may sometimes not be identified.
Hence, it is difficult to say a priori which variant would be better. This is one of
the motivations to investigate this issue.

Active testing is somewhat related to experiment design [6] and also to active
learning. However, there has been relatively little work on active learning for
algorithm selection. One notable exception is [12], who use the notion of Expected
Loss Optimization (ELO). Another application in this area is [8], whose aim was
to identify the most interesting substances for drug screening using a minimum
number of tests. In these experiments, the authors have focused on the top-10
substances. Several different strategies were considered and evaluated.

Another notable active learning approach to meta-learning was presented
in [16], where the authors use active learning to support the selection on infor-
mative examples. A prototype was implemented using the k-NN algorithm as
a meta-learner and a certainty-based method was used for active learning. The
prototype was evaluated in two different case studies, and the results obtained

57

by the active learning method were in general better than a random method for
selecting meta-examples.

In this paper, we attribute particular importance to the tests on the new
dataset. Our aim is to propose a way that minimizes the time before the best
(or near best) algorithm is identified.

3 Active Sample-based Testing (ASbT) Method

We propose a new method, called Active Sample-based Testing (ASbT), which
is detailed in Algorithm 1. It exploits meta-level information acquired from past
experiments. This information includes the performance evaluations of various
machine learning algorithms, on prior datasets, over multiple performance mea-
sures (e.g., accuracy, AUC, time). Moreover, we also use data samples or various
sizes to evaluate algorithms. Further details concerning the meta-level informa-
tion are provided below.

This information enables us to construct an average ranking of algorithms
(line 4). The term average ranking is used here to indicate that it is averaged over
all previously seen datasets. The average ranking can be followed by the user
to identify the best performing algorithm, i.e., by performing a cross-validation
test on all algorithms in the order of the ranking. This strategy was referred to
as the Top-N strategy [2] and constitutes a baseline for other more competitive
approaches.

Our method also exploits the active testing strategy [11]. However, in the
ASbT approach, we use faster sample-based tests to identify competitive algo-
rithms (line 5). In our experiments, these algorithms are also evaluated on the
full dataset in order to construct a loss curve. To evaluate this method, experi-
ments are carried out in a leave-one-out fashion. One dataset at a time is left out
to evaluate our approach. The complete method, including evaluation, is sum-
marized in Algorithm 1. The following sections discuss key parts of the method
in more detail.

Algorithm 1 Active sample-based testing (ASbT)

1: Identify datasets Ds and algorithms
2: for all Di in Ds do
3: {Leave-one-out cycle; Di represents Dnew}
4: Construct the average ranking
5: Carry-out sample-based active testing and evaluate recommended algorithms
6: Return a loss curve
7: end for
8: Aggregate the loss curves for all Di in Ds

Return: Mean loss curve

58

3.1 Constructing the average ranking

The challenge here is to order the algorithms in the form of a top-N ranking.
The underlying assumption is that the rankings obtained on past problems will
transfer to new problems. Among many popular ranking criteria we find, for
instance, average ranks, success rates and significant wins [3, 5, 10].

In this work we use average ranks, inspired by Friedman’s M statistic [13].
For each dataset, the algorithms are ordered according to the performance mea-
sure chosen (e.g., predictive accuracy) and assigned ranks accordingly. The best
algorithm is assigned rank 1, the runner-up is assigned rank 2, and so on. Let rji
be the rank of algorithm i on dataset j. The average rank for each algorithm is
obtained using

ri =

D∑

j=1

rji

÷D (1)

where D is the number of datasets. The final ranking is obtained by ordering
the average ranks and assigning ranks to the individual algorithms accordingly.

The average ranking is used here both as a baseline against which we can
compare other methods, and as an input to the proposed algorithm (line 5), as
discussed below.

3.2 Active Testing on Data Samples

Do we really need a full cross-validation test to establish a good sequence of
algorithms to test? In this section we discuss a novel method that also follows an
active testing strategy, but uses sample-based tests instead of full cross-validation
tests. Hence, instead of deciding whether a candidate algorithm ac is better than
the currently best algorithm abest using a full cross-validation test, we perform
a test on a smaller sample of the new dataset. This is motivated by the fact that
a sample-based test is much faster than a full cross-validation test.

However, as the sample-based test only yields a proxy for the actual perfor-
mance, it may identify an apparent winner that differs from the one selected by
the full cross-validation test. Hence, if a candidate algorithm beats the currently
best algorithm on the sample-based test, we additionally carry out an evaluation
using a full cross-validation test. This approach differs from [11] in three key
aspects, i.e., the use of small data samples as proxies, the use of the A3R cri-
terium that combines accuracy and run time (see below), and the strategy that
we occasionally run a full cross-validation test. Algorithm 2 shows this method
in detail.

3.3 Evaluating the returned ranking

To evaluate the quality of the returned ranking, the whole process is repeated
in a leave-one-out fashion for all datasets Di belonging to the set Ds (line 2 of
Algorithm 1). For each generated algorithm ranking we generate a loss curve that

59

Algorithm 2 Active testing with sample-based tests

Require: Datasets Di (representing Dnew), Ds; Average ranking for Di

1: Use the average ranking of Di to identify the topmost algorithm and initialize abest ;
Obtain the performance of abest on dataset Di using a full CV test;

2: Find the most promising competitor ac of abest using relative landmarkers
(previous test results on datasets)

3: Obtain the performance of ac on new dataset using a sample-based test;
Record the accuracy and time of the test to compute A3R;

4: Compare the performance of ac with abest ;
use the winner as the current best algorithm abest ;
If the current best algorithm has changed in the previous step, do:
Carry out evaluation of the new abest using a full CV test

5: Repeat the whole process starting with step 2 until reaching a stopping criterion
Return: Loss curve

plots the loss in accuracy (see below) versus the time spent on the evaluation of
the algorithms using full cross-validation tests. Finally, all individual loss curves
are aggregated into a mean loss curve.

Loss-time curves In a typical loss curve, the x-axis represents the number
of cross-validation tests and the y-axis shows the loss in accuracy with respect
to the ideal ranking. Loss is defined to be the difference in accuracy between
the current best evaluated classifier and the actual best classifier [11]. As tests
proceed following the Top-N strategy, the loss either maintains its value, or de-
creases when the newly selected algorithm improved upon the previously selected
algorithms. Each test represents the result of a full cross-validation evaluation
on one dataset. However, some algorithms are much slower learners than others
(sometimes by orders of magnitude), and these simple loss curves do not capture
this.

This is why, in this article, we take into account the actual time required to
evaluate each algorithm and update the loss curve accordingly. We will refer to
this type of curve as a loss versus time curve, or loss-time curve for short.

As train/test times include both very small and very large numbers, it is
natural to use the logarithm of the time, instead of the actual time. This has
the effect that the same time intervals appear to be shorter as we shift further
on along the time axis. This graphical representation is advantageous if we wish
to give more importance to the initial items in the ranking.

To evaluate our algorithm (ASbT), we need to carry out tests on different
datasets in a leave-one-out fashion and construct the mean loss-time curve by
aggregating the individual loss-time curves.

3.4 A3R: combining Accuracy and Run time

In many situations, we have a preference for algorithms that are fast and also
achieve high accuracy. However, the question is whether such a preference would

60

lead to better loss-time curves. To investigate this, we have adopted a multi-
objective evaluation measure, A3R, described in [1], that combines both accuracy
and time. The measure A3R is defined as:

A3Rdi
aref ,aj

=

SRdi
aj

SRdi
aref

N

√
T di
aj /T

di
aref

(2)

Here, SRdi
aj

and SRdi
aref

represent the success rates (accuracies) of algorithms
aj and aref on dataset di, where aref represents a given reference algorithm.
Similarly, T di

aj
and T di

aref
represent the run times of the algorithms, in seconds. To

trade-off the importance of time, A3R includes the N th root parameter. This is
motivated by the observation that run times vary much more than accuracies.
It is not uncommon that one particular algorithm is three orders of magnitude
slower (or faster) than another one. Obviously, we do not want the time ratios
to dominate the equation. If we take the N th root of the run time, we will get a
number that goes to 1 in the limit.

For instance, if we used N = 256, an algorithm that is 1,000 times slower
would yield a denominator of 1.027. It would thus be equivalent to the faster
reference algorithm only if its accuracy was 2.7% higher than the reference algo-
rithm. Table 1 shows how a ratio of 1,000 (one algorithm is 1,000 times slower
than the reference algorithm) is reduced for increasing values of N . As N gets
higher, the time is given less and less importance.

Table 1. Effect of varying N on time ratio of 1000

C N = 2C 1,000(1/N)

0 1 1000.000
1 2 31.623
2 4 5.623
3 8 2.371
4 16 1.539
5 32 1.241

C N = 2C 1,000(1/N)

6 64 1.114
7 128 1.055
8 256 1.027
9 512 1.013

10 1,024 1.006
20 1,048,576 1.000

The performance measure A3R can be used to rank a given set of algorithms
on a particular dataset in a similar way than using simply accuracy. Hence,
the average rank method described earlier can easily be upgraded to generate
a time-aware average ranking: the A3R-based average ranking. The method of
active testing with sample-based tests can also be easily updated. We note that
the algorithm shown in Algorithm 2 mentions performance on lines 3 and 4. If
we use A3R instead of accuracy, we obtain a multi-objective variant of the active
testing method.

61

Obviously, we can expect somewhat different results for each particular choice
of N . Which value of N will lead to the best results in loss-time space? Another
important question is whether the use of A3R is beneficial when compared to
the approach that only uses accuracy. The answers to these questions will be
answered empirically in the next section.

4 Experiments

This section describes the empirical evaluation of the proposed method. We
have constructed a dataset from evaluation results retrieved from OpenML [20],
a collaborative science platform for machine learning. This dataset contains the
results of 53 parameterized learning algorithms from the Weka workbench [9]
on 39 datasets1. Section 4.1 evaluates our proposed method independently of
the A3R criterion, thus solely using accuracy. Section 4.2 explores the further
impact of the A3R criterion, combining accuracy and run time.

4.1 Active Sample-based Testing using Accuracy

Figure 1 presents our results in the form of loss-time curves, with time repre-
sented on a log scale. First, it shows the loss curve of the average ranking method
(AvgRank-ACC) which uses the Top-N strategy when carrying out the tests.

The figure also includes the loss-time curve of one predecessor method that
uses active testing with full cross-validation tests (ATCV-ACC). This is ASbT
in the extreme, using the full dataset instead of a smaller sample. In the earlier
paper [11] this method was referred as AT0.

Finally, the figure shows the loss-time curves of three variants of the ac-
tive sample-based testing method presented here. These variants use a different
sample size for the sample-based testing. Here we use the notation ASbT-4-
ACC to refer to a variant of active sample-based testing that uses accuracy on
sample number 4 when conducting tests. Similarly, ASbT-5-ACC uses sample
number 5 in testing. The sample sizes grow geometrically following the equation
2(5.5+0.5∗n), where n represents the sample number. So, the sizes of the first few
samples, after rounding, are 64, 91, 128, 181, 256, 362 examples. Hence, sample
number 4 includes 181 data points.

In Figure 1, log10 time is used on the x-axis. The values on the x-axis represent
the time that has elapsed as we repeatedly conduct cross-validation tests.

What can we conclude from this figure? The first observation we can make is
that all the three variants of the sample-based active testing methods compete
quite well with the (more complex) predecessor method (ATCV-ACC) that uses
full CV test to identify the best competitor. These two approaches beat the
simple average ranking method (AvgRank-ACC). In Section 4.2, we investigate
the effect of adopting the A3R measure instead of accuracy in the selection
algorithms problem.

1 Full details: http://www.openml.org/project/tag/ActiveTestingSamples/u/1

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7

A
c
c
u

ra
c
y
 L

o
s
s
 (

%
)

Time (seconds)

AvgRank-ACC
ATCV-ACC

ASbT-4-ACC
ASbT-5-ACC

ASbT-6-ACC

Fig. 1. Mean loss-time curves for 3 variants of ASbT (using sample number 4, 5 and
6), ACTV-ACC and the average ranking method (AvgRank-ACC).

Early stopping criteria The main active testing algorithm (ATCV) described
in Algorithm 2 includes a stopping criterion: when the probability that a new
candidate algorithm ac will win over the currently best algorithm abest becomes
too small, it will not be considered. Since ASbT derives from ATCV, we can use
the same criterion, and we have empirically evaluated the effect using ASbT-4.
To do this, we need to define a minimal improvement in the sum of the relative
landmarkers, which is a parameter of the method. This was set to 0.02 (2%) and
the effect was that the algorithm stopped after about half of the algorithms were
tested. The result of this study shows that it is only slightly better, but overall
not much different. It does manage to skip less promising algorithms early on.

4.2 Active Sample-based Testing using Accuracy and Time

Our next aim in this paper is to analyze the effects of adopting A3R as a per-
formance measure within the methods presented earlier. The first objective is
to analyze the effects on the average ranking method. The second objective is
to examine the effects of adopting A3R within the active testing strategy that
uses sample-based tests. In each case we seek the best solution by tuning the
value of parameter N of A3R. The third objective is to compare the proposed
method with one predecessor method that generates a revised ranking first before
conducting evaluation.

Figure 2 shows the first set of results. Note that the upgraded average ranking
method (AvgRank-A3R) has an excellent performance when compared to the
average ranking method that uses only accuracy as a measure (AvgRank-ACC).

63

Hence, the new average ranking method represents a new useful algorithm that
can be exploited in practice for the selection of algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7

A
c
c
u

ra
c
y
 L

o
s
s
 (

%
)

Time (seconds)

AvgRank-ACC
AvgRank-A3R

ASbT-4-ACC-R
ASbT-4-ACC
ASbT-4-A3R

Fig. 2. Loss-time curves for sample-based active testing and average ranking methods,
accuracy-based and A3R-based versions (N = 256).

Next, let us analyze the effects of adopting A3R within the active testing
strategy that uses sample-based tests. As the experiments described in the pre-
vious section have shown that there is not much difference between using sample
number 4, 5 or 6, we have simply opted for the variant that uses the smallest
sample number 4 (ASbT-4-A3R).

We compare our new sample-based active testing method ASbT-4-A3R that
uses A3R in the selection process with ASbT-4-ACC which represents the method
that uses accuracy instead. The results show that our method ASbT-4-A3R does
not beat the previous method (ASbT-4-ACC).

For completeness, we also include another variant, ASbT-4-ACC-R. This
variant works by first re-ranking all algorithms by evaluating them on a small
sample of the new dataset. Hence, it starts later than the other algorithms, on
average 500 seconds later, because it needs to run this process first. Then, in a
second phase, it conducts the final evaluation using full CV tests. Merging the
two phases, as is done in ASbT-4-ACC, results in lower losses sooner.

The average ranking method (AvgRank-A3R), which represents a much sim-
pler method than the sample-based variant, achieves surprisingly good results
which warrants further investigation.

One possible explanation is that our meta-dataset is perhaps too simple, in-
cluding 53 algorithms with default parameters. In future work we will investigate

64

the effect of adopting the A3R measure in the ASbT method, while using more
algorithms (in the order of hundreds).

5 Conclusions

We have described two novel algorithm selection methods. The first method uses
fast sample-based tests to identify the most promising candidates, as its aim is
to intelligently select the next algorithm to test on the new dataset. The second
method is a rather simple one. It calculates an average ranking for all algorithms,
but uses A3R as the measure to rank on. The novelty here lies in the use of A3R,
instead of just accuracy.

The experimental results are presented in the form of loss-time curves. Since
exhaustive testing is not always practically feasible, we focus on the behavior
of the algorithm within smaller time interval. This is achieved by using a loss
curves with log10 of time on the x-axis. This representation stresses the losses
at the beginning of the curve, corresponding to the initial tests.

The results show that both methods lead to considerable time savings, when
compared to the previous approaches that exploited just accuracy. The exper-
imental results suggest that the new version of the average ranking method
represents a very good alternative that could be used in practice.

The next challenge then is to explore ways on how to improve the ASbT
method that uses A3R in selecting the best competitor for active testing method
by using more algorithms in the order of hundreds.

Acknowledgments This work has been funded by Federal Government of Nige-
ria Tertiary Education Trust Fund under the TETFund 2012 AST$D Interven-
tion for Kano University of Science and Technology, Wudil, Kano State, Nigeria
for PhD Overseas Training. This work was also partially funded by FCT/MEC
through PIDDAC and ERDF/ON2 within project NORTE-07-0124-FEDER-
000059 and through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT Portuguese Foun-
dation for Science and Technology within project FCOMP-01-0124-FEDER-
037281.We wish to thank Carlos Soares for his useful comments on the method
presented in this paper.

References

1. Abdulrahman, S.M., Brazdil, P.: Measures for Combining Accuracy and Time for
Meta-learning. In: Meta-Learning and Algorithm Selection Workshop at ECAI
2014. pp. 49–50 (2014)

2. Brazdil, P., Soares, C.: A Comparison of Ranking Methods for Classification Al-
gorithm Selection. In: Machine Learning: ECML 2000, pp. 63–75. Springer (2000)

3. Brazdil, P., Soares, C., Da Costa, J.P.: Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning 50(3), 251–277
(2003)

65

4. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to data mining. Springer Science & Business Media (2008)

5. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. The
Journal of Machine Learning Research 7, 1–30 (2006)

6. Fedorov, V.V.: Theory of Optimal Experiments. Academic Press (1972)
7. Fürnkranz, J., Petrak, J.: An Evaluation of Landmarking Variants. In: Working

Notes of the ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining,
Decision Support and Meta-Learning. pp. 57–68 (2001)

8. de Grave, K., Ramon, J., de Raedt, L.: Active Learning for Primary Drug Screen-
ing. In: Benelearn 08, The Annual Belgian-Dutch Machine Learning Conference.
vol. 2008, pp. 55–56 (2008)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

10. Leite, R., Brazdil, P.: Active Testing Strategy to Predict the Best Classification
Algorithm via Sampling and Metalearning. In: ECAI. pp. 309–314 (2010)

11. Leite, R., Brazdil, P., Vanschoren, J.: Selecting Classification Algorithms with Ac-
tive Testing. In: Machine Learning and Data Mining in Pattern Recognition, pp.
117–131. Springer (2012)

12. Long, B., Chapelle, O., Zhang, Y., Chang, Y., Zheng, Z., Tseng, B.: Active Learning
for Ranking through Expected Loss Optimization. In: Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval. pp. 267–274. ACM (2010)

13. Neave, H.R., Worthington, P.L.: Distribution-free Tests. Unwin Hyman London
(1988)

14. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and I
can tell you who you are: Landmarking various learning algorithms. In: Proceedings
of the 17th International Conference on Machine Learning. pp. 743–750 (2000)

15. Provost, F., Jensen, D., Oates, T.: Efficient Progressive Sampling. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 23–32. ACM (1999)

16. Prudencio, R.B., Ludermir, T.B.: Active Selection of Training Examples for Meta-
Learning. In: Hybrid Intelligent Systems, 2007. HIS 2007. 7th International Con-
ference on. pp. 126–131. IEEE (2007)

17. Rice, J.R.: The Algorithm Selection Problem. Advances in Computers 15, 65–118
(1976)

18. van Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J.: Fast Algorithm
Selection using Learning Curves. In: Advances in Intelligent Data Analysis XIV.
Springer (2015)

19. Smith-Miles, K.A.: Cross-disciplinary Perspectives on Meta-Learning for Algo-
rithm Selection. ACM Computing Surveys (CSUR) 41(1), 6:1–6:25 (2008)

20. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

66

Metalearning for multiple-domain
Transfer Learning

Catarina Félix1,2, Carlos Soares1,3, and Aĺıpio Jorge2,4

1 INESC TEC, Portugal
2 Faculdade de Ciências da Universidade do Porto, Portugal

3 Faculdade de Engenharia da Universidade do Porto, Portugal
4 LIAAD-INESC TEC, Portugal

cfo@inescporto.pt, csoares@fe.up.pt, amjorge@fc.up.pt

Abstract. Machine learning processes consist in collecting data, ob-
taining a model and applying it to a given task. Given a new task, the
standard approach is to restart the learning process and obtain a new
model. However, previous learning experience can be exploited to as-
sist the new learning process. The two most studied approaches for this
are metalearning and transfer learning. Metalearning can be used for se-
lecting the predictive model to use over a determined dataset. Transfer
learning allows the reuse of knowledge from previous tasks. Our aim is
to use metalearning to support transfer learning and reduce the compu-
tational cost without loss in terms of performance, as well as the user
effort needed for the algorithm selection. In this paper we propose some
methods for mapping the transfer of weights between neural networks
to improve the performance of the target network, and describe some
experiments performed in order to test our hypothesis.

1 Introduction

Machine learning processes consist of 1) collecting training data for the new task;
2) obtaining a model; 3) applying the model to new data. This is done even when
the new task is related to one or more tasks previously solved, for example, when
there are relationships between variables or between the processes used to obtain
the models.

There are two approaches to taking advantage of previous learning experience
in new tasks: metalearning and transfer learning. Both transfer learning and
metalearning use information about a domain to learn efficiently and effectively
in a new one. Metalearning focuses on the choice of a learning algorithm and
transfer learning on experience obtained from previous tasks. This suggests that
transfer learning and metalearning may be used together.

Our aim is to investigate if metalearning can be used to support transfer
learning in tasks consisting of very diverse subtasks, reducing computational
cost without loss in predictive performance and cutting down the time data
scientists need to perform their tasks.

67

In this paper we describe some aspects of the state of the art in metalearning
and transfer learning. We propose some methods for mapping the transfer of
weights between neural networks and describe experiments performed to test
the hypothesis that the transfer of weights improves the results of the target
network.

2 Metalearning and Transfer Learning

This section presents the basic concepts related with our work. First we describe
metalearning, some of its methods and examples of use. After that, we present
transfer learning, its motivation, operation mode and some techniques used.
Finally, we describe some examples of the combination of metalearning and
transfer learning.

2.1 Metalearning

Metalearning aims at helping in the process of selecting a predictive algorithm
to use on a determined dataset. It also aims at taking advantage of the repetitive
use of a determined method over a set of similar tasks.

There are several applications for metalearning. It can be used in combining
base learners: using several learners together to create a composite model that
better predicts the result. Another application of metalearning is bias manage-
ment, mostly used for data streams (continuous flows of data, for example from
large and continuously growing databases) that require context adaptation due
to the fact that the domain is not static. Metalearning can also be used to trans-
fer metaknowledge across tasks. It is mostly used for the Algorithm Selection
Problem, described next.

Algorithm Recommendation Choosing the best algorithm for processing
a given dataset is a difficult process. Besides, the algorithms normally have
parameters that affect its efficiency and tuning them can be a difficult and slow
task. This constitutes the motivation for the Algorithm Selection Problem [1],
originally formulated by Rice [2].

This problem consists in determining the best algorithm to use for a certain
dataset. The metalearning approach takes advantage of information previously
obtained on several datasets and also on several algorithms. This knowledge is
used to build a metamodel that, given a new dataset, gives the system the ability
to recommend the best suited algorithm.

Earlier applications of metalearning addressed the most common tasks - clas-
sification [3], regression [4] and time series [11]. These approaches were then
extended to selecting parameter settings for a single algorithm [12], the whole
data mining process [13] and also to problems from domains other than machine
learning, e.g.: different optimization problems [14, 15]. More recently, they were
also used to deal with new problems in data mining: data streams [16].

68

2.2 Transfer Learning

A definition of transfer learning can be found in [17]: given a source domain DS

and a learning task TS , a target domain DT and a learning task TT , transfer
learning aims to help improve the learning of the target predictive function fT (.)
in DT using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT .

Transfer learning allows the tasks and distributions used in training and
testing to be different. Here, the knowledge is transferred from one task, the
source task, to another, the target task. It is inspired in the logic used by the
human brain: the methods that allow, for example, someone to recognize pears
based on previous knowledge on recognizing apples.

Transfer learning allows algorithms to adapt to new tasks based on the knowl-
edge obtained in previous ones, and the three main research issues in this topic
are related to what, how and when to transfer.

What to transfer? This question concerns the type of information transferred
between problems: instance-transfer, where instances from the source domain are
used together with the ones on the target domain, to improve the performance
of the target model, as in TrAdaBoost [20] algorithm; feature-representation-
transfer, where a set of feature representations is extracted from the source
domain and transferred, obtaining a feature representation of the target domain
as in [21]; parameter-transfer that is done by calculating the source model, ex-
tracting its parameters and, assuming that the models for related tasks share
some parameters, transferring them to build the target model as in [22]; and
relational-knowledge-transfer, that consists in trying to transfer the knowledge
about data between the domains, as is the case of the TAMAR [23] algorithm.

How to transfer? After knowing the information that should be transferred,
the focus is on how to transfer?, that is, on the development of learning algo-
rithms to perform the transfer. For example, the DBT (Discriminability-based
transfer) algorithm [24] consists in modifying the neural network weights ob-
tained in the source classification task in order to use them on a target net-
work. In [25], a ”transfer-aware” naive Bayes classification algorithm is proposed.
In [26], first order decision trees are used for reinforcement learning, and some
tree statistics are transferred from the source to the target problem. In [27],
graph-based transferability is determined: it automatically determines the pa-
rameters to transfer between biased logistic regression tasks. The Kolmogorov
complexity between tasks is used in [28] to transfer knowledge between bayesian
decision trees. [29] introduces a context-sensitive multi task learning that helps
improving performance in neural networks for classification. In [30] the authors
use clustering to perform a feature selection to be transferred, improving the
performance of a Bayesian algorithm.

When to transfer? The last question means to know in which situations
the transfer should be performed. Ultimately, the objective is to avoid negative

69

transfer : when the transfer can harm the learning process in the target task.
This issue is referred in [25], where the authors wish to identify when transfer
learning will hurt the performance of the algorithm instead of improving it.

2.3 Metalearning and Transfer Learning

Some work has been performed in using metalearning together with transfer
learning. We analyzed some literature related to classification tasks that is de-
scribed next.

Metafeatures are used in [31] for calculating similarities between the datasets.
The algorithms used for this task is the k-nearest neighbors. In [32, 33] there is
no use of metafeatures, since the transfers are made without choosing the best
source dataset to use with a certain target dataset. In [32], metalearning is used
to find matrix transformations capable of producing good kernel matrices for
the source tasks. The matrices are then transferred to the target tasks.

The results are evaluated by performance measures as accuracy [33] and more
precisely by the area under the ROC curve in [31,32].

The transferred objects found on the studied papers are SVM parameter
settings in [31], the kernel matrices in [32] and the parameter function (respon-
sible for mapping statistics to parameters in ”bag-of-words” text classification
problems) in [33].

3 Mapping of variables for transfer

We now propose some methods for mapping variables for transfer and show the
results of applying the methods in some experiments, using neural networks with
three neurons on the hidden layer. The transfer is made from one variable on the
source dataset to another one on the target dataset. In a neural network each
neuron corresponds to a variable on the dataset, and has a connection to all the
neurons on the hidden layer.

The methods proposed are described next:

1. Random: the weights are randomly ordered. We repeat this 100 times and
generate 100 sets of randomly ordered weights.

2. Direct: the weights are transferred directly between corresponding variables,
when the datasets have the same structure.

3. Mapped: the weights are ordered according to some criteria:
(a) Kullback-Leibler divergence: we obtain the KL divergence between

all the attributes of the source dataset and and all the attributes of the
target dataset. The transfer is made between the attributes with smaller
divergence.

(b) Pearson, Spearman and Kendall correlations: we obtain the corre-
lation between every attribute in each dataset and its target. The transfer
is made between the attributes with the most similar correlation to the
respective target.

70

4 Experiments performed

Some experiments have been performed to study if the transfer of knowledge
improves the performance of an algorithm. The aim is to measure the success
of transferring the weights of a neural network learned on a source dataset to a
new neural network that will be trained on a target dataset. All the weights are
transferred, according to some mapping, and are used to initialize the network
in a non-random way. The resulting error is compared to the one obtained with
random initial weights, to assess in which cases occurs an improvement.

In the experiments, the source and target datasets may be unrelated or re-
lated (e.g. generated by the same process in different times or generated by
processes with the same structure). Weight transfer is performed from one vari-
able in the source model to one variable in the target model. The datasets used
were retrieved from UCI [34] and different experiments have been made.

4.1 Experiment 1

The objective of this experiment is to study the behavior of the transfer of
knowledge between tasks. We compared random transfer (made between ran-
domly chosen variables) with direct transfer (performed between correspondent
variables, in related datasets).

Experiment Description In this experiment, source and target datasets may
be unrelated or related (e.g. generated by the same process in different times or
generated by processes with the same structure). Weight transfer is performed
from one variable in the source model to one variable in the target model. The
mapping of variables for the transfer can be random or between corresponding
variables.

To perform this experiment the datasets used were:

1. Forest Fires
2. Concrete Compressive Strength
3. Wine Quality (red wine)
4. Challenger USA Space Shuttle O-Ring (erosion only)
5. Concrete Slump Test
6. Computer Hardware
7. Breast Cancer Wisconsin (Prognostic) (Wisconsin Breast Cancer Database)
8. Breast Cancer Wisconsin (Prognostic) (Wisconsin Prognostic Breast Cancer)
9. Parkinsons Telemonitoring

10. Communities and Crime
11. Airfoil Self-Noise
12. Buzz in Social Media (Toms Hardware)
13. Energy efficiency
14. Yacht Aerodinamics
15. Communities and Crime Unnormalized

71

One of the datasets used, Communities and Crime Unnormalized, has 18
target variables. It was used to generate new datasets using the same original
independent variables. These datasets are, then, related to each other. The other
datasets are, in principle, independent among themselves. All the datasets were
normalized in a preprocessing phase.

For this experiment we ran each dataset through a neural network with three
neurons in the hidden layer, using ten-fold cross-validation. First the networks
are trained with a random initial set of weights, and we measure the Mean
Squared Error,MSE = 1

n

∑n
i=1 (ŷi − yi)

2
. Then each network is trained with the

best set of weights found for the other networks and we also measure the MSE
for each network. For each network we compare the error obtained with random
initial weights (MSER) with the ones obtained with the weights transferred
from other networks (MSET). We consider that the transfer has improved the
result when MSER is bigger than MSET .

For the unrelated datasets, the transfer was performed randomly. For the
related datasets the transfer was performed in two different ways: randomly and
also directly between corresponding variables.

Results Figures 1 to 3 show the distribution of the improvements for the ex-
periments. In the x and y axis we have the source and target datasets, respec-
tively. We calculated the number of times when transfer improves the MSE. In
these charts the color of the squares represents the number of times the trans-
fer between those datasets improved the performance on the target task: darker
squares represent a higher probability of reducing the error when using transfer
of weights.

2 4 6 8 10 12 14

2
4

6
8

10
12

14

Proportion of Improvements − experiment #1

Source Dataset

Ta
rg

et
 D

at
as

et

Fig. 1. Distribution of the number of improvements for the first variant of the experi-
ment

72

5 10 15

5
10

15
Proportion of Improvements − experiment #2

Source Dataset

Ta
rg

et
 D

at
as

et

0.3

0.9

0.1

1

0.4

1

0.2

1

0.1

0.9

0.1

1

0.3

0.9

0.2

0.2

0.1

0.3

0.3

0.4

0.2

0.7

0.3

0.6

0.3

0.5

0.3

0.3

0.3

0.5

0.3

0.4

0.7

0.5

0.9

0.3

0.3

0.9

0.4

0.9

0.2

1

0.2

0.9

0.1

0.9

0.3

0.9

0.3

0.3

0.2

0.1

0.4

0.3

0.1

0.5

0.1

0.5

0.2

0.5

0.2

0.5

0.1

0.3

0.1

0.4

0.6

0.6

1

0.2

0.9

0.1

0.3

1

0.1

0.9

0.1

0.9

0.1

1

0.2

0.9

0.1

0.2

0.1

0.4

0.7

0.4

0.5

0.3

0.4

0.6

0.4

0.6

0.4

0.4

0.4

0.8

0.3

0.4

0.8

0.6

1

0.3

0.9

0.1

1

0.4

0.2

1

0.2

0.9

0.1

1

0.3

0.9

0.2

0.3

0.2

0.2

0.6

0.2

0.5

0.1

0.6

0.2

0.2

0.6

0.2

0.4

0.2

0.5

0.2

0.4

0.9

0.6

1

0.3

1

0.2

0.9

0.4

1

0.2

0.2

1

0.1

1

0.3

0.9

0.2

0.3

0.2

0.1

0.5

0.2

0.5

0.1

0.6

0.2

0.6

0.2

0.2

0.6

0.1

0.5

0.1

0.4

0.7

0.8

0.9

0.3

0.9

0.2

0.9

0.4

0.9

0.2

1

0.2

0.2

1

0.3

0.9

0.2

0.3

0.2

0.1

0.3

0.1

0.5

0.1

0.4

0.1

0.4

0.1

0.6

0.2

0.1

0.4

0.1

0.3

0.5

0.9

1

0.3

0.9

0.1

1

0.4

1

0.2

1

0.1

1

0.1

0.3

0.9

0.2

0.2

0.1

0.3

0.5

0.3

0.3

0.2

0.8

0.3

0.5

0.3

0.5

0.3

0.4

0.3

0.3

0.4

0.6

0.6

0.9

0.3

0.9

0.1

0.9

0.3

0.9

0.2

0.9

0.1

0.9

0.1

0.9

0.3

0.3

0.2

0.1

0.2

0.4

0.3

0.4

0.1

0.4

0.2

0.4

0.2

0.4

0.2

0.3

0.2

0.4

0.3

0.4

0.4

0.2

0.7

0.3

0.6

0.2

0.8

0.3

0.9

0.3

0.7

0.3

0.5

0.2

0.6

0.2

0.4

0.7

0.1

0.5

0.2

0.6

0.1

0.6

0.2

0.6

0.2

0.8

0.2

0.9

0.1

0.6

0.1

0.4

0.7

Fig. 2. Distribution of the number of
improvements for the second variant of
the experiment

5 10 15

5
10

15

Proportion of Improvements − experiment #3

Source Dataset

Ta
rg

et
 D

at
as

et

0.3

0.9

0.1

1

0.4

1

0.2

1

0.1

0.9

0.1

1

0.3

0.9

0.2

0.2

0.1

0.3

0.3

0.4

0.2

0.7

0.3

0.6

0.3

0.5

0.3

0.3

0.3

0.5

0.3

0.4

0.7

0.5

0.9

0.3

0.3

0.9

0.4

0.9

0.2

1

0.2

0.9

0.1

0.9

0.3

0.9

0.3

0.3

0.2

0.1

0.4

0.3

0.1

0.5

0.1

0.5

0.2

0.5

0.2

0.5

0.1

0.3

0.1

0.4

0.6

0.6

1

0.2

0.9

0.1

0.3

1

0.1

0.9

0.1

0.9

0.1

1

0.2

0.9

0.1

0.2

0.1

0.4

0.7

0.4

0.5

0.3

0.4

0.6

0.4

0.6

0.4

0.4

0.4

0.8

0.3

0.4

0.8

0.6

1

0.3

0.9

0.1

1

0.4

0.2

1

0.2

0.9

0.1

1

0.3

0.9

0.2

0.3

0.2

0.2

0.6

0.2

0.5

0.1

0.6

0.2

0.2

0.6

0.2

0.4

0.2

0.5

0.2

0.4

0.9

0.6

1

0.3

1

0.2

0.9

0.4

1

0.2

0.2

1

0.1

1

0.3

0.9

0.2

0.3

0.2

0.1

0.5

0.2

0.5

0.1

0.6

0.2

0.6

0.2

0.2

0.6

0.1

0.5

0.1

0.4

0.7

0.8

0.9

0.3

0.9

0.2

0.9

0.4

0.9

0.2

1

0.2

0.2

1

0.3

0.9

0.2

0.3

0.2

0.1

0.3

0.1

0.5

0.1

0.4

0.1

0.4

0.1

0.6

0.2

0.1

0.4

0.1

0.3

0.5

0.9

1

0.3

0.9

0.1

1

0.4

1

0.2

1

0.1

1

0.1

0.3

0.9

0.2

0.2

0.1

0.3

0.5

0.3

0.3

0.2

0.8

0.3

0.5

0.3

0.5

0.3

0.4

0.3

0.3

0.4

0.6

0.6

0.9

0.3

0.9

0.1

0.9

0.3

0.9

0.2

0.9

0.1

0.9

0.1

0.9

0.3

0.3

0.2

0.1

0.2

0.4

0.3

0.4

0.1

0.4

0.2

0.4

0.2

0.4

0.2

0.3

0.2

0.4

0.3

0.4

0.4

0.2

0.7

0.3

0.6

0.2

0.8

0.3

0.9

0.3

0.7

0.3

0.5

0.2

0.6

0.2

0.4

0.7

0.1

0.5

0.2

0.6

0.1

0.6

0.2

0.6

0.2

0.8

0.2

0.9

0.1

0.6

0.1

0.4

0.7

Fig. 3. Distribution of the number of
improvements for the third variant of
the experiment

In Figures 2 and 3, the values inside the squares represent the Pearson Cor-
relation of the target variables for each pair of datasets.

Figure 4 shows boxplots with the distributions of improvements for the 20
runs of each variant of the experiment. This chart shows that in the first variant
the improvement is lowest. Note that datasets used in the second and third
variants of the experiment are related, unlike the ones used in the first.

A plausible cause for the last variant of the experiment being the one with
more improvements is that not only the datasets are related, but also the transfer
of weights is made directly between corresponding variables from one dataset to
another, because the structure of the neural network is the same.

The improvement obtained was near 50% for the random transfer between
unrelated datasets. This means that random transfer has the same probability
of improving the result as it has of deteriorating it. The random and direct
transfers between related datasets (with the same attributes but different target
variables) show, respectively, around 60% and 70% of improvements. This means
that the transfer between related datasets increases the probability of improv-
ing the result of a neural network. This probability increases even more when
the transfer is made directly between corresponding variables, showing that the
transfer between similar (in this case, the same) variables is advantageous.

4.2 Experiment 2

The objective of this experiment was to study the behavior of the transfer of
knowledge between similar variables, comparing it to the random transfer of
knowledge.

73

different−random simmilar−random simmilar−direct

30
40

50
60

70
80

Improvement

Experiment

Im
pr

ov
em

en
t

Fig. 4. Global distribution of the MSE’s improvement with transfer over the three
experiments

Experiment description In this experiment, source and target datasets are
in principle unrelated. The datasets used were the ones considered as unrelated
on Experiment 1.

1. Concrete Compressive Strength

2. Wine Quality (red wine)

3. Challenger USA Space Shuttle O-Ring (erosion only)

4. Concrete Slump Test5

5. Airfoil Self-Noise

6. Energy efficiency6

7. Yacht Aerodynamics

Before running the experiment, the datasets were subject to a preprocessing
phase, which included the normalization. For this experiment we ran the datasets
through a neural network with three neurons in the hidden layer, using ten-fold
cross-validation.

First, the initial set of weights fed to each neural network is composed by
values generated randomly between 0 and 1. In order to outwit the randomness
of the weight generation, the whole processed is repeated 100 times for each
dataset. The dataset and weights are fed to the neural network and, using ten-
fold cross-validation, we obtain the Mean Squared Error and the Aggregated
Weights (mean of the ten sets of weights obtained from the network).

5 This dataset has 3 target variables. For this experiment only one of them was used:
SLUMP (cm).

6 This dataset has 2 target variables. For this experiment only one of them was used:
Y1.

74

These aggregated weights are transfered to other neural networks to try to
improve their performance. The transfer is performed in two ways: random and
mapped and the weights are fed to the neural network, together with the target
dataset. The learning process occurs and the resulting mean squared error is
saved.

The errors obtained in the first learning process (with randomly generated
weights - MSER) are compared with the ones obtained in the second learning
process (with the weights transferred from the other datasets - MSET). For this,
we calculate: MSEO−MSET

MSEO
.

For each pair of datasets, we repeat the transfer several times: 10000×
(100×100) for random transfer and 100× for mapped transfer.

Results The chart in Figure 5 shows the probability of improving the perfor-
mance of the neural network by transferring the weights using the same dataset
as source and target.

We can see in the chart that the transfer of the same set of weights generates
more improvements than using a new random set of weights. This is because the
first is equivalent to running the neural network for twice the iterations, leading
to a better fitting of the result.

The charts in Figures 6 to 10 show the results for the different types of
mapping: random, using Kullback-Leibler divergence, Pearson, Spearman and
Kendall correlations, respectively.

For the random mapping the figure shows, in the left, the mean number of
times the transfer improves the predictions and, in the right, the histograms of
the same information, where the colors match the ones on the images on the
left: gray tones for when the transfer increases the error and the other colors for
when there is an improvement.

The same information is shown in the charts that refer to the other types of
mappings used. For these, we added a chart, in the middle, that shows the dif-
ference, in terms of improvement, between the measured mapping methods and
the random mapping method. The colors also match the ones in the histogram.

In all cases the proportion of improvements is below (but near) 50%. Our
aim is to find the proper features that allow this proportion to increase.

5 Conclusions and Future Work

We can use related variables to identify characteristics of the model that can be
transfered with the advantage of reducing the computational cost and the user
effort on the process.

In this paper we described methods for mapping the transfer of weights
between neural networks. We also show results of some experiments performed
to test the hypothesis that the transfer of weights will improve the results of the
neural network.

In the first experiment we obtained an improvement near 50% for the random
transfer between unrelated datasets and around 60% and 70% of improvements

75

●

●

●

●

●

●

●

1 2 3 4 5 6 7

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Improvements in transfer
with the same dataset as source and target

Dataset

Im
pr

ov
em

en
ts

● New random weights
Same weights

Fig. 5. Improvements in transfer with
the same dataset as source and target

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Random
Proportion of improvements

 49.54% victories

Source Dataset
Ta

rg
et

 D
at

as
et

Random
Histogram of victories

victories

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Fig. 6. Results for random mapping

random and direct transfers between related datasets, respectively. This shows
that the transfer between similar datasets is advantageous, and the advantages
increase even more when the transfer is performed between similar variables.

In the second experiment, that was performed with unrelated datasets, we
obtained probabilities of improvement below (but near) 50% for all the mappings
considered. We aim to find the proper features that allow increasing this value.

Acknowledgments

This work is financed by the ERDF - European Regional Development Fund
through the COMPETE programme (operational programme for competitive-
ness) within project GNOSIS, cf. FCOMP-01-0202-FEDER-038987.

References

1. Brazdil, P., Giraud-Carrier, C.G., Soares, C., Vilalta, R.: Metalearning - Applica-
tions to Data Mining. Cognitive Technologies. Springer (2009)

2. Rice, J.R.: The algorithm selection problem. Advances in Computers 15 (1976)
65–118

3. Brazdil, P., Soares, C., da Costa, J.P.: Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning 50(3) (2003)
251–277

4. Gama, J., Brazdil, P.: Characterization of classification algorithms. In: Progress in
Artificial Intelligence, 7th Portuguese Conference on Artificial Intelligence, EPIA
’95, Funchal, Madeira Island, Portugal, October 3-6, 1995, Proceedings. (1995)
189–200

5. Kalousis, A., Gama, J., Hilario, M.: On data and algorithms: Understanding in-
ductive performance. Machine Learning 54(3) (2004) 275–312

76

1 2 3 4 5 6 7

1
2

3
4

5
6

7
KL−divergence

Proportion of improvements
 47.9% victories

Source Dataset

Ta
rg

et
 D

at
as

et

1 2 3 4 5 6 7

1
2

3
4

5
6

7

KL−divergence
Proportion of improvements

 Compared to Random

Source Dataset

Ta
rg

et
 D

at
as

et

KL−divergence
Histogram of victories

victories

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Fig. 7. Results for mapping with
Kullback-Leibler divergence

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Pearson Correlation
Proportion of improvements

 48.1% victories

Source Dataset

Ta
rg

et
 D

at
as

et

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Pearson Correlation
Proportion of improvements

 Compared to Random

Source Dataset

Ta
rg

et
 D

at
as

et

Pearson Correlation
Histogram of victories

victories

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6
7

Fig. 8. Results for mapping with Pear-
son correlation

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Spearman Correlation
Proportion of improvements

 48.99% victories

Source Dataset

Ta
rg

et
 D

at
as

et

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Spearman Correlation
Proportion of improvements

 Compared to Random

Source Dataset

Ta
rg

et
 D

at
as

et

Spearman Correlation
Histogram of victories

victories

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Fig. 9. Results for mapping with
Spearman correlation

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Kendall Correlation
Proportion of improvements

 48.65% victories

Source Dataset

Ta
rg

et
 D

at
as

et

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Kendall Correlation
Proportion of improvements

 Compared to Random

Source Dataset

Ta
rg

et
 D

at
as

et

Kendall Correlation
Histogram of victories

victories

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Fig. 10. Results for mapping with
Kendall correlation

6. Bensusan, H., Giraud-Carrier, C.G.: Discovering task neighbourhoods through
landmark learning performances. In: Principles of Data Mining and Knowledge
Discovery, 4th European Conference, PKDD 2000, Lyon, France, September 13-
16, 2000, Proceedings. (2000) 325–330

7. Soares, C.: UCI++: improved support for algorithm selection using datasetoids. In:
Advances in Knowledge Discovery and Data Mining, 13th Pacific-Asia Conference,
PAKDD 2009, Bangkok, Thailand, April 27-30, 2009, Proceedings. (2009) 499–506

8. Macià, N., Orriols-Puig, A., Bernadó-Mansilla, E.: Genetic-based synthetic data
sets for the analysis of classifiers behavior. In: Hybrid Intelligent Systems, 2008.
HIS’08. Eighth International Conference on, IEEE (2008) 507–512

9. Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved exper-
imental methodology in machine learning. In: Knowledge Discovery in Databases:
PKDD 2007, 11th European Conference on Principles and Practice of Knowledge

77

Discovery in Databases, Warsaw, Poland, September 17-21, 2007, Proceedings.
(2007) 6–17

10. Prudêncio, R.B.C., Soares, C., Ludermir, T.B.: Uncertainty sampling-based active
selection of datasetoids for meta-learning. In: Artificial Neural Networks and Ma-
chine Learning - ICANN 2011 - 21st International Conference on Artificial Neural
Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part II. (2011) 454–461

11. Prudêncio, R.B.C., Ludermir, T.B.: Meta-learning approaches to selecting time
series models. Neurocomputing 61 (2004) 121–137

12. Gomes, T.A.F., Prudêncio, R.B.C., Soares, C., Rossi, A.L.D., Carvalho,
A.C.P.L.F.: Combining meta-learning and search techniques to select parameters
for support vector machines. Neurocomputing 75(1) (2012) 3–13

13. Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A survey of intelligent
assistants for data analysis. ACM Comput. Surv. 45(3) (July 2013) 31:1–31:35

14. Abreu, P., Soares, C., Valente, J.M.S.: Selection of heuristics for the job-shop
scheduling problem based on the prediction of gaps in machines. In: Learning and
Intelligent Optimization, Third International Conference, LION 3, Trento, Italy,
January 14-18, 2009. Selected Papers. (2009) 134–147

15. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1) (2008)

16. Gama, J., Kosina, P.: Learning about the learning process. In: Advances in Intelli-
gent Data Analysis X - 10th International Symposium, IDA 2011, Porto, Portugal,
October 29-31, 2011. Proceedings. (2011) 162–172

17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10) (2010) 1345–1359

18. Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., Matsumoto, Y.: Transfer learning for
multiple-domain sentiment analysis - identifying domain dependent/independent
word polarity. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011. (2011)

19. Caruana, R.: Multitask learning. Machine Learning 28(1) (1997) 41–75
20. Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: Ma-

chine Learning, Proceedings of the Twenty-Fourth International Conference (ICML
2007), Corvallis, Oregon, USA, June 20-24, 2007. (2007) 193–200

21. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 conference on empirical methods
in natural language processing, Association for Computational Linguistics (2006)
120–128

22. Gao, J., Fan, W., Jiang, J., Han, J.: Knowledge transfer via multiple model local
structure mapping. In: In International Conference on Knowledge Discovery and
Data Mining, Las Vegas, NV. (2008)

23. Mihalkova, L., Huynh, T., Mooney, R.J.: Mapping and revising markov logic net-
works for transfer learning. In: In Proceedings of the 22 nd National Conference
on Artificial Intelligence (AAAI. (2007) 608–614

24. Pratt, L.Y., Pratt, L.Y., Hanson, S.J., Giles, C.L., Cowan, J.D.: Discriminability-
based transfer between neural networks. In: Advances in Neural Information Pro-
cessing Systems 5, Morgan Kaufmann (1993) 204–211

25. Rosenstein, M.T., Marx, Z., Kaelbling, L.P., Dietterich, T.G.: To transfer or not
to transfer. In: In NIPS’05 Workshop, Inductive Transfer: 10 Years Later. (2005)

26. Ramon, J., Driessens, K., Croonenborghs, T.: Transfer learning in reinforcement
learning problems through partial policy recycling. In: Machine Learning: ECML
2007. Springer (2007) 699–707

78

27. Eaton, E., Desjardins, M., Lane, T.: Modeling transfer relationships between learn-
ing tasks for improved inductive transfer

28. Mahmud, M., Ray, S.: Transfer learning using kolmogorov complexity: basic theory
and empirical evaluations. In: Advances in neural information processing systems.
(2007) 985–992

29. Silver, D.L., Poirier, R., Currie, D.: Inductive transfer with context-sensitive neural
networks. Machine Learning 73(3) (2008) 313–336

30. Mishra, M., Huan, J.: Multitask learning with feature selection for groups of
related tasks. In: Data Mining (ICDM), 2013 IEEE 13th International Conference
on, IEEE (2013) 1157–1162

31. Biondi, G., Prati, R.: Setting parameters for support vector machines using transfer
learning. Journal of Intelligent & Robotic Systems (2015) 1–17

32. Aiolli, F.: Transfer learning by kernel meta-learning. In: ICML Unsupervised and
Transfer Learning. (2012) 81–95

33. Do, C., Ng, A.Y.: Transfer learning for text classification. In: NIPS. (2005)
34. Bache, K., Lichman, M.: UCI machine learning repository (2013)

79

Meta-learning Recommendation of
Default Hyper-parameter Values for

SVMs in Classifications Tasks

Rafael G. Mantovani1, André L. D. Rossi2, Joaquin Vanschoren3, and André
C. P. L. F. Carvalho1

1 Universidade de São Paulo (USP), So Carlos - Brazil,
{rgmantov,andre}@icmc.usp.br

2 Universidade Estadual Paulista (UNESP), Itapeva - SP, Brazil
alrossi@itapeva.unesp.br

3 Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
j.vanschoren@tue.nl

Abstract. Machine learning algorithms have been investigated in sev-
eral scenarios, one of them is the data classification. The predictive per-
formance of the models induced by these algorithms is usually strongly
affected by the values used for their hyper-parameters. Different ap-
proaches to define these values have been proposed, like the use of de-
fault values and optimization techniques. Although default values can
result in models with good predictive performance, different implemen-
tations of the same machine learning algorithms use different default
values, leading to models with clearly different predictive performance
for the same dataset. Optimization techniques have been used to search
for hyper-parameter values able to maximize the predictive performance
of induced models for a given dataset, but with the drawback of a high
computational cost. A compromise is to use an optimization technique to
search for values that are suitable for a wide spectrum of datasets. This
paper investigates the use of meta-learning to recommend default values
for the induction of Support Vector Machine models for a new classifi-
cation dataset. We compare the default values suggested by the Weka
and LibSVM tools with default values optimized by meta-heuristics on a
large range of datasets. This study covers only classification task, but we
believe that similar ideas could be used in other related tasks. According
to the experimental results, meta-models can accurately predict whether
tool suggested or optimized default values should be used.

Keywords: Meta-learning. Hyper-parameter tuning. Default Values. Sup-
port Vector Machines.

1 Introduction

Support Vector Machine (SVMs) have been successfully used for classification
tasks [21]. However, their predictive performance for a given dataset is affected by

80

2 Mantovani, R.G. et al.

their hyper-parameter values. Several approaches have been proposed to choose
these values. Some machine learning tools suggest hyper-parameter values for
SVMs regardless of the dataset analyzed, or employ simple heuristics [8]. Al-
though these values can induce models with good predictive performance [6]
this does not occur in many situations, requiring a fine tuning process [4,13,25].

However, the optimization of these hyper-parameters usually has a high com-
putational cost, since a large number of candidate solutions needs to be evalu-
ated. An alternative is to generate a new set of default values by optimizing these
hyper-parameter values over several datasets rather than for each one. The op-
timized common values may improve the model accuracy, when compared with
the use of the default values, and reduce the computation cost to induce models,
when compared with a optimization for each dataset.

This study proposes a recommendation system able to indicate which default
hyper-parameters values should be used in SVMs when applied to new datasets.
This recommendation is based on Meta-learning (MTL) [7] ideas to induce a
classification model that, based on some features of a dataset, indicates which
hyper-parameters default values should be used: those proposed by ML tools or
those achieved by an optimization technique considering a set of prior datasets.

The proposed recommendation system is evaluated experimentally using a
large number of classification datasets and considering three sets of hyper-
parameters values for SVMs: default values from LibSVM [9], default values
from Weka [16], and those obtained from an pre-optimization process with prior
datasets, from here on referred to as ”Optimized”. We employed a Particle
Swarm Optimization (PSO) [20] algorithm to perform the optimization. This
study covers only classification task, but we believe that similar ideas could be
used in other related tasks.

This paper is structured as follows: section 2 contextualizes the hyper-parameter
tuning problem and cites some techniques explored by related work. Section 3
presents our experimental methodology and steps covered to evaluate the ap-
proaches. The results are discussed in section 4. The last section presents our
conclusions and future work.

2 Hyper-parameter tuning

Hyperparameter optimization is a crucial step in the process of applying ML
in practice [12]. Setting a suitable configuration for the hyperparameters of a
ML algorithm requires specific knowledge, intuition and, often, trial and error.
Depending on the training time of the algorithm at hand, finding good hyper-
parameters values manually is time-consuming and tedious. As a result, much
recent work in ML has focused on the study of methods able to find the best
hyper-parameter values [19].

The tuning of these hyperparameters is usually treated as an optimization
problem, whose objective function captures the predictive performance of the
model induced by the algorithm. As related in [24], this tuning task may present
many aspects that can make it difficult: i) some hyperparameter values that lead

81

Meta-learning for Default Recommendation 3

to a model with high predictive performance for a given dataset may not lead
to good results for other datasets; ii) the hyperparameter values often depend
on each other, and this must be considered in the optimization; and iii) the
evaluation of a specific hyperparameter configuration, let alone many, can be
very time consuming.

Many approaches have been proposed for the optimization of hyperparam-
eters of classification algorithms. Some studies used Grid Search (GS), a sim-
ple deterministic approach that provides good results in low dimensional prob-
lems [6]. For optimization of many hyperparameters on large datasets, how-
ever, GS becomes computationally infeasible due to the combinatorial explo-
sion. In these scenarios, probabilistic approaches, such as Genetic Algorithms
(GA), are generally recommended [13]. Other authors explored the use of Pat-
tern Search (PS) [11] or techniques based on gradient descent [10]. Many auto-
mated tools are also available in the literature, such as methods based on local
search (ParamILS [18]), estimation of distributions (REVAC [23]) and Bayesian
optimization (Auto-Weka [28]).

Recent studies have shown the effectiveness of Random Sampling (RS) meth-
ods [1] for hyper-parameter fine tuning. In [5], the authors use RS to tune
Deep Belief Networks (DBNs), comparing its performance with grid methods
and showed empirically and theoretically that RS are more efficient for hyperpa-
rameter optimization than trials on a grid. Other recent works use a collaborative
filtering solution [3], or combine optimization techniques for tuning algorithms
in computer vision problems [4].

3 Materials and methods

In addition to the default values suggested by LibSVM and Weka, an optimiza-
tion technique was used to search for a new set of values suitable for a group of
datasets. For such, the predictive performance of models induced by SVMs for
public data sets using a PSO algorithm to tune SVM’s hyper-parameters was
evaluated.

In the PSO optimization, each particle encodes one hyper-parameter setting
composed of a pair of real values representing the SVM hyper-parameter C (cost)
and the width of the Gaussian kernel γ. The former is a SVM parameter and the
latter is the Gaussian kernel parameter [17]. Table 1 shows the range of values
for C and γ [26] used in the optimization. The default values provided by the
Weka [16] and LibSVM tools [9], and the obtained optimized values are listed in
Table 2.

Table 1. SVM hyper-parameters range values investigated during optimization [26].

Hyper-parameter Minimum Maximum

cost (C) 2−2 215

gamma (γ) 2−15 23

82

4 Mantovani, R.G. et al.

Table 2. Default values tested in the datasets and used to generate meta-labels.

Approach Cost (C) Gamma (γ)

DF-Weka 1 0.1
DF-LibSVM4 1 1/attrs
DF-Optimized5 25.6376 2−8.2269

3.1 Datasets

For the experiments, 145 classification datasets with different characteristics
were collected from the UCI repository [2] and OpenML [29]. These datasets
were split into two groups:

– One group contains 21 datasets that were used in the optimization process to
find common values of the hyper-parameters. These datasets were randomly
selected from the total amount of 145;

– The second group, containing the 124 remaining datasets, were used to test
the models induced with the hyper-parameters values found by the opti-
mization process. These 124 datasets and models results were used in the
meta-learning system.

Only few datasets were selected to the optimization to not spend too much
time, and because we need the other for the meta-learning. All datasets were
standardized with µ = 0 e σ = 1 internally by package ’e1071’ (R interface for
’LibSVM’ library), employed here to train SVMs.

3.2 Optimization process

Figure 1 illustrates the optimization process. The PSO algorithm is run with the
21 training datasets. The evaluation of the hyper-parameters uses 10-fold cross-
validation (CV). Whenever a pair of SVM hyper-parameter values is generated
by the tuning technique, one model is induced for each dataset using 8 partitions
(training folds). One of the remaining partitions is used to validate the induced
models, and will guide the search for the best hyper-parameter values (validation
fold). The final one is used to asses the predictive performance of the induced
models (test fold) only, not for hyper-parameter selection. This way, each dataset
has validation and testing accuracies averaged over the 10-fold CV. The fitness
criteria was defined as the median validation accuracy.

The PSO algorithm was implemented in R using the ”pso” package, available
on CRAN6. Since PSO is a stochastic method, the technique was run 30 times

4 attrs: the number of attributes in the dataset (except the target attribute)
5 Those are the values that presented the median accuracy over 30 solutions found in

the optimization process. See Section3.2
6 http://cran.r-project.org/

83

Meta-learning for Default Recommendation 5

Fig. 1. SVM hyper-parameter tuning process with multiple datasets.

for each training dataset, so we obtain 30 solutions. The hyper-parameters val-
ues that resulted in the best median testing accuracy, considering the training
datasets and executions, are defined as the ”Optimized Default” values found by
the optimization technique. Those values will be compared to the default ones
provided by ML tools in Section 4.

3.3 Meta-learning system

The problem of choosing one of the default values shown in Table 2 can be
viewed as a classification task, and solved using a meta-learning approach. A
meta-dataset is created by extracting characteristics from the datasets and used
to induce a meta-model that predicts the best set of hyper-parameters based
on these data characteristics. Then, this meta-model can be applied to predict
which default values are more likely to lead to good predictive SVM models for
a new dataset.

3.4 Meta-data set

Each meta-example of the meta-data set is composed of meta-features and a
target feature. The meta-features are extracted from the 124 datasets from
the total amount of 145 (Sec. 3.1). The other 21 datasets were used to find
the DF-Optimized parameter settings, and are therefore excluded in the meta-
learning system. Since each dataset results in one meta-example, the meta-data
set contains 124 meta-examples, each one composed of 81 meta-features. Table
3 shows an overview of the meta-features obtained from these datasets, sub-
divided into 7 subsets. These meta-features were used before in many similar
studies [14,15,25,27].

For each subset of these meta-features, a different meta-data set was cre-
ated to explore their utility for this task. Furthermore, we built a meta-data
set merging all meta-features, referred to as ALL, and another one, referred as
FEAT.SELEC., obtained using a meta-feature selection method on the subset

84

6 Mantovani, R.G. et al.

Table 3. Classes and number of meta-features used in experiments.

Meta-features Num. Description

Statlog 17 Simple measures, such as number of attributes classes and attributes.
Statistical 7 Statistics measures, such as the skewness and kurtosis.
Information 7 Information theory measures, such as the attributes’ entropy, and so on.
Landmarking 10 The performance of some ML algorithms on the datasets
Model 18 Features extracted from DTs models, such as the number of leaves, nodes, rules.
Time 9 The execution time of some ML algorithms on these dataset.
Complexity 13 measures that analyze the complexity of a classification problem.

Total 81 All meta-features

ALL. Specifically, we employed the correlation rank method from R package
’FSelector’, selecting the 25% most correlated meta-features.

Besides the meta-features, each meta-example has a target, whose label indi-
cates which default hyper-parameter values should be used on the corresponding
dataset. In order to define the label of the meta-examples, we run the three sets
of default values (DF-LibSVM, DF-Weka, and DF-Optimized) on the 124 test
datasets. The hyper-parameters values that yielded the median accuracy value
over 30 executions are selected.

All of the default approaches were evaluated performing 10-CV strategy on
testing datasets. This procedure was repeated 30 times and the predictive per-
formance of models assessed by the mean balanced accuracy. The Wilcoxon
sign-test was applied for each pair of alternatives for the default values to as-
sess the significance of the differences of accuracy measures per dataset. Table
4 shows the win-tie-loss results based on this significance test with a confidence
level of 95%.

Table 4. Win-tie-loss of the approaches for 124 datasets.

Technique Win Tie Loss

DF-Weka 13 21 90
DF-LibSVM 6 20 98
DF-Optimized 84 6 34

In these initial experiments, we considered the problem as binary, specially
due to a small number of DF-Weka and DF-LibSVM wins and eventual ties.
Thus, if the best mean accuracy for the dataset was obtained by the DF-
Optimized with statistical significance (Wilcoxon test) compared to the other
both approaches, a meta-example receives the label ”OPTM”. Otherwise, it is
labeled as ”DF”.

According to this criteria, 84 of the 124 datasets were labeled with the OPTM
class: the induced models presented the best predictive performance when it
used the parameter values obtained by the optimization process. The other 40
meta-examples were labeled with DF class: default values provided by tools
were enough. Due to the small number of meta-examples, the Leave-One-Out

85

Meta-learning for Default Recommendation 7

Cross-Validation (LOO-CV) methodology was adopted to evaluate the predictive
performance of the meta-learners.

3.5 Meta-learner

Six ML classification algorithms were used as meta-learners: J48 Decision Tree
(J48), Näıve Bayes (NB), k-Nearest Neighbors (k-NN) with k = 3, Multilayer
Perceptron (MLP), Random Forest (RF) and Support Vector Machines (SVM).
These algorithms follow different learning paradigms, each one with a distinct
bias, and may result in different predictions. An ensemble (ENS) of these clas-
sifiers was also used, with prediction defined by majority voting.

The predictive performance of each meta-learner, including the ensemble, was
averaged over all LOO-CV iterations/executions for four performance measures.
Each meta-learner was evaluated with meta-data sets composed by meta-features
extracted by different approaches, described in Table 3, and the meta-feature
sets ALL, which combines all meta-features, and FEAT.SELEC., which applies
feature selection to ALL.

4 Experimental results

The predictive performance of models induced using the optimized default values
for SVMs were compared with hyper-parameter values provided by SVMs tools.
This comparison was performed by applying the Friedman statistical test and
the Nemenyi post-hoc test with a confidence level of 95%. According to the
test, the hyper-parameter values optimized by the PSO technique for several
datasets (DF-Optimized) led to SVMs models with significantly better predictive
performance than the default values provided by both SVMs tools (DF-Weka
and DF-LibSVM) (see Table 4). Moreover, the test showed that there is no
significance difference between the performance of DF-Weka and DF-LibSVM
values.

4.1 MTL predictive performance

Table 5 summarizes the predictive performance of the meta-learners for different
sets of meta-features. The first column identifies the meta-learning algorithm.
The second column shows the meta-feature set used. The other columns present
the predictive performance of the meta-learner according to different predic-
tive performance measures: balanced accuracy, precision, recall, and F-Score.
A trivial classifier would have a mean balanced accuracy equal to 0.500. The
performance measures of this baseline method (MAJ.CLASS) and of a RAN-
DOM method are included at the bottom of the Table 5. The random method
selects labels randomly. The best results for each meta-feature set according to
the F-score measure are highlighted.

A general picture of the predictive performance of the meta-learners is pro-
vided by the F-Score measure, which is a balance between precision and recall

86

8 Mantovani, R.G. et al.

measures, and mean balanced classification accuracy. According to these values,
the J48 algorithm using all the meta-features was the best meta-learner overall,
with an F-Score of 0.821 and balanced accuracy of 0.847. The same combination
of meta-learner and meta-features also achieved the best results according to the
precision measure. For the recall measure, the best result was also obtained by
J48 algorithm, but using the Statlog meta-features subset.

4.2 Hits and Misses

Figure 2 depicts the hits and misses of the top-10 meta-models analyzing the
F-score measure. The y-axis represents the meta-models: the algorithm and the
set of meta-features used in the experiments. The x-axis represents all the 124
meta-examples of the meta-data set. In the figure, a hit is represented by a light
gray square, and a miss by a black one.

J48.COMP

ENS.LANDM

RF.COMP

ENS.COMP

RF.FSELEC

RF.STLG

J48.STLG

J48.FSELEC

J48.ALL

0 40 80 120

Dataset

A
lg

o
ri

th
m

Fig. 2. Hits and misses of the top 10 meta-models regarding the F-score.

The J48 algorithm appears four times in the list, while RF and ENS appear
three times each one. These results indicate the superiority of J48 for this task,
differently from other similar meta-learning studies, such as [22]. The intrin-
sic feature selection mechanism of J48 performed slightly better than the rank
correlation based method (FEAT.SELEC.), since the meta-model J48-ALL is
the first in the ranking followed by ”J48.FSELEC”. Another feature selection
method may further improve the meta-learners predictive performance. Figure
2 illustrates that few meta-examples were misclassified by all meta-models. In
these cases, all meta-examples are labeled as DF.

4.3 Tree Analysis

The decision tree in Figure 3 was the most frequently induced model during the
meta-level learning using the J48 algorithm with all meta-features and perform-
ing LOO-CV. This pruned tree was obtained in most of the experiments and
kept basically the same structure with 19 nodes, of which 10 are leaf nodes, and
10 rules. The meta-features selected by J48 as the most relevant ones were:

87

Meta-learning for Default Recommendation 9

1. dim: the problem dimensionality (Statlog);
2. ktsP : kurtosis pre-processed (Statistical);
3. f3 : maximum individual feature efficiency (Complexity);
4. stSd : standard deviation of stump time (Landmarking);
5. bMin: minimum level of branches (tree) (Model-based);
6. lSd : standard deviation of leaves (Model-based);
7. eAttr : attribute entropy (Information);
8. staTime: the execution time of a statistical model (Time);
9. attr : number of attributes (Statlog).

Fig. 3. Most common J48 DT with all meta-features.

It is interesting to observe that about one meta-feature from each subset was
used to generate the tree. The predictive meta-feature most frequently selected
as the root node was dim: the problem dimensionality, i.e., dim = attributes

samples . The

LibSVM library considers the dimensionality of the dataset (Table 2) to assign
the γ hyper-parameter value. However, the meta-feature dim is a ratio between
the number of attributes and examples.

According to the tree, this ratio is close to zero, DF hyper-parameter val-
ues are already good solutions, and the pre-optimized values do not improve
the model’s accuracy. However, if the execution time of a statistical model
(staT ime) is superior to 68.25, it indicates that the optimized hyper-parameter
values should be used. The pre-optimized values are also recommended if a stan-
dard deviation of the number of leaves generated by model-based DTs is higher
than 1.

5 Conclusion

Many experiments with SVMs use default values for the hyper-parameters.Thus,
a good set default values allow non-expert users to have good models with

88

10 Mantovani, R.G. et al.

low computational costs. This study investigated the development of a meta-
learning system to recommend hyper-parameter values for Support Vector Ma-
chines (SVMs) from a set of predefined default values. The meta-learning system
was experimentally evaluated using 124 datasets from UCI and OpenML.

Besides the default values proposed by ML tools, we used an optimization
technique to define new default hyper-parameter values based on a group of
datasets. The use of this new set of hyper-parameter values, referred to as op-
timized default values, produced significantly better models than the default
values suggested by ML tools.

According to the experiments to assess the performance of the meta-learning
system, it is possible to create a recommendation system able to select which de-
fault values must be used for SVM hyper-parameters for classification tasks. Ob-
serving the most frequent decision tree, a small number of simple meta-features
was sufficient to characterize the datasets. According to this decision tree, de-
fault values proposed by ML tools are suitable for problems with a dimensionality
ratio close to zero.

As future work, we intend to expand the experiments by increasing the num-
ber of datasets and meta-features and exploring other ML algorithms. We also
plan to cluster datasets according to their similarities to generate better op-
timized hyper-parameter values. The fitness value used in experiments is an
aggregate measure of performance across different datasets. It would be inter-
esting to explore other measures such as average ranks. We pretend to build on,
and make all our experiments available in OpenML [29].

Acknowledgments. The authors would like to thank CAPES, CNPq (Brazilian
Agencies) for the financial support. This project is supported by São Paulo
Research Foundation (FAPESP) under the grant#2012/23114-9.

References

1. Andradottir, S.: A review of random search methods. In: Fu, M.C. (ed.) Hand-
book of Simulation Optimization, International Series in Operations Research &
Management Science, vol. 216, pp. 277 – 292. Springer New York (2015)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013), http://

archive.ics.uci.edu/ml

3. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter
tuning. In: Dasgupta, S., Mcallester, D. (eds.) Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-13). vol. 28, pp. 199–207. JMLR
Workshop and Conference Proceedings (2013)

4. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Proc.
30th Intern. Conf. on Machine Learning. pp. 1–9 (2013)

5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (Mar 2012)

6. Braga, I., do Carmo, L.P., Benatti, C.C., Monard, M.C.: A note on parameter
selection for support vector machines. In: Castro, F., Gelbukh, A., González, M.

89

Meta-learning for Default Recommendation 11

(eds.) Advances in Soft Computing and Its Applications, LNCC, vol. 8266, pp.
233–244. Springer Berlin Heidelberg (2013)

7. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining. Springer Verlag, 2 edn. (2009)

8. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001),
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

9. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

10. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Machine Learning 46(1-3), 131–159 (Mar 2002)

11. Eitrich, T., Lang, B.: Efficient optimization of support vector machine learning
parameters for unbalanced datasets. Journal of Comp. and Applied Mathematics
196(2), 425–436 (2006)

12. Feurer, M., Springenberg, T., Hutter, F.: Initializing bayesian hyperparameter opti-
mization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (Jan 2015)

13. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. Neuro-
comput. 64, 107–117 (2005)

14. Garcia, L.P.F., de Carvalho, A.C., Lorena, A.C.: Noisy data set identification. In:
Pan, J.S., Polycarpou, M.M., Wo?niak, M., de Carvalho, A.C., Quintin, H., Cor-
chado, E. (eds.) Hybrid Artificial Intelligent Systems, Lecture Notes in Computer
Science, vol. 8073, pp. 629–638. Springer Berlin Heidelberg (2013)

15. Gomes, T.A.F., Prudêncio, R.B.C., Soares, C., Rossi, A.L.D., nd André C. P. L.
F. De Carvalho: Combining meta-learning and search techniques to select param-
eters for support vector machines. Neurocomput. 75(1), 3–13 (Jan 2012)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (Nov
2009)

17. Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classi-
fication. Department of Computer Science - National Taiwan University, Taipei,
Taiwan (2007)

18. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic al-
gorithm con- figuration framewor. Journal of Artificial Intelligence Research (36),
267–306 (2009)

19. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on lo-
cal search. In: Proceedings of the 22nd national conference on Artificial intelligence
- Volume 2. pp. 1152–1157. AAAI’07, AAAI Press (2007)

20. Kennedy, J.: Particle swarms: optimization based on sociocognition. In: Castro, L.,
Zuben, F.V. (eds.) Recent Development in Biologically Inspired Computing, pp.
235–269. Idea Group (2005)

21. Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen, W.: Tuning
and evolution of support vector kernels. Evolutionary Intelligence 5(3), 153–170
(2012)

22. Mantovani, R.G., Rossi, A.L.D., Bischl, B., Vanschoren, J., Carvalho, A.C.P.L.F.:
To tune or not to tune: recommending when to adjust svm hyper-parameters via
meta-learning. In: Proceedings of 2015 International Joint Conference on Neural
Network (Jul 2015)

23. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolu-
tionary algorithm parameters. In: Proc. of the 20th Intern. Joint Conf. on Art.
Intelligence. pp. 975–980. IJCAI’07 (2007)

90

12 Mantovani, R.G. et al.

24. Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter opti-
mization of classifiers. Machine Learning 87, 357–380 (2012)

25. Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier
selection for non-experts. Pattern Analysis and Applications 17(1), 83–96 (2014)

26. Rossi, A.L.D., Carvalho, A.C.P.L.F.: Bio-inspired optimization techniques for svm
parameter tuning. In: Proceed. of 10th Brazilian Symp. on Neural Net. pp. 435–
440. IEEE Computer Society (2008)

27. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel
width in support vector regression. Machine Learning 54(3), 195–209 (2004)

28. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms. In: Proc. of
KDD-2013. pp. 847–855 (2013)

29. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: Networked science
in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

91

Meta-learning for Default Recommendation 13

Table 5. Meta-learning results using LOO-CV.

Classifier Meta-features Bal. Acc. Precision Recall F-Score

J48 STATLOG 0.839 0.757 0.884 0.785
MLP STATLOG 0.766 0.703 0.737 0.714
NB STATLOG 0.427 0.518 0.522 0.424

3-NN STATLOG 0.734 0.679 0.693 0.685
RF STATLOG 0.823 0.764 0.815 0.781

SVM STATLOG 0.758 0.645 0.781 0.654
ENS STATLOG 0.798 0.733 0.785 0.749

J48 STATISTICAL 0.734 0.660 0.695 0.669
MLP STATISTICAL 0.677 0.572 0.608 0.570
NB STATISTICAL 0.492 0.592 0.608 0.489

3-NN STATISTICAL 0.750 0.717 0.715 0.716
RF STATISTICAL 0.742 0.672 0.705 0.682

SVM STATISTICAL 0.702 0.616 0.649 0.622
ENS STATISTICAL 0.718 0.667 0.675 0.670

J48 INFORMATION 0.806 0.726 0.817 0.747
MLP INFORMATION 0.782 0.708 0.767 0.724
NB INFORMATION 0.637 0.601 0.596 0.597

3-NN INFORMATION 0.677 0.638 0.634 0.636
RF INFORMATION 0.782 0.695 0.782 0.713

SVM INFORMATION 0.758 0.645 0.781 0.654
ENS INFORMATION 0.774 0.689 0.765 0.705

J48 LANDMARKING 0.766 0.710 0.734 0.719
MLP LANDMARKING 0.758 0.717 0.723 0.719
NB LANDMARKING 0.702 0.649 0.655 0.652

3-NN LANDMARKING 0.750 0.724 0.716 0.719
RF LANDMARKING 0.782 0.721 0.758 0.734

SVM LANDMARKING 0.774 0.715 0.746 0.726
ENS LANDMARKING 0.798 0.753 0.773 0.761

J48 MODEL 0.734 0.673 0.693 0.680
MLP MODEL 0.734 0.686 0.694 0.689
NB MODEL 0.677 0.579 0.610 0.579

3-NN MODEL 0.677 0.651 0.641 0.644
RF MODEL 0.782 0.735 0.753 0.742

SVM MODEL 0.734 0.627 0.714 0.633
ENS MODEL 0.774 0.722 0.744 0.730

J48 TIME 0.718 0.635 0.673 0.642
MLP TIME 0.790 0.701 0.801 0.720
NB TIME 0.403 0.546 0.601 0.376

3-NN TIME 0.766 0.729 0.732 0.731
RF TIME 0.774 0.715 0.746 0.726

SVM TIME 0.766 0.638 0.872 0.642
ENS TIME 0.774 0.722 0.744 0.730

J48 COMPLEXITY 0.806 0.739 0.799 0.757
MLP COMPLEXITY 0.774 0.715 0.746 0.726
NB COMPLEXITY 0.750 0.730 0.718 0.723

3-NN COMPLEXITY 0.710 0.648 0.663 0.653
RF COMPLEXITY 0.806 0.746 0.793 0.761

SVM COMPLEXITY 0.806 0.713 0.844 0.736
ENS COMPLEXITY 0.815 0.758 0.801 0.773

J48 ALL 0.847 0.815 0.829 0.821
MLP ALL 0.718 0.674 0.676 0.675
NB ALL 0.573 0.619 0.607 0.569

3-NN ALL 0.766 0.716 0.733 0.723
RF ALL 0.806 0.746 0.793 0.761

SVM ALL 0.782 0.669 0.847 0.685
ENS ALL 0.782 0.735 0.753 0.742

J48 FEAT.SELEC. 0.839 0.802 0.821 0.810
MLP FEAT.SELEC. 0.710 0.661 0.666 0.663
NB FEAT.SELEC. 0.581 0.632 0.619 0.578

3-NN FEAT.SELEC. 0.774 0.722 0.744 0.730
RF FEAT.SELEC. 0.823 0.758 0.822 0.777

SVM FEAT.SELEC. 0.774 0.657 0.842 0.669
ENS FEAT.SELEC. 0.782 0.735 0.753 0.742

BASELINE MAJ. CLASS 0.500 0.500 0.339 0.404
BASELINE RANDOM 0.501 0.505 0.505 0.486

92

Sharing RapidMiner workflows and experiments
with OpenML

Jan N. van Rijn1 and Joaquin Vanschoren2

1 Leiden University, Leiden, Netherlands,
j.n.van.rijn@liacs.leidenuniv.nl

2 Eindhoven University of Technology, Eindhoven, Netherlands,
j.vanschoren@tue.nl

Abstract. OpenML is an online, collaborative environment for machine
learning where researchers and practitioners can share datasets, work-
flows and experiments. While it is integrated in several machine learning
environments, it was not yet integrated into environments that offer a
graphical interface to easily build and experiment with many data anal-
ysis workflows. In this work we introduce an integration into the popular
RapidMiner environment, that will allow RapidMiner users to import
data directly from OpenML and automatically share all their workflows
and experiments. OpenML will then link these results to all other results
obtained by other people, possibly with other tools, creating a single con-
nected overview of the best workflows on a large set of machine learning
problems. This is useful to learn and build on the results of others, to col-
laborate with many people online, and it provides a wealth of information
to study how to construct workflows for new machine learning problems.
We demonstrate the capabilities of this integration and identify several
research opportunities.

Keywords: Meta Learning, Workflows, Algorithm Selection

1 Introduction

The field of meta-learning studies which Machine Learning algorithms work well
on what kind of data. The algorithm selection problem is one of its most natural
applications [24]: given a dataset, identify which learning algorithm (and which
hyperparameter setting) performs best on it. Different approaches leverage meta-
learning in different ways, such as building predictive meta-models based on data
characterizations [3, 20], iteratively testing the most promising algorithms [17]
and model-based hyperparameter optimization [8]. However, all these solutions
focus on recommending just a single algorithm.

Even-though the obtained results are very useful, it has been widely rec-
ognized that the quality of the results can be markedly improved by also se-
lecting the right pre-processing and post-processing operators [7, 19, 32]. For ex-
ample, the quality of k Nearest Neighbour algorithms typically degrades when
the number of features increases [9], so it makes sense to combine these algo-
rithms with feature selection [14] or feature construction. The complete chain of

93

pre-processing operators, algorithms and post-processing operators is typically
referred to as a workflow.

Meta-learning research is built on the premise that the relation between
data and a good algorithm can be learned. For this, a key prerequisite is to have
access to a vast amount of executed experiments to serve as historical train-
ing data. Experiment databases [34] have been designed to collect previously
executed experiments, divesting researchers from the burden of executing these
many experiments over and over again. OpenML [26, 35] is an online platform for
machine learning where researchers and practitioners can share datasets, work-
flows and experiments automatically from many machine learning environments,
and build directly on each other’s results. Hence, it provides an exceedingly rich
resource for meta-learning research. However, it currently has limited support
for workflows.

One of the additional challenges is the enormous increase of the search space:
besides finding the right (order of) operators, each operator also has its own
parameters to be tuned. Currently, there is only little work that addresses the
question whether the relation between the dataset and the complete workflow of
pre-processing, modelling and post-processing operators can be learned.

In order to foster progress in this challenging research area, we have inte-
grated OpenML into RapidMiner. RapidMiner is a data analysis environment
that has a graphical interface for users to easily experiment with many (slightly)
different workflows, as well as support for generating machine learning workflows.
By means of this integration, the full set of RapidMiner workflows can be shared
on OpenML, as well as the ensuing experimental results as these workflows are
run and evaluated on many input datasets. Collecting this information in an
organized fashion will open up novel research opportunities in meta-learning.

2 Related Work

The algorithm selection problem has attracted a lot of attention. In meta-
learning approaches, the data is characterised by so-called meta-features, over
which a model can be built [3]. Significant effort has been devoted to creating
these features, and they typically fall in one of the following categories [31]:
statistical, information theoretic or landmarker [20].

Another way to find an appropriate algorithm is by subsampling the data:
when training a algorithm on a small subset of the data, the time to execute
and evaluate an algorithm is much lower. The underlying assumption is that
if a algorithm works well on a small subsample of the data, it also works well
on more data. Much research has been done to study which sample sizes and
techniques are appropriate to obtain a reliable model [15, 21].

Even though these techniques work well, it has been correctly observed that
learning curves do cross [16]. Some algorithms perform particularly well when
trained on large amounts of data. In [25], a partial learning curve is built on
small data samples to iteratively select the most promising algorithms in a time-
constrained setting, showing significant time savings.

94

However, it usually doesn’t suffice to recommend a single algorithm. Typ-
ically, the algorithm contains many hyperparameters that need to be tuned,
and the model might benefit from certain pre-processing and post-processing
operators. Many strategies have been proposed to optimise the hyperparame-
ters of a given algorithm, including gradient decent methods [4], Bayesian opti-
mization techniques [33] and genetic algorithms [13, 22]. However, most of these
approaches do not leverage historical information on the performance of hyper-
parameter settings on previously seen problems. One simple way to do this is to
use meta-learning to build a model that recommends parameter settings [30], or
to view multiple algorithm configurations as individual algorithms [17]. Other
research leverages meta-learning to recommend when certain hyperparameters
should be tuned, or to predict a good initial parameter setting to speed up
Bayesian optimization [8].

The task of selecting appropriate pre-processing and post-processing opera-
tors has been less studied in the literature. Case-based reasoning has been an
early approach to select the most promising workflow out of a repository of
previously successful workflows [10, 18]. Planning algorithms were also leveraged
to construct and test possible workflows on the fly [1]. Most interestingly, the
authors of [6, 12, 19] have independently from each other created a technique
that exploits a meta-algorithm to predict what workflow to use. Their results
suggests that the even the structure and operators of a workflow can be learned.
In [7], the term Full Model Selection Problem was introduced, along with a par-
ticle swarm optimisation method to converge to a solution. The authors of [32]
propose a framework in which these methods can be defined, along with particle
swarm optimisation and genetic algorithm methods. Finally, graphical or other
interfaces have emerged as a practical solution to manually construct and test
many workflows, e.g. Weka [11], KNIME [2], ADAMS [23], and RapidMiner [28].
For a more complete overview of existing work in this area, see [29].

A common theme in this area is that a large body of workflows, and their
evaluations on large numbers of datasets, is required for almost any of these
methods to work well. In fact, it is often a limiting factor in demonstrating
the practical applicability of these systems. By integrating OpenML and Rapid-
Miner, it is our aim to work towards building the right infrastructure to foster
large scale research in this direction.

3 OpenML Connector

The integration1 consists of three new RapidMiner operators: one for download-
ing OpenML tasks, one for executing them and one for uploading the results.
Typically, they will be connected as shown in Figure 1(a). However, this modu-
larization in three operators will likely be beneficial in some cases. The operators
require an OpenML account to interact with the server.

1 Available on http://www.openml.org/

95

(a) Main Workflow

(b) Subroutine solving OpenML task

Fig. 1. Example of a RapidMiner workflow solving an OpenML task.

Download OpenML Task In order to make experiments reproducible, OpenML
works with the concept of tasks [27, 35]. A task is a container that includes the
input dataset(s), the data splits depending on the chosen evaluation procedure
(e.g., cross-validation or holdout), and other necessary inputs. The “Download
OpenML Task” operator downloads such tasks from OpenML and passes it to
the output port.

Execute OpenML Task The “Execute OpenML Task” is a so-called super-
operator ; it contains a sub-workflow that is expected to solve the task that is
delivered at the input port. The subroutine is executed for each defined training
set, and produces a model. This model is then used to predict the labels for
the observations in the associated test set. An example of such a sub-workflow,
including several pre-processing steps, is shown in Figure 1(b). The output of
this super-operator is a data structure containing predictions for all instances in
the test sets, and basic measurements such as run times.

Upload OpenML Task This operator uploads all relevant details of the work-
flow and the resulting predictions to OpenML. Details of the workflow are the
set of all operators, and the parameter settings for each operators. The predic-

96

tions contain the class label and confidences per class for classification tasks, or
the predicted values for regression tasks. This enables OpenML to calculate all
relevant performance measures, such as area under the ROC curve or RMSE.
Also the run times for each fold are uploaded.

Example Workflows The main contribution of the RapidMiner plugin is that
it automates the export of workflows to OpenML. Typically, a chain of oper-
ators is executed in order, possibly consisting of pre-processing operators that
change the feature set. For example, the Support Vector Machine algorithm of
RapidMiner can not operate on nominal features. In contrast to many WEKA
algorithms, which automatically provide a workaround, in RapidMiner the work-

(a) SVM

(b) PCA / k-NN

Fig. 2. Subprocess of the Execute OpenML Task operator, combining various pre-
processing models and the actual model using the “Group Models” operator.

97

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

N
aive Bayes

k-N
N

C
lassification R

ules

D
ecision Tree

Bagging / D
ec. Tree

R
andom

 Forest

Boosting / D
ec. Stum

p

Logistic R
egression

SVM
 / Polynom

ial

SVM
 / R

BF

N
eural N

etw
ork

A
c
c
u

ra
c
y

RapidMiner
Weka

(a) Accuracy

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

N
aive Bayes

k-N
N

C
lassification R

ules

D
ecision Tree

Bagging / D
ec. Tree

R
andom

 Forest

Boosting / D
ec. Stum

p

Logistic R
egression

SVM
 / Polynom

ial

SVM
 / R

BF

N
eural N

etw
ork

A
re

a
 U

n
d

e
r

th
e

 R
O

C
 C

u
rv

e

RapidMiner
Weka

(b) Area Under the ROC Curve

Fig. 3. Performance of RapidMiner and Weka algorithms on the “Spambase” dataset.

flow creator needs to define a solution. A possible solution could be to use the
Nominal to Numerical operator. As this operator changes the feature set for
each subsample of training set, the same pre-processing operations need to be
performed on the test set. Figure 2 shows how the RapidMiner Group Models
operator should be used to combine all pre-processing models and the algorithm
model. This ensures that evaluation process is executed on the same features as
constructed in the training set.

4 Research Opportunities

RapidMiner contains a large number of operators, covering a wide range of meth-
ods on various Machine Learning tasks. The OpenML integration thus opens up
many research opportunities. We present some basic results obtained by using
the RapidMiner plugin, and point out directions for future work.

Decent Machine Learning research is conducted over a wide range of datasets.
Yet, the results we present cover only a very small number of datasets. There-
fore, no real conclusions can be drawn from these experiments, and interesting
patterns should be addressed in future work.

Classification We can now easily compare the performance of various Rapid-
Miner algorithms against similar algorithms implemented in a different work-
bench, for example WEKA, because evaluations of other workbenches are already
available on OpenML. Figure 3 shows the result of 11 algorithm implementations
on the “spambase” dataset.All algorithms are executed with their respective de-
fault parameter settings. In the case of ensembles the base-algorithm is denoted;
in case of Support Vector Machines, the kernel was denoted.

One surprising observation is that performance differs significantly between
different implementations of the same basic algorithms. For example, even a
fairly simple algorithm like Naive Bayes does not yield the same performance in
both workbenches. In particular the difference in performance of the Random

98

 0

 1

 2

 3

 4

 5

 6

Support Vector M
achine / R

BF

k-N
N
 / k = 1

Linear R
egression

N
eural N

etw
ork

Support Vector M
achine / Poly

k-N
N
 / k = 10

G
aussian Process / Laplace

G
aussian Process / R

BF

Vector Linear R
egression

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(a) Mean Absolute Error

 10

 100

 1000

 10000

 100000

Support Vector M
achine / R

BF

k-N
N
 / k = 1

Linear R
egression

N
eural N

etw
ork

Support Vector M
achine / Poly

k-N
N
 / k = 10

G
aussian Process / Laplace

G
aussian Process / R

BF

Vector Linear R
egression

R
u

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

(b) Run time

Fig. 4. Performance of regression algorithms on the “Wine Quality” dataset.

Forest and Boosting implementations of WEKA and RapidMiner is striking.
Figure 3(a) shows the predictive accuracy of the algorithms. The results suggest
that most WEKA algorithms are superior to their RapidMiner equivalents in
terms of predictive accuracy. However, when measuring the Area Under the ROC
Curve, most RapidMiner algorithms perform somewhat better, see for example
the Support Vector Machines as shown in Figure 3(b).

The fact that two implementations of the same algorithm yield very differ-
ent results can have various reasons. For example, different implementations can
handle missing values differently, e.g., by replacing missing values by the mean
of that attribute, or removing all observations that contain missing values.2 If
there is no parameter to control this behaviour, important aspects of model
building are hidden from us. Finding these differences can therefore help us un-
derstand what kind of pre-processing steps are important for certain algorithms.
Another possible explanation for why these results differ may be that the default
parameter settings of the different implementations were optimized differently.

Regression RapidMiner also contains many algorithms than can perform re-
gression tasks. In the next setup, we run some of these on the “Wine Quality”
dataset [5].Figure 4 shows some results.

Figure 4(a) shows the Mean Absolute Error of all regression algorithms.
There is a large group of algorithms with equivalent performance. Three al-
gorithm perform eminently worse. Figure 4(b) shows run times. There seems no
direct relation between good performance and higher run times.

It seems reasonable to assume that for regression tasks pre-processing steps
become even more important, as many algorithms do not natively deal with ir-
relevant features (e.g., k-NN) or nominal values (e.g., Support Vector Machines).
Fairly simple workflows can already make a big difference for regression tasks.

Learning Curves When running a algorithm on samples of increasing size,
a learning curve can be constructed. These can be used to perform algorithm

2 Note that the Spambase dataset used in Figure 3 has no missing features.

99

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 64 91 128 181 256 362 512 724 1024 1448 2048 2896 4096 5793 7311

P
re

d
ic

ti
v
e

 A
c
c
u

ra
c
y

Trainings set size

Naive Bayes
K-NN

Decision Tree
Rule Induction

SVM / Poly

Fig. 5. Learning Curves of RapidMiner algorithms on the “Mushroom” dataset.

selection, as is done in [16, 25]. In [21] algorithm selection is used done by running
algorithms on small samples of the data. The RapidMiner plugin can also operate
on these data samples, and supports the creation of learning curves.

Figure 5 shows some of these curves. The x-axis shows the size of the sam-
ple, and the y-axis shows the performance on each sample. The curves behave
as expected. In most cases, a larger sample size results in a higher accuracy.
Furthermore, the curves do cross occasionally. An algorithm that performs well
on a small sample is not necessarily competitive on larger samples, e.g., Rule
Induction.

The Pairwise Comparison method described in [25] selects algorithms based
on their performance on small samples. Enabling this method to operate on
workflows would be a non-trivial but very useful extension.

Full Model Selection The authors of [7] first introduced this term, describing
it as: given a set of pre-processing methods, feature selection algorithms and
algorithms, select the combination of these that obtains the highest predictive
accuracy for a given data set. The authors of [32] developed an uniform frame-
work for solving this problem, and also came up with a competitive algorithm
based on genetic algorithms. Workflows constructed in RapidMiner seem well
fitted for this application, and the plugin introduced here could help with the
experimentation and exploitation of such techniques.

Workflow Mining The authors of [19] propose a data mining advisor that
attempts to extract knowledge from previously ran workflows to build new ones.
Having access to a large repository of executed workflows gives the possibility of
extracting knowledge about which components work well in combination with
each other. By collecting a large set of workflow results in OpenML similar
experiments can be conducted on large scale.

100

5 Conclusions

We have developed and presented an integration of the OpenML online collabo-
ration platform within the RapidMiner workbench. OpenML currently contains
over half a million experiments, yet few of those cover complex workflows. Recent
work in meta-learning suggests that pre-processing and post-processing opera-
tors are an important part of successful algorithm selection solutions. It seems
a logical next step to stimulate meta-learning and algorithm selection research
on complete Machine Learning workflows, and this plugin is meant to enable
and foster the automated sharing and collection of experiments that explore the
performance of many possible workflows on many machine learning problems.
Several opportunities for ongoing and future research have been identified, which
can be pursued on an unprecedented scale through OpenML. We also hope to
stimulate the integration of OpenML into other workbenches that deal with
complex machine learning workflows.

Acknowledgments This work is supported by grant 600.065.120.12N150 from
the Dutch Fund for Scientific Research (NWO).

References

1. Bernstein, A., Provost, F., Hill, S.: Toward Intelligent Assistance for a Data Mining
Process: An Ontology-Based Approach for Cost-Sensitive Classification. Knowl-
edge and Data Engineering, IEEE Transactions on 17(4), 503–518 (2005)

2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P.,
Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In:
Data Analysis, Machine Learning and Applications. pp. 319–326. Springer Berlin
Heidelberg (2008)

3. Brazdil, P., Gama, J., Henery, B.: Characterizing the Applicability of Classification
Algorithms using Meta-Level Learning. In: Machine Learning: ECML-94. pp. 83–
102. Springer (1994)

4. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing Multiple Param-
eters for Support Vector Machines. Machine Learning 46(1-3), 131–159 (2002)

5. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine prefer-
ences by data mining from physicochemical properties. Decision Support Systems
47(4), 547–553 (2009)

6. Diamantini, C., Potena, D., Storti, E.: Mining Usage Patterns from a Repository
of Scientific Workflows. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing. pp. 152–157. ACM (2012)

7. Escalante, H.J., Montes, M., Sucar, L.E.: Particle Swarm Model Selection. The
Journal of Machine Learning Research 10, 405–440 (2009)

8. Feurer, M., Springenberg, T., Hutter, F.: Initializing Bayesian Hyperparameter
Optimization via Meta-Learning. In: Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence. pp. 1128–1135 (2015)

9. Friedman, J.H.: On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality.
Data Mining and Knowledge Discovery 1(1), 55–77 (1997)

101

10. Goble, C.A., De Roure, D.C.: myExperiment: Social Networking for Workflow-
using e-Scientists. In: Proceedings of the 2nd workshop on Workflows in support
of large-scale science. pp. 1–2. ACM (2007)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

12. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-Based Meta-
Mining of Knowledge Discovery Workflows. In: Meta-Learning in Computational
Intelligence, pp. 273–315. Springer (2011)

13. Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimiza-
tion for support vector machines. Expert Systems with applications 31(2), 231–240
(2006)

14. Jain, A., Zongker, D.: Feature Selection: Evaluation, Application, and Small Sam-
ple Performance. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 19(2), 153–158 (1997)

15. John, G.H., Langley, P.: Static Versus Dynamic Sampling for Data Mining. In: In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining. pp. 367–370. AAAI Press (1996)

16. Leite, R., Brazdil, P.: Predicting Relative Performance of Classifiers from Samples.
In: Proceedings of the 22nd International Conference on Machine Learning. pp.
497–503. ACM (2005)

17. Leite, R., Brazdil, P., Vanschoren, J.: Selecting Classification Algorithms with Ac-
tive Testing. In: Machine Learning and Data Mining in Pattern Recognition, pp.
117–131. Springer (2012)

18. Morik, K., Scholz, M.: The MiningMart Approach to Knowledge Discovery
in Databases. In: Intelligent Technologies for Information Analysis, pp. 47–65.
Springer (2004)

19. Nguyen, P., Hilario, M., Kalousis, A.: Using Meta-mining to Support Data Mining
Workflow Planning and Optimization. Journal of Artificial Intelligence Research
51, 605–644 (2014)

20. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and I
can tell you who you are: Landmarking various learning algorithms. In: Proceedings
of the 17th International Conference on Machine Learning. pp. 743–750 (2000)

21. Provost, F., Jensen, D., Oates, T.: Efficient Progressive Sampling. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 23–32. ACM (1999)

22. Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter opti-
mization of classifiers. Machine learning 87(3), 357–380 (2012)

23. Reutemann, P., Vanschoren, J.: Scientific workflow management with ADAMS. In:
Machine Learning and Knowledge Discovery in Databases, pp. 833–837. Springer
(2012)

24. Rice, J.R.: The Algorithm Selection Problem. Advances in Computers 15, 65118
(1976)

25. van Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J.: Fast Algorithm
Selection using Learning Curves. In: Advances in Intelligent Data Analysis XIV.
Springer (2015)

26. van Rijn, J.N., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Win-
ter, P., Wiswedel, B., Berthold, M.R., Vanschoren, J.: OpenML: A Collaborative
Science Platform. In: Machine Learning and Knowledge Discovery in Databases,
pp. 645–649. Springer (2013)

102

27. van Rijn, J.N., Umaashankar, V., Fischer, S., Bischl, B., Torgo, L., Gao, B., Winter,
P., Wiswedel, B., Berthold, M.R., Vanschoren, J.: A Rapidminer extension for Open
Machine Learning. In: RCOMM 2013. pp. 59–70 (2013)

28. Ritthoff, O., Klinkenberg, R., Fischer, S., Mierswa, I., Felske, S.: Yale: Yet an-
other learning environment. In: LLWA 01-Tagungsband der GI-Workshop-Woche,
Dortmund, Germany. pp. 84–92 (2001)

29. Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A Survey of Intelligent
Assistants for Data Analysis. ACM Computing Surveys (CSUR) 45(3), 31:1–31:35
(2013)

30. Soares, C., Brazdil, P., Kuba, P.: A Meta-Learning Method to Select the Kernel
Width in Support Vector Regression. Machine Learning 54(3), 195–209 (2004)

31. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algo-
rithm ranking. Machine Learning 93(1), 141–161 (2013)

32. Sun, Q., Pfahringer, B., Mayo, M.: Towards a Framework for Designing Full Model
Selection and Optimization Systems. In: Multiple Classifier Systems, pp. 259–270.
Springer (2013)

33. Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: Combined
selection and Hyperparameter Optimization of Classification Algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 847–855. ACM (2013)

34. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. A
new way to share, organize and learn from experiments. Machine Learning 87(2),
127–158 (2012)

35. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

103

Meta-QSAR: learning how to learn QSARs

Ivan Olier1, Crina Grosan2, Noureddin Sadawi2, Larisa Soldatova2, and Ross D. King1

1 Manchester Institute of Biotechnology
University of Manchester, United Kingdom

2 Department of Computer Science
University of Brunel, United Kingdom

1 Introduction

Quantitative structure activity relationships (QSARs) are functions that predict bioac-
tivity from compound structure. Although almost every form of statistical and ma-
chine learning method has been applied to learning QSARs, there is no single best
way of learning QSARs. Therefore, currently the QSAR scientist has little to guide
her/him on which QSAR approach to choose for a specific problem.

The aim of this work is to introduce Meta-QSAR, a meta-learning approach aimed
to learning which QSAR method is most appropriate for a particular problem. For the
preliminary results presented here, we used ChEMBL1, a public available chemoin-
formatic database, to systematically run extensive comparative QSAR experiments.
We further apply meta-learning in order to generalise these results.

2 Data and Methods

The datasets involved in this research have been formed by computing molecular
properties and fingerprints of chemical compounds with associated bioactivity to a
particular target (protein). Learning a QSAR model consists on fitting a regression
method to a dataset which has as input variables the descriptors, as response variable
(output) the associated bioactivities, and as instances, the chemical compounds. We
extracted 2,750 targets from ChEMBL with a very diverse number of chemical com-
pounds, ranging from 10 to about 6,000. Two sets of properties – one, using 43 con-
stitutional properties, and another, using 1,683 additional properties – and one finger-
print (FCFP4, 1024bits) were used to form the datasets. Further datasets were gener-
ated by imputing missing values using the median and performing feature selection
based on the chi-squared test. For the QSAR methods, we have selected 20 algo-
rithms typically used in QSAR experiments, which include: linear regression, support
vector machines, artificial neural networks, regression trees, and random forest,
amongst others. Model performance in all experiments has been assessed by taking

1 ChEMBL database is available from: https://www.ebi.ac.uk/chembl/

104

the average root mean squared error (RMSE) after 10-fold crossvalidation of the da-
tasets.

For the meta-learning stage, we conceived a classification problem that indicates
which QSAR method should be used for a particular QSAR problem. The training
and learning dataset is formed by meta-features extracted from the datasets of the base
learning level and are based on target properties (hydrophobicity, molecular weight,
aliphatic index, etc) and on information theory (mean, mutual information, entropy,
etc). We used random forests as meta-learning algorithm.

3 Results and Discussion

Fig. 1 shows preliminary results of the experiments. The graph on the left confirms
the hypothesis that there is no single way to learning QSARs. Random forests proofs
successful for the FCFP4 fingerprint representation, although other QSAR methods
had good performance, too. The graph on the right is an evidence of the fact that Me-
ta-QSAR learning is correctly suggesting for almost all targets which QSAR method
should be used.

earth.fpFCFP4.fs

glmnet.fpFCFP4

glmnet.all.mp.miss.fs

ksvm.fpFCFP4

ksvm.all.mp.miss.fs

rforest.all.mp

ridge.fpFCFP4

ksvmfp.fpFCFP4

rforest.all.mp.miss.fs

rforest.fpFCFP4

0 200 400 600
Target counts

Be
st

QS
AR

 m
et

ho
d

earth.all.mp.miss.fs

fnn.const.mp

fnn.fpFCFP4

glmnet.all.mp.miss.fs

ksvm.const.mp

ksvm.fpFCFP4

rforest.fpFCFP4

ridge.const.mp

rtree.const.mp

rtree.fpFCFP4

ksvm.all.mp.miss.fs

ksvmfp.fpFCFP4

ridge.fpFCFP4

rforest.all.mp

meta.QSAR

0 1000 2000
Target counts

Be
st

QS
AR

 m
et

ho
d

Fig. 1. Graphical representation of the number of times (target counts) a particular QSAR

learning method obtains the best performance (minimum RMSE). Left: Results from the QSAR
experiments. Right: Results using Meta-QSAR. The method names follow this convention: first
term indicates the algorithm (‘rforest’, random forest; ‘ksvm’, support vector machine (SVM)
with radial basis functions kernel; ‘ksvmfp’; SVM with Tanimoto kernel; ‘ridge’, linear regres-
sion with ridge penalisation term; ‘glmnet’, elastic-net regularized generalised linear model;
‘earth’, multivariate adaptive regression splines; ‘rtree’, regression trees; ‘fnn’, fast k-Nearest
Neighbour), second term, the kind of chemical compound descriptor set (‘fpFCFP4’, FCFP4
fingerprint; ‘all.mp’, full set of molecular properties; and ‘const.mp’, constitutional set of mo-
lecular properties), and then, optionally, whether missing value imputation (‘miss’) and feature
selection (‘fs’) methods were used.

105

Concept of rule-based configurator for Auto-WEKA
using OpenML

Patryk Kiepas, Szymon Bobek, and Grzegorz J. Nalepa

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

kiepas@student.agh.edu.pl,{sbobek,gjn}@agh.edu.pl

Abstract. Despite a large amount of research devoted to improving meta-learning
techniques, providing and using background knowledge for this task remains
a challenge. In this paper we propose a mechanism for automatic recommen-
dation of suitable machine learning algorithms and their parameters. We used
OpenML database and use rule-based configurator to improve Auto-WEKA tool.
This paper discusses the concept of our approach and the prototype tool based on
the HEARTDROID rule engine being developed.

Introduction The objective of our work is to build a meta-learning recommendation
system that guides a user through the process of solving a machine learning task. We use
the data from OpenML’s experiments to build a meta-knowledge which is later encoded
with rules. This knowledge is then used for matching new dataset’s meta-attributes with
current meta-knowledge to obtain a set of possibly best algorithms. Finally, we use
Auto-WEKA for optimizing the parameters of this narrowed set of algorithms.

In our approach we follow the general meta-learning architecture previously pro-
posed by Pavel Brazdil et.al. [1]. We use data about machine learning from on-line col-
laborative platform known as OpenML1. In the creation of meta-knowledge we use the
Amelia-II algorithm for imputation of missing data which could not be obtained with
OpenML [2]. In rule-based configurator we take advantage of HEARTDROID inference
engine2. Auto-WEKA does hyper-parameter optimization which we use for additional
tuning of created recommendation [3].

We distinguish three phases in the recommendation mechanism: 1) knowledge ac-
quisition, 2) recommendation, and 3) tuning. During the 1st phase meta-knowledge is
built from OpenML’s data only. In 2nd one the system uses that meta-knowledge and
a new dataset to build a set of suitable algorithms. Finally an automatic configuration
of these algorithms is performed with an usage of Auto-WEKA.

Building meta-knowledge In the acquisition phase main goal is to build meta-knowledge
that describes dependecies between datasets and performance of machine learning al-
gorithms executed on them. For every dataset in the OpenML database, a set of meta-
attributes is available that includes: statistical information (e.g. number of classes and
features, kurtosis of numeric attributes), information-theoretic characteristics (e.g. class

1 http://www.openml.org/
2 http://bitbucket.org/sbobek/heartdroid

106

2

or mean attribute entropy), and model-based information (e.g. J48 or kNN AUC). Each
of such characteristics has a different non-missing value coverage that varies from 6.5%
to 100%. We choose threshold for required values coverage to 20% to leave meaningful
meta-attributes. Missing values are filled with Amelia-II algorithm [2].

Meta-knowledge combines meta-attributes from dataset characteristics with corre-
sponding algorithm label or ranking. We choose only fixed number of algorithms that
are taken into consideration (usually N top used in OpenML). After that we filter the re-
sults with respect to performance and leave only the set of best algorithms. Afterwards
we consider meta-knowledge as labeled dataset. Using the WEKA J48 algorithm we
create decision tree which is converts to the XTT2 rule representation (ang. eXtended
Tabular Trees).

Making recommendation We start with computing meta-attributes of new dataset by
uploading it to OpenML. Then we choose only characteristics used in created meta-
knowledge. In the next step we match meta-attributes of new dataset with meta-knowledge.
This is done with use of meta-rules and rule-based configurator. The result consist of
algorithm name or ranking and set of parameters that according to the configurator fits
best the given dataset.

In the third stage we reduce Auto-WEKA’s search space only to the recommended
algorithms. This is done by preparing experiment with so called XML-based BATCH
file. In that file we fill path to our new dataset in ARFF format and set up list of allowed
classifiers. Then we create an experiment and run optimization process. Result is in
form of classifier name with single set of parameters.

Conclusion The main contribution of our work is a mechanism that allows to speed-
up the meta-learning task by reducing search space for Auto-WEKA software with an
usage of knowledge from OpenML database. We tested our approach and the tool on
570 datasets. We built meta-knowledge using 15 most used algorithms from OpenML
focused on optimizing area under ROC. We benchmarked our best recommendations
against Random Forest method as standard criteria. In general for most datasets area
under ROC of our recommendations were higher (for 401 datasets with avg. 0.044).
For 169 datasets AUC of our suggestions were lower (avg. 0.057). It is worth to notice
that after a single setup, our system makes an instant recommendation.

Our future work includes learning and gaining additional meta-knowledge during
recommendation mode, adding parameter suggestion in form of value ranges, adding
guidance for data preprocessing methods and including more data sources.

References

1. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Meta-learning: Concepts and tech-
niques. In: Metalearning: Applications to Data Mining. Springer Publishing Company, In-
corporated, 1 edn. (2008)

2. Honaker, J., King, G., Blackwell, M.: Amelia II: A program for missing data. Journal of
Statistical Software 45(7), 1–47 (12 2011), http://www.jstatsoft.org/v45/i07

3. Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms. In: Proc. of KDD-2013. pp. 847–
855 (2013)

107

Generating Workflow Graphs Using Typed
Genetic Programming

Tomáš Křen1, Martin Pilát1, Klára Pešková1, and Roman Neruda2

1 Charles University in Prague, Faculty of Mathematics and Physics,
Malostranské nám. 25, Prague, Czech Republic

2 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věž́ı 2, 18207 Prague, Czech Republic

In this paper we further develop our research line of chaining several pre-
processing methods with classifiers [1], by generating the complete workflow
schemes. These schemes, represented as directed acyclic graphs (DAGs), contain
computational intelligence methods together with preprocessing algorithms and
various methods of combining them into ensembles.

We systematically generate trees representing workflow DAGs using typed
genetic programing initialization designed for polymorphic and parametric types.
Terminal nodes of a tree correspond to the nodes of the DAG, where each node
contains a computational intelligence method. Function nodes of a tree represent
higher-order functions combining several DAGs in a serial or parallel manner.
We use types to distinguish between input data (D) and predictions (P) so the
generated trees represent meaningful workflows. In order to make the method
general enough to handle methods like k-means (where k affects the topology of
the DAG) correctly, we had to use the polymorphic type “list of αs of size n”
([α]n) with a natural number parameter n and an element type parameter α. The
generating method systematically produces workflow DAGs from simple ones to
more complex and larger ones, working efficiently with symmetries.

To demonstrate our first results we have chosen the winequality-white [2]
and wilt [3] datasets from the UCI repository. They both represent medium
size classification problems. The nodes of the workflow DAG contain three types
of nodes; they can be preprocessing nodes (type D → D) – k-Best (it selects k
features most correlated with the target) or principal component analysis (PCA),
or classifier nodes (D → P) – gaussian näıve Bayes (gaussianNB), support
vector classification (SVC), logistic regression (LR) or decision trees (DT). The
last type of nodes implements ensemble methods – there is a copy node and a
k-means node, which divides the data into clusters by the k-means algorithm
(both D → [D]n), and two aggregating nodes – simple voting to combine the
outputs of several methods, and merging for k-means node ([P]n → P).

To provide a baseline, we tested each of the four classifiers separately on
the two selected datasets. The parameters of the classifiers were set using an
extensive grid search with 5-fold cross-validation; the classifiers were compared
using the quadratic weighted kappa metric. Next, we generated more than 65,000
different workflows using the proposed approach, and evaluated all of them.
All computational intelligence methods used the default settings, or the tuned
settings of the individual methods (denoted as ‘default’ or ‘tuned’ in Fig. 1c).

108

2 Tomáš Křen et al.

(a) (b)

dataset winequality wilt
params default tuned default tuned

SVC 0.1783 0.3359 0.0143 0.8427
LR 0.3526 0.3812 0.3158 0.6341
GNB 0.4202 0.4202 0.2916 0.2917
DT 0.3465 0.4283 0.7740 0.8229
workflow 0.4731 0.4756 0.8471 0.8668

(c)

Fig. 1: Best workflows for the winequality (a) and wilt (b) datasets, and compar-
ison of κ metric from the cross-validation of the classifiers and the workflows (c).

The best workflows for the two datasets are presented in Figs. 1a and 1b, and
their numerical results are presented in Fig.1c.

We have demonstrated how the valid workflow DAGs can be easily generated
by a typed genetic programming initialization method. The generated workflows
beat the baseline obtained by the hyper-parameter tuning of single classifier
by a grid search, which is not surprising as the single method is also among
the generated DAGs. On the other hand the workflows do not use any hyper-
parameter tuning. In our future work, we will extend this approach to a full
genetic programming solution, which will also optimize the hyper-parameters of
the workflows and we intend to include the method in our multi-agent system
for meta-learning – Pikater [4].

Acknowledgment

This work was supported by SVV project no. 260 224, GAUK project no. 187 115,
and Czech Science Foundation project no. P103-15-19877S.

References

1. Kaźık, O., Neruda, R.: Data mining process optimization in computational multi-
agent systems. In: Agents and Data Mining Interaction. Volume 9145 of Lecture
Notes in Computer Science. Springer (2015) 93–103

2. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences
by data mining from physicochemical properties. In Decision Support Systems,
Elsevier 47(4) (2009) 547–553

3. Johnson, B.A., Tateishi, R., Hoan, N.T.: A hybrid pansharpening approach and
multiscale object-based image analysis for mapping diseased pine and oak trees.
Int. J. Remote Sens. 34(20) (October 2013) 6969–6982

4. Pešková, K., Šmı́d, J., Pilát, M., Kaźık, O., Neruda, R.: Hybrid multi-agent system
for metalearning in data mining. In Vanschoren, J., Brazdil, P., Soares, C., Kot-
thoff, L., eds.: Proc. of the MetaSel@ECAI 2014. Volume 1201 of CEUR Workshop
Proceedings., CEUR-WS.org (2014) 53–54

109

Preference-Based Meta-Learning using Dyad
Ranking: Recommending Algorithms in

Cold-Start Situations (Extended Abstract)

Dirk Schäfer1 and Eyke Hüllermeier2

1 University of Marburg, Germany
2 Department of Computer Science, University of Paderborn, Germany

dirk.schaefer@uni-marburg.de, eyke@upb.de

Preference learning in general and label ranking in particular have been ap-
plied successfully for meta-learning problems in the past [1, 4, 3]. The benefits
of incorporating additional feature descriptions of alternatives in the context
of preference learning have recently been shown for the dyad ranking frame-
work [6]. Additional descriptions in the form of feature vectors are known in
the recommender systems domain, too, where they are typically called side-
information and used for tackling cold-start problems. These problems refer to
situations where preference indicators (e.g., ratings) for new users or new items
are not yet available (see Figure 1). In these situations, side-information helps
by putting existing and new entities into relation. In this work, we make use

Preference
Indicators ?

? ?

Side-Information: Algorithm Parameters

S
id

e-
In

fo
rm

a
tio

n:
 P

ro
b

le
m

 M
e

ta
-F

ea
tu

re
s

New Parameters

New Parameters
& new ProblemsNew Problems

Fig. 1. Three kinds of cold-start problems are shown. They are characterized in that
no preference indicators are available for algorithms or problems. Side-information can
help in these situations for inferring preferences and thus recommendations.

of dyad ranking to predict a good ranking of candidate algorithms contextual-
ized by problem instances, assuming that algorithms exhibit a representation
in terms of a feature description. By generalizing over both, attributes of prob-
lems as well as algorithms, it becomes possible to tackle cold-start scenarios in
which predictions are sought for algorithms that never occurred in the train-

110

2

ing data. A similar viewpoint towards meta-learning has been taken in [7, 5],
where algorithm recommendation is tackled by means of collaborative filtering
(CF) techniques. However, in contrast to the description of users and items in
standard CF, side-information describing problems in meta-learning is usually
carefully crafted [2]. As testbed, we present experimental results on the task of
genetic algorithm (GA) recommendation in the cold-start situation correspond-
ing to the lower right box in Figure 1. The (preference) meta-learning data set3

for this experiment consists of rankings over 72 different parameterized GAs
applied on the traveling salesman problem. The following leave-one-out cross
validation (LOOCV) procedure over a total number of 246 examples (problems)
and 72 GAs (referred to as labels) is applied: for a label Aj (1 ≤ j ≤ 72) the
bilinear Plackett-Luce model [6] is trained on 245 examples and is then used to
predict the ranking over all 72 labels for the left out example in two variants.

In the first variant (the “reference” situation), a method is trained on data
where the label Aj is part of the training set, whereas in the second variant
(the “cold start” situation) the same method is trained on data where Aj is
completely omitted. In addition to the Kendall τ value that is used to quantify
the quality of a predicted ranking in relation to a ground truth ranking, the
deviation between the predicted rank of Aj and the true rank is recorded.

In the reference and the cold start situation, the Kendall τ values are almost
identical. Moreover, the average deviation from the true rank in the reference
case is 5.653 and in the cold-start scenario 5.712. These are first encouraging
results. Future work could comprise experiments on further meta data sets and
address the development of further approaches for cold-start problems.

References

1. Artur Aiguzhinov, Carlos Soares, and Ana Paula Serra. A Similarity-based Adap-
tion of Naive Bayes for Label Ranking: Application to Metalearning for Algorithm
Selection. Planning to Learn Workshop (PlanLearn10) at ECAI, pages 75–78, 2010.

2. Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. Met-
alearning: Applications to Data Mining. Springer Publishing Company, Incorpo-
rated, 1st edition, 2008.

3. Johannes Fürnkranz and Eyke Hüllermeier. Preference Learning. Springer-Verlag
New York, Inc., New York, NY, USA, 1st edition, 2010.

4. Jorge Kanda, Carlos Soares, Eduardo Hruschka, and Andre De Carvalho. A Meta-
Learning Approach to Select Meta-Heuristics for the Traveling Salesman Problem
Using MLP-Based Label Ranking. 19th International Conference on Neural Infor-
mation Processing (ICONIP 2012), 7665 LNCS:488–495, 2012.

5. Mustafa Misir and Michèle Sebag. Algorithm Selection as a Collaborative Filtering
Problem. Research report, INRIA, December 2013.

6. Dirk Schäfer and Eyke Hüllermeier. Dyad Ranking Using a Bilinear Plackett-Luce
Model. In Proceedings of the European Conference on Machine Learning and Prin-
ciples and Practices of Knowledge Discovery in Databases. Springer-Verlag, 2015.

7. David Stern, Horst Samulowitz, Luca Pulina, and Universita Genova. Collaborative
Expert Portfolio Management. Artificial Intelligence, 116(3):179–184, 2010.

3 Available at https://www.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/

111

Towards a Collaborative Platform for Advanced
Meta-Learning in Health care Predictive

Analytics

Milan Vukicevic1, Sandro Radovanovic1, Joaquin Vanschoren2, Giulio
Napolitano3, Boris Delibasic1

1 University of Belgrade, Faculty of Organizational Sciences, Jove Ilica 154, Belgrade,
Serbia

2 Eindhoven University of Technology, Department of Mathematics and Computer
Science, Eindhoven, Netherlands

3 Bonn University, Germany

Modern medical research and clinical practice are more dependent than ever
on multi-factorial data sets originating from various sources, such as medical
imaging, DNA analysis, patient health records and contextual factors. This data
drives research, facilitates correct diagnoses and ultimately helps to develop
and select the appropriate treatments. The volume and impact of this data
has increased tremendously through technological developments such as high-
throughput genomics and high-resolution medical imaging techniques. Addition-
ally, the availability and popularity of different wearable health care devices has
allowed the collection and monitoring of fine-grained personal health care data.
The fusion and combination of these heterogeneous data sources has already
led to many breakthroughs in health research and shows high potential for the
development of methods that will push current reactive practices towards pre-
dictive, personalized and preventive health care. This potential is recognized and
has led to the development of many platforms for the collection and statistical
analysis of health care data (e.g. Apple Health, Microsoft Health Vault, Ora-
cle Health Management, Philips HealthSuite, and EMC Health care Analytics).
However, the heterogeneity of the data, privacy concerns, and the complexity
and multiplicity of health care processes (e.g. diagnoses, therapy control, and
risk prediction) creates significant challenges for data fusion, algorithm selection
and tuning. These challenges leave a gap between the actual and the potential
data usage in health care, which prevents a paradigm shift from delayed gener-
alized medicine to predictive personalized medicine [1]. As such, a platform for
collaborative and privacy-preserving sharing, analysis and evaluation of health
care data would drastically facilitate the creation of advanced models on hetero-
geneous fused data, as well as ensure the reproducibility of results, and provide
a solid basis for the development of algorithm ranking and selection methods
based on collaborative meta-learning.

In this work we present an extensions of the OpenML platform that will be
addressed in our future work in order to meet the needs of meta-learning in
health care predictive analytics: privacy preserving sharing of data, workflows
and evaluations, reproducibility of the results, and rich meta-data spaces about
both data and algorithms.

112

OpenML.org [2] is a collaboration platform which is designed to organize
datasets, machine learning workflows, models and their evaluations. Currently,
OpenML is not fully distributed but can be installed on local instances which can
communicate with the main OpenML database using mirroring techniques. The
downside of this approach is that code (machine learning workflows), datasets,
experiments (models and evaluations) are physically kept on local instances, so
users cannot communicate and share. We plan to turn OpenML into a fully
distributed machine learning platform, which will be accessible from different
data mining and machine learning platforms such as RapidMiner, R, WEKA,
KNIME, or similar. Such a distributed platform would allow the ease of sharing
data and knowledge. Currently, regulations and privacy concerns often prevent
hospitals to learn from each other’s approaches (e.g. machine learning work-
flows), reproduce work done by others (data version control, preprocessing and
statistical analysis), and build models collaboratively.

On the other hand, meta-data such as type of the hospital, percentage of
readmitted patients or indicator of emergency treatment, as well as the learned
models and their evaluations can be shared and have great potential for the
development of a cutting edge meta-learning system for ranking, selection and
tuning of machine learning algorithms.

The success of meta-learning systems is greatly influenced by the size of
problem (data) and algorithm spaces, but also by the quality of the data and
algorithm descriptions (meta-features). Thus, we plan to employ domain knowl-
edge provided by expert and formal sources (e.g. ontologies) in order to extend
the meta-feature space for meta-learning in health care applications. For exam-
ple, in meta-analyses of gene expression microarray data, the type of chip is very
important in predicting algorithm performance. Further, in fused data sources
it would be useful to know which type of data contributed to the performance
(electronic health records, laboratory tests, data from wearables etc.). In con-
trast to data descriptions, algorithm descriptions are much less analyzed and
applied in the meta-learning process. Recent results [3] showed that descriptions
on the level of algorithm parts (e.g. initialization type and internal evaluation
measures in clustering algorithms), could improve quality of meta-learning pre-
dictions, and additionally identify which algorithm parts really influenced the
overall performance. Hence, we will include component based algorithm defi-
nitions as meta-features and allow their usage as predictors in meta-learning
systems. The development of such a collaborative meta-learning system would
address different challenging tasks in health care predictive analytics like early
diagnostics and risk detection, hospital re-admission prediction, automated ther-
apy control or similar with many potential stakeholders: patients, doctors, hos-
pitals, insurance companies, among others.

Acknowledgement

This research was supported by SNSF Joint Research project (SCOPES), ID:
IZ73Z0–152415.

113

References

[1] Olga Golubnitschaja, Judita Kinkorova, and Vincenzo Costigliola. Predictive, pre-
ventive and personalised medicine as the hardcore of horizon 2020: Epma position
paper. EPMA J, 5(1):6, 2014.

[2] Joaquin Vanschoren, Jan N van Rijn, Bernd Bischl, and Luis Torgo. Openml:
networked science in machine learning. ACM SIGKDD Explorations Newsletter,
15(2):49–60, 2014.

[3] Milan Vukicevic, Sandro Radovanovic, Boris Delibasic, and Milija Suknovic. Ex-
tending meta-learning framework for clustering gene expression data with com-
ponent based algorithm design and internal evaluation measures. International
Journal of Data Mining and Bioinformatics, ”In Press”.

114

Study on Meta-Learning Approach Application

in Rank Aggregation Algorithm Selection

Alexey Zabashta
1
, Ivan Smetannikov

1
, and Andrey Filchenkov

1

1 ITMO University, St. Petersburg, Russia

{zabashta}@rain.ifmo.ru, {smeivan, aaafil}@mail.ru

Abstract. Rank aggregation is an important task in many areas, nevertheless,

none of rank aggregation algorithms is best for all cases. The main goal of this

work is to develop a method, which for a given rank list finds the best rank ag-

gregation algorithm with respect to a certain optimality criterion. Two ap-

proaches based on meta-feature description are proposed and one of them

shows promising results.

Keywords: meta-learning, rank aggregation, permutations, algorithm selection.

1 Introduction

In many fields where multiple ranking algorithms are applied in practice such as

computational biology, web search, or social choice, the important task of rank aggre-

gation arises. A ranked list of objects is a permutation on these objects. Formally, the

task of rank aggregation consists in finding a permutation for a given permutation

list , which minimizes the error function , depending on a metric .

The problem of finding the best possible resulting rank is usually NP-hard, approx-

imate algorithms are used, and they show different quality of results. Therefore, the

problem of algorithm selection arises.

One of the possible solutions of this problem is the meta-learning approach [1].

Meta-learning systems were developed to solve different machine learning tasks, but

to the best of our knowledge, the problem of rank aggregation algorithm selection has

never been considered in scientific literature.

The main goal of this work is to develop an algorithm for rank aggregation algo-

rithm selection. The proposed approach is based on meta-learning.

2 Algorithms and approaches

The basic meta-features approach (BMFA) for each -th metric looks over all possi-
ble pairs of permutations from the input permutation list and then constructs a se-
quence

After that it mines statistic characteristics from each sequence as meta-features:

115

where is the set composed of the following seven metrics: described in [2, 3]: the

Manhattan distance, the Euclidean distance, the Chebyshev distance, the Cayley dis-

tance, the Kendall tau rank distance, and the Ulam distance, the Canberra distance.

The accelerated meta-features approach (AMFA) aggregates the input permutation

list into a single permutation by means of the faster method — we use the Borda

count. Then we construct a sequence from the distances between and permuta-

tions from the input list Then we mine features in the same

way as in BMFA.

The algorithm for Generating Permutation List (AGPL) uses parameters and

we use three different algorithms for single permutation generation. The Hidden Var-

iable Approach (HVA) describes a permutation list with and with which it was

generated. It can be applied only to generic data.

3 Experiments and results

In this paper we use four popular rank aggregation algorithms [2, 4]: Borda count, the

Copeland’s Score, the Markov chain method, and the “Pick a perm” method.
For experiments with generic data we generate permutation lists of the length 36

with 25 elements. For real-world experiments we use popular benchmark datasets for
rank aggregation “LETOR4.0 MQ2007-agg”.

Table 1 shows the -measure for different classifiers built by the introduced ap-

proaches on three generic datasets and one real-world dataset. The table shows that

the AMFA outperforms all the other approaches.

 Table 1. Comparison of approaches by -measure on the generic and real-work datasets.

 AGPL-A AGPL-B AGPL-C Real-world

 HVA AMFA HVA AMFA HVA AMFA BMFA AMFA

IBk 0.534 0.561 0.400 0.448 0.485 0.557 0.367 0.447
J48 0.535 0.545 0.406 0.413 0.486 0.548 0.346 0.413

LogitBoost 0.529 0.590 0.401 0.461 0.487 0.593 0.399 0.468

NaiveBayes 0.522 0.542 0.400 0.393 0.476 0.509 0.400 0.396

SMO 0.386 0.608 0.382 0.516 0.431 0.602 0.407 0.489

4 Conclusion and future work

In this work we have proposed three approaches, and one of them, namely AMFA,

has shown promising results on both types of on generic and real-world data. Based

on this work we can conclude that meta-learning could be applied for best aggregation

algorithm prediction, but current results may be improved.

116

In our future work we would try to: use more rank aggregation algorithm models

and algorithms; apply feature selection algorithms; introduce wider generic data class,

and test on other real-world data; create quality measure depending also on execution

time and explore its behavior; predict best strategies for stochastic rank aggregation

algorithms; create new meta-features, including task-specific meta-features.

This work was partially financially supported by the Government of Russian Fed-

eration, Grant 074-U01.

References

1. P. Brazdil, C. Giraud Carrier, C. Soares, R. Vilalta, Metalearning. Applications to Data

Mining. Springer, 2009.

2. A. Burkovski, L. Lausser, J.M. Kraus, H.A. Kestler, Rank Aggregation for Candidate

Gene Identification, M. Spiliopoulou et al. (eds.) Data Analysis, Machine Learning and

Knowledge Discovery, Springer International Publishing, 285–293, (2014).

3. M. Deza, T. Huang, ‘Metrics on Permutations, a Survey’, Journal of Combinatorics, In-

formation and System Sciences, 23, 173–185, (1998).

4. C. Dwork, R. Kumar, M. Noar, D. Sivakumar, Rank aggregation methods for the web,

10th International Conf. on the World Wide Web, ACM Press and Addison Wesley, 613–

622, (2001).

117

Author Index

Abdulrahman, S.M., 55
Adam, A., 43

Bischl, B., 1
Blockeel, H., 27, 43
Bobek, S., 106
Brazdil, P., 55

Carvalho, A.C.P.L.F., 80

Delibasic, B., 112

Félix, C., 67
Filchenkov, A., 115

Giraud-Carrier, C., 3
Grosan, C., 104

Hüllermeier, E., 110

Jorge, A., 67

Křen, T., 108
Kiepas, P., 106
King, R.D., 104

Mantovani, R.G., 80
Martinez, T., 3

Nalepa, G.J., 106

Napolitano, G., 112
Neruda, R., 108

Olier, I., 104

Pešková, K., 108
Pfahringer, B., 2
Pilát, M., 108

Radovanovic, S., 112
Rossi, A.L.D., 80

Sadawi, N., 104
Schäfer, D., 110
Schilling, N., 15
Schmidt-Thieme, L., 15
Smetannikov, I., 115
Smith, M.R., 3
Soares, C., 67
Soldatova, L., 104

Van Craenendonck, T., 27
van Rijn, J.N., 55, 93
Vanschoren, J., 55, 80, 93, 112
Vukicevic, M., 112

Wistuba, M., 15

Zabashta, A., 115

